Трехфазный пускатель: Пускатели магнитные — купить электромагнитный пускатель для двигателя по низкой цене

Содержание

Схемы подключения магнитного пускателя | Электрик



Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического «отключения» оборудования при «пропадание» электричества.

Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка «Пуск».

Схемы подключения магнитного пускателя

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на «3» контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание. В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.

Например если катушка магнитного пускателя на 220 вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.


Если номинал катушки на 380 вольт — один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.


Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.


Как выглядит монтажная (практическая) схема подключения магнитного пускателя? Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на «3» контакт кнопки «Пуск».

Как подключить магнитный пускатель в однофазной сети



Схема подключения электродвигателя с тепловым реле и защитным автоматом

Как выбрать автоматический выключатель (автомат) для защиты схемы?

Прежде всего выбираем сколько «полюсов», в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.

Следующим важным параметром будет ток сработки.

Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять).  Значит, трехполюсный автомат надо ставить на 3 или 4А.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.

Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.

Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.

Например для двигателя на 4кВт, можно ставить автомат на 10А.

Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.

В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.

Подключение электродвигателя через реверсивный пускатель

Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.

Смена направления вращения реализуется простим способом,  меняются местами любые две фазы.

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед» и «Пуск назад«, выключение — одной, общей кнопкой «Стоп» , как и в схемах без реверса.


В таких схемах запуска всегда должна быть защита от одновременного включения кнопок «вперед» и «назад».

Реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними должен стоять специальный механический блокиратор.

Вторая защита — электрическая. Контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если случайно нажать обе кнопки «пуск», ничего не получится — электродвигатель будет слушаться той кнопки, которая нажата раньше.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но так-как пятого контакта, в большинства магнитных пускателей нет, можно поставить дополнительный контакт. Например приставка ПКИ.

с катушкой на 220 вольт

с катушкой на 380 вольт

Подключение трехфазного двигателя через магнитный пускатель

Автор Alexey На чтение 6 мин. Просмотров 1.7k. Опубликовано Обновлено

Рассмотрение общепринятых схем монтажа магнитного пускателя позволит пользователю самостоятельно подключить трехфазный асинхронный двигатель самостоятельно, избежав при этом распространённых ошибок, не прибегая к услугам профессиональных электриков.

Необходимость в специфическом кнопочном контакте

Известно, что контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления.

Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный (вспомогательный) контакт шунтирует (подключается параллельно) пусковую кнопку, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом.

Исходя из этого, кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC) (см. рис.)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Простая схема — нереверсивный режим двигателя

Данный режим работы мотора означает, что вращение вала происходит только в одном направлении, запуск осуществляется при помощи кнопки «Пуск», а остановка происходит спустя некоторое время (из-за инерции) после нажатия «Стоп».

Существуют две распространенные разновидности данной схемы подключения – с катушкой управления 220 В и 380 В (подключение между двумя фазами). Схема с применением катушки пускателя с номиналом на 220В требует подсоединения нулевого провода, но применение нуля более привычно для простого пользователя, поэтому вначале будет рассмотрен именно этот вариант подключения.

Подключение эл. двигателя через магнитный пускатель на 220 В

Нужно детально рассмотреть все соединения, чтобы полностью понять принцип работы данной схемы, после чего будет проще разобрать более сложные варианты.

Детальное рассмотрение электромонтажа

Для удобства нужно составить монтажную схему.

Вначале подключается контактор (само собой, напряжение на  входном кабеле должно отсутствовать). В приведённой выше схеме напряжение, необходимое для управления, снимается с фазы «В» (L2), но выбор фазного провода в этом случае не имеет никакого значения (как будет удобно).

Проводник, идущий к кнопке «Стоп» подключается вместе с фазным проводом на клемме контактора. Чтобы не было путаницы, общепринято маркировать нормально разомкнутые контакты цифрами «1», «2», а размыкающие соответственно – «3», «4».

Далее нужно установить перемычку в кнопочном посте.

После чего подсоединяется провод, идущий от клеммы «1» пусковой кнопки к выводу А1 управляющей катушки контактора.

От клеммы «2» кнопки запуска нужно подсоединить провод к вспомогательному контакту NO13. В данном случае неважно, к какому выводу подключать данный провод, но лучше придерживаться схемы, чтобы потом не запутаться.

Далее необходимо подсоединить с помощью перемычки вывод NO14 вспомогательного контакта с клеммой А1, где уже подключён провод от кнопочного поста.

Осталось подсоединить вывод А2 катушки управления к нулевой шине.

Теперь, перепроверив правильность монтажа можно подать напряжение и проверить работоспособность схемы.

Убедившись в работоспособности схемы, можно подсоединять выводы обмоток двигателя к выходным клеммам контактора.

Видео по подключению магнитного пускателя классическим способом:

Использование катушки на 380В и теплового реле

Разумеется, что подключение кнопочного поста и трехфазного двигателя необходимо делать не одиночными проводами, а защищённым кабелем – приведённые выше примеры даны для того, чтобы пошагово объяснить весь процесс монтажа.

Выполняя шаг за шагом данные инструкции пользователь сможет самостоятельно собрать магнитный пускатель, даже не имея опыта в электротехнике.

Набравшись опыта и поняв принцип работы, можно использовать контактор номиналом на 380 В, в этом случае вывод с катушки А2 подключается не на нулевую шину, к одной из двух фаз, к которым не подключена клемма «4» («Стоп»).

Аналогично выглядит схема, если используется трёхфазная сеть с напряжением 220В.

В магнитном пускателе с тепловым реле схема немного меняется за счёт включения размыкающего контакта в разрыв провода от клеммы А2 контактора. Вывод А2 с катушки управления подключается к фазе или нулю через размыкающий контакт данного теплового реле P, подключённого последовательно в силовые цепи обмоток.(см. схему ниже)

Реверсивный электромагнитный пускатель

Для реверса электродвигателя (вращения вала в обратную сторону), необходимо изменить последовательность фаз, для чего применяют два контактора и кнопочный пост с тремя кнопками.

Подключение магнитных пускателей для реверса двигателя

При этом, для блокировки случайного одновременного включения обеих пускателей необходимо цепи управления запуском подключать через размыкающие контакты смежных контакторов.

Если у контакторов данные вспомогательные размыкающие контакты отсутствуют, то необходимо использовать контактную приставку.

Принцип работы, с использованием самоподхвата, остается прежним, но схема немного усложняется за счёт включения новых элементов.

Подключение эл. двигателя через реверсивные магнитные пускатели 220 В

Ключевым моментом является то, что размыкающий контакт контактора КМ2 включён в пусковую цепь КМ1, и наоборот. Необходимо рассмотреть процесс включения с самого начала, когда вспомогательные контактные мостики КМ1 и КМ2 замкнуты, то есть существует возможность запуска двигателя в любую сторону.

Запустим пускатель КМ1, при котором его нормально замкнутый контакт, через который подключёна цепь запуска в обратную сторону, разомкнётся, тем самым делая невозможным реверс до отключения КМ1. Аналогично блокируется КМ1 при работе КМ2. На контакторы устанавливается система перемычек.

Подключение эл. двигателя через реверсивные магнитные пускатели 380 В

Данный принцип сохраняется при использования катушек любого номинала.

Реверс часто используют для торможения двигателя, контролируя его обороты с помощью специального контроллера.

Переключение обмоток двигателя

Известно, что асинхронный электродвигатель потребляет меньшие стартовые токи при подключении обмоток «звездой», но максимум мощности развивает, если используется схема включения по типу «треугольника».

Поэтому, на производстве, для запуска особенно мощных электродвигателей используется переключение обмоток.

Подключение обмоток двигателе по схеме 1.»звезда» и 2.»треугольник»

Электронный прибор контролирует обороты электродвигателя – как только они достигнут номинального значения, инициируется сигнал, переключающий контакторы, вследствие чего обмотки двигателя переключатся от «звезды» к «треугольнику».

Готовый вариант пускателя

Тепловые реле, помимо уставки тока и регулировки выдержки, также имеют рычажок отключения, который часто используют в компактных магнитных пускателях, размещая кнопку «Стоп» на крышке корпуса напротив.

Включение контактора происходит при механической передаче усилия нажатия от стартовой кнопки к специальной кнопочной приставке, прикрепляемой к контактору. Схема подключения остаётся прежней, только в данном случае кнопочный пост совмещён с контактором в едином корпусе магнитного пускателя.

кнопочный пост в одном корпусе с магнитным пускателем

Поскольку подсоединение и монтаж кнопок в данных изделиях осуществляются непосредственно производителем, то пользователю необходимо только подключить питание и нагрузку, и отрегулировать тепловое реле.

Схема подключения магнитного пускателя на 220 В, 380 В

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше. 

Содержание статьи

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В.  На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

Устройство магнитного пускателя

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Так выглядит в разобранном виде

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп».  Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

Подключение контактора с катушкой на 220 В

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки  (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

 

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой  пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Магнитный пускатель с установленной на нем контактной приставкой

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

220 В, 380 В, с кнопками, с реверсом

Питание на электродвигатели лучше подавать через магнитные пускатели (называются еще контакторы). Во-первых, они обеспечивают защиту от пусковых токов. Во-вторых, нормальная схема подключения магнитного пускателя содержат органы управления (кнопки) и защиты (тепловые реле, цепи самоподхвата, электрической блокировки и т.п.). С помощью этих устройств можно запустить двигатель в обратном направлении (реверс) нажатием соответствующей кнопки. Все это организуется при помощи схем, причем они не очень сложны и их вполне можно собрать самостоятельно.

Содержание статьи

Назначение и устройство

Магнитные пускатели встраиваются в силовые сети для подачи и отключения питания. Работать могут с переменным или постоянным напряжением. Работа основана на явлении электромагнитной индукции, имеются рабочие (через них подается питание) и вспомогательные (сигнальные) контакты. Для удобства эксплуатации в схемы включения магнитных пускателей добавляют кнопки Стоп, Пуск, Вперед, Назад.

Так выглядит магнитный пускатель

Магнитные пускатели могут быть двух видов:

  •  С нормально замкнутыми контактами. Питание на нагрузку подается постоянно, отключается только когда срабатывает пускатель.
  • С нормально разомкнутыми контактами. Питание подается только в то время, когда пускатель работает.

Более широко применяется второй тип — с нормально разомкнутыми контактами. Ведь в основном, устройства должны работать небольшой промежуток времени, остальное время находится в покое. Потому далее рассмотрим принцип работы магнитного пускателя с нормально разомкнутыми контактами.

Состав и назначение частей

Основа магнитного пускателя — катушка индуктивности и магнитопровод. Магнитопровод разделен на две части. Обе они имеют вид буквы «Ш», установлены в зеркальном отражении. Нижняя часть неподвижная, ее средняя часть является сердечником катушки индуктивности.  Параметры магнитного пускателя (максимальное напряжение, с которым он может работать) зависят от катушки индуктивности. Могут быть пускатели малых номиналов — на 12 В, 24 В, 110 В, а наиболее распространенные — на 220 В и на 380 В.

Устройство магнитного пускателя (контактора)

Верхняя часть магнитопровода — подвижная, на ней закреплены подвижные контакты. К ним подключается нагрузка. Неподвижные контакты закреплены на корпусе пускателя, на них подается питающее напряжение. В исходном состоянии контакты разомкнуты (за счет силы упругости пружины, которая удерживает верхнюю часть магнитопровода), питание на нагрузку не подается.

Принцип работы

В нормальном состоянии пружина приподнимает верхнюю часть магнитопровода, контакты разомкнуты. При подачи питания на магнитный пускатель, ток, протекающий через катушку индуктивности, генерирует электромагнитное поле. Сжимая пружину, оно притягивает подвижную часть магнитопровода, контакты замыкаются (на рисунке картинка справа). Через замкнутые контакты питание подается на нагрузку, она находится в работе.

Принцип работы магнитного пускателя (контактора)

При отключении питания магнитного пускателя электромагнитное поле пропадает, пружина выталкивает верхнюю часть магнитопровода вверх, контакты размыкаются, питание на нагрузку не подается.

Подавать через магнитный пускатель можно переменное или постоянное напряжение. Важна только его величина — оно не должно превышать указанный производителем номинал. Для переменного напряжения максимум — 600 В, для постоянного — 440 В.

Схема подключения пускателя с катушкой 220 В

В любой схеме подключения магнитного пускателя есть две цепи. Одна силовая, через которую подается питание. Вторая — сигнальная. При помощи этой цепи происходит управление работой устройства. Рассматривать их надо отдельно — проще понять логику.

В верхней части корпуса магнитного пускателя находятся контакты, к которым подключается питание для этого устройства. Обычное обозначение — A1 и A2. Если катушка на 220 В, сюда подается 220 В. Куда подключить «ноль» и «фазу» — без разницы. Но чаще «фазу» подают на А2, так как тут этот вывод обычно продублирован в нижней части корпуса и довольно часто подключать сюда удобнее.

Подключение питания к магнитному пускателю

Ниже на корпусе расположены несколько контактов, подписанных L1, L2, L3. Сюда подключается источник питания для нагрузки. Тип его не важен (постоянное или переменное), важно чтобы номинал не был выше чем 220 В. Таким образом через пускатель с катушкой на 220 В можно подавать напряжение от аккумулятора, ветрогенератора и т.д. Снимается оно с контактов T1, T2, T3.

Назначение гнезд магнитного пускателя

Самая простая схема

Если к контактам A1 — A2 подключить сетевой шнур (цепь управления), подать на L1 и L3 напряжение 12 В с аккумулятора, а к выводам  T1 и T3 — осветительные приборы (силовая цепь), получим схему освещения, работающую от 12 В. Это лишь один из вариантов использования магнитного пускателя.

Но чаще, все-таки эти устройства используют для подачи питания на элетромоторы. В этом случае к L1 и L3 подключается тоже 220 В (и снимаются с T1 и T3 все те же 220 В).

Простейшая схема подключения магнитного пускателя — без кнопок

Недостаток этой схемы очевиден: чтобы выключить и включить питание, придется манипулировать вилкой — вынимать/вставлять ее в розетку. Улучшить ситуацию можно, если перед пускателем установить автомат и включать/выключать подачу питания на цепь правления с его помощью. Второй вариант — в цепь управления добавить кнопки — Пуск и Стоп.

Схема с кнопками «Пуск» и «Стоп»

При подключении через кнопки изменяется только цепь управления. Силовая остается без изменения. Вся схема подключения магнитного пускателя изменяется незначительно.

Кнопки могут быть в отдельном корпусе, могут  в одном. Во втором варианте устройство называется «кнопочный пост». Каждая кнопка имеет два входа и два выхода. Кнопка «пуск» имеет нормально разомкнутые контакты (питание подается когда она нажата), «стоп» — нормально замкнутые (при нажатии цепь обрывается).

Схема подключения магнитного пускателя с кнопками «пуск» и «стоп»

Встраиваются кнопки перед магнитным пускателем последовательно. Сначала — «пуск», затем — «стоп». Очевидно, что при такой схеме подключения магнитного пускателя, работать нагрузка будет только пока удерживается кнопка «пуск». Как только ее отпустят, питание пропадет. Собственно, в данном варианте кнопка «стоп» лишняя. Это не тот режим, который требуется в большинстве случаев. Необходимо, чтобы после отпускании пусковой кнопки питание продолжало поступать до тех пор, пока цепь не будет разорвана нажатием кнопки «стоп».

Схема подключения магнитного пускателя с цепью самоподхвата — после замыкания контакта шунтирующего кнопку «Пуск», катушка становиться на самоподпитку

Данный алгоритм работы реализуется с помощью вспомогательных контактов пускателя NO13 и NO14. Они подключаются параллельно с пусковой кнопкой. В этом случае все работает как надо: после отпускания кнопки «пуск» питание идет через вспомогательные контакты. Останавливают работу нагрузки нажав «стоп, схема возвращается в рабочее состояние.

Подключение к трехфазной сети через контактор с катушкой на 220 В

Через стандартный магнитный пускатель, работающий от 220 В, можно подключить трехфазное питание. Такая схема подключения магнитного пускателя используется с асинхронными двигателями. В цепи управления отличий нет. К контактам A1 и A2 подключается одна из фаз и «ноль». Фазный провод идет через кнопки «пуск» и «стоп», также ставится перемычка на  NO13 и NO14.

Как подключить асинхронный двигатель на 380 В через контактор с катушкой на 220 В

В силовой цепи отличия незначительные. Все три фазы подаются на L1, L2, L3, к выходам T1, T2, T3 подключается трехфазная нагрузка. В случае с мотором в схему часто добавляют тепловое реле (P), которое не допустит перегрев двигателя. Тепловое реле ставят перед электродвигателем. Оно контролирует температуру двух фаз (ставят на самые нагруженные фазы, третья), размыкая цепь питания при достижении критических температур. Эта схема подключения магнитного пускателя используется часто, опробована много раз. Порядок сборки смотрите в следующем видео.

Схема подключения двигателя с реверсным ходом

Для работы некоторых устройств необходимо вращение двигателя в обе стороны. Смена направления вращения происходит при переброске фаз (надо поменять местами две произвольные фазы). В цепи управления также необходим кнопочный пост (или отдельные кнопки) «стоп», «вперед», «назад».

Схема подключения магнитного пускателя для реверса двигателя собирается на двух одинаковых устройствах. Желательно найти такие, на которых присутствует пара нормальнозамкнутых контактов. Устройства подключаются параллельно — для обратного вращения двигателя, на одном из пускателей фазы меняются местами. Выходы обоих подаются на нагрузку.

Сигнальные цепи несколько сложнее. Кнопка «стоп» — общая. Поле нее стоит кнопка «вперед», которая подключается к одному из пускателей, «назад» — ко второму. Каждая из кнопок должна иметь цепи шунтирования («самоподхвата»)  — чтобы не было необходимости все время работы держать нажатой одну из кнопок (устанавливаются перемычки на NO13 и NO14 на каждом из пускателей).

Схема подключения двигателя с реверсным ходом с использованием магнитного пускателя

Чтобы избежать возможности подачи питания через обе кнопки, реализуется электрическая блокировка. Для этого после кнопки «вперед» питание подается на нормально замкнутые контакты второго контактора. Аналогично подключается второй контактор — через нормально замкнутые контакты первого.

Если в магнитном пускателе нет нормально замкнутых контактов, их можно добавить, установив приставку. Приставки, при установке, соединяются с основным блоком и их контакты работают одновременно с другими. То есть, пока питание подается через кнопку «вперед», разомкнувшийся нормально замкнутый контакт не даст включить обратный ход. Чтобы поменять направление, нажимают кнопку «стоп», после чего можно включать реверс, нажав «назад». Обратное  переключение происходит аналогично — через «стоп».

Контактор (пускатель) трехфазный, управление 220в

Описание Контактор (пускатель) трехфазный, управление 220в

Компактные, малогабаритные контакторы типа КМИ используются при коммутации в цепях переменного тока с номинальным напряжением: 24, 36, 42, 110, 220, 380, 690 В (50/60Гц) и током нагрузки: от 1 до 95 Ампер. Максимальная мощность указывается в маркировке: 1810-это модель на 18А на фазу, для частых включений и продолжительной работы надо подбирать с дополнительным запасом, на табличке указываются: пиковые, суммарные мощности.

Пускатели серии КМИ позволяют производить дистанционное управление в электрических однофазных, двухфазных и трехфазных цепях различного назначения. Предусмотрено место для установки трехфазного теплового реле, при перегрузке оно отключает катушку управления контактора осуществляя защиту подключенного электродвигателя от недопустимой продолжительной перегрузки и от токов, возникающих при обрыве одной из фаз, тепловое реле имеет настройку тока срабатывания и блокировку. Схема включения контактора и теплового реле в трехфазную сеть:

 

Принцип работы контактора: Все исполнения имеют три группы силовых замыкающих контактов, с системой дугогашения, схема включения срабатывает с помощью электромагнита. Когда на контакты A1 и A2 катушки подается управляющее напряжение, и под воздействием электромагнитного поля втягивающей катушки возникающего при протекании через нее напряжения, происходит смыкание магнитной системы и преодолевается противодействие возвратной пружины и пружин контактных переходов. Для предотвращения детонации предусмотрены массивные короткозамкнутые алюминиевые кольца, запрессованные в полюсные наконечники неподвижной части магнитной системы.и силовые (рабочие) контакты замыкаются. Контактор не имеют фиксатора включенного положения. Чтобы схема зафиксировалась включением кнопки, надо собрать схему включения с рисунка. Она состоит из зеленой кнопки с нормально замкнутыми и красной с нормально замкнутыми контактами. Стоит напряжению кратковременно пропасть-аварийная ситуация-цепи сразу разрываются, и включение повторно не производится, усиливая безопасность неконтролируемого восстановления питания, электроустановка не запустится, пока оператор на примет решение о повторном включении.

Установку контактора должен производить только квалифицированный специалист.

Рабочее положение контакторов вертикальное.

Особенности

Все модели контакторов имеют три группы силовых замыкающих контактов и одну или две группы вспомогательных не силовых контактов, при нехватке вспомогательных контактов есть площадка для установки дополнительной группы вспомогательных контактов, на это место можно установить таймер задержки времени, на другую площадку: механическую блокировку и термореле.

 

Характеристики:

Технические характеристики КМИ

Номин напряжение питания цепи управ Us AC 50 Гц:

24, 36, 42, 110, 230, 380 Вольт

Номин рабочий ток Ie 400 В:

9, 12, 18, 25, 32, 40, 50, 65, 80, 95 А

Тип подключения вспомогат цепей:

Винтовое соединение

Кол-во силовых норм разомкнутых “НО” контакт

3

Кол-во вспомогат норм разомкнутых “НО” контакт

1

Номин раб напряжение переменного тока Ue:

230; 400; 660 В

Номин напряжение изоляции Ui:

660 В

Номин импульсное напряжение:

6 кВ

Условный тепловой ток Ith приС-1:

 

Номин мощность при AC-3 230 В:

 

Номин мощность при AC-3 400 В:

 

Номин мощность при AC-3 660 В:

 

Макс кратковременная нагрузка:

 

Условный ток короткого замыкания Inc:

 

Защита от сверхтоков — предохр gG:

 

Мощность рассеяния при Ie АС-3:

0,2 Вт

Мощность рассеяния при Ie АС-1:

1,56 Вт

Момент затяжки:

1,2 Нм

Диапазоны напряжения управления при срабатыва Uc:

0,8…1,1

Гибкий кабель без наконечника 2:

1,0…2,5 мм

Диапазоны напряжения управления при отпускании Uc:

0,3…0,6

Время срабатывания при замыкании:

12…22 мс

Жесткий кабель без наконечника 2:

1,5…4 мм

Время срабатывания при размыкании:

4…19 мс

Коммутационная износоустойчивость: при АС-1:

1,3 млн циклов

Коммутационная износоустойчивость: при АС-3:

1,5 млн циклов

Коммутационная износоустойчивость: при АС-4:

0,2 млн циклов

Мех износоустойчивость:

15.0 млн ком циклов

Кол-во дополнительных контактов:

1

Степень защиты — IP:

IP20

Тип монтажа:

При помощи винтов, или на DIN-рейку

Климатическое исполнение:

УХЛ4

Температура эксплуатации:

-25…+50 °С

Ширина:

45.0 мм

Высота:

75.0 мм

Вес:

0,34 кг

Доп конт — Номин напряжение Un AC:

660 В

Доп конт — Номин напряжение Un DC:

440 В

Доп конт — Номин напряжение изоляции Ui:

660 В

Доп конт — Ток термической стойкости In:

10 А

Доп конт — Минимальная вкл способность Umin:

24 В

Доп конт — Минимальная вкл способность Imin:

10 мА

Доп конт — Защита от сверхтоков — предохр gG:

10 А

Доп конт — Макс кратковременная нагрузка:

100 А

Доп конт — Сопротивление изоляции:

> 10 мОм

 

1 Корпус из термостойкой ABS- пластмассы

2 Неподвижная часть трансформатора магнитной системы

3 Подвижная часть магнитной системы

4 Втягивающая, управляющая катушка

5 Контактные зажимы катушки.

6 Металлическая платформа (для номиналов свыше 25А)

7 Траверса с подвижными мостиковыми контактами

8 Крепежный, стягивающий винт

9 Возвратная пружина

10 Алюминиевые кольца

11 Неподвижный контакт

12 Присоединительный зажим с насечкой для фиксации внешних

проводников

Габаритные размеры контактора: КМ-0910, 1210, 1810, 2510, 3210.

Габаритные размеры контактора: КМ-4011, КМ-5011, КМ-6511

Габаритные размеры контактора: КМ-8011, КМ-9511

 

Как подключить контактор?

Для тех, кто нормально относился к изучению школьного курса физики, не составит особого труда разобраться в схемах подключения различного электрооборудования, включая трехфазные электродвигатели. Они подключаются через контакторы или магнитные пускатели. Зарубежная классификация не делает разницы между этими аппаратами, поскольку пускатель является тем же контактором, но укомплектованным дополнительными устройствами для безопасной работы потребителя тока.

Другими словами, пускатель – это своего рода электротехнический шкаф в миниатюре, в котором помимо контактора установлена тепловая защита и от короткого замыкания. Пускатели имеют 8 величин от «0» до «7», каждая из которых рассчитана на электродвигатели с определенным диапазоном мощности (номинального тока). Благодаря закрытому исполнению (в корпусе), пускатели могут устанавливаться в любом месте. При подключении электромоторов через контактор защитные устройства подбираются отдельно.

Система контактов на контакторе

Вне зависимости от типоразмера и производителя электротехники любой трехфазный контактор имеет стандартную схему контактов и их подключения. Для удобства монтажа все контакты имеют маркировку, указывающую на их предназначение. Маркировка наносится на корпус аппарата и выглядит следующим образом:

  • А1 (ноль) и А2 (фаза) – контакты для управления включением и отключением контактора;
  • Нечетные цифры 1, 3, 5 и маркировка L1, L2, L3 указывают на места ввода трехфазного питания;
  • Четные цифры 2, 4, 6 и маркировка T1, T2, T3 указывают на места подключения проводов, идущих к потребителю тока;
  • 13NO и 14NO это пара блок-контакта для обеспечения функции самоподхвата.

Контакт А2 продублирован в верхней и нижней части корпуса аппарата для удобства коммутации. С этой же целью верхнюю и нижнюю (нечетную и четную) группу силовых контактов также можно использовать для ввода или вывода питания. При монтаже контактора надо быть внимательным, иначе схема не будет работать.

Нельзя допускать неправильное подключение фаз. Если их перепутать при монтаже контактора, вы получите обратное вращение двигателя. Для этого предусмотрены два способа маркировки на изоляции жил кабеля – цифрами и цветом. Числам 1, 2 и 3 соответствуют цвета – желтый, зеленый и красный. Нулевой проводник имеет белый цвет или маркировку цифрой «0». Подключение силовых контактов не представляет никакой сложности. Главное – это правильное подключение управляющего напряжения через кнопочный пост.

Подключение кнопочного поста

Рассмотрим 2 схемы подключения контактора к сети 380 В: для катушки с напряжением питания 380 В и 220 В.

Кнопочный пост имеет две кнопки. «Пуск» с нормально-открытыми и «Стоп» с нормально-закрытыми контактами. Питание к нему (фаза) подается через контакт №4 кнопки «Стоп». Между клеммами №3 «Стоп» и №2 «Пуск» устанавливаем перемычку, продлевая тем самым линию «фаза». Клемма А1 (фаза) контактора соединяется с контактом №1 «Пуск». Нулевая жила управляющего провода подключается на клемму А2. Между дублем контакта А1 и клеммой 14NO устанавливается перемычка. Клемма 13NO соединяется с контактом №2 «Пуск».

В случае, если схему управления необходимо запитать от одной фазы (фаза-ноль), при номинале катушки пускателя 220 В, схема подключения будет выглядеть следующим образом.

При нажатии кнопки «Пуск» происходит срабатывание силовых контактов и подается напряжение на блок-контакт, который обеспечивает рабочее (закрытое) положение силовых контактов, после того, как кнопка будет отпущена. Нажатием кнопки «Стоп» цепь на блок-контакте разрывается, и силовые контакты переходят в нормально-открытое положение. Более подробные описания подключения контакторов с иллюстрациями и видеороликами можно найти в интернете. Сделав эту работу несколько раз, в последующем вы будете выполнять ее автоматически.

Пускатель реверсивный трехфазный АПР

Областью применения реверсивного пускателя АПР являются системы управления, регулирования, защитной автоматики, в том числе для газовых котельных.

Блок трех фазного реверсивного пускателя предназначен для:

  • обеспечения смены направления вращения асинхронных трехфазных двигателей, в том числе двигателя управления МЭО (механизм электрический однооборотный), построенных на основе трехфазных асинхронных двигателей;
  • сопряжения выходов автоматики 220 В с трехфазными асинхронными двигателями;
  • питания одного измерителя-регулятора типа АДР, АДН.

Технические характеристики

ПараметрЗначение
Напряжение питания, В170…270
Число фаз питания3
Частота, Гц50 (±1%)
Ток потребления, А0,02
Нагрузка силовая (380 В, 3 фазы):
 >> Коммутируемое напряжение. Ср. кв. знач, В170…270
 >> Минимальный коммутируемый ток по каждой фазе, А0,2
 >> Максимальный коммутируемый ток по каждой фазе, А2
 >> Максимальный импульсный ток(tимп = 10 мс), А20
 >> Ток утечки на выходе, мА2,3
Напряжение изоляции между управляющими и коммутируемыми цепями, VAC1500
Управление «ВПЕРЁД», «НАЗАД» при помощи сигналов 220 В
 >> Напряжение, подаваемое на клеммы 1,2 разъёма Х2, В220
 >> Частота напряжения, подаваемая на клеммы 1,2 разъёма Х2, Гц50
 >> Ток, потребляемый по цепям клемм 1,2 разъёма Х2, В220
Время задержки при переключении направления вращения, с0,5

Принцип работы

АПР поддерживает управление входным напряжением 220 В переменного тока до 80 мА частотой 50 Гц.

Подключение производят к разъёму Х2. При этом нейтраль (N) подключают к контакту 3 разъёма Х2. К разъёму Х3 нейтраль (N) не подключается.

При появлении сигнала «ВПЕРЁД» и отсутствии сигнала «НАЗАД» происходит включение трёх симисторов, обеспечивающих прохождение переменного тока трёх фаз от клемм 1, 2 и 3 разъёма Х3 к клеммам 1, 2 и 3 разъёма Х4 соответственно.

А при появлении сигнала «НАЗАД» и отсутствии сигнала «ВПЕРЁД» происходит включение трёх симисторов, обеспечивающих прохождение переменного тока трёх фаз от клемм 1, 2 и 3 разъёма Х3 к клеммам 1, 3 и 2 разъёма Х4 соответственно.

Таким образом, при сигнале «НАЗАД» происходит перекоммутация фаз B и C.
Каждая из фаз включается (и отключается) в момент перехода напряжения через «0 В». Это обеспечивает снижение помех при коммутации нагрузки.

При одновременном поступлении сигналов «ВПЕРЁД» и «НАЗАД» происходит отключение всех трёх фаз от нагрузки.
При смене направления вращения АПР выдерживает паузу 0,5 секунды для снижения пускового тока. Если же после отключения нагрузки происходит повторное включение без смены направления вращения, то пауза не выдерживается.

Подключение внешних цепей

Разница между контакторами и пускателями двигателей (и пускателями пониженного напряжения)

Электродвигатели абсолютно необходимы для автоматизации бесчисленных приложений по всему миру. В большинстве случаев для , приводящего в движение двигателей, то есть для подачи на них электроэнергии, требуется некоторая техническая система, которая также должна быть совместима с устройством обмотки двигателя. Поскольку в этих системах питания двигателей часто используются или сопровождающие другие устройства электрического управления и связи, уже описанные в этом Руководстве по проектированию, мы рассмотрим их наиболее распространенные варианты.Дополнительную информацию о моторных приводах, имеющих функции помимо пускателя двигателей, можно найти в этой статье motioncontroltips.com.

Только самые простые и самые маленькие конструкции — обычно с однофазными двигателями мощностью 5 л.с. или меньше или трехфазными двигателями мощностью 15 л.с. или меньше — допускают прямое подключение к сети (также называемое с параллельным подключением ) к электросети. источник без риска перенапряжения двигателя и пониженного напряжения в сети. Трехфазные двигатели, приводимые в движение таким образом, могут иметь обмотки, соединенные простой звездой (также называемой звездой) или , треугольник … а двигатели с двойным напряжением (удобно, поскольку они могут принимать входное напряжение 230 В или 460 В) имеют комплекты с двумя катушками, которые могут работать параллельно или (для более высокого напряжения) последовательно.

Этот автоматический выключатель Siemens SIRIUS 3RV2011-1HA10 типоразмера S00 является токоограничивающим выключателем для фидеров нагрузки до 3 кВт при трехфазном напряжении 400 В переменного тока. Защита от короткого замыкания 104 А и регулируемая защита от перегрузки от 5,5 до 8 А надежно защищают электродвигатели. Изображение любезно предоставлено Automation24 Inc.

Повсюду в других местах пуск двигателя через линию представляет слишком много проблем для самого двигателя, а также для систем, подключенных к двигателю, включая вредные электрические эффекты, а также чрезмерный износ компонентов механической передачи энергии.Цели проектирования, связанные с безопасностью, производительностью и точностью, обычно требуют использования более совершенных подходов к управлению автомобилем.

Пусковой ток является важным параметром при выборе правильного размера и сопряжения двигателей и пускателей двигателей. Пусковой ток от пускателя двигателя должен быть достаточным для обеспечения соответствия двигателя требованиям по крутящему моменту и ускорению, но не должен вызывать чрезмерного падения напряжения в линии электропитания.

Обоснование терминологии: Различия между контакторами и пускателями двигателей

В предыдущем разделе этого Руководства по проектированию мы подробно описали, как контакторы и реле являются отдельными компонентами, несмотря на то, что время от времени в промышленности используются термины, говорящие об обратном.Контакторы и пускатели двигателей также являются отдельными компонентами. Здесь термины используются взаимозаменяемо, потому что их ядро ​​- это та же самая точная технология — переключатель, способный работать с высокими напряжениями.

Этот пускатель двигателя с прямым включением представляет собой SIRIUS 3RM1001-1AA04 от Siemens с управляющим напряжением 24 В постоянного тока и регулируемым расцепителем перегрузки по току срабатывания от 0,1 до 0,5 А. Он обеспечивает твердотельную защиту двигателя и подходит для систем с малым током. двигатели мощностью до 0,12 кВт Стандартная ширина 22,5 мм занимает минимум места внутри шкафов управления.Изображение любезно предоставлено Automation24 Inc.

Разница в том, что пускатели двигателей имеют одну дополнительную систему или системы, которых нет в контакторах — реле перегрузки определенного типа для отключения входа напряжения , если это реле обнаруживает перегрузку двигателя или термически опасное состояние из-за продолжительной работы перегрузка по току. Пускатели двигателя с самозащитой также имеют защиту от короткого замыкания. Здесь снова ключевое значение имеет точное использование терминологии: вместо того, чтобы использовать короткое замыкание для обозначения какой-либо электрической неисправности, целесообразно использовать этот термин только при обсуждении внезапного сверхтока, возникающего из-за потока электроэнергии, который обнаружил какой-то непреднамеренный путь путешествовать.Защита от короткого замыкания действует мгновенно, отключая систему от источника питания.

Это пример силового контактора. Это Siemens SIRIUS 3RT2015-1BB41 для питания трехфазных двигателей и электрических систем отопления мощностью до 3 л.с. при 480 В переменного тока. Силовой контактор использует управляющее напряжение 24 В постоянного тока, имеет замыкающий контакт и винтовые кабельные розетки.
Фактически, существует множество размеров и версий этого силового контактора для фидеров нагрузки с автоматическими выключателями и различных коммутационных устройств SIRIUS для безопасного и функционального переключения электрических нагрузок.
• Контакторы 3RT2 бывают типоразмеров от S00 до S3. Контакторы 3RT1 бывают типоразмеров от S6 до S12
• Силовые контакторы 3RT.0 и вакуумные контакторы 3RT12 предназначены для переключения моторизованных нагрузок.
• Четырехполюсные контакторы 3RT23 (и трехполюсные контакторы 3RT24 / 3RT14) переключают резистивные нагрузки
• Четырехполюсные 3RT25 контакторы предназначены для изменения полярности двигателей подъемных редукторов
• Реле контактора 3Rh3 переключаются в цепь управления
• Контакторы конденсаторные 3RT26 переключают емкостные нагрузки (AC-6b)
• Контакторы 3RT1 / 3RT2 / 3Rh3 имеют расширенный рабочий диапазон… 3RT10 / 3RT20 / Контакторы 3Rh31 предназначены для использования на рельсах… а реле сопряжения 3RT20 / 3Rh31 предназначены для системного взаимодействия с электронными контроллерами.
• 3RT1… -.Контакторы S.36 имеют входы отказоустойчивого управления для приложений, связанных с безопасностью.
Также доступны реверсивные контакторы в сборе, а также контакторы для пуска трехфазных двигателей с уменьшенными пиками пускового тока (в виде комплектов контакторов для схем звезда-треугольник. Другое различие между контакторами и пускателями двигателей связано с тем, как эти два компонента рассчитаны и указаны. Контакторы обычно классифицируются по их допустимому напряжению. В отличие от них, пускатели двигателей обычно оцениваются по их допустимой токовой нагрузке и мощности двигателей, для которых они предназначены. re совместимы… даже при учете пускового тока при запуске без ложных срабатываний.Обычно это достигается за счет небольшой задержки срабатывания реле — многие двигатели (особенно двигатели меньшего размера) могут достичь полной рабочей скорости всего за несколько секунд.

Принципиальные схемы типовых вариантов контакторов, пускателей двигателей полного напряжения и устройств плавного пуска показывают их различия и сходства. Нажмите, чтобы увеличить.

Пуск двигателя на самом базовом уровне подразделяется на ручной или автоматический.

Ручной запуск включает переключатели включения-выключения, которые просто замыкают или размыкают входную цепь двигателя при активации персоналом завода.Некоторые версии, которые квалифицируются как настоящие пускатели двигателя (как указано выше), включают реле тепловой перегрузки для обесточивания двигателя в случае его перегрева.

Напротив, запуск двигателя с автоматическим запуском иногда называют магнитным запуском для электромеханических контакторов, которые являются стержнем этой конструкции.

Как и в любой технологии электромеханических реле, они имеют стационарные электромагнитные катушки, которые (по команде от кнопки, концевого выключателя, таймера, поплавкового выключателя или другого реле) объединяют две цепи.Эти схемы включают в себя входные силовые контакты и ответный носитель, который (будучи замкнутым вместе) пропускает ток в обмотки двигателя. Одним из вариантов этой конструкции является комбинированный пускатель, который включает в себя магнитное действие, а также некоторый способ отключения электроэнергии при необходимости… либо с помощью предохранителя, прерывателя или переключателя цепи двигателя.

Пуск двигателя по схеме звезда-треугольник (один из типов системы пониженного броска) передает полное линейное напряжение на обмотки двигателя в звезду во время запуска, хотя напряжение на каждой обмотке двигателя уменьшается на величину, обратную величине квадратного корня из трех (57.7%), поэтому такое расположение иногда (довольно неточно) называют пуском при пониженном напряжении. Затем схема (обычно с контактором для каждой фазы, реле перегрузки, таймером и механической блокировкой) переключает вход двигателя для подачи полного линейного напряжения на его обмотки треугольником.

Пуск двигателя с частичной обмоткой — используется вместе со специальными двигателями с двойным напряжением, упомянутыми выше — подает линейное напряжение только на одну часть (половину или две трети) обмоток двигателя (обычно девять или двенадцать) после Начало.Затем, когда истечет установленное время или будет обнаружено установленное напряжение, срабатывает реле или таймер и подает команду на добавление остальных обмоток и подачу питания. Ускорение может быть нерегулярным, но пусковое сопротивление двигателя с частичной обмоткой не влияет на пусковой момент… и позволяет запускать с низким крутящим моментом, что полезно для насосов, вентиляторов и нагнетателей. Как и пуск по схеме звезда-треугольник, пуск с частичной обмоткой представляет собой тип системы с пониженным пусковым током и обеспечивает пониженное полное линейное напряжение при запуске двигателя, но технически не квалифицируется как пуск с пониженным напряжением.

Реверсивный пуск при полном напряжении определяет, как асинхронные двигатели изменяют направление вращения при изменении направления вращения любых двух силовых проводов. Системы реверсивного пуска просто включают в себя пару зеркальных контакторов, дополненных блокирующими подкомпонентами, которые позволяют работать в условиях прямого и обратного хода. Более быстрое изменение направления вращения может быть выполнено с помощью подключения , которое является временным питанием обеих цепей.

Больше управляемости: Пускатели электродвигателей пониженного напряжения

Помимо линейки устройств для пуска двигателя при полном напряжении, существуют пускатели пониженного напряжения.Там, где оси станков требуют плавного разгона без сотрясений до полной скорости (для защиты присоединенного машинного оборудования или некоторой присоединенной нагрузки) необходимы пускатели двигателей с пониженным напряжением. Фактически, они также полезны в настройках, регулируемых местными энергосистемами, которые ограничивают колебания напряжения и скачки тока на источниках питания во время запуска двигателя.

Пускатели двигателей с пониженным напряжением включают четыре общих подтипа.

Первичный резистор пускателя двигателя

Пускатели двигателей с первичным резистором — это экономичный вариант, в котором используются резисторы и некоторое количество контакторов, причем последнее определяет количество ступеней пускового напряжения.Эти шаги могут быть несколько резкими из-за низкой индуктивности схемы. Хотя резисторы могут быть громоздкими и снижать эффективность, этот тип стартера обеспечивает надежный пусковой момент двигателя.

Пускатели электродвигателей первичного реактора

Пускатели электродвигателей с первичным реактором чаще всего используются в больших высоковольтных электродвигателях. В них используется реактор (индуктор) в цепи, как в пускателе двигателя с первичным резистором. Возможны относительно длительные плавные ускорения (даже до десятка секунд или более), хотя дополнительная индуктивность системы может снизить общую эффективность, а низкий коэффициент мощности ухудшает составляющие тока, генерирующие крутящий момент, и магнитный поток двигателя.

Пускатели автотрансформаторные

Пускатели электродвигателей с первичным реактором относительно дороги, но полезны там, где требуется регулируемый пусковой момент. В пускателях двигателей с автотрансформатором используется однообмоточный электрический трансформатор, который является пассивным электрическим устройством для передачи электроэнергии от одной цепи к другой. Более конкретно, пускатели автотрансформатора используют три электрических контактора на автотрансформаторе, имеющем выбираемые ответвления.Это обеспечивает ступенчатое стартовое напряжение для длительного плавного ускорения при запуске — даже до нескольких десятков секунд. Пусковое напряжение может составлять от 50% до 80% линейного напряжения для высоких пусковых моментов в приложениях, где это (а не эффективность) является основной целью проектирования.

Устройства плавного пуска

Устройства плавного пуска , использующие твердотельную полупроводниковую технологию, обладают наибольшей управляемостью из всех вариантов пускателя двигателя. Они также наиболее бережно относятся к внутренним компонентам двигателей и присоединенным механизмам передачи энергии.По своей сути устройства плавного пуска состоят из различных схем тиристоров или тиристоров… так, например, в некоторых конструкциях имеется по паре тиристоров на каждой из трех линий двигателя. Ознакомьтесь с разделом настоящего Руководства по проектированию, посвященным твердотельным реле, для ознакомления с основами этой технологии. Эти переключающие устройства работают для управления подачей электроэнергии на обмотки двигателя (как показано на схеме устройства плавного пуска, показывающей углы зажигания), при этом задействуя низкое напряжение двигателя, а также ток и крутящий момент при первоначальном запуске.Затем они постепенно повышают напряжение и крутящий момент в соответствии с установленной программой.

Программирование устройства плавного пуска двигателя определяет точные параметры увеличения заданного напряжения. Рассмотрим работу типичного устройства плавного пуска на основе SCR: здесь проводящий (стробируемый) SCR имеет подвижную точку затвора… и обратная регулировка этого значения скорости (называемого временем нарастания) вызывает увеличение накопления напряжения перед включением SCR. Затем, когда обмотки двигателя достигают полного напряжения, SCR отключается.

Одно предостережение: Чрезмерное время разгона может привести к тому, что ток превысит пределы безопасности двигателя или приведет к аварийному отключению по ограничению тока.

Помимо уже упомянутых преимуществ, устройства плавного пуска обеспечивают защиту двигателя (даже во время дисбаланса фаз при отключении электроэнергии), а также возможность плавного останова. Последнее полезно, когда двигатели приводят в движение такие конструкции, как конвейеры, которые обладают инерцией, способной смещаться или ломаться во время транспортировки.

Конечно, частотно-регулируемые приводы (VFD) — еще один вариант для функции плавного пуска. Они обеспечивают те же функции управляемого пуска и останова, что и устройства плавного пуска, хотя и другим способом — изменяя частоту входного напряжения двигателя, а не величину напряжения. Другие преимущества частотно-регулируемого привода перед устройствами плавного пуска включают возможность управления скоростью двигателя во всем рабочем диапазоне. Частотно-регулируемые приводы также могут выдавать мощность для удерживающего момента (полный крутящий момент при нулевой скорости), который является ключевым для приложений с моторным приводом, таких как краны и лифты.

Однако для некоторых конструкций частотно-регулируемые приводы слишком дороги и сложны. Пускатели двигателей с пониженным напряжением, как правило, более подходят, чем частотно-регулируемые приводы, для которых нет выигрыша в эффективности от работы подключенного двигателя ниже его максимальной скорости.

Hyper Engineering | Трехфазный

Особенности и преимущества

  • Снижает силу тока заторможенного ротора (LRA) / пусковой ток до 40% при запуске
  • Снижает пусковой момент двигателя до 70%
  • Защита по напряжению от обрывов и периодических сбоев питания
  • Автоматическая оптимизация тока двигателя
  • Уменьшает мерцание света
  • Продлевает срок службы за счет снижения нагрузки и нагрева компрессора / двигателя
  • Позволяет системе соответствовать определенным требованиям к коммунальным услугам
  • Автозапуск при включении питания без потребности во вспомогательном управляющем питании
  • Простая установка с минимальным количеством проводов

Функции защиты двигателя

  • Отключение по низкому / высокому напряжению
  • Обеспечивает защиту от переполюсовки фаз
  • Функция задержки ограничивает количество запусков двигателя в час
  • Внутренняя синхронизация предотвращает частые циклические ошибки
  • Обеспечивает защиту от короткого замыкания
  • Предотвращает усталостное разрушение подшипников двигателя, трубопроводов и конструкции фундамента двигателя

Модели

  • SS5A04-27SN (460 В, 60 Гц, 04-27 FLA)
  • SS4A04-34SN (415 В, 50 Гц, 04-34 FLA)
  • SS3A04-27SN (380 В, 50/60 Гц, 04-27 FLA)
  • SS2A04-28SN (208-230 В, 50/60 Гц, 04-28 FLA)

Литература

Видео

Технические характеристики
Оптимизация 9019 2
Номинальное напряжение (перем. Ток) 208-230, 380, 415 или 460 В
Частота Доступны модели для 60 Гц или 50 Гц
Номинальная мощность двигателя / 230 В , 50/60 Гц) 2-10 л.с.
Номинальная мощность двигателя (380 В, 50/60 Гц) 2-15 л.с.
Номинальная мощность двигателя (415 В 50 Гц, 460 В 60 Гц) 2-20 л.с.
Снижение пускового момента До 70% крутящего момента при полной нагрузке
Рабочая температура от -4 ° F до 122 ° F (от -20 ° C до 50 ° C)
Степень защиты IP 207
Размеры 5.30 дюймов x 2,94 дюйма x 1,96 дюйма (132 мм x 72 мм x 59 мм)
Материал Взрывобезопасный ABS (UL-94V0)
Программная задержка ошибки 180 секунд
Авто — Компенсация размера двигателя и импеданса питания
Защита от чередования фаз Да
Допустимый рабочий цикл 20 пусков / час 9018 9018 9018 9018 Задержка включения питания 9018 1 секунда
Отключение при низком напряжении (# SS3-A) Менее 195 В на нейтраль
Отключение при низком напряжении (# SS3S / SS3G) Менее 85% номинального напряжения сети
Отключение при высоком напряжении (# SS3S / SS3G) Выше 111% номинального напряжения сети
Сброс потери питания Обнаружение 100 мс
Соответствие ЭМС N2002

Размеры

WEG Управление электродвигателем с трехфазным магнитным пускателем мощностью 10 л.с. NEMA 1 2 — компрессор-источник

WEG ESW-40V24E-R35 Трехфазный магнитный пускатель мощностью 10 л.с.
Корпус NEMA 1

Совершенно новый WEG ESW-40V24E-R35 10 лошадиных сил, трехфазный, магнитный пускатель на 208–240 В с корпусом NEMA 1.Это стартер отличного качества со встроенной перегрузкой, регулируемой в диапазоне 25-40 ампер, и оснащен кнопкой ручного сброса.

Магнитные пускатели PESW идеально подходят для защиты двигателей и обеспечения надежной работы из года в год. Собран вместе в корпусе NEMA 1 с кнопкой RESET на крышке для быстрой и простой работы.

Корпус NEMA 1 предназначен в первую очередь для использования внутри помещений и обеспечивает защиту от контакта с закрытым оборудованием, объектами и персоналом, от поражения электрическим током, ограниченного количества падающей грязи и случайного контакта с токоведущими частями.

РЕКОМЕНДУЕТСЯ ПРОФЕССИОНАЛЬНАЯ УСТАНОВКА

Технические характеристики

• HP при 208–240 В: 10
• Мин. Диапазон перегрузки (А): 25
• Максимальный диапазон перегрузки (А): 40
• Напряжение катушки: 208–240 Вольт
• Фаза: Три
• Частота: 60 ​​Гц
• Класс защиты: NEMA 1
• Материал корпуса: сталь
• Функция кнопки: сброс
• Вес: 8,6
• Приблизительные размеры (Ш x В x Г): 7-1 / 2 дюйма x 13 дюймов x 5-7 / 16 дюймов

Стандартные характеристики

• Быстрое ускорение и высокий начальный крутящий момент
• Биметаллические реле перегрузки — класс 10
• Регулируемый ток отключения
• Температурная компенсация от -4 ° F до 140 ° F
• Защита от обрыва фазы
• Выбираемый ручной или автоматический сброс
• Электрически изолированные вспомогательные контакты NO-NC
• Сертификаты UL, IEC и CSA

Если вы используете этот стартер на воздушном компрессоре, вам также понадобится реле давления для управления стартером.В этом случае реле давления управляет включением и выключением стартера в соответствии с настройкой давления реле давления.

SSW060480T5769ESZ | Weg |

SSW060480T5769ESZ | Weg |

Магазин не будет работать корректно, если куки отключены.

Похоже, в вашем браузере отключен JavaScript. Для наилучшего взаимодействия с нашим сайтом обязательно включите Javascript в своем браузере.

Альтернативный номер детали:

11020496

Устройство плавного пуска, 3 фазы, 600 л.с., 480 А, 575-690 В переменного тока, 26x15x14 дюймов, съемная клавиатура

Наши Weg SSW06 — это статические устройства плавного пуска, предназначенные для ускорения, замедления и защиты трехфазных асинхронных двигателей.

Устройство плавного пуска может плавно запускать и останавливать электродвигатель. Создаваемый крутящий момент регулируется в соответствии с требованиями нагрузки, поддерживая как можно более низкий ток для запуска.

Серия SSW06 полностью цифровая и включает съемную клавиатуру с двойным дисплеем (ЖК-дисплей и светодиод), а также функцию копирования. Клавиатура упрощает настройку параметров.

Эта серия также предлагает встроенную функцию управления насосами, которая позволяет вам эффективно управлять насосами.Это предотвратит гидравлический удар в ваших насосах!

Встроенный байпас снижает потери мощности и тепла в тиристорах, что обеспечивает уменьшение габаритов и экономию энергии.

Дополнительная информация
Номер детали SSW060480T5769ESZ
Артикул SSW060480T5769ESZ
Альтернативный номер детали 11020496
Масса — фунты. 122.000000
Базовая единица измерения Каждый
Мощность 600 лс
Напряжение 575-690VAC
Гарантия 18 месяцев
Фаза Трехфазный
Опции Без специальных опций
Рейтинги IP00
Серия продуктов SSW06
Номинальный ток См. Спецификации
Наличие Свяжитесь с нами
Производитель Weg

2021-06-26 19:23:00

Тренажерная система управления трехфазным двигателем с ручным стартером |

Тренажерная система управления трехфазным двигателем DAC Worldwide с ручным пускателем (422-000) представляет собой специализированное обучающее устройство, связанное с управлением двигателем, которое позволяет развить навыки работы в принципах работы, схемотехнике, подключении, устранении неисправностей и т. Д. и применение промышленных трехфазных ручных пускателей двигателей.С помощью этого инструктора учащиеся изучат навыки, которыми должен овладеть оператор, чтобы уверенно управлять современным оборудованием управления двигателем, например, подключение трехполюсного кнопочного пускателя двигателя в качестве контроллера двигателя и поиск и устранение неисправностей ручного пускателя с реверсивным переключателем барабанного типа.

Являясь фундаментальной обучающей системой в серии продуктов, ориентированных на управление двигателем, это устройство часто используется независимо из-за его обычного использования в базовом промышленном оборудовании и системах, используемых в промышленности, а также благодаря встроенному выбору общих пилотных компонентов.При использовании в сочетании с другими в этой серии обучающая система трехфазного управления двигателем DAC Worldwide последовательно знакомит учащихся с проектированием, разработкой и, в конечном итоге, реализацией схем управления, от самых простых до самых сложных.

Эта обучающая система управления трехфазным двигателем включает сварную алюминиевую опорную плиту, стальную опорную конструкцию и корпус, алюминиевые монтажные рельсы двигателя, применимый промышленный однофазный двигатель с конденсаторным пуском и трехфазный индукционный двигатель на 56 рамок, ½ л.с. мотор.Его алюминиевые монтажные рейки с Т-образным пазом позволяют прикрепить узел привязного двигателя / опорной плиты и подключить к связанным устройствам, в то время как стальная конструкция позволяет прикрепить к основанию в сборе или альтернативному монтажному столу.

Вся проводка включает экранированные разъемы типа банан-джек с цветной кодировкой на лицевой стороне передней панели, в отличие от прямого подключения к отдельным компонентам. Четыре переключателя неисправностей инструктора запрограммированы на создание неисправностей компонентов, которые не только имитируют условия отказа, но также позволяют учащимся оценивать и устранять неисправности в реальном времени.

В этой системе также используются компоненты безопасности промышленного уровня, обеспечивающие долговечность, позволяющую противостоять частому использованию и помогающие учащимся лучше подготовиться к задачам, с которыми они столкнутся на работе. Некоторые из бортовых компонентов безопасности включают выключатель питания инструктора с ключом, автоматический выключатель с блокировкой / маркировкой, постоянное внутреннее заземление, большой выключатель аварийной остановки и многое другое. Кроме того, все компоненты, используемые в этой обучающей системе, сертифицированы UL и CE.

Практические упражнения и учебная деятельность приводят к реалистичным результатам Тренажерная система с трехфазным управлением двигателем

DAC Worldwide также включает упражнения и учебные мероприятия, которые больше ориентированы на результаты, а не на вторичную академическую информацию. Эта комплексная обучающая система предлагает часы обучения основным принципам управления двигателями, однофазным / трехфазным двигателям и компонентам, включая темы по терминологии, эксплуатации, поиску и устранению неисправностей и базовой теории.Интегрированный курс включает 21 упражнение, каждое из которых включает справочную информацию по теме, практические эксперименты и соответствующие вопросы для проверки. Копия Руководства по использованию / упражнениям этого курса включена в систему обучения. Если вы хотите узнать о приобретении дополнительных руководств по использованию / упражнениям для вашей программы, обратитесь к местному представителю DAC Worldwide для получения дополнительной информации.

Дополнительная информация

Зачем нужно устанавливать стартер с двигателем? Электротехника

Зачем нужно соединять стартер с двигателями?

Необходим стартер с двигателем

Двигатели мощностью менее 1 л.с. (0.7457) напрямую подключается к источнику питания без стартера, поскольку их сопротивление якоря очень велико, и они могут пропускать и пропускать более высокий ток из-за высокого сопротивления. Таким образом, обмотки якоря защищены от высокого пускового тока при пуске двигателя.

У двигателей больших размеров очень низкое сопротивление якоря. Если мы подключим эти типы двигателей напрямую к источнику питания (в основном, трехфазному питанию), тогда начнет течь большой ток, и это приведет к разрушению обмотки якоря из-за низкого сопротивления на начальном этапе запуска, когда двигатель не работает в нормальном положении.На этом этапе двигатель не начнет вращаться, потому что в двигателе нет обратного ЭДС. Обратная ЭДС двигателя достигается на полной скорости, когда двигатель работает на полной скорости и номинальной нагрузке.

Вот именно по этой причине мы последовательно подключаем стартер к двигателю. Пускатель, включенный последовательно с двигателем (т. Е. Сопротивление), снижает высокий пусковой ток, поскольку якорю требуется низкий ток из-за номинальных значений на начальной стадии, а затем он работает с нормальной скоростью.

Но это еще не конец истории.После запуска двигателя на малом токе сопротивление стартера снижается поворотом ручки ручного стартера (в случае автоматического стартера процесс может быть автоматическим). Таким образом, номинальный ток начнет протекать через обмотки якоря, и якорь двигателя начнет вращаться на полной скорости.

Что произойдет, если мы не подключим стартер к двигателю?

Рассмотрим следующий пример.

Мы знаем, что ток якоря можно найти по следующей формуле.

I a = V — E b / R a ……… (I = V / R, закон Ома)

Где,

  • I a = Ток якоря
  • В = Напряжение питания
  • E b = Обратная ЭДС
  • R a a = Сопротивление якоря

Соответствующий пост: Основная разница между контактором 9 и пускателем Предположим,

A 5 HP (3.73 киловатт) с напряжением 440 вольт, сопротивлением якоря 0,25 Ом и нормальным током полной нагрузки 50 ампер. если мы подключим двигатель напрямую к источнику питания без стартера, результат будет следующим:

Подставление значений в уравнение, приведенное выше.

I a = 440 В — 0 / 0,25 Ом

I a = 1760 A

Ач! Этот высокий ток разрушит обмотку якоря, потому что ее ток 35.В 2 раза выше, чем нормальный ток полной нагрузки двигателя.

1760 А / 50 А = 35,2

Вот почему нам нужно установить стартер с двигателем.

Похожие сообщения:

Магнитные пускатели — базовое управление двигателем

Для управления трехфазными двигателями используются магнитные контакторы для размыкания и замыкания силовых контактов в соответствии с двигателем. Это позволяет отделить цепь управления от силовой цепи , обеспечивая большую безопасность для оператора, а также простоту и удобство электромонтажа для установщика.Магнитные контакторы также обеспечивают защиту от низкого напряжения (LVP) в случае отключения электроэнергии.

Магнитные контакторы также должны иметь встроенную защиту от перегрузки, если они будут использоваться для управления двигателями. Наиболее распространенные контроллеры для трехфазных двигателей — это поперечный магнитный пускатель, что означает, что двигатель запускается с полным линейным напряжением.

Разница между контакторами NEMA и IEC заключается в их сертификации и номинальных характеристиках. NEMA (Национальная ассоциация производителей электрооборудования) признана в Северной Америке.

Пускатель двигателя NEMA

IEC (Международная электротехническая комиссия) признан как в Северной Америке, так и в Европе.

Пускатель двигателя IEC с реле перегрузки

Как правило, оборудование NEMA дороже и надежнее, чем оборудование IEC, но оборудование IEC более универсально. И поскольку оборудование IEC зачастую дешевле, оно чаще встречается в современных установках.

Магнитный пускатель двигателя состоит из двух основных частей: магнитного контактора и реле перегрузки .

Магнитный контактор представляет собой соленоидное реле, состоящее из неподвижных контактов, которые подключены в серии с линиями к двигателю, индукционной катушки, обернутой вокруг магнитного сердечника, и подвижного якоря , прикрепленного к подвижным контактам. Когда электрический ток проходит через катушку с проволокой, создается магнитное поле. Это поле, в свою очередь, притягивает к себе якорь, заставляя подвижные контакты перекрывать зазор между неподвижными контактами и тем самым запитывая двигатель.Пружина постоянно пытается размыкать контакты, но пока на катушке присутствует напряжение и , магнитные силы будут преодолевать силу этой пружины.

Катушка контактора обесточена Катушка контактора под напряжением

Однако, когда происходит отключение электроэнергии и ток через катушку падает ниже порогового значения, пружина размыкает контакты. Если питание будет восстановлено, нагрузка двигателя не будет повторно включаться, а вместо этого потребует дополнительных действий от оператора. Этот тип управления называется трехпроводным управлением и обеспечивает защиту от низкого напряжения (LVP).

Для управления трехфазными двигателями контакторы построены с тремя наборами контактов с номинальной мощностью л.с. . Также могут быть включены дополнительные вспомогательные контакты . Контакты реле обычно покрываются серебром для улучшения их проводимости, и хотя используются одинарные размыкающие контакты, в большинстве реле промышленного качества используются двойные размыкающие контакты для улучшения их отключающей способности.

Катушки

обычно предназначены для активации примерно при 85% от номинального напряжения и не деактивируются, пока напряжение не упадет ниже примерно 85% от номинального значения.Обычно катушка выдерживает перенапряжение до 10% без повреждения катушки.

Вопрос: Если магнитные катушки питаются от сети переменного тока, почему их контакты не размыкаются и не замыкаются 120 раз в секунду?

Ответ: Иногда бывает! Если магнитный контактор издает неестественный «дребезжащий» звук, это может быть вызвано ослабленной или неисправной затеняющей катушкой. Затеняющие катушки представляют собой простые замкнутые контуры из проводящего материала, которые при воздействии изменяющегося магнитного поля цепи переменного тока создают собственное магнитное поле с небольшой задержкой периода.Это обеспечивает постоянное магнитное притяжение между подвижным якорем и катушкой контактора. Если контактор «дребезжит», возможно, потребуется отремонтировать или заменить его затеняющие катушки.

Реле перегрузки (OLR) по конструкции аналогично тому, что используется в ручных пускателях двигателей. Ключевое отличие состоит в том, что нормально замкнутые контакты и OLR соединены последовательно с током, протекающим через якорь катушки контактора. Это гарантирует, что если перегрузка произойдет в любой из трех линий электропитания, питающих двигатель, нормально замкнутые контакты OLR разомкнутся, и контактор, подающий питание на двигатель, отключится от цепи.

Ключевой полезностью является отделение цепи управления от цепи питания. Магнитные пускатели, например, позволяют управлять трехфазным двигателем мощностью 600 В мощностью 50 лошадиных сил (силовая цепь) путем простого включения нагрузки 120 В, 1 А.

Эта концепция пускателей двигателей как нагрузки, которая управляет другими более крупными нагрузками, является ключом к нашему дальнейшему пониманию основ управления двигателем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *