Теплоотдача стальных радиаторов – Теплоотдача радиаторов отопления – сравнение и расчет мощности

Содержание

Теплоотдача биметаллических радиаторов отопления: таблица

О том, что биметаллические радиаторы отопления являются наиболее дорогими из всех возможных конструкций водяных обогревателей, в том числе алюминиевых, стальных и чугунных, знают не понаслышке все, кому доводилось заниматься ремонтом и заменой домашних батарей. В качестве подтверждения высокой эффективности биметалла обычно приводят условную таблицу теплоотдачи биметаллических радиаторов отопления со ссылками на теплопроводность металлов, и даже на практические измерения температуры воздуха в комнате. Так ли эффективно устройство биметаллического радиатора?

Что представляет собой биметаллический радиатор

По сути, биметаллический обогреватель представляет собой смешанную конструкцию, воплотившую преимущества стальных и алюминиевых систем отопления. Устройство радиатора основывается на следующих элементах:

  • Обогреватель состоит из двух корпусов – внутреннего стального и наружного алюминиевого;
  • За счет внутренней оболочки из стали биметаллический корпус не боится агрессивной горячей воды, выдерживает высокое давление и обеспечивает высокую прочность соединения отдельных секций радиатора в одну батарею;
  • Алюминиевый корпус лучше всего передает и рассеивает поток тепла в воздухе, не боится коррозии наружной поверхности.

В качестве подтверждения высокой теплоотдачи биметаллического корпуса можно использовать сравнительную таблицу. Среди ближайших конкурентов – радиаторов из чугуна ЧГ, стали ТС, алюминия АА и АЛ, биметаллический радиатор БМ обладает одним из наилучших показателей теплоотдачи, высоким рабочим давлением и коррозионной стойкостью.

В реальности дела обстоят еще хуже, большинство производителей указывает величину теплоотдачи в виде значения тепловой мощности в час для одной секции. То есть, на упаковке может быть указано, что теплоотдача биметаллической секции радиатора составляет 200 Вт.

Делается это вынужденно, данные приводят не к единице площади или перепаду температур в один градус, для того чтобы упростить восприятие покупателем конкретных технических характеристик теплоотдачи радиатора, одновременно сделав маленькую рекламу.

Насколько выгоден биметаллический радиатор

Нередко для подтверждения высокой теплоотдачи биметаллических радиаторов приводят табличные сведения, приведенные ниже.

Такого рода сведения нередко используются магазинами и рекламой в качестве достоверных данных о теплоотдаче различных систем водяного отопления. О том, что теплоотдача биметаллической секции выше стальной или чугунной конструкции, хорошо известно и без справочных данных, остается только проверить, насколько радиатор из биметалла лучше алюминия. Неужели разница может достигать почти 40%?

Ниже в таблице приведены данные о теплоотдаче на основании практических измерений приборов конкретных моделей радиаторов, в том числе биметаллических, алюминиевых и чугунных систем.

Как видно из таблицы, теплоотдача между самыми крайними позициями радиаторов одного производителя, например, алюминиевого Rifar Alum -183 Вт/м∙К и биметаллического Rifar Base — 204 Вт/м∙К, составляет не более 10%, в остальных случаях разница еще меньше.

От чего зависит теплоотдача радиатора

Прежде чем попытаться оценить и сравнить реальную эффективность биметаллических радиаторов, стоит напомнить, от чего зависит тепловая мощность конкретной отопительной системы:

  • Тепловой напор радиатора. Чем выше разница между средней температурой поверхности радиатора и температурой воздуха, тем интенсивнее тепловой поток, передающийся в воздух помещения;
  • Теплопроводностью материала радиатора. Чем выше теплопроводность, тем меньше разница между температурой теплоносителя и наружной стенкой радиатора;
  • Размерами корпуса;
  • Температурой и давлением теплоносителя.

Важно! В водяных системах отопления передача тепла от стенки в воздух осуществляется на 98% за счет конвекции, поэтому, кроме размеров, важна и форма радиатора. Но так как на практике учет конфигурации поверхности учесть сложно, обычно ограничиваются только учетом линейных размеров.

Первый критерий – тепловой напор, рассчитывается, как разность между полусуммой (Твхвых)/2 и температурой воздуха в помещении, Твх  и Твых – температуры воды на входе и выходе из радиатора. Существует даже поправочный коэффициент, уточняющий теплоотдачу радиатора при расчете мощности системы отопления для комнаты.

Таблица поправочного коэффициента говорит, что заявленные в паспорте величины теплоотдачи биметаллического обогревателя, равно как и алюминиевого, будут соответствовать действительности только в течение первого часа работы отопления, К=1 при перепаде температуры в 70оС, что возможно только в холодном помещении. Теплоноситель редко нагревают выше 85оС, значит, максимальную теплоотдачу можно получить только при температуре воздуха в комнате Т=15оС, либо при использовании специальных видов теплоносителя.

Второй критерий — теплопроводность материала радиаторной стенки. Здесь радиатор из биметалла проигрывает алюминиевому варианту. Устройство биметаллической секции отопления, приведенной на схеме, показывает, что стенка обогревателя состоит из двух слоев — стали и алюминия.

Даже при одинаковой толщине стенки биметаллический корпус в одинаковых условиях не может иметь теплоотдачу выше, чем изготовленный из алюминия.

Размеры обоих типов теплообменников примерно одинаковы и рассчитаны на установку в пространстве под подоконником. Стоит отметить, что конструкция корпусов из биметалла и алюминия имеет значительно большую площадь поверхности, чем у чугунной или стальной модели. Поэтому величина теплоотдачи может отличаться сильнее, чем простой расчет на основании теплотехнических свойств металлов – теплопроводности и теплоемкости.

Остается разобраться с температурой и давлением теплоносителя.

Оптимальные условия эксплуатации для обогревателей из биметалла

Устройство и схемы биметаллических и алюминиевых систем во многом похожи. Внутри корпуса секции изготовлен главный канал, по которому движется разогретый теплоноситель. Форма и размеры канала соответствуют сечению подводящей трубы, а значит, жидкость не испытывает дополнительных завихрений и локальных мест перегрева.

Если посмотреть на данные в таблице, то становится ясно, что оба типа радиаторных конструкций проектируются в расчете на высокое давление и, главное, — высокую температуру теплоносителя. В этом случае преимущества теплообменника из биметалла очевидны. Во-первых, увеличивается разность температур, вместо стандартных 70оС значение теплового напора может легко достигать 100оС. Например, давление и температура теплоносителя на входе систему отопления высотного дома составляет 15-18 Бар и 105-110оС, а для паровых систем и 120оС. Соответственно, поправочный коэффициент эффективности теплоотдачи возрастает до 1,1-1,2, а это почти 20%.

Во-вторых, чем выше давление теплоносителя, тем выше коэффициент теплопередачи и теплоотдачи от жидкости к металлу. Значение теплоотдачи за счет повышения давления может возрастать на 5-7%. В итоге, суммируя все условия, может оказаться, что обогреватель из биметалла идеально подходит для отопления высотных зданий.

Несмотря на то, что производители дают примерно одинаковый срок службы для обоих типов теплообменников, на практике при повышенном давлении и температуре отопления способен работать длительное время только биметалл. Горячая вода даже при наличии присадок и защитного покрытия действует на алюминий разрушительно. Другое дело — сталь с легирующими добавками марганца и никеля, ее срок службы может составлять до 15лет.

Заключение

Высокую теплоотдачу на биметаллическом нагревателе можно получить не только при высоком давлении. Для обоих типов радиаторов, даже для чугунных и стальных конструкций, можно увеличить теплоотдачу минимум на 20%, если использовать в домашних котельных в качестве теплоносителя не воду, а специальные типы тосола или антифриза. Давление не изменится, так и останется 3-4 атм., а температура на выходе из котла увеличится почти до 95-97оС, что даст прибавку в теплоотдаче на 15-20%. Кроме того, тосол обеспечит хорошую сохранность алюминиевых, чугунных, стальных труб и теплообменников.

bouw.ru

Сравнение показателя теплоотдачи радиаторов отопления – таблица и сравнительный анализ

Когда проводится проектирование системы отопления дома, проектировщики в первую очередь стараются определить, какое количество тепла необходимо будет использовать, чтобы в доме создались комфортные условия проживания. От чего это зависит? В первую очередь от такого показателя, как теплоотдача радиаторов отопления (таблица будет указана ниже).

Итак, что такое теплоотдача отопительной батареи? Это критерий тепловой энергии, которая выделяется за определенный промежуток времени. Измеряется она в Вт/м*К, некоторые производители в паспорте указывают другую единицу измерения — кал/час. По сути, это одно и то же. Чтобы перевести одну в другую, придется воспользоваться соотношением: 1,0 Вт/м*К= 859,8452279 кал/ч.

Что влияет на коэффициент теплоотдачи

  • Температура теплоносителя.
  • Материал, из которого изготавливаются отопительные батареи.
  • Правильно проведенный монтаж.
  • Установочные размеры прибора.
  • Размеры самого радиатора.
  • Тип подключения.
  • Конструкция. К примеру, количество конвекционных ребер в панельных стальных радиаторах.

С температурой теплоносителя все понятно, чем она выше, тем больше тепла прибор отдает. Со вторым критерием тоже более или менее понятно. Приведем таблицу, где можно ознакомиться, какой материал и сколько отдает тепла.

Материал для батареи отопления Теплоотдача (Вт/м*К)
Чугун 52
Сталь 65
Алюминий 230
Биметалл 380

Скажем прямо, это показательное сравнение говорит о многом, из него можно сделать вывод, что, к примеру, алюминий имеет теплоотдачу практически в четыре разы выше, чем чугун. Это дает возможность снижать температуру теплоносителя, если используются алюминиевые батареи. А это приводит к экономии топлива. Но на практике получается все по-другому, ведь сами радиаторы изготавливаются по разным формам и конструкциям, к тому же модельный ряд их настолько огромен, что говорить о точных цифрах здесь не приходится.

Теплоотдача в зависимости от температуры теплоносителя

Для примера можно привести вот такой разброс степени отдачи тепла у алюминиевых и чугунных радиаторов:

  • Алюминиевые – 170-210.
  • Чугунные – 100-130.

Во-первых, сравнительная степень резко упала. Во-вторых, диапазон разброса самого показателя достаточно большой. Почему так получается? В первую очередь из-за того, что производители используют различные формы и толщину стенки отопительного прибора. А так как модельный ряд достаточно широк, отсюда и пределы теплоотдачи с сильным разбегом показателей.

Давайте рассмотрим несколько позиций (моделей), объединенных в одну таблицу, где будут указаны марки радиаторов и их показатели теплоотдачи. Это таблица не сравнительная, просто нам хочется показать, как меняется тепловая отдача прибора в зависимости от его конструкционных отличий.

Модель Теплоотдача
Чугунный М-140-АО 175
М-140 155
М-90 130
РД-90 137
Алюминиевый RIfar Alum 183
Биметаллический РИФАР Base 204
РИФАР Alp 171
Алюминиевый RoyalTermo Optimal 195
RoyalTermo Evolution 205
Биметаллический RoyalTermo BiLiner 171
RoyalTermo Twin 181
RoyalTermo Style Plus 185

Как видите, теплоотдача радиаторов отопления во многом зависит от модельных отличий. И таких примеров можно приводить огромное количество. Необходимо обратить ваше внимание на один очень важный нюанс – некоторые производители в паспорте изделия указывают теплоотдачу не одной секции, а нескольких. Но в документе все это прописывается. Здесь важно быть внимательным и не совершить ошибку при проведении расчета.

Тип подключения

Хотелось бы подробнее остановиться на этом критерии. Дело все в том, что теплоноситель, проходя по внутреннему объему батареи, заполняет его неравномерно. И когда дело касается теплоотдачи, то эта самая неравномерность очень сильно влияет на степень данного показателя. Начнем с того, что существует три основных типа подключения.

  1. Боковое. Чаще всего используется в городских квартирах.
  2. Диагональное.
  3. Нижнее.

Если рассматривать все три типа, то выделим второй (диагональное), как основу нашего разбора. То есть, все специалисты считают, что именно данная схема может быть взята за такой коэффициент, как 100%. И это на самом деле так и есть, ведь теплоноситель по этой схеме проходит от верхнего патрубка, спускаясь вниз к нижнему патрубку, установленного с противоположной стороны прибора. Получается так, что горячая вода движется по диагонали, равномерно распределяясь по всему внутреннему объему.

Теплоотдача в зависимости от модели прибора

Боковое подключение в данном случае имеет один недостаток. Теплоноситель заполняет радиатор, но при этом последние секции охватываются плохо. Вот почему теплопотери в этом случае могут быть до 7%.

И нижняя схема подключения. Скажем прямо, не совсем эффективная, теплопотери могут составлять до 20%. Но оба варианта (боковой и нижний) будут работать эффективно, если использовать их в системах с принудительной циркуляцией теплоносителя. Даже небольшое давление будет создавать напор, которого хватит, чтобы довести воду до каждой секции.

Правильная установка

Не все обыватели понимают, что отопительный радиатор должен быть правильно установлен. Существуют определенные позиции, которые могут влиять на теплоотдачу. И эти позиции в некоторых случаях должны выполняться жестко.

К примеру, горизонтальная посадка прибора. Это немаловажный фактор, именно от него зависит, как будет двигаться теплоноситель внутри, будут ли образовываться воздушные карманы или нет.

Поэтому совет тем, кто решается установить батареи отопления своими руками – никаких перекосов или смещений, старайтесь использовать необходимые измерительные и контролирующие инструменты (уровень, отвес). Нельзя допустить, чтобы батареи в разных комнатах устанавливались не на одном уровне, это очень важно.

И это еще не все. Многое будет зависеть от того, на каком расстояние от ограничительных поверхностей радиатор будет установлен. Вот только стандартные позиции:

  • От подоконника: 10-15 см (погрешность 3 см допустима).
  • От пола: 10-15 см (погрешность 3 см допустима).
  •  От стены: 3-5 см (погрешность 1 см).

Как может отразиться увеличение погрешности на теплоотдачу? Рассматривать все варианты нет смысла, приведем пример нескольких основных.

  • Увеличение в большую сторону погрешности расстояния между подоконником и прибором уменьшает показатель тепловой отдачи на 7-10%.
  • Уменьшение погрешности расстояния между стеной и радиатором уменьшает теплоотдачу до 5%.
  • Между полом и батарей – до 7%.

Казалось бы, какие-то сантиметры, но именно они могут снизить температурный режим внутри дома. Вроде бы снижение не такое уж и большое (5-7%), но давайте сравнивать все это с потреблением топлива. Оно на эти же проценты будет возрастать. За один день это не будет заметно, а за месяц, а за весь отопительный сезон? Сумма сразу вырастает до астрономических высот. Так что стоит и на это обратить особое внимание.

otepleivode.ru

Таблица теплоотдачи чугунных и биметаллических радиаторов отопления

Главная / Радиаторы / Таблица теплоотдачи чугунных и биметаллических радиаторов отопления

Создание комфортной температуры жилья в отопительный период зависит от множества факторов: от типа стены, высоты помещения, площади оконных проемов, характера расположенного пространства и многого другого. Большое значение имеет тепловой расчет устанавливаемых приборов. Традиционные методы расчета требуют учета вышеуказанных факторов, достаточно трудоемки. Для упрощения выбора типа оборудования применяется таблица радиаторов отопления.

Радиаторы отопления

Характеристики радиаторов отопления

Эффективность батарей зависит от следующих факторов:

  • температуры подачи теплоносителя;
  • теплопроводности материала;
  • площади поверхности батареи;

Чем выше эти показатели, тем больше тепловая мощность приборов.

Эффективная теплоотдача батарей отопления в зависимости от способа установки и подключения

В качестве единицы измерения теплоотдачи радиатора принято считать Вт/м*К, наравне с этим в паспорте часто указывается формат кал/час. Коэффициент перевода из одной единицы измерения в другую: 1 Вт/м*К = 859,8 кал/час.

Чугунные радиаторы отопления

В зависимости от материалов изготовления отличают чугунные, стальные, алюминиевые и биметаллические радиаторы. Каждый материал имеет показатели по следующим параметрам:

  • теплоотдаче одной секции;
  • рабочему давлению;
  • давлению опрессовки;
  • емкости одной секции;
  • массе одной секции.

Совет! Не следует забывать про подверженность материала изготовления батарей к коррозионному воздействию. Это важная характеристика при покупке обогревателя.

Чугунные батареи

Этот вид радиаторов, которые в народе называют «гармошками». Они обладают довольно большой эффективностью, стойкостью к коррозии, удару. Эти батареи достаточно долговечны и имеют доступную рыночную цену. Благодаря большим размерам сечения одной секции, засорение для таких батарей не представляет угрозы.

Чугунные батареи нового поколения

Теплоотдача секции чугунного радиатора ниже, чем у аналогов. Через час после отключения отопления чугунные батареи сохраняют 30% тепла. Современные производители выпускают эстетичные чугунные батареи с гладкой поверхностью и изящными формами, поэтому спрос на них остается высоким. Сравнение чугунных радиаторов отопления с другими видами приборов, приводится в нижеуказанной таблице.

Таблица тепловой мощности радиаторов отопления

Вид радиатора

Теплоотдача секции, Вт

Рабочее давление, Бар

Давление опрессовки, Бар

Емкость секции, л

Масса  секции, кг

Алюминиевый с зазором между осями секций 500мм

183,0

20,0

30,0

0,27

1,45

Алюминиевый с зазором между осями секций 350мм

139,0

20,0

30,0

0,19

1,2

Биметаллический с зазором между осями секций 500мм

204,0

20,0

30,0

0,2

1,92

Биметаллический с зазором между осями секций 350мм

136,0

20,0

30,0

0,18

1,36

Чугунный с зазором между осями секций 500мм

160,0

9,0

15,0

1,45

7,12

Чугунный с зазором между осями секций 300мм

140,0

9,0

15,0

1,1

5,4

Алюминиевые батареи

Теплоотдача алюминиевых радиаторов отопления, как видно из таблицы, лучше, чем у чугунных батарей, но хуже чем у биметаллических. Они достаточно прочны, а легкий собственный вес позволяет облегчить монтаж приборов. Из-за уязвимости к кислородной коррозии в последнее время стали проводить анодирование алюминия.

Алюминиевые радиаторы.

Биметаллические батареи

Этот вид радиатора является сочетанием элементов из стали и алюминия. Каналом для движения теплоносителя являются трубы, а соединительными деталями – резьбовые соединения. В качестве защиты и придания эстетичного внешнего вида такие батареи покрываются кожухом из алюминия. Недостатком изделия является относительно высокая стоимость по сравнению с аналогами. Но это компенсируется тем, что теплоотдача у биметаллических радиаторов отопления самая высокая.

Биметаллические радиаторы отопления

Стальные батареи

Старые стальные радиаторы обладают достаточно высокой тепловой мощностью, но при этом плохо удерживают тепло. Их нельзя разобрать или наращивать количество секций. Радиаторы данного типа подвержены к коррозии.

Стальные радиаторы

В настоящее время начали выпускать панельные радиаторы из стали, которые привлекательны высокой отдачей тепла при небольших размерах по сравнению с секционными радиаторами. Панели имеют каналы, по которым происходит циркуляция теплоносителя. Батарея может состоять из нескольких панелей, кроме этого, оснащаться гофрированными пластинами, увеличивающими теплоотдачу.

Устройство стальных панельных радиаторов

Тепловая мощность панелей из стали напрямую связана с габаритами батареи, зависящими от количества панелей и пластин (оребрение). Классификация проводится в зависимости от оребрения радиатора. Например, тип 33 присвоен трехпанельным обогревателям с тремя пластинами. Диапазон типов батарей составляет от 33 до 10.

Самостоятельный расчет требуемых радиаторов отопления связан с большим объемом рутинной работы, поэтому производители начали сопровождать изделия таблицами характеристик, которые сформированы по записям результатов испытаний. Эти данные зависят от типа изделия, монтажной высоты, температуры теплоносителя при входе и выходе, нормативной температуры в помещении и многих других характеристик.

Стальной панельный радиатор

Расчет приборов по теплопотерям помещения

Тепловые показатели устанавливаемых приборов определяются из расчета потери тепла помещением. Нормативное значение тепла, необходимого на единицу объема обогреваемой комнаты, за которую принимается 1 м3, составляет:

  • для кирпичных зданий – 34 Вт;
  • для крупнопанельных зданий – 41 Вт.

Теплопотери

Температура теплоносителя у входа и выхода и стандартная температура помещения отличаются для различных систем. Поэтому для определения реального теплового потока рассчитывается дельта температуры по формуле:

Dt = (T1 + T2)/2 – T3, где

  • T1 – температура воды у входа системы;
  • T2 – температура воды у выхода системы;
  • T3 – стандартная температура помещения;

Таблица для расчета теплоносителя

Важно! Паспортная теплоотдача умножается на поправочный коэффициент, определяемый в зависимости от Dt.

Для определения количества тепла, которое необходимо для помещения, достаточно умножить его объем на нормативное значение мощности и коэффициент учета средней температуры зимой, в зависимости от климатической зоны. Этот коэффициент равен:

  • при -10оС и выше — 0,7;
  • при -15оС — 0,9;
  • при -20оС — 1,1;
  • при -25оС — 1,3;
  • при -30оС — 1,5.

Кроме этого, необходима коррекция на количество наружных стен. Если одна стена выходит наружу, коэффициент 1,1, если две — умножаем на 1,2, если три, то увеличиваем на 1,3. Используя данные изготовителя радиатора, всегда легко выбрать нужный обогреватель.

Теплопотери помещения

Помните, что самое важное качество хорошего радиатора — это его долговечность в работе. Поэтому постарайтесь сделать свою покупку так, чтобы батареи прослужили вам необходимое количество времени.

Фотогалерея (6 фото)

05.11.2016

gopb.ru

как рассчитать теплоотдачу батарей, правильный расчет на фото и видео

Содержание:

1. Теплоотдача радиатора: что означает данный показатель

2. Порядок расчета теплоотдачи радиатора отопления

3. Теплоотдача батарей из разных материалов

4. Зависимость степени теплоотдачи от способа подключения

5. Способы, как можно увеличить теплоотдачу

Главным параметром, согласно которому определяют, насколько эффективна работа схемы теплоснабжения и всей отопительной системы, считается теплоотдача батарей отопления. Этот важный показатель для каждой модели отопительного прибора является индивидуальным. На теплоотдачу влияет вариант подключения радиатора, особенности его места установки и другие моменты.  Также важно понимать, в чем измеряется отопление и как выполняется его расчет.


расчет теплоотдачи радиаторов отопления

Теплоотдача радиатора: что означает данный показатель

Означает термин теплоотдача количество тепла, которое батарея отопления передает в помещение в течение определенного периода времени. Для данного показателя существует несколько синонимов: тепловой поток; тепловая мощность, мощность прибора. Измеряется теплоотдача радиаторов отопления в Ваттах (Вт). Иногда в технической литературе можно встретить определение этого показателя в калориях в час, при этом 1 Вт =859,8 кал/ч. 

Осуществляется теплопередача от батарей отопления благодаря трем процессам: 

  • теплообмену;
  • конвекции;
  • излучению (радиации). 

Каждым прибором отопления используются все три варианта переноса тепла, но их соотношение у разных моделей отличается. Радиаторами ранее было принято называть устройства, у которых не меньше 25 % тепловой энергии отдается в результате прямого излучения, но сейчас значение данного термина существенно расширилось. Теперь нередко так называют приборы конвекторного типа.  


расчет теплоотдачи радиатора

Порядок расчета теплоотдачи радиатора отопления

В основе выбора отопительных устройств для установки в доме или квартире лежит максимально точный расчет теплоотдачи радиаторов отопления. Каждому потребителю с одной стороны хочется сэкономить на обогреве жилья и поэтому нет желания приобретать лишние батареи, но если их будет недостаточно, комфортной температуры достичь не удастся. 
 
Способов, как рассчитать теплоотдачу радиатора, существует несколько. 

Вариант первый. Это самый простой способ, как рассчитать батареи отопления, в его основе – количество наружных стен и окон в них.

Порядок вычислений следующий: 

Вариант второй. Он более сложен, но позволяет иметь более точные данные о необходимой мощности приборов.

В данном случае расчет теплоотдачи радиатора (батарей) отопления производится по формуле: 

S x h x41, где 

S — площадь помещения, для которого выполняются вычисления; 

H — высота комнаты;

41 – минимальная мощность на один кубометр объема помещения. 

Полученный итог будет требуемой теплоотдачей для радиаторов отопления. Далее эту цифру делят на номинальную тепловую мощность, которую имеет одна секция данной модели батареи. Узнать эту цифру можно в инструкции, прилагаемой производителем к своему изделию. Результатом расчета батарей отопления станет необходимое количество секций, чтобы теплоснабжение конкретного помещения было эффективным. Если полученное число дробное, тогда его округляют в большую сторону. Лучше небольшой избыток тепла, чем его недостаток. 


теплоотдача батарей отопления

Теплоотдача батарей из разных материалов

Выбирая радиатор отопления, следует помнить, что они отличаются по уровню теплоотдачи. Покупке батарей для дома или квартиры должно предшествовать внимательное изучение характеристик каждой из моделей. Нередко сходные по форме и габаритам приборы обладают разной теплоотдачей. 

Чугунные радиаторы. Эти изделия имеют небольшую поверхность теплоотдачи и отличаются незначительной теплопроводностью материала изготовления. Номинальная мощность у секции чугунного радиатора, такого как МС-140, при температуре теплоносителя, равного 90°С, составляет примерно 180 Вт, но данные цифры получены в лабораторных условиях (детальнее: «Какая тепловая мощность чугунных радиаторов отопления»). В основном теплоотдача осуществляется за счет излучения, а на долю конвекции приходится всего лишь 20%. 


В централизованных системах теплоснабжения температура теплоносителя обычно не превышает 80 градусов, а кроме этого часть тепла расходуется при продвижении горячей воды к батарее. В результате температура на поверхности чугунного радиатора составляет около 60°С, а теплоотдача каждой секции равна не более 50-60 Вт.

 
Стальные радиаторы. В них сочетаются положительные характеристики секционных и конвекционных приборов. Состоят они, как видно на фото, из одной или нескольких панелей, у которых внутри перемещается теплоноситель. Чтобы теплоотдача стальных панельных радиаторов была больше, с целью повышения мощности к панелям приваривают специальные ребра, функционирующие как конвектор. 


К сожалению, теплоотдача стальных радиаторов не сильно отличается от теплоотдачи чугунных радиаторов отопления. Поэтому их преимущество заключается только в относительно небольшом весе и более привлекательном внешнем виде. 

Потребителям следует знать, что теплоотдача стальных радиаторов отопления значительно уменьшается в случае снижения температуры теплоносителя. По этой причине, если в системе теплоснабжения будет циркулировать вода, подогретая до 60-70°С, показатели этого параметра могут сильно отличаться от данных, предоставляемых на эту модель производителем. 

Алюминиевые радиаторы. Их теплоотдача намного выше, чем у стальных и чугунных изделий. Одна секция обладает тепловой мощностью, равной до 200 Вт, но у данных батарей имеется особенность, ограничивающая их применение. Она заключается в качестве теплоносителя. Дело в том, что при использовании загрязненной воды изнутри поверхность алюминиевого радиатора подвергается коррозийным процессам. 

Поэтому, даже при отличных показателях мощности, батареи из этого материала следует устанавливать в частных домовладениях, где используется индивидуальная отопительная система. 

Биметаллические радиаторы. Данная продукция по показателю теплоотдачи ни в чем не уступает алюминиевым приборам. Тепловой поток у биметаллических изделий в среднем равен 200 Вт, но к качеству теплоносителя они не настолько требовательны. Правда их высокая цена не позволяет многим потребителям установить эти устройства. 

Зависимость степени теплоотдачи от способа подключения

На теплоотдачу отопительных радиаторов влияет не только материал изготовления и температура теплоносителя, циркулирующего по трубам, но и выбранный вариант подсоединения прибора к системе:

  1. Подключение прямое односторонне. Является наиболее выгодным относительно показателя тепловой мощности. По этой причине расчет теплоотдачи радиатора отопления выполняют именно при прямом подключении. 
  2. Диагональное подключение. Его применяют, если к системе планируется подсоединить радиатор, в котором количество секций превысит 12. Такой способ позволяет максимально понизить теплопотери. 
  3. Нижнее подключение. Его используют в том случае, когда батарею присоединяют к стяжке пола, в которой скрыта отопительная система. Как показывает расчет теплоотдачи радиатора, при таком подключении потери тепловой энергии не превышают 10%. 
  4. Однотрубное подключение. Наименее выгодный способ с точки зрения тепловой мощности. Потери теплоотдачи при однотрубном подключении чаще всего достигают 25 — 45%.


рассчитать теплоотдачу радиатора

Способы, как можно увеличить теплоотдачу

Вне зависимости от мощности радиаторов владельцам домов и квартир все равно хочется повысить их теплоотдачу. Особенно актуальным такое стремление становится с приходом холодного периода года. В зимнюю стужу нередко даже при работе на полную мощность радиатор может не справиться с поддержанием комфортного температурного режима в помещении. 


расчет теплоотдачи радиатора отопления

Существует несколько способов, позволяющих увеличить теплоотдачу приборов отопления:

  1. Регулярное проведение влажной уборки с целью очистки поверхности батарей. Чем чище они будут, тем выше уровень их теплоотдачи. 
  2. Не менее важен момент правильного окрашивания радиатора, особенно это касается чугунных приборов. Дело в том, что многослойно нанесенная краска препятствует эффективной теплоотдаче. Перед тем, как приступить к покраске радиатора отопления, следует удалить старый слой. Не менее эффективно применение специальных эмалей, предназначенных для трубопроводов и отопительных приборов, поскольку они имеют низкое сопротивление теплоотдаче. 
  3. Для обеспечения максимальной мощности, необходимо правильно смонтировать эти устройства.
  4. Среди основных ошибок, допускаемых при монтаже, специалисты отмечают: 
    — наклон батареи;
    — установку прибора слишком близко к напольному покрытию или к стене; 
    — перекрытие доступа к радиаторам предметами обстановки и установка неподходящих отражающих экранов. 
  5. Для повышения эффективности отопительных батарей не помешает проведение ревизии их внутренней полости. Нередко в процессе подключения батарей отопления к системе образуются заусеницы, из-за которых при эксплуатации образуются засоры, препятствующие свободному передвижению теплоносителя. 
  6. Можно поместить на стену за отопительным прибором теплоотражающий экран, сделанный из фольгированного материала. 

Познавательное видео о теплоотдаче радиаторов отопления:



Рассчитать теплоотдачу радиатора, которая необходима для конкретного помещения, как становится ясно из выше приведенной информации, несложно. Зная ее величину, можно выбрать нужную модель, а затем собственноручно повысить мощность прибора и тем самым обеспечить себе и близким комфортные условия проживания в зимний период. Прочитайте также: «Расчет мощности батарей отопления — как рассчитать самому».

teplospec.com

Сравнение теплоотдачи радиаторов разного типа

Тепловые характеристики радиаторов Ogint с межосевым расстоянием 500 мм:

 

Теплоотдача радиаторов отопления является одним из основных параметров, которые необходимо учитывать при выборе отопительных приборов. Этот показатель напрямую определяет эффективность обогрева помещений. При выборе радиаторов обязательно необходимо учитывать, какая теплоотдача у предлагаемых приборов.

В таблице выше приведены характеристики теплоотдачи одной секции для радиаторов Ogint, которые по данному параметру являются одними из лучших на современном отечественном рынке. Эти данные позволяют выполнить сравнение теплоотдачи для разных типов радиаторов.

Показатель теплоотдачи, или мощности, радиаторов характеризует то, какое количество тепла прибор отдает в окружающую среду в единицу времени. При выборе отопительных приборов проводится расчет по формуле теплоотдачи радиаторов с целью определения мощности батареи. Полученное значение соотносят с тепловыми потерями помещения.

Оптимальной считается мощность, которая перекрывает тепловые потери на 110-120%. Это лучшая теплоотдача, при которой в помещениях поддерживается комфортная температура. Недостаточная мощность не позволит батарее качественно обогревать помещение. Повышенная теплоотдача приводит к перегреву. Для автономных систем отопления слишком высокая мощность батарей означает еще и повышенные затраты на отопление.

Чтобы повысить теплоотдачу, можно добавить к радиатору дополнительные секции или изменить схему подключения. Для автономных систем отопления также может быть доступно увеличение температуры теплоносителя. При использовании любого из этих способов должен предварительно выполняться пересчет теплоотдачи радиаторов.

На теплоотдачу радиаторов отопления влияют следующие параметры:

  • температура теплоносителя в системе. Чем выше температура, тем больше тепла отдают батареи;
  • материал радиатора. Разные металлы имеют разные коэффициенты теплоотдачи и теплопроводности;
  • полезная площадь теплообмена. Определяется конструкцией радиатора. Например, поверхность теплообмена радиаторов с межосевым расстоянием 500 мм больше в сравнении с приборами с межосевым расстоянием 380 мм. Также значительно увеличивает полезную площадь оребрение.

Таким образом, при выборе приборов для системы отопления необходимо учитывать их материал и конструктивные особенности, характерные для определенного типа радиаторов.

Стальные панельные радиаторы

Теплоотдача стальных радиаторов является самой низкой из наиболее распространенных сегодня видов отопительных приборов. Это объясняется достаточно слабой теплопроводностью конструкционной стали, из которой они изготавливаются. Кроме того, панельные радиаторы имеют довольно скромную поверхность теплообмена, которая фактически ограничена площадью самой панели. Поэтому с целью достижения необходимой тепловой мощности для качественного обогрева зачастую приходится применять отопительный прибор с увеличенными габаритами.

Чугунные радиаторы

Теплоотдача чугунных радиаторов несколько выше по сравнению с панелями из стали. Чугун тоже имеет небольшую теплопроводность и достаточно слабо отдает тепло воздуху. Кроме того, батареи имеют толстые стенки, что также затрудняет передачу тепла.

В процессе эксплуатации в системе централизованного отопления внутренняя поверхность чугунного радиатора может быстро покрываться накипью, в результате чего тепловая мощность может существенно снижаться. Теплоотдача батарей старого типа (традиционная «гармошка»), в зависимости от качества изготовления, может составлять 60-80 Вт.

Современные чугунные батареи (и Ogint в частности) имеют более впечатляющие характеристики. За счет применения эффективного оребрения и сплава повышенного качества достигается сравнительно большая теплоотдача, которая может достигать 160 Вт.

Алюминиевые радиаторы

Теплоотдача алюминиевых радиаторов является наиболее высокой среди современных приборов для систем водяного отопления. Это позволяет им обеспечивать наиболее эффективный обогрев и снижать затраты на отопление при использовании в автономных системах. В сочетании с отличными эстетическими качествами, функциональностью, небольшим весом и другими преимуществами это обеспечивает приборам данного типа высокую популярность.

Максимальная теплоотдача достигается за счет высокой теплопроводности алюминия. Кроме того, радиаторы имеют значительную площадь оребрения и передовую конструкцию, которая обеспечивает максимально эффективную передачу тепла конвекционным и лучевым способом. Так, теплоотдача секции алюминиевого радиатора Ogint составляет в среднем около 190 Вт.

Биметаллические радиаторы

Биметалл — это также радиаторы с высокой теплоотдачей. По этому показателю они лишь немного уступают алюминиевым приборам. Это связано с тем, что стальной сердечник, по которому циркулирует теплоноситель, имеет относительно небольшую теплопроводность. Однако алюминиевый кожух нагревается от стали довольно быстро и обеспечивает интенсивную передачу тепла воздуху. В результате достигается большая теплоотдача.

Конструктивно биметаллические радиаторы практически не отличаются от алюминиевых. Поэтому они имеют дизайн, который максимально способствует эффективной передаче тепла. В среднем теплоотдача биметаллических радиаторов Ogint составляет 175-185 Вт, лишь немного уступая по данному показателю алюминиевым.

www.ogint.ru

как рассчитать панельные радиаторы по площади, мощность, теплоотдача, как подобрать, таблица


Содержание:


Приступая к обустройству отопительной системы, необходимо вначале определить, какой именно объем тепловых потерь нуждается в компенсации. Ориентируясь на эту величину, проводится расчет стальных радиаторов и поиск наиболее оптимальных мест для их расположения.


панельные радиаторы отопления расчет по площади

Расчет по площади


Это самый простой вариант определения более-менее точного количества необходимого для обогрева тепла. При расчете основной отправной точкой выступает площадь квартиры или дома, где осуществляется организация отопления.


Значение площади каждого помещения имеется в плане квартиры, а для вычисления конкретных значений по расходу тепла на помощь приходит СНиП:

  • Для средней климатической зоны норма для жилого помещения определена, как 70-100 Вт/1 м2.
  • Если температура в регионе опускается ниже -60 градусов, уровень обогрева каждого 1 м2 необходимо увеличить до 150-220 Вт.


Для расчета панельных радиаторов отопления по площади, кроме приведенных норм, можно использовать калькулятор. В учет обязательно берут мощность каждого обогревающего прибора. Значительные перерасходы лучше не допускать, т.к. по мере увеличения итоговой мощности увеличивается также количество батарей в системе. В случае с центральным отоплением подобные ситуации не являются критичными: там каждая семья оплачивает только фиксированную стоимость.


мощность стальных радиаторов отопления таблица


Совсем другое дело в автономных отопительных системах, где последствием любого перерасхода является рост оплаты за объем теплоносителя и работу контура. Тратить лишние финансы непрактично, т.к. за полный отопительный сезон может набежать приличная сумма. Определив с помощью калькулятора, сколько точно нужно тепла на каждую комнату, легко узнать, сколько приобретать секций.


Для простоты на каждом отопительном приборе указывается объем выделяемого им тепла. Эти параметры обычно содержаться в сопроводительной документации. Арифметика здесь простая: после определения количества тепла полученную цифру нужно разделить на мощность батареи. Полученный после этих несложных операций результат и является числом секций, необходимых для восполнения утечек тепла в зимнее время.


Для наглядности лучше разобрать простой пример: допустим, что нужно всего 1600 Ватт, при площади каждой секции в 170 Ватт. Дальнейшие действия: производится деление общего значения 1600 на 170. Выходит, что приобретать нужно 9,5 секций. Округление можно осуществить в любую сторону, на усмотрение владельца дома. Если в помещении есть дополнительные источники тепла (например, кухонная плита), то округлять нужно в сторону уменьшения.


теплоотдача стальных радиаторов


В противоположную сторону рассчитывают, если в комнате имеются балконы или просторные окна. То же самое касается угловых помещений, или если стены плохо утеплены. Расчет очень простой: главное при этом не забывать про высоту потолков, т.к. она не всегда стандартная. Значение имеет также тип используемого для возведения здания строительного материала и вид оконных блоков. Поэтому данные расчета мощности стальных радиаторов отопления нужно воспринимать, как приблизительные. Калькулятор в этом отношении куда удобнее, т.к. в нем предусмотрены корректировки по стройматериалам и характеристикам помещений.

Как корректировать предварительные показатели


Приблизительные значения обязательно нуждаются в уточнении. Для получения более точного результата потребуется учет всех факторов.


Каждый из них может провоцировать увеличение или уменьшение теплопотерь:

  • Материал для стен.
  • Эффективность теплоизоляции.
  • Площадь оконных блоков и тип остекления.
  • Число наружных стен.


как подобрать стальной радиатор


Качественные калькуляторы оснащены специальными коэффициентами, учитывающими данные факторы. Все, что потребуется для более точного выравнивание предварительных показателей теплопотерь – умножить их на эти коэффициенты.

Окна


Чаще всего именно эти конструкционные элементы становятся виновниками утечки от 14 до 30% тепла. Для более точного вычисления нужно учесть их размеры и уровень утепления. Это объясняет наличие двух расчетных коэффициентов.


Отношение площади окна к площади пола:

  • 10% — 0,8
  • 20% — 0,9
  • 30% — 1,0
  • 40% — 1,1
  • 50% — 1.2


Последняя цифра – это коэффициент.


расчет панельных радиаторов


Тип стеклопакетов:

  • Трехкамерные — 0.85.
  • Двухкамерные — на 1.0.
  • Деревянные двойные рамы — на 1.27 или на 1.3.


Рассматривая стены и кровлю, в учет берут тип материала и изоляции: поэтому коэффициентов получается также два.


Утепление:

  • Стена из кирпича обычной толщины берется за основу. Коэффициент равен единице.
  • При небольшой толщине коэффициент принимается за 1.27.
  • Хорошо утепленные конструкции с толщиной теплоизоляции не менее 10 см: поправочное число 0.8.

Как рассчитываются стальные радиаторы


Стальные батареи панельного типа считаются новинкой в сфере отопительных бытовых приборов. Их особенностью являются более компактные габариты. Теплоотдача стальных радиаторов по сравнению с обычными секционными радиаторами батареями на порядок выше. В состав конструкции может входить несколько гофрированных металлических панелей(1,2 или 3 шт.). Под панелями понимаются пластины, сквозь которые теплоноситель поступает в систему. Перед тем, как рассчитать панельные радиаторы по мощности, нужно вооружиться информацией об основных разновидностях этих приборов.


Данные из таблицы мощности стальных радиаторов отопления:

  1. Трехпанельные. Массивность приборов объясняется наличием 3-х панелей, оснащенных оребрением. Маркируются 33.
  2. Двухпанельные. Число пластин сокращено до двух. Маркировка — 22.
  3. Двухпанельные плюс одна пластина (21).
  4. Однопанельные с одной пластиной. Отличаются небольшой мощностью, легким весом и компактными размерами (11).
  5. Только панель без оребрения (10).


Расчет мощности подобных приборов также проводится по площади, только отталкиваются не от квадратного метра, а от кубического.


расчет мощности стальных радиаторов отопления


Требования СНиП:

  • В домах из кирпича на 1 м3 требуется 34 Ватт.
  • В панельных зданиях на 1 м3 необходим 41 Ватт.


Держа во внимании эти нормы, можно произвести расчет любого помещения. Знание высоты потолков обязательно.


Пример расчета:


Панельное здание имеет габариты 3,2 на 3,5 метров, при высоте потолка 3 м. Для определения объема нужно перемножить 3,2, 3,5 и 3: в результате получается 33,6 м3. Эта цифра умножается на коэффициент для панельного дома (41).Итог — 1378 Вт. Чтобы получить максимально точное значение, применяют таблицу расчета стальных радиаторов отопления. В ней отображена информация по каждой климатической зоне и характеристикам объекта.

Что еще влияет


На каждом обогревающем приборе, вне зависимости от производителя, имеется указание на максимальную мощность.


Речь идет о следующих параметрах:

  1. Высокотемпературный режим. Теплоноситель способен разогреваться до +90 градусов.
  2. Режим обработки. Максимальное значение +70 градусов(90\70).


Как показывает практика, отопительные системы редко работают на максимуме.


таблица расчета стальных радиаторов отопления


Реальный температурный режим и мощность выглядят следующим образом:


Адекватный расчёт панельных радиаторов предусматривает наличие информации о температурных напорах контура отопления. Имеется в виду разницу между обогревающей батареей и температурой воздуха. Температура прибора в этом случае принимается за среднее арифметическое подачи и обратки. Перед тем, как рассчитать стальные радиаторы отопления, необходимо уточнить тип подключения приборов.


Оно бывает:

  1. Односторонним. Достигает своего максимума при подаче сверху(97%).
  2. Двухсторонним. В этом случае также предпочтительнее верхняя коммутация (100%).


Задача по подбору стального радиатора, как правило, не вызывает особых сложностей. Куда труднее произвести необходимые расчетные мероприятия, требующие учета целого ряда факторов. Для удобства расчета мощности стальных радиаторов отопления были разработаны специальные калькуляторы, позволяющие получать точные результаты.


teplospec.com

Отправить ответ

avatar
  Подписаться  
Уведомление о