Подключение конденсатора к электродвигателю: Как подключить конденсатор к электродвигателю | Полезные статьи

Содержание

Как подключить конденсатор к электродвигателю

Асинхронные двигатели получили широкое применение, потому что они малошумны и легки в эксплуатации. Особенно это касается трехфазных короткозамкнутых асинхронников с их прочной конструкцией и неприхотливостью.

Основным условием для преобразования электрической энергии в механическую является факт наличия вращающегося магнитного поля. Для формирования такого поля требуется трехфазная сеть, при этом электрообмотки должны быть смещенными между собой на 1200. Благодаря вращающемуся полю система начнёт работать. Однако бытовая техника, как правило, используется в домах, имеющих лишь однофазную сеть 220 В.

Почему применяется запуск двигателя 220 В через конденсатор?

Для начала определимся с терминологией. Конденсатор (лат. condensatio — «накопление») – это электронный компонент, хранящий электрический заряд и состоящий из двух близкорасположенных проводников (обычно пластин), разделенных диэлектрическим материалом. Пластины накапливают электрический заряд от источника питания. Одна из них накапливает положительный заряд, а другая – отрицательный.

Емкость – это количество электрического заряда, которое хранится в электролите при напряжении 1 Вольт. Емкость измеряется в единицах Фарад (Ф).

Метод подключения двигателя через конденсатор – этот способ применяют для достижения мягкого пуска агрегата. На статоре однофазного движка с короткозамкнутым ротором размещают дополнительно к основной электрообмотке ещё одну. Две обмотки соотнесены между собой на угол 900. Одна из них является рабочей, её предназначение заставить работать мотор от сети 220 В, другая – вспомогательная, нужна для запуска.

Рассмотрим схемы подключения конденсаторов:

  • с выключателем,
  • напрямую, без выключателя;
  • параллельное включение двух электролитов.

1 вариант

К обмотке асинхронника подсоединяется фазосдвигающий конденсатор. Подключение осуществляется в однофазную сеть 220 В по специальной схеме.

Здесь видно, что электрообмотка прямо подключена к линии питания 220 В, вспомогательная соединена последовательно с конденсатором и выключателем. Последний предназначен для отключения дополнительной обмотки от источника питания после запуска.

Коммутационный аппарат настроен так, чтобы оставаться закрытым и поддерживать вспомогательную обмотку в эксплуатации до тех пор, пока мотор запускается и разгоняется примерно до 80% от полной нагрузки. На такой скорости, выключатель размыкается, отключая цепь вспомогательной обмотки от источника питания. Затем мотор работает как асинхронный двигатель на основной обмотке.

2 вариант

Схема идентична конденсаторному мотору, но без выключателя. Пусковой момент составляет только 20–30% от полной нагрузки крутящего момента.

Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Возможны различные модификации схем с предварительным расчетом необходимой емкости конденсатора для подсоединения к двигателю 220 В.

Стоит отметить, что обеспечение лучших характеристик нужно при изменении нагрузки мотора. Увеличение емкости ведёт к уменьшению сопротивления в цепи переменного тока. Правда замена емкости электролита несколько усложняет схему.

3 вариант

Схема подключения двух электролитов, подсоединенных параллельно к мотору, приведена ниже. При параллельном соединении общая ёмкость равна сумме емкостей всех подключенных электролитов.

Cs – это пусковой конденсатор. Величина емкостного реактивного сопротивления Х тем меньше, чем больше ёмкость электролита. Она рассчитывается по формуле:

хс = 1/2nfCs.

При этом следует учитывать, что на 1 кВт приходится 0,8 мкФ рабочей емкости, а для пусковой емкости потребуется больше в 2,5 раза. Перед подключением к движку следует «прогнать» конденсатор через мультиметр. Подбирая детали нужно помнить, что пусковой кондер должен быть на напряжение 380 В.

Для управления пусковыми токами (контролем и ограничением их величины) используют преобразователь частоты. Такая схема подключения обеспечивает тихий и плавный ход электродвигателя. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. д. Машины такого типа имеют более высокий КПД и производительность, чем их аналоги, работающие лишь на основной электрообмотке.

Методы подключения трёхфазного электродвигателя

Попытка приспособить некоторое оборудование встречает определённые трудности, так как трёхфазные асинхронники большей частью подключаться должны к 380 В. А в доме у всех сеть на 220 В. Но подключить трёхфазный движок к однофазной сети – это вполне выполнимая задача.

  1. Включение трехфазного асинхронного мотора.

  1. Подключения трехфазного движка к 220 В, с реверсом и кнопкой управления.

  1. Соединение обмоток трехфазного мотора и запуск как однофазного.

  1. Другие возможные способы соединений трёхфазных электродвигателей.

Заключение

Асинхронники на 220 В широко применяются в быту. Исходя из требуемой задачи, существуют различные методы подключения однофазного и трёхфазного мотора через конденсатор: для обеспечения плавного пуска либо улучшения рабочих характеристик. Всегда можно самому легко добиться нужного эффекта.

Как подключить электродвигатель 380 на 220 Вольт с конденсатором

Как подключить электродвигатель 380 на 220 Вольт

Содержание статьи

Очень часто под рукой оказывается двигатель, рассчитанный на работу в трехфазной сети, который нужно подключить к 220 Вольт. Сразу же нужно оговориться и сказать о том, что падение мощности трехфазного двигателя подключённого в однофазную сеть, неизбежно. Однако его можно компенсировать рабочим конденсатором подходящей емкости, который устанавливается вместо третьей фазы (выхода обмотки).

Наиболее предпочтительный вариант подключения электродвигателя к бытовой сети, это подключение трёх обмоток по схеме треугольника. В таком случае можно добиться максимальной выходной мощности электродвигателя, но, как правило, не более 70%, чем при трехфазном подключении.

Как именно подключить трехфазный двигатель к однофазной сети, читайте в этой статье строительного журнала samastroyka.ru

Как подключить электродвигатель 380 на 220 Вольт с конденсатором

Итак, подключать трехфазный двигатель к однофазной сети лучше всего по схеме «Треугольник». В таком случае электродвигатель будет работать на 70% от своей мощности. Есть еще схема подключения «Звезда». Однако в таком случае электродвигатель еще большое потеряет в мощности и будет работать не более чем на 50%.

При подключении трехфазного электродвигателя к однофазной сети, к двум выводам обмотки подсоединяется фаза и ноль. К третьему выводу необходимо подсоединить рабочий конденсатор нужной емкости. Такое подключение компенсирует все недостатки и дает возможность меньше всего потерять в мощности электродвигателя при переходе на однофазную сеть.

Важно! Именно подключение третьего вывода через конденсатор (к фазе или к нулю) задаёт направление вращение ротора электродвигателя. При этом частота вращения останется такой же самой, как и при работе электродвигателя в трехфазном режиме.

Схема подключения трехфазного электродвигателя

Электродвигатели небольшой мощности, до 1,5 кВт, можно подключать только через рабочий конденсатор. То есть, пусковой конденсатор для подключения трехфазного электродвигателя в данном случае не нужен.

Схему подключения трехфазного электродвигателя вы можете посмотреть ниже. Здесь, как и было сказано выше, один конец обмотки подключён к фазе, а другой к нулю. К третьему выводу обмотки подсоединён рабочий конденсатор, через ноль. Чтобы изменить направление движения двигателя, достаточно переподсоединить конденсатор через фазу.

В том случае, когда мощность электродвигателя более 1,5 кВт или же, когда двигатель запускается под нагрузкой, для подключения понадобится еще и пусковой конденсатор, который подключается параллельной рабочему конденсатору.

Важно знать, что пусковой конденсатор в отличие от рабочего, задействуется лишь на несколько секунд при включении электродвигателя. Расчет пускового и рабочего конденсатора для подключения электродвигателей производится по специальной формуле, о чем будет рассказано в следующем выпуске строительного журнала «САМаСТРОЙКА».

Оценить статью и поделиться ссылкой:

Схема подключения конденсатора к электродвигателю 220в асинхронный. Конденсаторы для запуска электродвигателя: какие, как подобрать

На сегодняшний день электродвигатели являются основной составляющей любого производственного процесса. Запуск электродвигателя необходим в любом хозяйстве или в быту. Как правило, он используется для питания кондиционеров, вентиляторов, отопительных насосов и так далее. Именно поэтому каждый человек, связанный с электроникой должен хорошо знать схему подключения этого оборудования к сети 220в.

Устройство и предназначение конденсаторов

Для любых электродвигателей важными деталями являются не только радиотехнические, электронные детали и транзисторы, но и конденсаторы. При этом каждая схема запуска предусматривает определенное количество этих элементов. В то же время, полностью исключить их нельзя ни в одной схеме подключения.

Функциональные возможности

Конденсаторы выполняют самые различные функции. В первую очередь, они являются емкостями в фильтрах стабилизаторов и выпрямителей. Кроме того, конденсаторы обеспечивают передачу сигнала между каскадами усилителя. На основе этих деталей создаются фильтры подключения на высоких и низких частотах, а также устанавливаются временные интервалы и выбирается колебательная частота для различных электродвигателей.

Конденсатор для асинхронных электродвигателей предназначается для запуска и долговременной работы в системах переменного тока. В то же время, пусковой вариант может использоваться для относительно недлительного срока работы. Такое преимущество элементов для асинхронных электродвигателей обеспечивается тем, что они изготавливаются их полипропиленовой пленки.

Характеристики

Основным параметром любого подобного устройства является его емкость . В данном случае пусковой конденсатор имеет емкость, которая зависит от площади поверхности активного подключения и вида диэлектрика между ними. При этом размер устройства будет находиться в четкой зависимости от оксидного слоя диэлектрика. Этот оксидный слой, как правило, является достаточно тонким, так как для его формирования используется несколько атомных слоев. Благодаря этому удается разместить больше активной поверхности для запуска на определенной площади. Для частичного восстановления оксидного слоя используется электролит. Все это обеспечивается только при условии правильного подключения конденсатора к сети 220в с четкой полярностью.

Разновидности конденсаторов


  1. Электролитические.
  2. Полярные.
  3. Неполярные.
Электролитические

Наиболее эффективными являются электролитические конденсаторы. Они обладают самой большой удельной емкостью, то есть наилучшим соотношением емкости к объему. Как правило, емкость таких электролитных устройств может достигать 100 000 мкФ. При этом рабочее напряжение в системе запуска и подключения колеблется от 220в до 600в. Подобные устройства являются идеальным вариантом для электродвигателей с низкой частотой, где они используются в фильтрах источников энергии. Именно поэтому такие устройства требуют подключения строго с учетом полярности. В качестве электродов здесь выступает тонкая оксидная металлическая пленка. Именно поэтому такие конденсаторы часто называют оксидными.

Полярные

Полярный пусковой конденсатор не может использоваться для подключения через сеть переменного тока 220в. Ведь если сделать так, то может произойти разрушение структуры оксидного диэлектрического слоя. Это связано с изменением полярности напряжения с частотой 50 Гц. В результате разрушится оксидный слой, что уменьшит сопротивление и увеличит ток. Это приведет к перегреву конденсатора с выделением газа и короткому замыканию с маленьким взрывом.

Неполярные

Что касается неполярных конденсаторов, то их стоимость может быть существенно выше, чем электролитических. Что касается их размеров, то они тоже отличаются. Это связано с тем, что электролитические элементы обладают большей емкостью при тех же размерах. Такой тип аккумуляторов обладает куда большей емкостью по сравнению с полярными конденсаторами, которые имеют масляную основу.

Как подобрать конденсатор к электродвигателю

Подбор конденсатора для трехфазного электродвигателя является непростой задачей. Особенно это касается его подключения через однофазную сеть 220в. Для такого подключения должен обязательно использоваться пусковой фазосдвигающий механизм. При этом схема предусматривает не только пусковой конденсатор для запуска электродвигателя, но и рабочий элемент. При его выборе, в первую очередь, следует определиться с емкостью рабочего конденсатора. Ее определяют по специальным формулам, которые отличаются для схемы подключения звезда и треугольник.

После того, как вы выбрали емкость рабочего элемента, выбирается пусковой элемент. Как правило, его емкость должна быть в несколько раз большей. При этом емкость должна быть большей в тех условиях, когда электродвигателю предстоит преодолевать серьезное сопротивление во время запуска. То есть этот показатель будет находиться в четкой зависимости от рабочего напряжения на двигатель. Для определения этого показателя следует использовать специальную таблицу, в которой учитывается тот минимальный показатель емкости, который должен иметь пусковой конденсатор. Специалисты рекомендуют поддерживать номинальное напряжение фазосдвигающих устройств, которое должно превышать напряжение сети почти в два раза. Например, если собирается схема для подключения через сеть 220в, то номинальное напряжение для запуска должно превышать 500в. Если планируется использовать целый блок подобных устройств, то подключать их необходимо параллельно.

Запуск электродвигателя при помощи конденсатора

При подсоединении конденсатора к электродвигателю следует использовать определенные схемы, из которых самыми эффективными являются подключения типа треугольник и звезда. В любом случае, на первом этапе необходимо подключить элемент так, чтобы в последующем не было риска взрыва. Далее следует подобрать конденсаторы парами, чтобы они имели одинаковую емкость. Например, емкость в данном случае может достигать 300 мкФ. Чтобы обеспечить максимальную безопасность запуска электродвигателя, необходимо поместить конденсаторную батарею в специальную коробочку. Это обезопасит систему от возможных последствий маленького взрыва, который может иметь место при перегреве.

Схема треугольник

Основная сложность для подключения трехфазного мотора через однофазную сеть состоит в том, что нужно правильно распределить провода, выходящие в распределительную коробку. Если же в конструкции отсутствует коробка, то тогда эти провода просто нужно вывести наружу по отношению к электромотору. Наиболее простая ситуация, когда в электродвигателе через систему 220в все обмотки уже имеют подключения по схеме треугольник. В таком случае вам достаточно просто подсоединить токоподводящий провод и пусковой конденсатор к клеммам мотора.

Схема звезда

Также простой является ситуация, когда в электродвигателе обмотки были соединены звездой, но ее можно переподключить в треугольник. Для замены типа подключения следует просто поменять перемычки. Более сложной считается ситуация, когда в распределительную коробку выводится 6 проводов без какой-то конкретики. Чтобы решить эту проблему, придется найти соответствующую документацию для запуска и подключения системы.

Для подключения по схеме звезда необходимо:

  • найти начало и конец обмоток;
  • определить пару проводов, которые относятся к одной обмотке.

Подключение по схеме треугольник

Наиболее удачной для бытовых электродвигателей является схема однофазного подключения трехфазных моторов треугольник. Этот способ позволяет добиться наибольшей мощности на выходе. Мощность системы в данном случае может достигать 70% от начальной. При этом два контакта в распределительной коробке присоединяются сразу к двум однофазным проводам сети 220в. Что касается третьего провода, то для его подключения используют пусковой и рабочий элемент Ср. Его подсоединяют к одному из двух контактов или сетевым проводам.

Таким образом, конденсаторы являются необходимыми элементами для запуска электродвигателей. Они обеспечивают нормальную работу электромоторов при подключении различными схемами. Наиболее оптимальными и эффективными являются электролитные конденсаторы.

В одной из прошлых статей мы говорили о подборе рабочих конденсаторов для работы 3 ф.(380 Вольт) асинхронного электродвигателя от 1 ф. сети (220 Вольт). А именно о подборе рабочих конденсаторов по амперметру . Спасибо Вам мои читатели за множество отзывов и благодарностей, ведь если бы не Вы уже давно бы забросил это дело. В одном из писем присланных мне на почту были вопросы: « Почему не рассказал о пусковых конденсаторах?», «Почему у меня не запускается двигатель, ведь я всё сделал, как было написано». А ведь правда что не всегда хватает «рабочих» конденсаторов для пуска электродвигателя под нагрузкой, и возникает вопрос: «Что же делать?». А вот что: «Нам нужны пусковые конденсаторы». А вот как их подобрать правильно мы сейчас поговорим.

И так что мы имеем: 3 фазный электродвигатель, к которому на основе прошлой статье мы подобрали ёмкость рабочего конденсатора 60 мкФ. Для пускового конденсатора мы берем емкость в 2 — 2,5 раза больше чем ёмкость рабочего конденсатора. Таким образом, нам понадобится конденсатор ёмкостью 120 – 150 мкФ. При этом рабочее напряжение этих конденсаторов должно быть в 1,5 раза больше напряжения сети. Сейчас у многих возникает вопрос: « А почему не 300 мкФ или даже 1000 мкФ, ведь кашу маслом не испортишь?». Но в не этом случае, всего должно быть в меру, при слишком большей ёмкости пусковых конденсаторов нечего очень страшного не случиться, но эффективность пуска электродвигателя будет хуже. Таким образом не стоит тратить лишние средства на покупку слишком большой ёмкости.

Но какие, же конденсаторы нужны для пуска электродвигателя?

Если нам нужна небольшая ёмкость пускового конденсатора то вполне подойдёт конденсаторы того же типа которые мы использовали для рабочих конденсаторов. Но если нам нужно довольно таки большая ёмкость? Для такой цели не целесообразно использовать такой тип конденсаторов через их дороговизну и размеры (при сборе большой батареи конденсаторов размеры её будут велики). Для таких целей нам служат специальные пусковые (стартовые) конденсаторы, которые сейчас присутствуют в продаже, в большом ассортименте. Такие конденсаторы встречаются разных форм и типов, но в их названиях присутствует маркировка (надпись): «Start », «Starting », « Motor Start » или что-то в этом роде, все они служат для пуска электродвигателя. Но для лучшей убедительности лучше спросить у продавца при покупке, он всегда подскажет.

А вот сейчас Вы скажете: «А как же конденсаторы от старых советских ч/б телевизоров, так называемые «электролиты»?»

Да что я Вам могу сказать по этому поводу. Я сам их не использую, и Вам не рекомендую и даже отговариваю. Всё потому что их использование в качестве пусковых конденсаторов не вполне безопасно. Потому что они могут вздуваться или и того хуже взрываться. К тому же такой тип конденсаторов со временем высыхает и теряет свою номинальную ёмкость, и мы не можем точно знать, какую именно мы применяем в данный момент.

И так у нас есть электродвигатель, рабочий и пусковой конденсатор. Как нам всё это подключить?

Для этого нам понадобится кнопка ПНВС.

Кнопка ПНВС (пускатель нажимной с пусковым контактом) имеет три контакта: два крайних – с фиксацией и один посередине – без фиксации. Он и служит для включения пускового конденсатора, а при прекращении нажатия на кнопку возвращается в исходное положение (пусковой конденсатор «Сп» включается только во время пуска двигателя, а рабочий конденсатор «Ср» постоянно находиться в работе), другие два крайних контакта остаются включенными и отключаются при нажатии кнопки «Стоп». Кнопку «Пуск» нужно удерживаться до тех пор, пока скорость вала не достигнет максимальных оборотов, и только после её отпустить. Также не стоит забывать, что конденсатор имеет свойство иметь заряд электрического тока, и Вы можете попасть под поражения электрическим током. Что бы этого не случилось, по окончанию работы отключите электродвигатель от сети, и включите на одну две секунды кнопку «Пуск», чтобы конденсаторы могли разрядиться. Либо параллельно пусковому конденсатору поставьте резистор около 100 килоом, чтобы конденсатор разряжался на него.

Чтобы подключить трехфазный двигатель к однофазной сети используют конденсаторы для запуска электродвигателей. Они могут быть разной модификации, поэтому вопрос о том, как их правильно рассчитать и на что обращать внимание при выборе, совсем не праздный. Перед тем как ответить на вопрос, какой конденсатор необходим, стоит вспомнить, что же это вообще такое?

  • Устройство и принцип работы
  • Практическое применение
  • Трехфазная сеть
    • Трехфазные двигатели
    • Однофазные двигатели
  • Другие виды двигателей
  • Электролитические емкости

Устройство и принцип работы

Конденсатор использует свойство проводников заряжаться, находясь на близком расстоянии друг от друга. Это называется поляризацией. Но чтобы этот заряд можно было снять, используют две пластины, одна напротив другой, с диэлектриком между ними. Если их разъединить, заряд снять не удастся.

Современные технологии позволяют выпускать емкостные приборы всевозможных моделей и назначений. Это и приборы, работающие только в цепях постоянного тока, и для запуска электродвигателей, и выравнивающие модели. Все, что остается конечному потребителю – выбрать подходящий, произвести расчет параметров и поставить в электрическую схему.

Практическое применение

Электродвигатели делятся на две большие категории: постоянного и переменного тока. Каждая категория, в свою очередь, тоже имеет свои деления. Как пример, электромашины переменного тока: однофазные и трехфазные, синхронные и асинхронные, с фазным ротором и короткозамкнутые. Многие из этих моделей можно подключать к сети различным образом, отличающимся от паспортных данных.


Во многих случаях используют фазосдвигающий конденсатор, который позволяет произвести пуск двигателя в однофазной сети 220в. Чтобы рассчитать его значения, необходимо учитывать некоторые параметры, а именно: какой тип электродвигателя используется, его мощность, потребляемый ток. Однофазная сеть в нашей местности преимущественно 220 вольт, поэтому расчет емкостей тоже будет описан именно для этого напряжения.


Существует большой выбор типов этих накопительных приборов. Очень хорошо, если кроме расчета параметров, учитывается также этот момент.

Самый удачный вариант – бумажный, типа МБГЧ. Его цена, в зависимости от емкости, будет несколько варьироваться, однако всегда можно найти элементы б/у. В некоторых случаях допустимо использовать приборы постоянного тока, однако стоит знать о некоторых особенностях их использования.

Трехфазная сеть

Трехфазные двигатели

Основные схемы включения трехфазных электродвигателей: звезда и треугольник. Для их работы в однофазной сети 220в предпочтительнее будет «треугольник». Формула расчета: Сраб.=k*Iф / U сети. Теперь немного подробнее.

  • Iф – значение тока, которое потребляет электродвигатель в номинальном режиме. Проще всего посмотреть на нем самом. Иногда, если есть возможность, измерить клещами.
  • Uсети – с этим все понятно. Это напряжение питания – 220 вольт.
  • K – специальный коэффициент. Для треугольника он равен 4800, а для звезды – 2800. Он просто подставляется к формуле расчета.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

В некоторых случаях, а именно когда пусковые характеристики достигают значительных величин (пуск двигателя под нагрузкой), необходимо использовать дополнительные, пусковые, конденсаторы для запуска электродвигателя. Их параметры считают так: берут рабочий элемент и умножают его значения на 2,5…3. Также рабочее напряжение этой запчасти должно быть минимум в 1,5 раза выше сетевого.

Стоит отметить, что при включении трехфазного двигателя к 220в происходит потеря мощности до 30%; с этим необходимо смириться.

Однофазные двигатели


Также существует большая группа асинхронных машин, изначально рассчитанных на работу в однофазной сети. Их, как правило, подключают на 220 вольт, но это не значит, что все так гладко. Хотя они, в отличие от трехфазников, момент не теряют, однако момент пусковой у них достаточно низок, а значит конденсаторы необходимы и для этих двигателей.

На поверку, это двухфазные электродвигатели: у них две обмотки, смещенные на 90 градусов друг относительно друга. И если подать 220в с таким же смещением, то никакой фазосдвигатель для запуска не нужен!

Но такого не происходит и поэтому для его запуска на 220 нужен пусковой элемент


Один конденсатор рабочий, для постоянного подключения; другой – пусковой. Он отключается после разгона электродвигателя до расчетных значений и больше схеме 220 вольт не нужен. В качестве приборов запуска на 220в применяются только в приводах до 1 кВт. Дело в том, что при более высоких мощностях цена на необходимые фазосдвигатели настолько высока, что их применение экономически невыгодно.

Что касается расчета основной емкости, то можно пользоваться такой зависимостью: на каждые 100 ватт берется 1 мкФ. Дальше – дело арифметики уровня второго класса. Значение пускового прибора – в 2…2,5 раза выше.

Обратите внимание! Это не значение отдельного конденсатора, а общей емкости Сраб+Спуск.!

Для 220 вольт необходимо брать элементы запуска с напряжением хотя бы на 450 вольт, так как на них напряжение отличается от сетевого 220в!

Другие виды двигателей

Иногда задают такой вопрос: какой конденсатор необходим для запуска двигателя постоянного тока? Ответ очень прост: такие двигатели в емкостных элементах для этой цели не нуждаются. Их ставят на щеточный механизм для того, чтобы устранить искрение и помехи в сеть. Работают же такие электрические машины несколько по иному принципу.

Электролитические емкости


В некоторых маломощных двигателях для их запуска в работу используют электролитические конденсаторы. Иногда некоторые неопытные электрики, увидев такое устройство у соседа, сталкиваются с проблемой: нагрев и взрыв элемента. В чем же дело, какой вариант необходим?

Немного теории. Электролитические конденсаторы – приборы постоянного напряжения. Для использования их в качестве фазосдвигающих элементов необходимо выполнить подключение по специальной схеме.

При этом помнить: при параллельном соединении емкость суммируется, при последовательном – вычитается. Однако для кратковременного включения на 220в такие элементы использовать допускается.

Как видим, конденсаторы, несмотря на кажущуюся простоту, требуют тщательного подбора. При включении двигателя к 220 вольтам нужно все внимательно посчитать, выбрать нужные элементы и тогда проблем не возникнет.

Очень часто для подключения асинхронного трехфазного двигателя в бытовую электросеть используются конденсаторы для запуска электродвигателя. Для них рабочим является напряжение 380 В, которое применяется во всех сферах производства. Но рабочее напряжение бытовой сети у нас 220 В. И для того чтобы подключить промышленный трехфазный двигатель к обычной потребительской сети, используются фазосдвигающие элементы:

  • пусковой конденсатор;
  • рабочий конденсатор.

Схемы подключения при рабочем напряжении в 380 В

Выпускаемые промышленностью асинхронные трехфазные двигатели возможно подключить двумя основными способами:

  • соединение «звездой»;
  • соединение «треугольником».

Электродвигатели конструктивно выполняются из подвижного ротора и корпуса, в который вставлен находящийся неподвижно статор (может быть собран непосредственно в корпусе или вставляться туда). Статор имеет в своем составе 3 равнозначные обмотки, специальным образом намотанные и расположенные на нем. При соединении «звездой» концы всех трех обмоток двигателя соединяются вместе, а к их началам подаются три фазы. При соединении обмоток «треугольником» конец одной соединяется с началом следующей.

Принцип работы двигателя

При работе электродвигателя, подключенного к трехфазной сети 380 В, в каждую из его обмоток последовательно подается напряжение и по каждой из них протекает ток, создающий переменное магнитное поле, которое воздействует на ротор, закрепленный подвижно на подшипниках, который заставляет его вращаться. Для запуска при таком варианте работы никаких дополнительных элементов не нужно.

Если один из трехфазных асинхронных электродвигателей подключить к однофазной сети 220 В, то вращающий момент не возникнет и двигатель не запустится. Для запуска от однофазной сети трехфазных устройств, придумано множество различных вариантов. Одним из самых простых и распространенных среди них является применение фазового сдвига. Для этого используются различные фазосдвигающие конденсаторы для электродвигателей, через которые подключается контакт третьей фазы.


Кроме этого, обязательно наличие еще одного элемента. Это пусковой конденсатор. Он предназначен для запуска самого двигателя и должен работать только в момент запуска порядка 2-3 секунд. Если его оставить включенным на длительное время, то обмотки двигателя быстро перегреются и он выйдет из строя. Чтобы это реализовать, можно использовать специальный выключатель, у которого есть две пары включаемых контактов. При нажатой кнопке одна пара фиксируется до последующего нажатия кнопки «Стоп», а вторая будет замкнута только тогда, когда нажимается кнопка «Пуск». Это предотвращает выход электродвигателя из строя.

Схемы подключения для рабочего напряжения в 220 В

Из-за того, что существует два основных варианта подключения обмоток электродвигателей, схем подвода бытовой сети будет тоже две. Обозначения:

  • «П» — выключатель, осуществляющий пуск;
  • «Р» — специальный переключатель, предназначенный для реверса двигателя;
  • «Сп» и Ср» — пусковой и рабочий конденсаторы соответственно.

При подключении к сети 220 В у трехфазных электродвигателей появляется возможность менять направление вращения на противоположное. Это можно осуществлять при помощи тумблера «Р».

Внимание! Менять направление вращения можно лишь при отключении питающего напряжения и полной остановке электродвигателя, чтобы не сломать его.

«Сп» и «Ср» (рабочие и пусковые конденсаторы) можно рассчитать по специальной формуле: Ср=2800*I/U, где I — потребляемый ток, U — номинальное напряжение электродвигателя. После вычисления Ср можно подобрать и Сп. Емкость конденсаторов пусковых должна быть больше минимум в два раза, чем у Ср. Для удобства и упрощения выбора можно принять за основу следующие значения:

  • М = 0,4 кВт Ср = 40 мкФ, Сп = 80 мкФ;
  • М = 0,8 кВт Ср = 80 мкФ, Сп = 160 мкФ;
  • М = 1,1 кВт Ср = 100 мкФ, Сп = 200 мкФ;
  • М = 1,5 кВт Ср = 150 мкФ, Сп = 250 мкФ;
  • М = 2,2 кВт Ср =230 мкФ, Сп = 300 мкФ.

Где М — номинальная мощность используемых электродвигателей, Ср и Сп — рабочие и пусковые конденсаторы.

При использовании асинхронных электродвигателей, рассчитанных для рабочего напряжения 380 В в бытовой сфере, подключив их к сети 220 В, вы теряете около 50% номинальной мощности двигателей, но при этом скорость вращения ротора остается неизменной. Помните об этом, выбирая необходимую для работы мощность. Уменьшить потери мощности можно, применив соединение обмоток «треугольником», при нем КПД электродвигателя останется где-то на уровне 70%, что будет ощутимо выше, чем при соединении обмоток «звездой». Поэтому если технически осуществимо в распределительной коробке самого электродвигателя поменять соединение «звезда» на соединение «треугольник», то сделайте это. Ведь приобретение «дополнительных» 20% мощности будет хорошим шагом и помощью в работе.

При выборе конденсаторов пусковых и рабочих имейте в виду, что их номинальное напряжение должно быть минимум в 1,5 раза больше, чем напряжение в сети. То есть для сети в 220 В желательно для запуска и стабильной работы использовать емкости, рассчитанные на напряжение 400 — 500 В.

Двигатели с рабочим напряжением 220/127 В можно подключать только «звездой». При использовании другого соединения вы при пуске его просто сожжете, и останется только сдать все в утиль.


Если вы не можете подобрать конденсатор, использующийся для пуска и при работе, то можно взять их несколько и соединить параллельно. Общая емкость в этом случае подсчитывается следующим образом: Собщ = С1+С2+….+Ск, где к — необходимое их количество.

Иногда, особенно при значительной нагрузке, он сильно перегревается. В этом случае степень нагрева можно попытаться уменьшить, меняя емкость Ср (рабочего конденсатора). Ее постепенно снижают, проверяя при этом нагрев двигателя. И наоборот, если рабочая емкость недостаточна, то выходная мощность, выдаваемая устройством, будет маленькой. В этом случае можно попробовать увеличить емкость конденсатора.

Для более быстрого и легкого пуска устройства, если существует такая возможность, отключайте от него нагрузку. Это касается именно тех двигателей, которые были переделаны с сети 380 В на сеть 220 В.

Заключение по теме

Если вы хотите использовать для своих нужд промышленный трехфазный электродвигатель, то к нему нужно собрать дополнительную схему подключения, учитывая все необходимые для этого условия. И обязательно помните, что это электрическое оборудование и необходимо соблюдать все нормы и правила безопасности при работе с ним.

Похожие записи:

Конденсатор для электродвигателя — какой выбрать? Обзор лучших пусковых конденсаторов смотрите здесь!

Хорошо, если можно подключить двигатель к необходимому типу напряжения. А, если такой возможности нет? Это становится головной болью, поскольку не все знают, как использовать трехфазную версию двигателя на основе однофазных сетей. Такая проблема появляется в различных случаях, может быть, необходимо использовать двигатель для наждачного или сверлильного станка – помогут конденсаторы. Но они бывают множества видов, и не каждый сможет в них разобраться.

Чтобы вы получили представление об их функциональности далее разберемся, как выбрать конденсатор для электродвигателя. В первую очередь рекомендуем определиться с правильной емкостью этого вспомогательного устройства, и способами ее точного расчета.

Краткое содержимое статьи:

А, что такое конденсатор?

Его устройство отличается простотой и надежностью – внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками. Но различные виды конденсаторов для электродвигателей отличаются поэтому легко ошибиться в момент приобретения.

Рассмотрим их по отдельности:

Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации – возгоранию либо появлению короткого замыкания.

Версии неполярного типа отличаются качественным взаимодействием с любым напряжением, что обусловлено универсальным вариантом обкладки – она успешно сочетается с повышенной мощностью тока и различными видами диэлектриков.


Электролитические часто называются оксидными считаются лучшими для работы с электродвигателями на основе низкой частоты, поскольку их максимальная емкость, может, достигать 100000 МКФ. Это возможно за счет тонкого вида оксидной пленки, входящей в конструкцию в качестве электрода.

Теперь ознакомьтесь с фото конденсаторов для электродвигателя – это поможет отличить их по внешнему виду. Такая информация пригодится во время покупки, и поможет приобрести необходимое устройство, поскольку все они похожи. Но помощь продавца тоже, может, оказаться полезной – стоит воспользоваться его знаниями, если не хватает своих.

Если необходим конденсатор для работы с трехфазным электродвигателем

Необходимо правильно рассчитать емкость конденсатора электродвигателя, что можно сделать по сложной формуле или с помощью упрощенного способа. Для этого уточняется мощность электродвигателя на каждые 100 Ватт потребуется около 7-8 мкФ от емкости конденсатора.

Но во время расчетов необходимо учитывать уровень воздействия напряжения на обмоточную часть статора. Нельзя чтобы он превысил номинальный уровень.

Если запуск двигателя, может, происходить лишь на основе максимальной нагрузки придется добавить пусковой конденсатор. Он отличается кратковременностью работы, поскольку используется примерно 3 секунды до момента выхода на пик оборотов ротора.

Необходимо учитывать, что для него потребуется мощность увеличенная в 1,5, а емкость примерно в 2,5 – 3 раза, чем у сетевой версии конденсатора.


Если необходим конденсатор для работы с однофазным электродвигателем

Обычно различные конденсаторы для асинхронных электродвигателей используются для работы с напряжением в 220 В с учетом установки в однофазную сеть.

Но процесс их использования немного сложнее, поскольку трехфазные электродвигатели работают с помощью конструктивного подключения, а для однофазных версий потребуется обеспечить смещенный вращательный момент у ротора. Это обеспечивается с помощью увеличенного количества обмотки для запуска, а фаза смещается усилиями конденсатора.

В чем сложность выбора такого конденсатора?

В принципе большего отличия нет, но различные конденсаторы для асинхронных электродвигателей потребует другого расчета допустимого напряжения. Потребуется около 100 ватт для каждого мкФ емкости устройства. И они отличаются доступными режимами работы электродвигателей:

  • Используется пусковой конденсатор и слой дополнительной обмотки (только для процесса пуска) тогда расчет емкости конденсатора – 70 мкФ для 1 кВт от мощности электродвигателя;
  • Используется рабочий вариант конденсатора с емкостью в 25 – 35 мкФ на основе дополнительной обмотки с постоянным подключением в процессе всей длительности работы устройства;
  • Применяется рабочий вариант конденсатора на основе параллельного подключения пусковой версии.

Но в любом случае необходимо отслеживать уровень разогревания элементов двигателя в процессе его эксплуатации. Если замечено перегревание тогда необходимо принять меры.


В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом.

Чтобы избежать неприятных моментов до подключения к электродвигателю рекомендуем убедится в работоспособности конденсатора с помощью мультиметра. В процессе создания необходимой связки с электродвигателем пользователь, может, создать полностью работоспособную схему.

Почти всегда выводы обмоток и конденсаторов находятся в клеммной части корпуса электродвигателя. За счет этого можно создать фактически любую модернизацию.

Важно: Пусковая версия конденсатора должна обладать рабочим напряжением не менее 400 В, что связано с появлением всплеска увеличенной мощности до 300 – 600 В, происходящего в процессе пуска либо завершения работы двигателя.

Так, чем отличается однофазный асинхронный вариант электродвигателя? Разберемся в этом подробно:

  • Его часто применяют для бытовых приборов;
  • Для его запуска используется дополнительная обмотка и потребуется элемент для сдвигания фазы – конденсатор;
  • Подключается на основе множества схем с помощью конденсатора;
  • Для улучшения пускового момента применяется пусковая версия конденсатора, а рабочие характеристики увеличиваются с помощью рабочего варианта конденсатора.

Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность. А также у вас появились знания о конденсаторах и способах их применения.

Фото конденсаторов для электродвигателя

Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

 

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

 

 

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С — емкость конденсатора, мкФ,   Рном — номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Cобщ = C1 + C1 + … + Сn

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

 

Рис. 2.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

 

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

 

Рис. 3.   Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
п

 

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

 

Рис. 4.   Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки

 

Подключение электродвигателя 380 на 220

2016-07-15 Советы  

Большинство асинхронных двигателей, предназначенных для работы в трехфазной сети 380 В можно спокойно переделать для работы в домашнем хозяйстве, например для точильного станка или сверлильного, где напряжение сети обычно составляет 220 В. На практике чаще всего применяется схема подключения в однофазную сеть с помощью конденсаторов.

При этом стоит отметить, что при таком подключении мощность электродвигателя составит 50-60% от его номинальной мощности, но и этого зачастую будет вполне достаточно.

Не все трехфазные электродвигатели хорошо работают при подключении к однофазной сети. Проблемы возникают, например, у двигателей серии МА с двойной клеткой короткозамкнутого ротора. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Для чего нам нужны конденсаторы? Если вспомнить теорию, обмотки в асинхронном двигателе имеют фазовый сдвиг в 120 градусов, благодаря чему создаётся вращающееся магнитное поле. Вращающееся магнитное поле, пересекая обмотки ротора, индуцирует в них электродвижущую силу, что приводит к возникновению электромагнитной силы, под действием которой ротор начинает вращаться. Но это действительно только для трехфазной сети.

При подключении в однофазную сеть трехфазного двигателя вращающий момент будет создаваться только одной обмоткой и этого усилия будет недостаточно для вращения ротора. Чтобы создать сдвиг фазы относительно питающей фазы и применяют фазосдвигающие конденсаторы.

Наиболее распространенными схемами подключения трехфазного двигателя к однофазной сети являются схема «треугольник» и схема «звезда». При подключении в «треугольник» выходная мощность электродвигателя будет больше чем у «звезды», поэтому в быту обычно применяют ее.

Для того, чтобы определить по какой схеме выполнено подключение двигателя, надо снять крышку клеммника и посмотреть каким образом установлены перемычки.

В случае подключения «треугольником» все обмотки должны быть соединены последовательно, т. е. конец одной обмотки с началом следующей.

Если в клеммник выведено только 3 вывода, значит придется разбирать двигатель и находить общую точку подключения трех концов обмоток. Это соединение надо разорвать, к каждому концу припаять отдельный провод, после чего вывести их на клеммную колодку. Таким образом мы получим уже 6 проводов, которые соединим по схеме «треугольник».

После того как определились со схемой подключения, необходимо подобрать емкость конденсаторов. Емкость рабочего конденсатора можно определить по формуле С раб = 66·Р ном, где Р ном — номинальная мощность двигателя. То есть берем на каждые 100 Вт мощности берем примерно 7 мкФ емкости рабочего конденсатора. Если конденсатора необходимой емкости нет в наличии, можно набрать из нескольких конденсаторов, подключая их в параллель. Конденсаторы можно применять любого типа, кроме электролитических. Неплохо зарекомендовали себя конденсаторы типа МБГО, МБГП. Емкость пускового конденсатора должна быть примерно в в 2-3 раза больше, чем емкость рабочего конденсатора. Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети.

Если двигатель после запуска начнет перегреваться, значит расчетная емкость конденсаторов завышена. Если емкости конденсаторов недостаточно, будет происходить сильное падение мощности двигателя. При правильном подборе емкости конденсаторов ток в обмотке, подключенной через рабочий конденсатор, будет одинаков или незначительно отличаться от тока, потребляемого двумя другими обмотками. Рекомендуют подбирать емкости, начиная с наименьшего допустимого значения, постепенно увеличивая емкость до необходимого значения.

В случае подключения маломощных двигателей, работающих первоначально без нагрузки, можно обойтись одним рабочим конденсатором.

Рис.1 Подключение с одним рабочим конденсатором

Рис.2 Схема подключения трехфазного двигателя в однофазную сеть

Сп — Пусковой конденсатор  Ср — Рабочий конденсатор  SB — кнопка  SA — тумблер

Конденсатор пусковой включается кратковременно кнопкой без фиксации только на время, пока электродвигатель 220в разгонится до номинальных оборотов. После выхода двигателя на оптимальный режим пусковой конденсатор необходимо отключить, иначе большая суммарная емкость вызовет перекос фаз и перегрев обмоток. Реверс двигателя осуществляется переключением тумблера.

1. Подключение асинхронного двигателя в однофазную сеть

Применение конденсаторов в асинхронных двигателях
 

 

рабочий

пусковой

применение

В схемах асинхронных электродвигателей

В схемах асинхронных электродвигателей

тип подключения

Последовательно со вспомогательной обмоткой электродвигателя

Параллельно рабочему конденсатору

в качестве

Является фазосмещающим элементом

Является фазосмещающим элементом

назначение

Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя

Позволяет получить магнитное поле, необходимое для повышения пускового момента электродвигателя

время включения

В процессе работы электродвигателя

В момент пуска электродвигателя

Существуют две основные области применения конденсаторов для асинхронных электродвигателей.
 

1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть

В случае,  когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения: «звезда» или «треугольник», причем наиболее предпочтительным во многих случаях является вариант «треугольник».

Приблизительный расчет для данного типа соединения производится по следующей формуле:

 

 

                             Сраб.=k*Iф/Uсети

где:

k – коэффициент, зависящий от соединения обмоток.

 

Для схемы соединения «Звезда» — k=2800

Для схемы соединения «Треугольник» — k=4800

– номинальный фазный ток электродвигателя, А.

Uсети – напряжение однофазной сети, В.

 

Для определения пусковой емкости Сп.  исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.

Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп.=(2.5-3) Ср.

Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.

 

Схема подключения
 

 

Рис 1.   Схема включения в однофазную сеть     трехфазного асинхронного двигателя с  обмотками статора, соединенными по схеме «звезда» (а) или «треугольник» (б):

  • B1 Переключатель направления
  • вращения  (реверс)
  • В2 — Выключатель пусковой емкости;
  • Ср — рабочий конденсатор;
  • Cп — пусковой конденсатор;
  • АД — асинхронный электродвигатель.

 

2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают. Это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске.


Схема подключения
 

 

Рис 2. Схема (а) и векторная диаграмма  конденсаторного асинхронного двигателя:

  • U, UБ, UC — напряжения;
  • IA, IБ — токи;
  • А и Б — обмотки статора;
  • В — центробежный выключатель
  • для отключения С1 после разгона двигателя;
  • C1 и C2 — конденсаторы.

 

 

Конденсаторный асинхронный электродвигатель по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю. 

 

Как подключить конденсатор к электродвигателю?

Подключите положительный вывод маленького двигателя Hobby к первому выводу резистора. Подключите второй вывод резистора к положительному выводу конденсатора . Сначала используйте резистор в диапазоне от 10 кОм до 100 кОм. Конденсатор должен иметь диапазон от 1 до 100 Фарад.

Нажмите, чтобы увидеть полный ответ


Точно так же вы можете спросить, как подключить электродвигатель к конденсатору?

Как подключить пусковой конденсатор

  1. Отключите электричество от блока, в котором работает двигатель.
  2. Проверьте электрическую схему пускового конденсатора.
  3. Вставьте клемму на «общем» проводе реле пускового конденсатора, обычно это черный провод, на общую клемму на стороне нагрузки контактора устройства.

Во-вторых, имеет ли значение, каким образом вы подключаете конденсатор? В цепи переменного тока имеет значение , а не , если конденсатор (предназначенный для этой цепи) подключен в обратном направлении. В цепи постоянного тока одни конденсаторы могут быть подключены наоборот, другие — нет.

В связи с этим, как пусковой конденсатор работает на двигателе?

Пусковой конденсатор остается в цепи достаточно долго, чтобы быстро довести двигатель до заданной скорости, которая обычно составляет около 75% от полной скорости, а затем отключается от цепи, часто центробежным двигателем. переключатель, который отпускается с такой скоростью. После этого двигатель работает на более эффективно с рабочим конденсатором .

Может ли однофазный двигатель работать без конденсатора?

нет, не требуется для каждых одиночных фаз AC двигателя , чтобы иметь конденсатор , функция конденсатора в двигателе состоит в том, чтобы потреблять ток, который приводит к току, потребляемому основная обмотка двигателя , так что произойдет смещение фазы и вращающееся поле создается результирующим током.

Руководство по выбору пускового конденсатора

Руководство по выбору пускового конденсатора

Пусковой конденсатор используется для кратковременного сдвига фазы в пусковой обмотке однофазного электродвигателя с целью увеличения крутящего момента. Пусковые конденсаторы обладают очень большим значением емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. Из-за этого пусковые конденсаторы выйдут из строя после того, как будут слишком долго оставаться под напряжением из-за неисправной пусковой цепи на двигателе.

Индекс

Обзор
Пусковые и рабочие конденсаторы »
Резисторы и их размеры»
Поиск и устранение неисправностей »

Технические характеристики
Напряжение»
Емкость »
Частота (Гц)»
Тип клеммы подключения »Форма корпуса
» Размер корпуса
»


Обзор

Пусковые и рабочие конденсаторы

Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого (секунд) периода времени.Они предназначены только для прерывистой работы и катастрофически выйдут из строя, если будут слишком долго находиться под напряжением. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.


Взаимозаменяемы ли пусковой и рабочий конденсаторы?

Да и нет. В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов.Номинальные значения емкости и напряжения должны соответствовать оригинальной спецификации пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно (всего пару секунд).

Посмотрите видеоинструкцию ниже, чтобы узнать о различиях между пусковыми и рабочими конденсаторами.


Что такое резистор и нужен ли он?

Большинство заменяемых пусковых конденсаторов не имеют резистора.Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора — сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя. Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.

Узнайте, как установить спускной резистор на пусковой конденсатор.


Устранение неисправностей

Как узнать, неисправен ли мой пусковой конденсатор?

Большинство отказов конденсатора электродвигателя может быть одного из двух типов:

«Стартовый колпачок вырвался наружу!» Это то, что мы называем катастрофическим отказом. Обычно это происходит из-за того, что пусковая цепь электродвигателя задействована слишком долго для кратковременного режима работы пускового ограничения.Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены.

Разрыв пузыря сброса давления Точно так же, но не столь драматично, на стартовой крышке может просто появиться разорванный пузырек сброса давления. В любом случае легко сказать, что стартовый колпачок нуждается в замене.

Мой мотор медленно заводится. Мой пусковой конденсатор плохой?

Ответ на этот вопрос: возможно. Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя.

Посмотрите видео ниже о том, как заменить пусковой конденсатор.


Технические характеристики

В большинстве применений пусковых конденсаторов используется номинальная емкость 50–1200 мкФ и напряжения 110/125, 165, 220/250 и 330 В переменного тока. Они также обычно всегда рассчитаны на 50 и 60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов.Концевые заделки обычно представляют собой нажимные клеммы ¼ «с двумя клеммами на соединительную клемму.

Напряжение

Выберите конденсатор с номинальным напряжением, равным или превышающим исходный конденсатор. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт. Блок на 440 вольт действительно прослужит дольше. Конденсатор будет иметь маркированное напряжение, указывающее допустимое пиковое напряжение, а не рабочее напряжение.

Емкость

Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору.Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

Частота (Гц)

Выберите конденсатор с номинальной частотой Гц оригинала. Почти все заменяемые конденсаторы будут иметь маркировку 50/60.

Тип соединительной клеммы

Почти каждый конденсатор будет использовать вставной соединитель в виде флажка размером ¼ «. Следующий вопрос:« Сколько клемм на клеммную колодку необходимо для двигателя приложения? »Большинство пусковых конденсаторов имеют две клеммы на клемму, и большинство рабочих конденсаторов будут иметь 3 или 4 терминала на столб.Убедитесь, что выбранный конденсатор имеет как минимум такое же количество соединительных клемм на соединительную клемму, как и у оригинального конденсатора двигателя.

Форма корпуса

Практически все пусковые конденсаторы имеют круглый корпус. Конденсаторы круглого сечения являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию. С точки зрения электричества разницы нет. Подгонка — единственный вопрос здесь. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

Размер корпуса

Как и форма корпуса, электрические габариты не имеют значения.Выберите конденсатор, который поместится в отведенном для этого месте.


Выбор продукции

110/125 В перем. Тока

220/250 В перем. Тока

165V

330V

Может ли однофазный двигатель работать без конденсатора?

Ответ:

Существует три распространенных типа однофазных двигателей: конденсаторные двигатели, двигатели с экранированными полюсами и двигатели с расщепленной фазой.

Однофазные двигатели с экранированными полюсами и с расщепленной фазой не требуют для работы конденсатора.В то время как конденсаторные двигатели работают с помощью конденсаторов. Конденсаторные двигатели также бывают разных типов в зависимости от роли конденсатора. Некоторые из них обсуждаются ниже.

Конденсаторный пусковой двигатель

В конденсаторном пусковом двигателе, как также ясно из названия, роль конденсатора заключается в запуске двигателя. Таким образом, конденсатор предназначен для обеспечения начального крутящего момента ротору путем добавления разности фаз к магнитному полю ротора. Если снять конденсатор с такого двигателя, он не начнет вращаться, когда на обмотку статора будет подаваться питание, так как начальный крутящий момент будет отсутствовать.Однако после подачи питания, если кто-то обеспечивает этот первоначальный толчок к ротору вручную с вала внешнего ротора, двигатель начнет работать и будет продолжать работать до тех пор, пока питание не будет подключено к обмотке статора. Опять же, при следующем запуске потребуется внешний толчок для запуска вращения двигателя.

Конденсаторный рабочий двигатель

Этот тип конденсатора двигателя постоянно включен последовательно с пусковой обмоткой и обеспечивает постоянный крутящий момент.Следовательно, этот тип двигателя не сможет работать без конденсатора даже после первоначального нажатия.

Конденсатор Пусковой Конденсатор Рабочий Двигатель

В этом типе двигателя есть два отдельных конденсатора для запуска и для работы. Пусковой конденсатор должен обеспечивать пусковой толчок при работе конденсатора для обеспечения дополнительного крутящего момента во время работы. Этот двигатель представляет собой смесь двух предыдущих типов, т.е. конденсатор запускает двигатель, а конденсатор запускает двигатель.Для правильной работы этого типа двигателя потребуются оба конденсатора. Однако, как и в случае с конденсаторным типом, этот пуск двигателя может выполняться с помощью внешнего толчка, если пусковой конденсатор отсутствует или неисправен.

Связанные темы;

  1. Почему в асинхронном двигателе используется контактное кольцо?
  2. Почему асинхронный двигатель широко используется в промышленности?
  3. Почему асинхронный двигатель с контактным кольцом используется в кране?
  4. Почему в электромобиле используется асинхронный двигатель?

Конденсаторные блоки Экономьте деньги на счетах за электроэнергию!

Как это работает?

Когда двигатель в вашем доме запускается, он запрашивает мощность у трансформатора вашей коммунальной компании.Спрос на электроэнергию от вашего двигателя проходит через проводку в вашем доме к распределительной коробке, идущей к вашему счетчику, наконец, достигая места назначения трансформатора и снова возвращаясь к вашему дому. Во время этого процесса линии / проводка нагреваются и напрягают двигатель и проводку. Вырабатываемое тепло называется ваттами.

Во время нормального электрического процесса теряется энергия, за которую вам выставляет счет ваша коммунальная компания, но которую вы не можете использовать. Конденсатор накапливает (в противном случае теряется энергия / ватт) и передает энергию вашему двигателю, когда это необходимо для правильной работы.Это снижает количество тепла на проводах и двигателях в вашем доме или офисе. Уменьшение этого тепла снизит ваши счета за электроэнергию и увеличит срок службы ваших двигателей.

Индуктивные двигатели

установлены в вашем холодильнике, морозильной камере, стиральной машине, сушилке, потолочных вентиляторах, лифтах, кондиционерах и т. Д. Если вы используете старые люминесцентные лампы T-12, балласт также является индуктивной нагрузкой. Все, что связано с медной обмоткой, создающей электромагнитное поле, является индуктивной нагрузкой, как и ваш инвертор, который преобразует постоянный ток в переменный.Используя методы крупных промышленных комплексов, конденсатор восстанавливает потерянную энергию и перерабатывает электрическую энергию. Он защищает от скачков напряжения и увеличивает мощность вашей электрической панели, заставляя ее охлаждаться. Таким образом вы сэкономите деньги

«Более 16 миллиардов долларов электроэнергии — это непригодная для использования энергия, но оплачивается в США» Министерство энергетики США

Как мы знаем, что это работает?

Это индуктивная нагрузка для вашей энергетической компании, как и двигатели в вашем доме (кондиционеры, холодильники и т. Д.).), это индуктивные нагрузки вашей энергетической компании, и это конденсаторы, которые ваша энергетическая компания использует для корректировки их коэффициентов мощности. Когда вы корректируете коэффициент мощности, это снижает спрос. Электрический счетчик, который читает ваша электрическая компания, является счетчиком потребления. При правильном использовании конденсаторов вы можете снизить спрос и законно замедлить работу вашего счетчика; ваша электрическая компания использует ту же самую технологию более 70 лет для корректировки своих коэффициентов мощности. Зачем вашей энергетической компании тратить десятки тысяч долларов на батарею конденсаторов, чтобы скорректировать их коэффициент мощности, если она не работает?

Работает!

Если вы посмотрите вокруг на полюса питания, примерно на каждые 50 трансформаторов, вы заметите одну из этих батарей конденсаторов, корректирующих коэффициенты мощности трансформаторов в вашем районе.

Сколько конденсаторов мне нужно?

Обычно для дома требуется 1 квартира; для бизнеса это зависит от количества панелей — конденсаторы работают до 200, 400, 600, 800 и 1000 ампер. Если вы не уверены, установите флажок на панели. Если ваш главный выключатель на 200 ампер или меньше, вам понадобится только 1 блок.

Электроэнергия состоит из двух компонентов:

  • Активная мощность, которую дает работа
  • Реактивная мощность, которая необходима для создания магнитных полей, необходимых для работы индуктивного электрического оборудования, но не выполняет полезной работы
  • Активная мощность измеряется в кВт (1000 Вт)
  • Реактивная мощность измеряется в кВАр (1000 вольт-ампер, реактивная)

Общая мощность измеряется в кВА (1000 вольт-ампер).Отношение рабочей мощности к общей мощности называется коэффициентом мощности. Конденсаторы коррекции коэффициента мощности предназначены для увеличения коэффициента мощности за счет подачи реактивной мощности при установке на индуктивном электрическом оборудовании или рядом с ним.

Как конденсаторы экономят деньги

Конденсаторы снижают затраты на электроэнергию двумя способами

  • Во многих регионах стоимость электроэнергии включает штраф за низкий коэффициент мощности. Установка силовых конденсаторов в системе распределения электроэнергии на объекте избавляет коммунальное предприятие от необходимости подавать реактивную мощность, необходимую для индуктивного электрического оборудования.Экономия, которую коммунальное предприятие получает за счет снижения затрат на генерацию, передачу и распределение, перекладывается на потребителя в виде более низких счетов за электроэнергию
  • Второй источник экономии, полученный за счет использования конденсаторов коррекции коэффициента мощности, заключается в увеличении мощности в кВА в системе распределения электроэнергии. Установка конденсаторов для обеспечения непроизводительных токовых требований объекта позволяет увеличить подключенную нагрузку на целых 20 процентов без соответствующего увеличения размеров трансформаторов, проводов и защитных устройств, составляющих распределительную систему, которая обслуживает груз.

Преимущества:

  • Минус суммарная мощность установки в кВА при той же рабочей мощности в кВт
  • Экономия на ежемесячных счетах за электроэнергию очень значительна в регионах, где существуют штрафы за пиковое использование.
  • Больше рабочей мощности при той же потребности в кВА
  • Освободившаяся мощность системы позволяет добавлять дополнительные двигатели, освещение и т. Д. Без перегрузки существующего распределительного оборудования.
  • Улучшенное регулирование напряжения за счет уменьшения падения напряжения в сети
  • Более эффективная работа оборудования и двигателей
  • Более низкие рабочие температуры
  • Уменьшение размеров трансформаторов, кабелей и распределительных устройств при новом строительстве, чтобы вы экономили капитал.

Наши клиенты варьируются от владельцев местных предприятий до клиентов национальной сети:

  • Автосервис (средняя экономия 14%)
  • Боулинг (средняя экономия 18%)
  • Автосалоны (средняя экономия 14%)
  • Холодное хранение (средняя экономия 15%)
  • Круглосуточные магазины (средняя экономия 14%)
  • Продовольственные рынки (средняя экономия 18%)
  • Производители (средняя экономия 16%)
  • офисных здания (средняя экономия 15%)
  • курортов (средняя экономия 15%)
  • школы (средняя экономия 14%)
  • Очистка воды (средняя экономия 15%).

Конденсаторы бытовые:

  • Произведено на заводе системы менеджмента качества ISO 9003 в США.
  • 100% гарантия возврата денег по сбережениям
  • Гарантия до 25 лет
  • внесен в список UL и установлен сертифицированным электриком в соответствии с местными правилами пожарной безопасности.

Обратитесь к консультанту по энергетике сегодня, чтобы начать экономить деньги за счет снижения потребления энергии.Позвоните нам по телефону 202-559-9289 / 202-559-9289 или напишите нам по адресу [email protected]

Тип двигателей | Бэй Мотор Продактс

Двигатель с экранированными полюсами

Двигатели с экранированными полюсами являются оригинальным типом однофазных асинхронных двигателей переменного тока. Также называется однофазным асинхронным двигателем, просто подключив его к одной линии напряжения, и для его вращения требуется внешний конденсатор. Различные типы однофазных асинхронных двигателей различаются в зависимости от метода их запуска.Четыре основных типа — это разделенная фаза, конденсаторный запуск, постоянный разделенный конденсатор и конденсаторный запуск / работа конденсатора.

Двигатель с расщепленной фазой

Двигатель с расщепленной фазой использует переключающее устройство для отключения пусковой обмотки, когда двигатель достигает 75% своей номинальной скорости. Хотя этот тип имеет простую конструкцию, что делает его менее дорогим для коммерческого использования, он также имеет низкие пусковые моменты и высокие пусковые токи.

Конденсаторный пусковой двигатель

Конденсаторный пусковой двигатель — это конденсаторный двигатель с расщепленной фазой, в котором конденсатор включен последовательно с пусковой обмоткой для создания большего пускового момента.Этот двигатель более дорогой из-за требуемых коммутационных и конденсаторных компонентов.

Постоянный разделенный конденсатор

Двигатель с постоянным разделенным конденсатором не имеет пускового переключателя. Для этого типа конденсатор постоянно подключен к обмотке пускателя. Поскольку для этого требуется конденсатор для непрерывного использования, он не обеспечивает пусковую мощность, поэтому пусковые моменты обычно малы. Эти двигатели не будут работать при высоких пусковых нагрузках.Однако они имеют низкие пусковые токи, более тихую работу и более высокий срок службы / надежность, что делает их хорошим выбором для высоких циклов. Они также являются наиболее надежными конденсаторными двигателями из-за отсутствия пускового переключателя. Различные конструкции обеспечивают более высокий КПД и коэффициент мощности при номинальных нагрузках.

Конденсаторный пуск / Конденсаторный двигатель

Конденсаторный пусковой / конденсаторный двигатель имеет как пусковой, так и пусковой конденсатор в цепи. После достижения полного пуска пусковой конденсатор отключается.Этот тип двигателя имеет более высокий пусковой ток, меньшие токи нагрузки и более высокий КПД. Недостатком является стоимость двух конденсаторов и переключающего устройства. Надежность также играет важную роль в механизме переключения.

Технология

Для сравнения, эти типы асинхронных двигателей с разделенным сопротивлением обеспечивают пусковой крутящий момент от низкого до среднего, и это ограничивает их применениями с низким энергопотреблением, для которых они лучше всего подходят. В этих двигателях используется одна вспомогательная обмотка меньшего размера, чем обычно, что создает более низкую скорость индукции и гораздо более высокое сопротивление, чем в других типах.Такие простые модели можно использовать только при небольшой нагрузке и небольшом пусковом приводе.

Для некоторых применений, таких как небольшие вентиляторы, шлифовальные машины и нагреватели, не требуются более высокие пусковые моменты, но в большинстве случаев, чем больше крутящий момент при запуске двигателя, тем большую нагрузку можно приложить к машине. Однофазный двигатель с высоким пусковым крутящим моментом часто бывает дороже, чем более простые двигатели с разделенной индукцией. Однако разница в мощности может окупиться для разных промышленных нужд.От однофазного двигателя с высоким пусковым моментом можно ожидать другого уровня производительности, это может сэкономить время и энергию.

Переменные токи, протекающие в однофазном двигателе, одновременно достигают своих пиковых значений; это составляет одну единственную фазу. В трехфазных системах пиковые значения тока достигаются последовательно, в три отдельных этапа. По сравнению с трехфазными системами, эти двигатели не обладают таким же высоким КПД, но могут работать бесконечно при минимальном техническом обслуживании.

Электродвигатели асинхронные

имеют разные классификации в зависимости от источника электроэнергии и типа конструкции. Двигатели асинхронного типа, также называемые асинхронными двигателями, работают на переменном токе (AC), создаваемом электромагнитной индукцией, в отличие от коммутаторов, обычно используемых в двигателях переменного тока других типов. Асинхронные двигатели используются в промышленности, а также в стандартных устройствах, таких как холодильники, стиральные машины, посудомоечные машины и сушилки для одежды.

Электродвигатели индукционного типа были первоначальным двигателем переменного тока, который должен был быть создан; Никола Тесла придумал прототип в 1883 году. Эти асинхронные двигатели имеют очень простую конструкцию и управление по сравнению с современными двигателями переменного тока, но они по-прежнему очень прочные, тихие и долговечные. Асинхронные двигатели отличаются тем, что они используют индуцированный ток в роторе для создания вращательного движения.

Асинхронные двигатели

состоят из двух простых частей: статора с медной обмоткой и узла якоря или ротора.Обмотки статора удерживаются в пазах вокруг статора с соблюдением баланса между количеством северных и южных полюсов. Сборка ротора производится в нескольких вариантах: роторы с короткозамкнутым ротором, роторы с контактным кольцом и роторы со сплошным сердечником.

Эти двигатели лучше всего подходят для нужд малой мощности и приложений, где было бы неэффективно использовать более мощные механизмы. Многие однофазные двигатели идеально подходят для применений с низким моментом инерции, в то время как другие спроектированы для удовлетворения требований к высокому пусковому крутящему моменту.

Реверсирование и ремонт электродвигателей

Реверсирование и ремонт электродвигателей

Выбор, подключение, реверсирование и ремонт электродвигателей

Роберта В. Лампартера


Перепечатка только в формате ASCII с разрешения «Home Shop Machinist»
Июль / август 1987 г. 6 шт. 4
Представлено и введены данные Грантом Эрвином

Выбор двигателя и подключение электрооборудования — это первое. проблемы, возникшие после покупки этого давно желанного станка.В текущем производстве имеется несколько типов однофазных двигателей переменного тока. в США, но обычно используются только два типа для питания наших оборудование.

ВИДЫ ДВИГАТЕЛЕЙ

Для наглядности опишу особенности обычных типы двигателей дробной мощности.

Универсальные или серийные двигатели — это двигатели со щетками и с фазным ротором. Примером этого типа является портативная дрель или дрель Dremel. орудие труда.Еще они отличаются своей шумностью.

Индукционные двигатели или двигатели с экранированными полюсами обычно продаются в витринах. фанаты. Они имеют твердый (квадратный сепаратор) ротор и запускаются медленно, постепенно набирая скорость.

По моему опыту, отталкивающие двигатели старые и необычные, но они могут встретиться на дворовой распродаже или барахолке. Будучи старыми, они склонны быть на большом размере. У них есть намотанный ротор и электрические щетки. соединены друг с другом, но не с обмотками статора.Большой мотор щетками (при условии, что на паспортной табличке не указан двигатель постоянного тока или генератор) является признаком того, что вы, вероятно, исследуете отталкивание мотор. Этот тип двигателя можно изменить, изменив положение кисти. Увидев, что один из них приводит в действие большой сверлильный станок в местную кузницу, вкладывать деньги в отталкиваю я бы не советовал двигатель, поскольку остальные типы двигателей, которые будут описаны, будут выполнять работа намного лучше.

Последние три типа двигателей являются наиболее подходящими для питания. бытовое торговое оборудование: электродвигатель с расщепленной фазой (запуск с расщепленной фазой — индукционный запуск), конденсаторный пуск двигателя (конденсаторный пуск — индукционный пуск) и конденсаторный пуск — конденсаторный запуск двигателя.Все отличаются твердым ротор с короткозамкнутым ротором и слышимый щелчок при вращении мотора выключен и замедляется. Двигатель с расщепленной фазой не имеет цилиндрического выступа. снаружи для конденсатора; два других типа, очевидно, делают. В конденсаторный пусковой конденсаторный двигатель будет иметь либо два конденсатора горбов или будет иметь конденсатор с тремя отдельными электрическими соединения. В процессе исключения должно казаться очевидным, что у конденсаторного пускового двигателя будет один конденсатор, у которого есть только два электрические соединения.

Все описанные двигатели работают от бытового тока, который является однократным. фаза. Трехфазные двигатели обычно используются на промышленных предприятиях. станки и не будут работать от бытового тока без дорогостоящего роторного фазовый преобразователь. Твердотельные фазовые преобразователи дешевле, но наши местный перемотчик электродвигателя намекает, что они склонны к горению из. Возможно, еще один читатель с личным опытом работы с твердотельными фазовые преобразователи могут нас просветить.Из-за отсутствия опыта при трехфазном питании я решил, что лучше избегать этих двигателей. В Табличка производителя с электрической информацией указывает, однофазный или трехфазный.

РЕКОМЕНДАЦИИ ПО ТИПУ И РАЗМЕРУ ДВИГАТЕЛЯ

Конденсаторные двигатели имеют гораздо больший пусковой крутящий момент, чем расщепленные фазы. моторы. Я предпочитаю использовать конденсаторные пусковые двигатели на всех инструментах, кроме настольные шлифовальные машины. При большой пусковой нагрузке двигатель с расщепленной фазой потребуется много времени, чтобы набрать скорость.Есть две проблемы с это. Одна из них заключается в том, что потребляется большой ток, в результате чего магазин свет погаснет. Во-вторых, пусковые обмотки легче. калибровочная проволока; с повторяющимися двух- или трехсекундными стартовыми периодами обмотки стартера со временем сгорят.

Двигатели с расщепленной фазой считаются подходящими для легкого запуска. инструменты, такие как шлифовальные станки, сверлильные станки, лобзики и тому подобное. у меня есть обнаружил, что двигатель с разделенной фазой на 1/3 л.с. на моем старом сверлильном станке Delta подходит для всех, кроме более высоких скоростей.Планирую заменить на 1/2 конденсаторный двигатель л.с., когда я нахожу его на дворовой распродаже. Если бы у меня был промышленный сверлильный станок с конусом Морзе № 2 или № 3, я бы хотел мотор 3/4 или 1 л.с. Уважаемый мастер своего дела вполне доволен двигателем с разделенной фазой мощностью 1/3 л.с. на своем 9-дюймовом токарном станке South Bend но признает, что делает только легкие повороты. Я верю производителю рекомендует конденсаторный двигатель мощностью 1/2 л.с. У меня был конденсаторный двигатель мощностью 1/2 л.с. мой 12-дюймовый токарный станок Клаузинга. Кажется, он никогда не замедлялся даже при тяжелых разрезает, но в итоге перегорела обмотка.Из этого опыта я сделать вывод, что для токарный станок 12 дюймов. Подозреваю, что хватило бы мотора на 3/4 л.с., но мотор 1,5 л.с. был единственным использованным мотором, доступным, когда старый сгореть.

СООТВЕТСТВИЕ МАГАЗИНУ ЭЛЕКТРОПРОВОДКИ И ДОСТОИНСТВА ЭКСПЛУАТАЦИИ 220 Вольт

Далее следует электромонтаж двигателя. Первый взгляд на двигатель информационная табличка с указанием рабочей силы тока и определить, есть ли в магазине проводка и предохранители в порядке.Согласно Sears and Roebuck’s «Упрощенная электрическая разводка», пусковые токи двигателей равны примерно в три раза превышающий указанный рабочий ток. Для практических целей, если время пуска двигателя не продлевается из-за тяжелого нагрузки, рабочий ток двигателя будет определять, собирается в поездку. Например, при 110 В обычный двигатель мощностью 1/2 л.с. работают от 7 ампер или меньше, но при запуске потребляют 22 ампера. В моем старый дом, в котором были выключатели на 15 ампер, я никогда не перегружал схему с мотором на 1/2 л.с.

Если вы приобретаете оборудование (путем покупки или аренды оборудования), которое превышает электрическую мощность вашего магазина. емкость, вам придется сделать некоторые проводки. Покупка моего воздушный компрессор представил мне эту проблему. При 110 В его рабочий ток был 17,8 ампер, и выключатель на 15 ампер скорее сработал бы. часто. В то время я не знал, насколько легко было добавить выключатель и проложил линию 220 В, поэтому я подключился к одному из 20-амперные цепи в доме и провод 12-го калибра для запуска нового 110-вольтового контура. очередь в магазин.

Несколько лет спустя мой друг-машинист познакомил меня с концепция использования тока 220В для машин. Я всегда предполагал что тяжелые провода, такие как те, что используются в сушилках и плитах, были необходимы для 220в работа. Не так! Эти провода тяжелые, потому что сушилки и плиты токи тяги в диапазоне 30 и 50 ампер соответственно. На самом деле, уменьшение толщины провода может быть обеспечено за счет запуска двигателя на 220в. Когда двигатель переключается на работу при 220 В, его рабочий ток делится вдвое.Таким образом, компрессор, который тянул 17,8 А только при 110 В потянул 8,9 ампер при 220в. Когда я наконец привел свою линию 220 В в магазин, я использовал прерыватель на 15 ампер и провод 14 калибра. Какая разница в как быстро запустился компрессор. Я использовал ту же розетку, что и был используется для 110 В, но нарисовал знак на розетке, помеченный как 220в. Я сомневаюсь, что эта розетка соответствует электрическим нормам, так как специальные розетки на 220 В физически не позволяют устройству на 110 В подключен к сети; однако я считаю, что такая практика приемлема в домашний магазин.На двигателях, которые будут работать от 110 В или 220 В, я предпочитаю запускать их на 220В, так как яркость загорается и запускается намного быстрее при таком напряжении.

На будущее помните, что предохранители и автоматические выключатели защищают проводка дома от перегрева и горения при нахождении внутри стены и, следовательно, имеют размер, совместимый с проводкой в ​​доме они защищают, а не подключенную к нему машину. Вот почему это опасно просто поставить больший предохранитель или прерыватель на цепь вашего магазин без улучшения проводки.Провод 12-го калибра выдержит ток 20 ампер, Провод 14-го калибра 15 ампер и провод 16-го калибра 10 ампер. Домашняя проводка достаточно прямолинейно, но детали выходят за рамки цели этого статья. Снова отсылаю читателя к уже упомянутому буклету. продан Sears and Roebuck за расширенное описание процедура.

СОЕДИНЕНИЯ ВНУТРЕННЕЙ ПРОВОДКИ: ИЗМЕНЕНИЕ РАБОТЫ С 110 В НА 220 В

Теперь обратим внимание на внутреннюю проводку двухфазные и конденсаторные двигатели.Они почти идентичны, за исключением Конденсаторный пусковой двигатель имеет конденсатор. Оба мотора имеют два типа обмотки — обмотки пускателя и обмотки ходовые. Обмотки стартера определить направление вращения. Они из лёгкого провода. так как они используются только на короткое время для запуска, а затем отключается от цепи центробежным выключателем, когда двигатель почти до скорости. Щелчок слышен, когда двигатель замедляется до остановка — центробежный выключатель, щелкнув пусковые обмотки назад в цепь.Нумерация выводов, представленная на схемах, рисунках С 1 по 4, используется в трех двигателях в моем магазине, все из которых различное производство. Один из них британский по происхождению. Я предполагаю система нумерации универсальна, но я не могу быть уверен в этом, так как я не нашел этих диаграмм в печати. Если есть электрическая схема на ваш мотор, тем лучше; я тебе не нужен. Если нет, я дам столько уловок для определения потенциальных клиентов, сколько я могу:

Ведущий №8 обычно присоединяется к конденсатору или центробежному выключатель. Выводы № 6 и 7 обычно закапываются где-то в двигателе. и не видны. Если три провода скручены вместе, они, вероятно, представляют собой два вывода ходовой обмотки и вывод пусковой обмотки. Согласно статье в «Model Engineer» (том 145, номер 3620, стр. Ноябрь 1979 г., стр. 1262) пусковые обмотки имеют немного более высокую сопротивление, чем бегущие обмотки. На моем 1,5-сильном моторе Brooks пусковые обмотки имеют сопротивление 2.2 Ом и ходовые обмотки имеют сопротивление 1,2 Ом. Будьте предельно осторожны при изготовлении этих измерения, так как грязный контакт изменит результат измерения. Если только четыре вывода подходят к клеммной колодке, два, вероятно, работают выводы обмотки и два, вероятно, являются выводами пусковой обмотки № 5. и 8. Я не могу охватить все возможности, но это должно вам помочь. в начале работы.

На рисунках 1 и 3 показано сравнение двигателя, настроенного для работы на 220 В по сравнению с одним проводным для работы от 110 В.Обратите внимание, что пусковые обмотки соединены последовательно с одной из бегущих обмоток, когда мотор подключен к сети 220в. Несколько лет назад, когда я купил подержанный Мотор на 3/4 л.с. на замену трехфазному, который стоял в моем Hardinge мельницу, менее внимательный сотрудник мотоперемотки проинструктировал мне подключить выводы пусковой обмотки № 5 и 8 к ходовой обмотке. выводы №1 и 4 — по сути, на полный вход 220в. Мотор работал штраф в течение двух месяцев, а затем один раз при запуске, он закурил, сделал ужасно громкий вибрирующий шум, и вращался только на части своего нормальная скорость.К счастью, вышел из строя только конденсатор. Когда я купил новый конденсатор, поинтересовался подключением проводки на этот мотор так как он отличался от двух других в моем магазине. В владелец перемоточного цеха поручил мне разместить стартовый обмотки последовательно с бегущими обмотками так, чтобы они поглощали часть тока идет на пусковые обмотки и конденсатор, продление их продолжительности жизни.

Переоборудовав мотор для работы на 220в, стоит его протестировать. сначала на 110в.При правильном подключении он будет работать несколько медленнее. чем нормальная скорость.

R = ходовая обмотка
S = пусковая обмотка

 |
___ = конденсатор
---
 |

 |
 о
  \
   \ = центробежный переключатель
    V
 о
 |
 
 + ---------- + ----------------------- строка 1
   1 | 8 |
     | | + ----------- строка 2
     | ___ 4 |
     | --- |
    (| (
     ) о)
    (\ (
     ) \)
    (V (
     ) o) 220 В переменного тока
    (| (Прямое соединение
R1) () R2
    () S1 (_
     ) ()..
    (7 | (..
     ) +). .
    (6 | (<
     | (|
     | ) S2 | Рисунок 1
     | (|
   2 | 5 | 3 |
     + ---------- + ----------- +
 
 + ---------- + ----------------------- строка 1
   1 | 5 |
     | | + ----------- строка 2
     | (4 |
     | ) S2 |
    (((
     ) 6 | )
    (+ (
     ) 7 | )
    (((
     )) S1) 220 В перем.
    (((Обратное подключение
R1) | ) R2
    (о (_
     ) \)..
    (\ (..
     ) V). .
    (о (>
     | | |
     | ___ | фигура 2
     | --- |
   2 | 8 | 3 |
     + ---------- + ----------- +
 
 + ---------- + ----------- + ----------- строка 1
   1 | 8 | 4 |
     | | |
     | ___ |
     | --- |
    (| (
     ) о)
    (\ (
     ) \)
    (V (
     ) o) 110 В переменного тока
    (| (Прямое соединение
R1) () R2
    () S1 (_
     ) ()..
    (7 | (..
     ) +). .
    (6 | (<
     | (|
     | ) S2 | Рисунок 3
     | (|
   2 | 5 | 3 |
     + ---------- + ----------- + ----------- строка 2
 
 + ---------- + ----------- + ----------- строка 1
   1 | 5 | 4 |
     | | |
     | (|
     | ) S2 |
    (((
     ) 6 | )
    (+ (
     ) 7 | )
    (((
     )) S1) 110 В перем.
    (((Обратное подключение
R1) | ) R2
    (о (_
     ) \)..
    (\ (..
     ) V). .
    (о (>
     | | |
     | ___ | Рисунок 4
     | --- |
   2 | 8 | 3 |
     + ---------- + ----------- + ----------- строка 2
 

ПЕРЕКЛЮЧАТЕЛИ ВРАЩЕНИЯ И ПРОВОДКИ БАРАБАНА

Часто желательно изменить направление вращения двигателя.Из рисунков 1 через 4, очевидно, что поменяв местами соединения Все, что необходимо, - это выводы 5 и 8 пусковой обмотки. В На рисунках 5 и 6 показаны схемы подключения клемм в барабане. переключатель, управляющий двигателем 220 В. На рисунках 7 и 8 показан один и тот же переключатель. разводка для мотора 110в. Обратите внимание, что единственная разница во внутреннем проводка барабанного переключателя между 110 В и 220 В является связующим звеном между терминалы в нижнем левом углу. Обратите внимание на то, что на рисунках 7 и 8 Линия 2 - это провод под напряжением или под напряжением.

(ПРИМЕЧАНИЕ ИСПОЛНИТЕЛЯ ПИСАТЕЛЯ. Потерпите меня. ------------------ (8) | | строка 2 | (4) ----------------- V ------------- (*) ---------------------------------- - (*) (горячий) Реверс (110В) Рисунок 8 Несколько лет назад, когда упоминавшийся ранее мотор мощностью 1/2 л.с. в моем сгорел токарный станок, реверсивного переключателя у меня не было, а только стандартный однополюсный настенный выключатель, контролирующий ток.Я бездумно подключил этот переключатель к нейтральному (белому) привести. Когда мотор начал шипеть и дымить, я быстро перевернул выключить. К моему большому беспокойству, мотор продолжал шипеть, дымить и запустить! При сгорании обмотки произошло замыкание на корпус двигателя и замкнута цепь от горячего провода через оставшиеся обмотки к заземляющему проводу. Мне пришлось броситься к выключателю, чтобы выключить токарный станок. (Слава богу, я никогда не пытался сэкономить несколько центов, покупая электрический шнур без заземляющего провода или, в этом случае, я мог бы * был * заземляющий провод.)

Такой же поток возникает в проводке барабанного переключателя на 220 В, поскольку обе линии горячие (под напряжением), а линия 1 напрямую подключена к двигатель без промежуточного выключателя. В собственном магазине я решил эту проблема с магнитным пускателем; подробнее об этом позже. На рисунке 9 показано альтернативный тип конфигурации барабанного переключателя, который может быть столкнулся. К настоящему времени вы должны иметь некоторое представление о том, как расположить связи, поэтому я не буду их иллюстрировать. Если ты все еще в своем салатные дни и не можете позволить себе барабанный переключатель, альтернатива - используйте четырехпозиционный переключатель, который используется в бытовой электропроводке, когда три или более переключателя управляют одной и той же цепью.Электрический соединения показаны на рисунках с 9 по 13.

Есть два типа четырехпозиционных переключателей - крестового и проходного типа. - и вам нужно будет определить, какой у вас тип с помощью омметра или контрольная лампа. Я проиллюстрировал соединения только для двигателя 110 В, но нет причин, по которым ту же настройку нельзя использовать для 220В операция. С четырехпозиционным переключателем вам понадобится отдельный переключатель для включить и выключить мотор.

Пока мы говорим о том, что делать, я передам еще одну жемчужину.Люверсы для обуви служат прекрасными электрическими разъемами. Просто оберните оголенный провод вокруг столба и обжима. Иногда рэп в дырку с центром перфоратор необходим, чтобы расширить его, чтобы он поместился на винт Терминал. Далее вам понадобится четырех- или пятижильный «кабель» для подключения к переключиться на мотор. Поскольку в моем городке нет кабеля, Я сделал свой собственный, используя прозрачную пластиковую трубку с внутренним диаметром 5/8 дюйма и другой цвета 14- или 16-го калибра * многожильный * провод. Если кабель не слишком длинный, можно использовать плечики, чтобы протянуть провода.

(*) ---- (*) (*) (*) (*) (*)
                                                     | |
                                                     | |
(*) ---- (*) (*) (*) (*) (*)


(*) ---- (*) (*) (*) (*) ---- (*)
 Вперед Выкл Назад
Рисунок 9
 
 (1 и 4) ---- (8) (1 и 4) (8)
                       Сквозной | |
                       4-позиционный переключатель | |
                         110 v | |
 (5) ---- (2 и 3) (5) (2 и 3)
  Вперед Назад
Рисунок 10 Рисунок 11
 
 (1 и 4) (2 и 3) (1 и 4) (2 и 3)
  | | Крестообразный \ /
  | | 4-позиционный переключатель \
  | | 110 в / \
 (8) (5) (5) - - (8)
  Вперед Назад
Рисунок 12 Рисунок 13
 

ЗАЩИТА ДВИГАТЕЛЯ И МАГНИТНЫЕ СТАРТЕРЫ

Зачастую защитой двигателя пренебрегают.Блок предохранителей или автоматический выключатель ничего не делает для защиты двигателя в случае перегрузки. Они просто защитите электропроводку дома, чтобы она не начала гореть, пока она спрятана в стена.

Dayton продает однополюсный ручной стартер двигателя с дробной мощностью, акция № 5X269, в которой перечислены (используемые для листинга) за 22 доллара. Их двухполюсные модель № 5X270 должна использоваться для подключений 220В и списков (используется для list) за 26 долларов. Нагревательный элемент, рассчитанный на рабочую силу тока мотор нужно покупать отдельно и перечислять (использованные для перечисления) за 4 доллара.

Многие бывшие в употреблении машины все еще поставляются с устройством защиты двигателя. прикрепил. В некоторых случаях это ручные устройства, а в других - магнитные пускатели. Почти всегда эти устройства настроены на трехфазный режим, поэтому вам нужно будет следовать инструкциям внутри крышки для перехода на однофазный режим и правильное напряжение. Вам нужно будет купить один или два нагревательных элемента, чтобы соответствовать рабочей силе тока защищаемого двигателя.Список номера деталей для нагревательных элементов обычно печатаются внутри крышку с инструкциями по подключению. Они стоят около 7 долларов за штуку. На магнитных пускателях также посмотрите на этикетку на магнитной катушке, чтобы убедитесь, что он соответствует напряжению, которое вы собираетесь использовать. В устройство защиты размещено в цепи между вилкой и барабанный переключатель. Таким образом, последовательность такова: вилка и шнур, ведущий в защитное устройство, затем барабанный переключатель, а затем двигатель.Некоторые двигатели имеют встроенные устройства защиты от тепловой перегрузки. Я полагаю, они работают, но я не доверял им с тех пор, как единственный мотор в моем Магазин, чтобы иметь один, был перегорел мотор токарного станка. Я признаюсь что защищены только более дорогие моторы в моем магазине.

Прежде чем перейти к следующей теме, последнее напоминание - всегда включайте заземляющий провод во всех ваших цепях, чтобы в случае короткого замыкания вы не земля.

УСТРАНЕНИЕ НЕПОЛАДОК

Есть только ограниченное количество вещей, которые могут пойти не так электрически с разделенными фазами и конденсаторными двигателями.Перечисление того, что может пойти не так легко. Объяснение того, как изолировать цепи для тестирования может быть трудным, и вам придется использовать свою изобретательность плюс схемы проводки я вам дал. Вам понадобится омметр или контрольная лампа. провести тестирование.

Если мотор даже не гудит, когда вы его подключаете, значит, это тоже не так. есть какое-либо питание или в одной из цепей произошел обрыв внутри мотора. Посмотрите на обмотки. Если один или несколько выглядят потемневшими и пахнет гари, наверное, сгорело.Это не кажется выгодным для ремонтников, чтобы перемотать небольшие однофазные двигатели, поэтому, если у вас сгорела обмотка, вероятно, придется заменить мотор.

Если мотор гудит, но не крутится, есть несколько вариантов, все имея дело с пусковыми обмотками. Убедитесь, что все связи находятся в нужном месте. Ищите перегоревшие обмотки. Исследовать конденсатор. Если из него вытекло несколько капель масла, ничего хорошего.

Снимите провода с конденсатора и проверьте его с помощью омметра, установленного на шкала 100x или 1000x.Игла должна ненадолго повернуться к 0 Ом. а затем вернитесь к верхнему пределу шкалы. Если не качается в сторону 0 Ом, закоротите конденсатор отверткой и попробуйте проверить опять таки; конденсатор мог иметь небольшой заряд, который мешал с этим тестом.

Центробежный переключатель обычно замкнут и пропускает ток, когда двигатель остановлен. Если этого не произошло, снимите концы раструба с двигателя. рамку и посмотрите на контакты центробежного переключателя.Нажать контакты вместе и проверьте их с помощью омметра, чтобы убедиться, что они не передавать ток. Масло или смазка из подшипников могут предотвратить контакты от замыкания. Посмотрите на контактные поверхности на предмет точечной коррозии или жжение. Если им это нужно, осветлите их точечным напильником или наждаком. бумагу, следя за тем, чтобы на подшипник не попала наждачная пыль.

Если вы не слышите щелчка при замедлении двигателя, значит, центробежный переключатель не работает.Снимите концы рамы с рамы и посмотрите на центробежный выключатель. Гири должны быть подвижными хотя и жесткий из-за натяжения пружины. Если подшипники сильно изношен, ротор может коснуться рамы и помешать двигателю от операционной. Я никогда такого не видел, но ожидал найти много люфт в валу двигателя и наличие ярких или прожженных пятен внутри рама, на которой трулся мотор.

Если двигатель запускается, но кажется, что он не обладает такой мощностью, как он следует, посмотрите, не сгорела ли одна из обмоток.Проверить, чтобы увидеть что все электрические соединения правильные и чистые. Убедись у вас нет двигателя, подключенного для работы от 220 В, когда вы используете только 110в.

Ряд публикаций послужил ссылками на то, что самопроизвольно вытекла из-под моего пера, и читатель может найти полезны следующие ссылки: "Simplified Electrical Wiring", Sears, Робак и компания; «Проверка и ремонт электродвигателей» от TAB Books, Inc., полученная от постоянного рекламодателя в "Home Shop Machinist"; а также "Model Engineer" Том 145, номер 3620, страницы 1260-1263 и номер 3622, страницы 1414-1416.


Электронная почта: Грант Эрвин

Вернуться на главную страницу

Ред .: 05.04.98

Как запустить трехфазный двигатель в однофазной сети с использованием конденсатора? - Mvorganizing.org

Как запустить трехфазный двигатель в однофазной сети с использованием конденсатора?

Используйте конденсатор, скажем, 36/72/108 мфд 440 В. в зависимости от мощности двигателя. Подключите один конец этого конденсатора, чтобы открыть неподключенный вывод двигателя.Другой вывод конденсаторов можно подключить к одной из двух фаз под напряжением, и двигатель начнет работать.

Можно ли подключить 3-фазный двигатель к 220?

Вы можете запустить трехфазный двигатель от стандартной однофазной сети 220 В. Сначала вы включаете трехфазный двигатель (вручную или лучше, с небольшим двигателем на 110 В), а ЗАТЕМ включите 220 (подключенный к двум ногам), он будет работать.

Как подключить конденсатор к двигателю?

Подключите положительный вывод небольшого мотора для хобби к первому выводу резистора.Подключите вторую клемму резистора к положительной клемме конденсатора. Сначала используйте резистор в диапазоне от 10 кОм до 100 кОм. Конденсатор должен быть в диапазоне от 1 до 100 Фарад.

Как подключить двигатель к пусковому конденсатору?

Как подключить пусковой конденсатор

  1. Выключите электричество на агрегате, в котором работает двигатель.
  2. Проверьте электрическую схему пускового конденсатора.
  3. Вставьте клемму на «общем» проводе реле пускового конденсатора, обычно это черный провод, на общую клемму на стороне нагрузки контактора устройства.

Имеет ли значение, куда вы подключаете конденсатор?

В цепи переменного тока не имеет значения, подключен ли конденсатор (предназначенный для этой цепи) в обратном направлении. В цепи постоянного тока одни конденсаторы могут быть подключены наоборот, другие - нет.

Что произойдет, если перевернуть конденсатор?

При подключении «в обратном направлении» (т. Е. С обратной полярностью) диэлектрик конденсатора может быть разрушен, через конденсатор может протекать сильный постоянный ток, а газы, образующиеся при электролизе и внутреннем нагреве, могут вызвать выделение конденсатора с выбросом пара. и повсюду неприятно пахнущий электролит.

Какая сторона конденсатора положительная?

Электролитические конденсаторы имеют положительную и отрицательную стороны. Чтобы определить, какая сторона какая, поищите большую полосу или знак минуса (или оба) на одной стороне конденсатора. Вывод, ближайший к этой полосе или знаку минус, является отрицательным, а другой вывод (без маркировки) - положительным.

Как подключить конденсатор?

Чтобы подключить несколько конденсаторов, вы можете соединить оба провода заземления вместе, проложив один провод заземления к каждой из отрицательных клемм крышки.Вы также можете заземлить каждый конденсатор отдельно. Пропустите провод питания через положительную клемму усилителя и к положительной клемме аккумулятора.

Для чего нужен конденсатор?

Конденсатор - это электронный компонент, который накапливает и выделяет электричество в цепи. Он также пропускает переменный ток, не пропуская постоянный ток.

Что конденсатор делает в электродвигателе?

Конденсаторы двигателя накапливают электрическую энергию для использования двигателем.Чем выше емкость конденсатора, тем больше энергии он может хранить. Поврежденный или сгоревший конденсатор может удерживать только часть энергии, необходимой для двигателя, если его емкость мала.

Что означает 10 мкФ на конденсаторе?

Конденсатор емкостью десять мкФ записывается как 10 мкФ. Конденсатор 100n Фарад записывается как 100n. Его можно обозначить как 0,1, что означает 100 нФ.

Что означают фарады на конденсаторе?

электрическая емкость

Как перевести файл из F в пФ?

Укажите ниже значения для перевода фарада [Ф] в пикофарад [пФ] или наоборот….Таблица преобразования Фарада в Пикофарад.

Фарад [Ф] Пикофарад [пФ]
1 Факс 1000000000000 пФ
2 ф. 2000000000000 пФ
3 ф. 3000000000000 пФ
5 ф. 5000000000000 пФ

Как преобразовать C в mC?

Кулоны (C) в милликулоны (mC) калькулятор преобразования электрического заряда и как преобразовать….Таблица перевода кулонов в милликулоны.

Заряд (кулон) Заряд (милликулон)
0,1 С 100 мкС
1 С 1000 мКл
10 С 10000 мКл
100 С 100000 мкС

Требуется ли конденсатор для трехфазного двигателя?

Трехфазный двигатель не требует конденсатора. Двухфазное питание создается от однофазного питания с помощью дополнительных пусковых обмоток или вспомогательной обмотки.

Как подключить трехфазный двигатель?

  1. Выполните соединения для низковольтной проводки 230 В. Подключите выводы двигателя 1, 7 и 6 к черному проводу L1.
  2. Выполните соединения для высоковольтной проводки на 460 В. Соедините провода двигателя 9 и 6 вместе.
  3. Подключите провод заземления к клемме заземления двигателя.

Можете ли вы неправильно подключить трехфазный двигатель?

Если трехфазный двигатель вращается в неправильном направлении, вы можете поменять местами любые два провода, чтобы переключиться в нужное направление.Один из способов проверить направление вращения двигателя - это предположить, как подключить провода, затем запустить двигатель и отметить направление его вращения. Если вы ошиблись, вы отключаете два провода и меняете их местами.

Что означает 3 фазы?

Трехфазная система может быть расположена по схеме треугольник (∆) или звезды (Y) (в некоторых местах также обозначается звездой).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *