Бензин из метана: новые разработки # Темы дня

Содержание

Сами делайте дома бесплатный бензин

Руководство по изготовлению в домашних условиях 100% заменителя бензина любой марки из воды и бытового газа, поступающих в квартиру.

Общее описание

Получаемая при помощи данного описания жидкость – метанол или метиловый спирт.

В чистом виде метанол применяется в качестве растворителя, а так же как высокооктановая добавка к моторному топливу, а также как самый высокооктановый (с октановым числом равным 150) бензин. Это тот самый бензин, которым заправляют гоночные мотоциклы и автомобили. Зарубежные исследования показали, что двигатель, работающий на метаноле, служит во много раз дольше чем при использовании обычного автомобильного бензина. При неизменном рабочем объеме двигателя его мощность повышается на 20%. Выхлоп двигателя, работающего на этом топливе, экологически чист и при проверке его на токсичность вредные вещества практически отсутствуют.

Малогабаритный аппарат для получения этого топлива прост в изготовлении, не требует особых знаний и дефицитных деталей, безотказен в работе. Его производительность зависит от различных причин, в том числе и от габаритов. Аппарат, схему и описание сборки которого предлагаем вашему вниманию, при Д=75мм дает три литра готового топлива в час, имеет вес около 20 кг, и габариты приблизительно: 20 см в высоту, 50 см в длину и 30 см в ширину.

Внимание: метанол является сильным ядом. Он представляет собой бесцветную жидкость с температурой кипения 65оС, имеет запах, подобный запаху обычного питьевого спирта, и смешивается во всех отношениях с водой и многими органическими жидкостями. Помните о том, что 30 миллилитров выпитого метанола смертельны!

Принцип действия и работа аппарата


Рисунок 1 – Схема принципиальная аппарата

Водопроводная вода подключается к «входу воды» (15) и, проходя далее, разделяется на два потока: один поток через краник (14) и отверстие (С) входит в смеситель (1), а другой поток через краник (4) и отверстие (Ж) идет в холодильник (3), проходя через который вода, охлаждая синтез-газ и конденсат бензина, выходит через отверстие (Ю).


Рисунок 2 – Смеситель

Бытовой природный газ подключается к трубопроводу «Вход газа» (16). Далее газ входит в смеситель (1) через отверстие (Б), в котором перемешивается с паром воды, затем нагревается на горелке (12) до температуры 100 – 120оС. Далее из смесителя (1) через отверстие (Д) нагретая смесь газа и водяного пара поступает в реактор (2) через отверстие (В).

Реактор (2) наполнен катализатором №1, состоящим из 25% никеля и 75% алюминия (состоит из стружки или в зерен, промышленная марка ГИАЛ-16). В реакторе происходит образование синтез газа под воздействием температуры от 500оС и выше, получаемой за счет нагрева горелкой (13). Далее нагретый синтез-газ входит через отверстие (Е) в холодильник (З), где он должен охладиться до температуры 30-40оС или ниже. Затем охлажденный синтез-газ через отверстие (И) выходит из холодильника и через отверстие (М) входит в компрессор (5), в качестве которого можно использовать компрессор от любого бытового холодильника. Далее сжатый синтез-газ с давлением 5-50 через отверстие (Н) выходит из компрессора и через отверстие (О) поступает в реактор (6).


Рисунок 3 – Реактор

Реактор (6) заполнен катализатором №2, состоящим из стружки 80% меди и 20% цинка (состав фирмы «ICI», марка в России СНМ-1). В этом реакторе, который является самым главным узлом аппарата, образуется пар синтез-бензина. Температура в реакторе не должна превышать 270оС, что можно проконтролировать градусником (7) и регулировать краником (4). Желательно поддерживать температуру в пределах 200-250оС, можно и ниже.

Затем пары бензина и не прореагировавший синтез-газ через отверстие (П) выходят из реактора (6) и через отверстие (Л) входят в холодильник (З), где пары бензина конденсируют и через отверстие (К) выходят из холодильника. Далее конденсат и не прореагировавший синтез-газ входят через отверстие (У) в конденсатор (8), где накапливается готовый бензин, который выходит из конденсатора через отверстие (Р) и краник (9) в какую-либо емкость.


Рисунок 4 – Холодильник

Отверстие (Т) в конденсаторе (8) служит для установки манометра (10), который необходим для контроля давления в конденсаторе. Оно поддерживается в пределах 5-10 атмосфер или больше в основном с помощью краника (11) и частично краника (9). Отверстие (Х) и краник (11) необходимы для выхода из конденсатора не прореагировавшего синтез газа, который идет на рециркуляцию обратно в смеситель (1) через отверстие (А). Краник (9) регулируют так, чтобы постоянно выходил чистый жидкий бензин без газа. Лучше будет, если уровень бензина в конденсаторе будет увеличиваться, чем уменьшаться. Но самый оптимальный случай, когда уровень бензина будет постоянным (что можно проконтролировать путем встроенного стекла или какого-либо другого способа). Краник (14) регулируют так, чтобы в бензине не было /воды/ и в смесителе пара образовывалось лучше меньше, чем больше.


Рисунок 5 – Конденсатор и рисунок 6 – Реактор

Запуск аппарата

Открывают доступ газа, вода (14) пока закрыта, горелки (12), (13) работают. Краник (4) полностью открыт, компрессор (5) включен, краник (9) закрыт, краник (11) полностью открыт.

Затем приоткрывают краник (14) доступа воды, а краником (11) регулируют нужное давление в конденсаторе, контролируя его манометром (10). Но не в коем случае не закрывайте краник (11) полностью!!! Далее, минут через пять, клапаном (14) доводят температуру в реакторе (6) до 200-250оС. Затем чуть-чуть приоткрывают краник (9), из которого должна пойти струя бензина. Если она будет идти постоянно – приоткройте краник больше, если будет идти бензин в смеси с газом – приоткройте краник (14). Вообще, чем на большую производительность настроите аппарат, тем лучше. Содержание воды в бензине (метаноле) вы можете проверить с помощью спиртометра. Плотность метанола равна 793 кг/м3.

Данный аппарат желательно изготавливать из нержавеющей стали или железа. Все детали изготовлены из труб, в качестве тонких соединительных труб можно использовать медные трубки. В холодильнике необходимо сохранить соотношение X:Y=4, то есть, например, если X+Y=300 мм, то X должно быть равно 240 мм, а Y, соответственно, 60 мм. 240/60=4. Чем больше витков уместится в холодильнике с той и с другой стороны, тем лучше. Все краники применены от газосварочных горелок. Вместо краников (9) и (11) можно использовать редукционные клапана от бытовых газовых баллонов или капиллярные трубки от бытовых холодильников. Смеситель (1) и реактор (2) нагреваются в горизонтальном положении (смотрите чертеж).

Ну вот, и вся конструкция. В заключении следует добавить, что цикл статей по изготовлению этой конструкции в домашних условиях, било опубликовано в журналах «Приоритет» в 1991, 1992, 1993 гг., но полностью готовый проект опубликован так и не был (зажали обещанные правильные катализаторы для подписчиков). В данных номерах были чертежи реактора с электрической схемой управления и конструкция охладителя, после чего г-н Вакс (автор статьи) вежливо извинился и сообщил, что дальнейшая публикация прекращается по просьбе силовых структур СССР и тем кто хочет повторить данную установку поле творчества неограниченно.

Квасников Игорь, изготавлиавшый эту конструкцию сделал уточнение:
Категорически запрещается подавать воду прямо из крана в реактор так как водопроводная вода содержит хлор , который моментально отравит катализатор 2-го реактора. Тоже самое относится и к газу, который содержит примеси серы и активных органических веществ. В своей установке я применял дистиллированную воду и моноэтаноламинную очистку газа, все это даёт неплохой результат. После более детальной проработки оригинальной статьи всплывает множество неточностей которые следует уточнять и дорабатывать.

P.S.
На начало 2012 года стоимость готовой к использованию установки, производительностью 1 литр в час составляла более 2000 у. е.

P.S.2
В данный момент времени изготовление описанной в статье установки не представляется возможным, поскольку цеха, где происходило изготовление комплектующих и сборка, сейчас разрушены, так как находятся в зоне конфликта.

Комментарии:

---

Удельная теплота сгорания веществУ Николая Джуманчука во дворе есть самодельный газ, получаемый из коровьего навоза

Бензин из природного газа » Все о транспорте газа

Ученые из Института нефтехимического синтеза им.А.В.Топчиева РАН получили моторное топливо из природного газа.По известной технологии, метан, которого в природном газе около 94%, превращают в синтез-газ (оксиды углерода в смеси с водородом). Из него делают метиловый спирт, затем моторное топливо. Регулировать состав конечного продукта не удается — получается смесь разных, в том числе слишком тяжелых углеводородов.

Сотрудники ИНХС предлагают получать синтез-газ в модифицированных двигателях. Двигатель становится своеобразным химическим реактором, который вырабатывает из синтез-газа демитиловый эфир и одновременно электроэнергию. Оказалось, что гораздо выгоднее получать из синтез-газа диметиловый эфир. Это соединение — прекрасное дизельное топливо, которое можно использовать как бытовой газ, топливо для электростанций, заменитель фреонов в холодильных установках. Получить его технически проще и экономически выгоднее, чем метанол.

Из диметилового эфира можно делать высокооктановый, чистый бензин. Этот синтез ученые разработали и осуществили на опытно-промышленном уровне. Предложен также синтез бензина из метана без промежуточных стадий получения метанола или диметилового эфира.


В России решена проблема получения бензина из углеводородного газового сырья

В Институте Нефтехимического Синтеза им. А.В.Топчиева РАН разработали экологически чистую технологию получения синтетического моторного топлива из газового углеводородного сырья с большим выходом конечного продукта (на 90% и выше получают чистый бензин). Эта проблема получения жидких продуктов различного назначения из газового углеводородного сырья уже много десятилетий будоражит умы исследователей практически всех промышленно развитых стран мира.

Само топливное направление переработки углеводородных газов, как отмечают экономисты, находится на пределе рентабельности и не может конкурировать с топливами, получаемыми из нефти. В то же время, подчеркивается, что топливный рынок может принять практически любое количество бензина и других видов моторного топлива, в то время как емкость рынка других химических продуктов ограничена. Нестабильность рынков нефти и постоянные угрозы то забастовок (как в Венесуэле), то войны (как в Ираке и Кувейте), а также скорое исчерпание мировых запасов нефти, говорит о необходимости учитывать возможность перехода на иные виды сырья при производстве бензина.

Кроме того, стоимостные показатели для моторных топлив в отдаленных и труднодоступных районах, а также экологические проблемы, связанные с большим количеством попутных нефтяных газов, зачастую сжигаемых на факелах, в частности на морских платформах, аспект экологии в свете возможности использования синтетических моторных топлив является их преимущество перед топливами из нефти в отношении чистоты выхлопных газов.

По этим причинам в последние годы XX века интерес к промышленному использованию углеводородных нефтяных газов в качестве сырья для получения моторных топлив получил новый импульс в ряде индустриально развитых стран мира, в том числе и в России. Но до настоящего времени для получения синтез-газа почти исключительно применяли процесс конверсии метана с водяным паром в присутствии кислорода на катализаторах на основе никеля Ch5+h3O=СО+3Н2.

У этого процесса есть два основных недостатка: его энергоемкость и то, что для его реализации требуется создание специального завода по производству кислорода. Это не только ложится тяжелым бременем на экономику, но и увеличивает технический риск. Например, известно, что в 1997 году на одном из производств по получению синтетического топлива произошел разрушительный взрыв на заводе по производству кислорода. В присутствии кислорода происходят реакции с выделением тепла. В результате подобной реакции в синтез-газе появляется заметное количество углекислоты, а в некоторых случаях отношение СО/СО2 близко к двум.

Для устранения первого из этих недостатков энергозатратную паровую конверсию по реакции конверсии метана с водяным паром (или, как ее еще называют, паровой риформинг) стали комбинировать в одном аппарате с энергопроизводящей реакцией парциального (частичного) окисления метана кислородом. Этот комбинированный процесс получил название «автотермический риформинг». Но это все равно вело к удорожанию конечного продукта.

Способ получения синтез-газа в процессе парциального окисления метана пытались развивать на фирмах Техасо Inc. и Royal Dutch/Shell Group. Но процесс требовал высоких температур (1200-1500°С) и давления (до 150 атм), а в качестве окислителя на мощных промышленных установках опять таки приходилось использовать кислород, что не снижало степень риска подобных производств.

К тому же, бензин получался низкого качества, либо высокого, но очень дорогой. А на всех этапах получения конечного продукта требовалось использовать только высокочистое сырье. Это требует больших затрат на его подготовку и очистку и усложняет технологическую схему.

Успеха в качественном развитии данного направления удалось добиться ученым Института Нефтехимического Синтеза им. А.В.Топчиева РАН, которые разработали технологию, обеспечивающую получение по максимально простой и экономичной схеме высокооктанового экологически чистого бензина с хорошим выходом конечного продукта, удовлетворяющего перспективным требованиям стандарта Евро-4, которые будут введены в 2005 году.

Сущность их метода получения бензина состоит в следующем. Сначала при повышенном давлении синтез-газ, содержащий водород, оксиды углерода, воду, оставшийся после его получения не прореагировавший углеводород, а также содержащий или не содержащий балластный азот. Затем, путем конденсации из синтез-газа выделяют и удаляют воду и потом осуществляют газофазный, одностадийный каталитический синтез диметилового эфира. Полученную таким образом газовую смесь без выделения из нее диметилового эфира под давлением пропускают над модифицированным высококремнистым цеолитом для получения бензина и охлаждают газовый поток для выделения бензина.

Получение синтез-газа осуществляют различными способами, например, в процессе парциального окисления углеводородного сырья под давлением, обеспечивающим возможность его каталитической переработки без дополнительного компримирования. Или же получают путем каталитического риформинга углеводородного сырья с водяным паром или путем автотермического риформинга. При этом процесс проводят при подаче воздуха, воздуха, обогащенного кислородом, или чистого кислорода. Были отлажены и другие варианты.

Таким образом удается получить бензиновую фракцию с выходом до 90%, а выход сухого газа (C1-С3) составлял 8,5%. Экологически вредных выбросов на порядки меньше по данной технологии, при этом в их составе отсутствуют такие ядовитые компоненты, как бензол, дурол и изодурол. Эти результаты имеют важное экологическое значение, принимая во внимание тот факт, что тенденции изменения требований к топливу для карбюраторных двигателей характеризуются ограничением допустимого содержания в них ароматических углеводородов.

Прежде чем задать вопрос прочитайте: FAQ

Моторное топливо из метана

Моторное топливо из метана

Проблема получения моторных топлив из альтернативного сырья — природного или попутного газа, угля и др. — издавна привлекала внимание специалистов. Ведь запасы нефти рано или поздно иссякнут. Поэтому усилия ряда лабораторий были направлены на разработку методов получения синтетического моторного топлива.

В последнее время эти изыскания получили дополнительный стимул из-за ужесточения требований к чистоте автомобильного выхлопа. Искушение создать новое топливо (или добавку к нему), обеспечивающее чистый или хотя бы «облагороженный» выхлоп, было столь же велико, сколь и трудно реализуемо.

Метан, как химическое сырье, может стать базой для производства большинства органических соединений, ныне получаемых из нефти, в том числе и крупнотоннажных производств топлив для транспорта и энергетики. Правда, современные методы переработки этого природного сырья пока недостаточны для реализации его потенциала, так как в результате их использования получают продукты, себестоимость которых выше аналогов нефтяного происхождения. Однако исследования и разработки последних лет, по-видимому, позволят не только ликвидировать это отставание, но и приведут к появлению продуктов более дешевых, чем их аналоги нефтяного происхождения.

Природный газ как химическое соединение достаточно инертен. Вот почему первая стадия его переработки — превращение в более реакционно-способный синтез-газ (смесь оксидов углерода и водорода), далее каталитическими методами преобразуемый в моторное топливо. Существуют различные способы получения синтез-газа: паровая или углекислотная конверсия и окисление воздухом или чистым кислородом. Альтернативные пути дальнейшей переработки синтез-газа — так называемый синтез Фишера-Тропша и синтез метанола. Первый из них приводит к получению некоего эквивалента нефти — смеси углеводородов, для которых требуется дальнейшая переработка. На втором базируется крупнотоннажное производство (мировые мощности близки к 30 млн. т), хорошо освоенное промышленностью. Его главный недостаток — неблагоприятная термодинамика, препятствующая образованию нужного соединения в значительной концентрации. Это обусловливает необходимость многократной циркуляции газовой смеси через реактор и влечет за собой значительный расход электроэнергии. В итоге растет себестоимость бензина, получаемого из метанола.

В нашем институте при участии специалистов из других организаций реализован ряд проектов, позволяющих повысить эффективность и снизить затраты на переработку природного газа и другого углеродосодержащего сырья в более ценные энергоносители. Применительно к первой стадии получения синтез-газа доктор химических наук Ю. А. Колбановский предложил решения, основанные на сжигании природного газа в модифицированных дизельных и компрессионных двигателях, работающих в необычном режиме. Идея была реализована в 1998 г. в промышленной установке мощностью 10000 м

3 синтез-газа в 1 ч.

Два очевидных преимущества делают данный процесс привлекательным для удаленных регионов страны. Прежде всего, в нем в качестве сырья может выступать природный газ низкого давления, в том числе поднимающийся из скважин, не пригодных к эксплуатации в обычных условиях. Кроме того, для окисления исходного сырья подходит воздух, а двигатель может быть использован одновременно и для осуществления химической реакции, и по прямому назначению — для получения электроэнергии. Однако заметим: применение воздуха приводит к высокому содержанию азота в синтез-газе (50-60%), что неблагоприятно сказывается на его дальнейшей переработке.

Интерес представляет разработанный кандидатом технических наук В. Н. Кубиковым совместно с коллегами аппарат для окисления природного газа кислородом — генератор синтез-газа, выполненный с учетом опыта конструирования ракетных двигателей. Производительность единицы объема такой установки, кстати, имеющей небольшие размеры, в десятки и сотни раз превышает возможности промышленных аналогов. Впрочем, и она не лишена недостатков: использование в технологии кислорода требует значительных инвестиций на его получение. Правда, в этом случае синтез-газ, в отличие от вырабатываемого по схеме предыдущего варианта, не содержит балластный азот, что, разумеется, играет положительную роль на стадии получения и особенно выделения конечного продукта — бензина или диметилового эфира.

Подчеркнем: все перечисленные процессы основаны на окислении метана при высоких температурах с доведением смеси до состава, близкого к равновесному. При этом резко уменьшается рабочий объем аппаратов, но появляется и негативная «черта»: состав синтез-газа становится труднорегулируемым параметром. Наиболее доступным, по- видимому, является соотношение Н 2 /СО=1,5 -1,6. Коррекция состава при этом возможна, однако приводит к ухудшению экономических показателей.

Сотрудники нашего института детально изучили и процессы, протекающие на второй стадии, — синтез Фишера-Тропша и синтез метанола. Это привело, в частности, к пересмотру общепринятых представлений о механизме и закономерностях последнего, вплоть до составляющих химических реакций. Как было показано в нашей лаборатории кандидатом химических наук Г. И. Лин и другими, вошедшая в школьные учебники реакция СО+2Н 2 =СН 3 ОН на самом деле не протекает, а синтез метанола осуществляется в результате превращений диоксида углерода СО 2 +3Н 2 =СН 3 ОН+Н 2 О. Исходя из этого, мы разработали новые физико-химические основы процесса как такового, а потом предложили технологию получения нужного продукта, позволяющую вдвое увеличить производительность единицы объема реакторов.

И все же применительно к общей схеме переработки природного (попутного) газа синтез метанола остается слабым звеном из-за указанных выше термодинамических ограничений. Поэтому предпочтительным является синтез диметилового эфира, при котором эти ограничения практически исчезают. Действительно, тогда сначала по приведенной выше реакции образуется метанол, а затем он превращается в диметиловый эфир: 2СН 3 ОН=СН 3 ОСН 3 2 О. Если эти реакции протекают одовременно, то метанол непрерывно выводится из системы и не накапливается в значительных количествах. Так удается обойти пресловутые термодинамические ограничения.

Последующие исследования показали: диметиловый эфир (ДМЭ) является прекрасным сырьем для синтеза бензина, превосходящим метанол. В итоге возник альтернативный путь превращения синтез-газа в бензин, в котором обе стадии характеризуются более высокой эффективностью, чем в традиционном варианте. Наконец, совсем недавно было обнаружено, что ДМЭ — весьма перспективное дизельное топливо, а также конкурент сжиженного газа как энергоносителя для газотурбинных установок. Тем самым ДМЭ выдвинулся в ряд потенциально крупнотоннажных продуктов, масштабы потребления которых в перспективе могут оказаться сопоставимыми с таковыми для столь распространенных энергоносителей, как бензин и дизельное топливо.

ДМЭ в нормальных условиях — газ (температура кипения — 24,9 о С) и легко сжижается под давлением (5 атм. при 20 о С, 8 атм. — при 38 о С). Мало того, он нетоксичен — использует

Как из газа получить бензин

Вопреки распространенному мнению, получить бензин из природного газа невозможно. Когда говорят о получении бензина из газа, речь идет о синтезе метилового спирта, который можно использовать в качестве высокооктановой присадки к бензину или в качестве самостоятельного горючего.

Принцип получения метанола из природного газа состоит в том, что газ при повышенной температуре дает реакцию на водяные пары и катализаторы, в результате чего сначала образуется так называемый «синтез-газ», из которого, в свою очередь, образуется метанол.

Как показывают исследования, метиловый спирт может использоваться, как высокооктановая добавка к обычному бензину. Кроме того, метанол может использоваться в качестве горючего и сам по себе — его октановое число составляет 115.

Двигатель автомобиля, который заправляют вместо бензина метиловым спиртом, служит гораздо дольше. При этом, только лишь благодаря замене одного вида топлива на другой, мощность двигателя автоматически повышается на 20%. В выхлопных газах автомобиля, работающего на метиловом спирте, отсутствуют вредные примеси.

Аппарат для получения метанола из природного газа в домашних условиях можно сконструировать самостоятельно. Он состоит из двух трубок — одна из них подключена к крану с холодной водой, другая — к источнику природного газа (газовой плите или баллону). Концы обеих трубок входят в смеситель, в котором смесь газа и водяных паров нагревается горелкой до температуры около 100-120 градусов. Из смесителя газо-водяная смесь поступает в реактор, наполненный катализатором. Катализатор состоит на 25% из никеля и на 75% из алюминия. В реакторе под действием высокой температуры (около 500 градусов) и катализатора из газо-водяной смеси образуется синтез-газ, состоящий из водорода и монооксида углерода.

Далее горячий синтез-газ поступает в холодильник, где охлаждается до температуры 35-40 градусов и поступает в компрессор, где сжимается до давления в несколько атмосфер. На следующей стадии синтез-газ поступает во второй реактор, наполненный катализатором, состоящим из смеси 20% цинка и 80% меди. Здесь при температуре 270 градусов из синтез-газа образуется метанол, который затем конденсируется в холодильнике и сливается в емкость.

Как заявляют люди, экспериментирующие с получением метанола из природного газа, в домашних условиях можно производить около 3-5 литров метанола в час. При этом себестоимость такого топлива составляет считанные рубли.

Помните, что метанол — яд. Его пары огнеопасны. Малейшая утечка природного газа из газовой плиты или аппарата для получения метанола может привести к взрыву.

Изготовление бензина и дизтоплива в домашних условиях

Назначение РАУМ-2

Устройство предназначено для получения из метана, или пропан — бутана (природного или бытового газа), в домашних условиях, синтетического бензина «синтин» и высококачественного дизельного топлива.

В марте 2012 года мною внесены изменения в руководство по сборке РАУМ-2, позволяющие упростить конструкцию аппарата. Устройство собирается из легкодоступных материалов.

Имеет небольшие габаритные размеры, что позволяет разместить его в любом удобном месте. В основе работы конструкции лежат два давно известных процесса: электролиз воды и синтез жидких углеводородов из оксида углерода и водорода.

В инструкции по изготовлению устройства есть все необходимое для его самостоятельной сборки (теория, принцип работы, чертежи с подробным описанием, описание самого процесса изготовления и эксплуатации). Скачать обновленное руководство и литературу по теме можно по этой ссылке.

Тем, кто решит попробовать воплотить в жизнь установку РАУМ-2, советую сразу начать со сборки РАУМ-4. РАУМ-4 — это одна из последних моих разработок.

Основные отличия РАУМ-4 от РАУМ-2

  • неограниченна производительность;
  • упрощена сама конструкция;
  • отсутствуют электролизёр, мощный трансформатор, стабилизатор тока и др.;
  • требует меньше финансовых затрат на изготовление аппарата;
  • автоматическая поддержка установленных режимов;
  • более совершенная технология.

Приблизительные технические характеристики

  1. Потребляемая электрическая мощность: 1500 Вт.
  2. Расход метана: 0,8-1,3 Куб.м.ч.
  3. Рабочее напряжение: 220 В.
  4. Время непрерывной работы: неограниченно
  5. Получаемое топливо: бензин и дизтопливо, которое по физическим и химическим свойствам, идентично нефтяному.

По просьбам посетителей сайта, для примера, привожу общий вид и чертеж основного реактора из моей инструкции:

Если у Вас возникнут идеи по усовершенствованию Раум-2, или модернизации его блоков, пишите мне. Буду рад любым предложениям.

Желаю вам творческих успехов!

Если статья хоть немного помогла, поставьте, пожалуйста, лайк:

…или подпишитесь на новости:

Синтетическое горючее – триумф высоких технологий — Статьи

Мы уже рассказывали нашим читателям о технологии GTL (газ в жидкость) по переработке природного и попутного газа в синтетическое топливо. Но это не единственная технология получения синтетической нефти. Сегодня мы расскажем более подробно о подобных технологиях, а также о том, какую роль в них играют высокоэффективные катализаторы.

Без нефтяного моторного топлива – бензина, керосина, дизельного топлива – современную цивилизацию представить себе просто невозможно. На нём работают двигатели автомобилей, самолётов, ракет. Однако запасы нефти в недрах земли ограничены, и ещё не так давно многие эксперты считали, что человечество неизбежно столкнётся со всеобщей нехваткой моторного горючего. Но оказалось, что впадать в отчаяние рано: закат нефтяной эры если и наступит, то очень не скоро. Разрабатываются новейшие технологии, которые позволят добывать не только легкодоступные углеводороды, но и трудноизвлекаемые запасы нефти и газа. Кроме того, есть серьёзная альтернатива: учёные разработали методы получения высококачественного моторного топлива из природного газа, угля и другого ненефтяного сырья.

Вспомним, что промышленная добыча нефти началась более 150 лет назад. За прошедшие с тех пор полтора века человечество уже израсходовало более половины запасов так называемой лёгкой нефти. Вначале нефть использовалась в качестве источника тепловой энергии, теперь это стало экономически невыгодно. С наступлением автомобильной эры продукты фракционирования нефти в основном применяются в качестве моторного топлива. Чем больше истощаются запасы нефтяных месторождений, тем рентабельней становится производство синтетической нефти.

Что можно получить из нефти

Нефть – это смесь углеводородов (алканов и циклоалканов). Простейший алкан – газ метан. Кроме метана нефть содержит и некоторые сернистые и азотистые примеси. Например, бензин – легкокипящая фракция нефти, содержащая короткоцепочечные углеводороды с 5–9 атомами. Это основной вид моторного топлива для легковых автомобилей и небольших самолётов. Керосины более вязкие и тяжёлые, чем бензин: они состоят из углеводородов с 10–16 атомами углерода. Керосин стал основным видом топлива для реактивных самолётов и ракетных двигателей. Газойль – более тяжёлая фракция, чем керосин. Дизельное топливо для двигателей, установленных на тепловозах, грузовиках, тракторах, содержит смесь фракций керосина и газойля. Истощение природных нефтяных месторождений вовсе не грозит человечеству тотальным дефицитом моторного топлива. Вещества, по химическому составу похожие на бензин, керосин или дизельное топливо, вполне можно получить из углеродного сырья ненефтяного происхождения. Химики решили эту задачу ещё в 1926 году, когда немецкие учёные Ф. Фишер и Г. Тропш открыли реакцию восстановления монооксида углерода (СО) при атмосферном давлении. Оказалось, что в присутствии катализаторов можно синтезировать в зависимости от соотношения водорода и монооксида углерода в газовой смеси жидкие и даже твёрдые углеводороды, по химическому составу близкие к продуктам фракционирования нефти. Смесь монооксида углерода и водорода, получившую название «синтез-газ», довольно легко получить из природного сырья: пропусканием водяного пара над углём (газификация угля) или конверсией природного газа (состоящего в основном из метана) водяным паром в присутствии металлических катализаторов. Синтез-газ образуется не только из угля и метана. Очень перспективны биотехнологические методы: термохимическая или ферментативная переработка отходов растительного сырья (биомассы) и конверсия газа, полученного путём разложения органических отходов, так называемого биогаза.

Горючее – из угля и газа

Во время Второй мировой войны Германия в значительной степени удовлетворяла свои нужды в топливе за счёт создания производственных мощностей для переработки угля в жидкое топливо. Южно-Африканская Республика с теми же целями создала предприятие Sasol Limited, которое во времена апартеида помогало экономике этого государства успешно функционировать, несмотря на международные санкции.

Технологии производства синтетической нефти из угля активно развиваются компанией Sasol в ЮАР. Метод химического сжижения угля к состоянию пиролизного топлива был использован ещё в Германии во время Великой Отечественной войны. Немецкая установка уже к концу войны производила 100 тыс. баррелей (0,1346 тыс. т) синтетической нефти в день. Использование угля для производства синтетической нефти целесообразно из-за близкого химического состава природного сырья. Содержание водорода в нефти составляет 15%, а в угле – 8%. При определённых температурных режимах и насыщении угля водородом уголь в значительном объёме переходит в жидкое состояние (процесс гидрогенизации). Гидрогенизация угля увеличивается при введении катализаторов: молибдена, железа, олова, никеля, алюминия и др. Предварительная газификация угля с введением катализатора позволяет выделять различные фракции синтетического топлива и использовать для дальнейшей переработки.

Sasol на своих производствах применяет две технологии: «уголь в жидкость» – CTL (coal-to-liquid) и «газ в жидкость» – GTL (gas-to-liquid). Sasol развивает производства синтетической нефти во многих странах мира, например, заявлено о строительстве заводов синтетической нефти в Китае, Австралии и США. Первый завод Sasol был построен в промышленном городе ЮАР Сасолбурге, первым заводом по производству синтетической нефти в промышленных масштабах стал Oryx GTL в Катаре в городе Рас-Лаффан, компания запустила в эксплуатацию завод Secunda CTL в ЮАР, участвовала в проектировании завода Escravos GTL в Нигерии совместно с Chevron.

Работы по получению бензина из бурого угля до войны велись и в Советском Союзе, но до промышленного производства дело не дошло. В послевоенные годы цены на нефть упали, и потребность в синтетическом бензине и других топливных углеводородах на какое-то время отпала. Теперь же в связи с уменьшением нефтяных запасов планеты исследования в этой области химии переживают своё «второе рождение».

В США производители такого топлива часто получают государственные субсидии, иногда такие компании производят «синтетическое топливо» путём смеси угля с биологическими отходами производства. Синтетическое дизельное топливо, получаемое в Катаре из натурального газа, отличается низким содержанием серы и поэтому оно смешивается с обычным дизельным топливом для уменьшения в такой смеси уровня серы, что необходимо для маркетирования и продажи такого топлива в тех штатах США, где существуют особенно высокие требования к качеству топлива (например, в Калифорнии).

Синтетическое жидкое топливо и газ из твёрдых горючих ископаемых производят сейчас в ограниченном масштабе. Дальнейшее расширение производства синтетического топлива сдерживается его высокой стоимостью, значительно превышающей стоимость топлива на основе нефти. Поэтому сейчас интенсивно ведётся поиск новых экономичных технических решений в области синтетического топлива. Поиск направлен на упрощение известных процессов, в частности, на снижение давления при ожижении угля с 300–700 атмосфер до 100 атмосфер и ниже, увеличение производительности газогенераторов для переработки угля и горючих сланцев и также разработку новых катализаторов синтеза метанола и бензина на его основе.

Весьма интересно, что ряд учёных считают, что у метанола хорошие перспективы заменить ископаемое топливо и биотопливо.

Наша справка

Экономика метанола – это гипотетическая энергетическая экономика будущего, при которой ископаемое топливо будет заменено метанолом. В 2005 году лауреат Нобелевской премии Джордж Ола опубликовал свою книгу Oil and Gas: The Methanol Economy, в которой обсудил шансы и возможности экономики метанола. В книге он рассказывает о перспективах синтеза метанола из углекислого газа (CO2) или метана.

Биотопливо – бразильский фактор

Питьевой спирт этанол может использоваться как топливо для ракетных двигателей и двигателей внутреннего сгорания прямо в чистом виде. Его недостаток – высокая гигроскопичность, потому он используется в смеси с классическими нефтяными жидкими топливами. Этанол получают в странах Латинской Америки из целлюлозосодержащей биомассы – сахарного тростника, например, и называют биотопливом.

Лидером в использовании биотоплива является Бразилия, обеспечивающая 40% своих потребностей в топливе за счёт спирта благодаря высоким урожаям сахарного тростника и низкой стоимости рабочей силы. Биотопливо формально не приводит к выбросам парникового газа: в атмосферу возвращается углекислый газ (CO2), изъятый из неё в ходе фотосинтеза.

Однако резкий рост производства биотоплива требует больших территорий для посева растений. Эти территории или расчищаются путём сжигания лесов, что приводит к огромным выбросам углекислого газа в атмосферу, или за счёт фуражных и пищевых культур , что приводит к росту цен на продовольствие.

Кроме того, выращивание сельскохозяйственных культур требует больших затрат энергии. Для многих культур коэффициент EROEI (отношение полученной энергии к потраченной) лишь немного превышает единицу или даже ниже её. Так, у кукурузы EROEI составляет всего 1,5.

Выгоднее всего получать биотопливо из сахарного тростника и пальмового масла. У сахарного тростника коэффициент EROEI составляет 8, у пальмового масла – 9.

Общее производство биотоплива (биоэтанола и биодизеля) в 2005 году составило около 40 млрд. литров.

В 2007 году японские учёные предложили производить биотопливо из морских водорослей.

По ориентировочным оценкам, мировые разведанные запасы нефти примерно равны запасам древесины на нашей планете, однако ресурсы нефти истощаются, в то время как в результате естественного прироста запасы древесины увеличиваются. Значительным резервом повышения ресурсов древесного сырья является увеличение выхода целевых продуктов из древесины. Переработка биомассы растительного сырья базируется в основном на сочетании химических и биохимических процессов. Гидролиз растительного сырья – наиболее перспективный метод химической переработки древесины, так как в сочетании с биотехнологическими процессами позволяет получать мономеры и синтетические смолы, топливо для двигателей внутреннего сгорания и разнообразные продукты для технических целей.

По мнению некоторых учёных, массовое использование двигателей на этаноле увеличит концентрацию озона в атмосфере, что может привести к росту количества респираторных заболеваний и астмы.

Синтетическая нефть – перспективы и технологии

Если сопоставить эти тенденции с тем фактом, что качественного природного угля на планете осталось не так уж много, то неудивительно, что первостепенное внимание учёных привлекает природный и попутный газ, огромное количество которого при нефтедобыче просто уходит в атмосферу. Производство синтетического жидкого топлива из природного газа очень выгодно экономически, поскольку газ трудно транспортировать: на его перевозку обычно затрачивается от 30 до 50% стоимости готового продукта. Превращение газа прямо на месторождении в жидкие компоненты значительно снизит объём капиталовложений, затрачиваемых на его переработку.

Существующие технологии позволяют перерабатывать природный газ в высококачественные бензин и дизельное топливо через стадию образования метанола. Производство по такой схеме довольно удобно, поскольку все реакции протекают в одном реакторе. Но эта цепочка химических превращений требует больших затрат энергии. В результате полученный синтетический бензин в 1,8–2,0 раза дороже «нефтяного».

Есть и более рентабельные схемы. Можно получать синтетический бензин не через стадию образования метанола, а из другого промежуточного вещества – диметилового эфира (ДМЭ). Это нетрудно сделать, увеличив долю окиси углерода в синтез-газе. Важно то, что ДМЭ можно использовать как экологически чистое топливо для двигателей внутреннего сгорания. Он хорош тем, что полностью укладывается в рамки самых жёстких европейских требований по содержанию твёрдых частиц в автомобильных выхлопах. По теплотворной способности ДМЭ уступает традиционному дизельному топливу – пропану и бутану, но его цетановое число (характеристика воспламеняемости) гораздо выше: для обычного дизельного топлива оно 40–55, а для ДМЭ – 55–60. Так что преимущество ДМЭ перед дизельным топливом при запуске холодного двигателя очевидно. Кроме того, для горения ДМЭ необходимо меньше кислорода, чем для горения дизельного топлива.

В присутствии специально разработанных катализаторов ДМЭ превращается в очень неплохой бензин с октановым числом 92. Вредных примесей в нём меньше, чем в нефтяном топливе. Такой синтетический бензин вполне конкурентоспособен даже на европейском рынке. Новый способ получения синтетического топлива намного экономичнее и эффективнее классического «метанольного». Российскими учёными из ряда институтов РАН созданы экспериментальные генераторы синтез-газа, представляющие собой немного модифицированный дизельный двигатель. На входе – природный газ метан, который в генераторе превращается в синтез-газ. Далее синтез-газ в присутствии специально разработанных катализаторов преобразуется в топливные углеводороды. Поворотом крана можно запустить производство необходимого конечного продукта и по желанию получить на выходе метанол, ДМЭ, смесь углеводородов, аналогичных дизельному топливу, синтетический бензин. Экономическую выгоду от промышленного внедрения такого процесса трудно переоценить.

Чем выше температура реакции превращения метана в синтез-газ, тем выше производительность реактора. Обычные технологии не могут справиться с задачей проведения реакции при высоких температурах. Тут на помощь приходят ракетные технологии. Одной из наиболее перспективных разработок последних лет можно назвать высокотемпературный генератор синтез-газа, созданный при участии Института нефтехимического синтеза РАН в Приморске на опытном полигоне ракетно-космической корпорации «Энергия». Генератор создан по образу и подобию ракетного двигателя, поэтому его оболочка устойчива к воздействию высоких температур. Полученный в реакторе синтез-газ последовательно преобразовывается по новой эффективной схеме, описанной выше, в ДМЭ и бензин.

Катализаторы творят чудеса

Мы уже рассказывали нашим читателям о катализаторах – веществах, которые сами не участвуют в химических реакциях, но ускоряют их. Катализаторы позволяют добиваться совершенно удивительных эффектов. Например – получать синтетическое топливо из углекислого газа. Углекислый газ (CO2) является соединением со стабильной молекулой, которая имеет слабую химическую активность. Для того чтобы сделать углекислый газ сырьём для производства синтетического топлива, нужно расщепить молекулу и получить молекулу угарного газа (CO), достаточно активного химического вещества, которое можно использовать для получения метана, метанола или других видов альтернативного топлива. Исследования, произведённые различными учёными, показали, что для расщепления молекул углекислого газа могут использоваться катализаторы на основе золотой фольги, но они малоэффективны. Помимо этого золотой катализатор воздействует и на молекулы воды, что приводит к появлению нежелательных побочных водородосодержащих соединений. Учёным из американского университета Брауна (Brown University) удалось успешно решить проблему, создав высокоэффективный катализатор на основе золотых наночастиц строго определённых размеров и формы.

Производя исследования работы золотых катализаторов, учёные обнаружили, что ключевую роль в каталитических процессах играют атомы золота, расположенные на краях острых золотых граней. Кроме этого, огромную роль в выборочном действии катализатора играла длина граней. Дальнейшие исследования привели учёных к созданию многогранных золотых наночастиц, размер которых составлял точно восемь нанометров. Катализатор с такими наночастицами показал 90%-ный уровень расщепления молекул углекислого газа на атом кислорода и молекулу угарного газа.

В лабораториях РН-ЦИР учёные ОАО «НК «Роснефть» успешно работают по исследованию эффективных способов получения синтетической нефти с применением современных катализаторов. 

СИНТЕТИЧЕСКИЙ БЕНЗИН | Наука и жизнь

Без нефтяного моторного топлива — бензина, керосина, дизельного топлива — современную цивилизацию представить себе просто невозможно. На нем работают двигатели автомобилей, самолетов, ракет. Однако запасы нефти в недрах земли ограничены, и совсем скоро человечество столкнется со всеобщей нехваткой бензина. Но впадать в отчаяние рано: закат нефтяной эры вовсе не означает гибель современной цивилизации. Альтернатива нефтяным моторным топливам есть: ученые разработали методы получения высококачественного моторного топлива из природного газа, угля и другого ненефтяного сырья. Об этом шла речь в докладе вице-президента РАН, директора Института нефтехимического синтеза им. А. В. Топчиева РАН академика Николая Альфредовича Платэ «Некоторые аспекты создания экологически чистых топлив XXI века», с которым он выступил в июле текущего года на Первом московском международном химическом саммите. Саммит организован Российским союзом химиков, компанией «RCC Group» и Российским союзом промышленников и предпринимателей и был посвящен проблемам и перспективам развития химической и нефтехимической промышленности.

Генератор получения синтез-газа из природного газа, построенный в Институте высоких температур РАН совместно с Институтом нефтехимического синтеза РАН.

Генератор синтез-газа.

Вице-президент РАН, директор Института нефтехимического синтеза им. А. В. Топчиева РАН академик Николай Альфредович Платэ в дни работы Первого московского международного химического саммита.

Смесь окиси углерода и водорода (синтез-газ), из которого в промышленности синтезируют топливные углеводороды, можно получить пропусканием водяного пара через раскаленный кокс (газификация угля) и конверсией природного газа — метана.

Получение моторного топлива из ненефтяного углеводородного сырья.

Процесс синтеза топливных углеводородов через диметиловый эфир (ДМЭ).

Схема химического реактора для получения синтез-газа при горении смеси метана и воздуха при высоких температурах. Подобные реакторы конструируются по принципу ракетного двигателя.

Промышленная добыча нефти началась более 150 лет назад. За прошедшие с тех пор полтора века человечество уже израсходовало более половины нефтяных запасов. Вначале нефть использовалась в качестве источника тепловой энергии, теперь это стало экономически невыгодно. С наступлением автомобильной эры продукты фракционирования нефти в основном применяются в качестве моторного топлива. К 2010 году запасы нефтяных месторождений в значительной степени истощатся, соответственно возрастет стоимость добычи нефти и мир вплотную столкнется с проблемой использования альтернативных (ненефтяных) источников получения бензина и других видов топлива.

По своему химическому составу нефть — смесь углеводородов (алканов и циклоалканов). Кроме того, она содержит метан и некоторые сернистые и азотистые примеси. Бензин — легкокипящая фракция нефти, содержащая короткоцепочечные углеводороды с 5-9 атомами. Это основной вид моторного топлива для легковых автомобилей и небольших самолетов. Керосины более вязкие и тяжелые, чем бензин: они состоят из углеводородов с 10-16 атомами углерода. Керосин стал основным видом топлива для реактивных самолетов и ракетных двигателей. Газойль — более тяжелая фракция, чем керосин. Дизельное топливо для двигателей, установленных на тепловозах, грузовиках, тракторах, содержит смесь фракций керосина и газойля. Истощение природных нефтяных месторождений вовсе не грозит человечеству тотальным дефицитом моторного топлива. Вещества, по химическому составу похожие на бензин, керосин или дизельное топливо, вполне можно получить из углеродного сырья ненефтяного происхождения. Химики решили эту задачу еще в 1926 году, когда немецкие ученые Ф. Фишер и Г. Тропш открыли реакцию восстановления монооксида углерода (СО) при атмосферном давлении. Оказалось, что в присутствии катализаторов можно синтезировать в зависимости от соотношения водорода и монооксида углерода в газовой смеси жидкие и даже твердые углеводороды, по химическому составу близкие к продуктам фракционирования нефти. Смесь монооксида углерода и водорода, получившую название «синтез-газ», довольно легко получить из природного сырья: пропусканием водяного пара над углем (газификация угля) или конверсией природного газа (состоящего в основном из метана) водяным паром в присутствии металлических катализаторов. Синтез-газ образуется не только из угля и метана. Очень перспективны биотехнологические методы: термохимическая или ферментативная переработка отходов растительного сырья (биомассы) и конверсия газа, полученного путем разложения органических отходов, так называемого биогаза.

Интересно, что во время Второй мировой войны синтетическое топливо, полученное из угля, практически полностью покрывало потребности немецкой авиации. Работы по получению бензина из бурого угля до войны велись и в Советском Союзе, но до промышленного производства дело не дошло. В послевоенные годы цены на нефть упали, и потребность в синтетическом бензине и других топливных углеводородах на какое-то время отпала. Теперь же в связи с уменьшением нефтяных запасов планеты исследования в этой области химии переживают свое «второе рождение».

Качественного природного угля на планете осталось не так уж много. Внимание ученых привлек природный и попутный газ, огромное количество которого при нефтедобыче просто уходит в атмосферу. Производство синтетического жидкого топлива из природного газа очень выгодно экономически, поскольку газ трудно транспортировать: на его перевозку обычно затрачивается от 30 до 50% стоимости готового продукта. Превращение газа прямо на месторождении в жидкие компоненты значительно снизит объем капиталовложений, затрачиваемых на его переработку.

Существующие технологии позволяют перерабатывать природный газ в высококачественные бензин и дизельное топливо через стадию образования метанола. Производство по такой схеме довольно удобно, поскольку все реакции протекают в одном реакторе. Но эта цепочка химических превращений требует больших затрат энергии. В результате полученный синтетический бензин в 1,8-2,0 раза дороже «нефтяного».

Российские ученые из московского Института нефтехимического синтеза РАН разработали более рентабельную схему. Они предлагают получать синтетический бензин не через стадию образования метанола, а из другого промежуточного вещества — диметилового эфира (ДМЭ). Это нетрудно сделать, увеличив долю окиси углерода в синтез-газе. Важно то, что ДМЭ можно использовать как экологически чистое топливо для двигателей внутреннего сгорания. Он хорош тем, что полностью укладывается в рамки самых жестких европейских требований по содержанию твердых частиц в автомобильных выхлопах. По теплотворной способности ДМЭ уступает традиционному дизельному топливу — пропану и бутану, но его цетановое число гораздо выше: для обычного дизельного топлива оно 40-55, а для ДМЭ — 55-60. Так что преимущество ДМЭ перед дизельным топливом при запуске холодного двигателя очевидно. Кроме того, для горения ДМЭ необходимо меньше кислорода, чем для горения дизельного топлива.

В присутствии специально разработанных катализаторов ДМЭ превращается в очень неплохой бензин с октановым числом 92. Вредных примесей в нем меньше, чем в нефтяном топливе. Такой синтетический бензин вполне конкурентоспособен даже на европейском рынке. Новый способ получения синтетического топлива намного экономичнее и эффективнее классического «метанольного». В Институте высоких температур совместно с Институтом нефтехимического синтеза РАН создан генератор синтез-газа, представля ющий собой немного модифицированный дизельный двигатель. На входе — природный газ метан, который в генераторе превращается в синтез-газ. Далее синтез-газ в присутствии специально разработанных катализаторов преобразуется в топливные углеводороды. Поворотом крана можно запустить производство необходимого конечного продукта и по желанию получить на выходе метанол, ДМЭ, смесь углеводородов, аналогичных дизельному топливу, синтетический бензин. Экономическую выгоду от промышленного внедрения такого процесса трудно переоценить.

Чем выше температура реакции превращения метана в синтез-газ, тем выше производительность реактора. Обычные технологии не могут справиться с задачей проведения реакции при высоких температурах. Тут на помощь приходят ракетные технологии. Наиболее перспективной разработкой последних лет можно назвать новый высокотемпературный генератор синтез-газа, созданный при участии Института нефтехимического синтеза РАН в Приморске на опытном полигоне ракетно-космической корпорации «Энергия». Генератор создан по образу и подобию ракетного двигателя, поэтому его оболочка устойчива к воздействию высоких температур. Полученный в реакторе синтез-газ последовательно преобразовывается по новой эффективной схеме, описанной выше, в ДМЭ и бензин.

Моторные топлива, полученные из природного газа, не дороже продуктов переработки нефти, а по качеству даже их превосходят. Так что после окончательного истощения нефтяных месторождений «пробки» на дорогах не уменьшатся.

Иллюстрация «Генератор синтез-газа».
Генератор синтез-газа для окисления природного газа при высоких температурах, построенный на опытном полигоне ракетно-космической корпорации «Энергия» в Приморске при участии Института нефтехимического синтеза им. А. В. Топчиева РАН по технологии, используемой при строительстве ракетных двигателей.

Иллюстрация «Получение моторного топлива из ненефтяного углеводородного сырья».
Получение моторного топлива из ненефтяного углеводородного сырья: угля, биомассы, биогаза и природного газа. Схемы переработки сырья близки: на первой стадии происходит превращение в синтез-газ (смесь монооксида углерода и водорода), затем синтез-газ перерабатывают в метанол (традиционная схема) или в диметиловый эфир (ДМЭ) (схема, разработанная в Институте нефтехимического синтеза РАН), которые превращаются в моторное топливо (бензин, дизельное топливо).

Иллюстрация «Процесс синтеза топливных углеводородов через диметиловый эфир (ДМЭ)».
Синтетический бензин, полученный по традиционной схеме промышленной переработки природного газа в топливные углеводороды через стадию образования метанола, в два раза дороже «нефтяного». Процесс синтеза топливных углеводородов через диметиловый эфир (ДМЭ), разработанный в Институте нефтехимического синтеза РАН, намного эффективнее и экономичнее традиционной «метанольной» схемы производства синтетических моторных топлив.

% PDF-1.7 % 40336 0 объект > endobj xref 40336 119 0000000016 00000 н. 0000007001 00000 н. 0000007425 00000 н. 0000007481 00000 н. 0000007612 00000 н. 0000007704 00000 н. 0000007796 00000 н. 0000007888 00000 н. 0000007980 00000 п. 0000008319 00000 н. 0000008751 00000 п. 0000008792 00000 н. 0000009051 00000 н. 0000010377 00000 п. 0000010865 00000 п. 0000011256 00000 п. 0000011372 00000 п. 0000011625 00000 п. 0000012211 00000 п. 0000012464 00000 п. 0000012910 00000 п. 0000013169 00000 п. 0000013662 00000 п. 0000042575 00000 п. 0000075820 00000 п. 0000094104 00000 п. 0000117086 00000 п. 0000119738 00000 н. 0000120195 00000 н. 0000120593 00000 н. 0000171112 00000 н. 0000171190 00000 н. 0000171302 00000 н. 0000171484 00000 н. 0000171542 00000 н. 0000171859 00000 н. 0000171917 00000 н. 0000172443 00000 н. 0000172781 00000 н. 0000172940 00000 н. 0000172998 00000 н. 0000173159 00000 н. 0000173217 00000 н. 0000173420 00000 н. 0000173478 00000 н. 0000173685 00000 н. 0000173743 00000 н. 0000173928 00000 н. 0000173986 00000 н. 0000174215 00000 н. 0000174273 00000 н. 0000174522 00000 н. 0000174580 00000 н. 0000174729 00000 н. 0000174787 00000 н. 0000174904 00000 н. 0000174962 00000 н. 0000175089 00000 н. 0000175147 00000 н. 0000175266 00000 н. 0000175324 00000 н. 0000175499 00000 н. 0000175557 00000 н. 0000175703 00000 н. 0000175829 00000 н. 0000175962 00000 н. 0000176020 00000 н. 0000176196 00000 н. 0000176253 00000 н. 0000176415 00000 н. 0000176529 00000 н. 0000176692 00000 н. 0000176749 00000 н. 0000176855 00000 н. 0000176989 00000 н. 0000177155 00000 н. 0000177212 00000 н. 0000177320 00000 н. 0000177426 00000 н. 0000177483 00000 н. 0000177540 00000 н. 0000177598 00000 н. 0000177745 00000 н. 0000177803 00000 н. 0000177938 00000 п. 0000177996 00000 н. 0000178135 00000 н. 0000178193 00000 н. 0000178418 00000 н. 0000178476 00000 н. 0000178534 00000 н. 0000178593 00000 н. 0000178748 00000 н. 0000178807 00000 н. 0000178970 00000 н. 0000179027 00000 н. 0000179216 00000 н. 0000179275 00000 н. 0000179466 00000 н. 0000179525 00000 н. 0000179688 00000 н. 0000179747 00000 н. 0000179950 00000 н. 0000180009 00000 н. 0000180174 00000 п. 0000180233 00000 н. 0000180392 00000 н. 0000180451 00000 п. 0000180628 00000 н. 0000180687 00000 н. 0000180834 00000 п. 0000180893 00000 н. 0000180951 00000 п. 0000181010 00000 н. 0000181069 00000 н. 0000181127 00000 н. 0000181185 00000 н. 0000006168 00000 п. 0000002739 00000 н. трейлер ] / Назад 7241769 / XRefStm 6168 >> startxref 0 %% EOF 40454 0 объект > поток hWy \ w p (% PA rXZ-Y G ȡˊiHibԣjmwL w> 2 /} {wf

.

Пределы взрывоопасности и воспламеняемости

Диапазон воспламеняемости (также называемый взрывоопасным диапазоном) — это диапазон концентраций газа или пара, который загорится (или взорвется) при появлении источника возгорания.

Для взрыва должны быть выполнены три основных требования:

  1. легковоспламеняющееся вещество — топливо
  2. окислитель — кислород или воздух
  3. источник возгорания — искра или высокая температура

Смесь находится ниже взрывоопасной или воспламеняющейся смеси. слишком бедная, чтобы гореть, и выше верхнего предела взрывоопасности или воспламеняемости смесь слишком богатая, чтобы гореть.Пределы обычно называют «нижним пределом взрывоопасности или воспламеняемости» (LEL / LFL) и «верхним пределом взрывоопасности или воспламеняемости» (UEL / UFL).

Нижний и верхний пределы взрывоопасной концентрации для некоторых обычно используемых газов указаны в таблице ниже. Некоторые газы обычно используются в качестве топлива в процессах сгорания.

Примечание! Указанные пределы относятся к газу и воздуху при 20 o C и атмосферном давлении.

6 Диизобутилкетон 3 1249 9002 Неопентан 2,1 900 36
Топливный газ «Нижний предел взрывоопасности или воспламеняемости»
(LEL / LFL)
(% по объему воздуха)
«Верхний предел взрывоопасности или воспламеняемости»
(UEL / UFL)
( % от объема воздуха)
Ацетальдегид 4 60
Уксусная кислота 4 19.9
Ацетон 2,6 12,8
Ацетонитрил 3 16
Ацетилхлорид 7,3 19
Ацетилен 2,5 10049 900 Акролеин 2,8 31
Акриловая кислота 2,4 8
Акрилонитрил 3.0 17
Аллилхлорид 2,9 11,1
Аллиловый спирт 2,5 18
Алилламин 2,2 22
Аммиак 15 28
Анилин 1,3 11
Арсин 5,1 78
Бензол 1.2 7,8
Бифенил 0,6 5,8
Бромбутан (1-бромбутан) 2,6 6,6
Бромэтан 6,8 8
Бромбром 15
Бутадиен (1,3-бутадиен) 2,0 12
Бутанал 1,9 12.5
Бутан (н-бутан) 1,86 8,41
Бутановая кислота 2 10
Бутилацетат 1,7 7,6
Бутиловый спирт, бутанол 1 11
Бутилформиат 1,7 8,2
Бутилметилкетон 1 8
Бутиламин 1.7 9,8
Бутилбензол 0,5 5,8
Бутилен 1,98 9,65
Бутилакрилат 1,9 9,9
Дисульфид углерода 50
Оксид углерода 12 75
Оксисульфид углерода 12 29
Хлорбензол 1.3 9,6
Хлорэтан 3,8 15,4
Цианоген 6,0 42,6
Циклобутан 1,8 11,1
Циклогептан 1,1
Циклогексан 1,3 8
Циклогексанол 1 9
Циклогексанон 1 9
Циклопропан 2.4 10,4
Декан 0,8 5,4
Диацетоновый спирт 1,8 6,9
Диборан 0,8 88
Дибутиламин 1,1 6
Дихлорэтан (1,1-дихлорэтан) 6 11
Дизельное топливо 0,6 7.5
Диэтаноламин 2 13
Диэтиловый эфир 1,9 36
Диэтиламин 2 13
Диэтиловый эфир 1,9 4850
1 6
Диизопропиловый эфир 1 21
Диметилсульфоксид 3 42
Эпихлоргидрин 4 21
21
12.4
Этилацетат 2 12
Этилакрилат 1,4 14
Этиловый спирт, этанол 3,3 19
Этилхлорид 3,8 15,4
Этилнитрит 4 50
Этилпропиловый эфир 1,7 9
Этилвиниловый эфир 1.7 28
Этиламин 3,5 14
Этилбензол 1,0 7,1
Этилциклобутан 1,2 7,7
Этилен 2,75
Оксид этилена 3 100
Этиленгликоль 3 22
Фторэтен 2.6 21,7
Формальдегид 7 73
Муравьиная кислота 18 57
Мазут — № 1 0,7 5
Фуран 2 14
Фурфурол 2 19
Бензин 1,4 7,6
Глицерин 3 19
Гептан 1.0 6,7
Гептан (н-гептан) 1,0 6,0
Гексан 1,1 7,5
Гексан (н-гексан) 1,25 7,0
Гидразин 5 100
Водород 4 75
Водород 6 40
Сероводород 4.3 46
Изобутаналь 1,6 10,6
Изобутан 1,80 8,44
Изобутен 1,8 9,0
Изобутиловый спирт
Изооктан 0,79 5,94
Изопентан 1,32 9,16
Изофорон 1 4
Изопропиловый спирт, изопропанол
Изопропилбензол 0.9 6,5
Керосиновая струя A-1 0,7 5
Мезитилоксид 1,4 7,2
Кислота метакриловая 1,6 8,8
Метан 4,4 16,4
Метиламин 4,9 20,7
Метилацетат 3 16
Метиловый спирт, метанол 6.7 36
Метилакрилат 2,8 25
Метилхлорид 10,7 17,4
Метилэтилкетон 1,8 10
Метилформиат 4,5 23
Метилгидразин 2,5 92
Метилизоцианат 5,3 26
Уайт-спирит 0.7 6,5
Нафталин 0,9 5,9
Нафталин 0,9 5,9
Неогексан 1,19 7,58
Нитробензол 2 9
Нитроэтан 3,4 17
Нитрометан 7.3 22,2
Нонан 0,8 2,9
Октан (н-октан) 1,0 7
Оксиран 3 100
Параформальдегид 7 73
Пентан (н-пентан) 1,4 7,8
Пентен (н-пентен) 1,65 7,7
Пентилацетат 1.1 7,5
Пентиламин 2,2 22
Фенол 1,8 8,6
Пиперидин 1 10
Пропан
10,1
Пропановая кислота 2,9 12,1
Пропен 2 11,1
Пропилацетат 2 8
Пропиламин 2 10.4
Пропилбензол 0,8 6
Нитрат пропил 2 100
Пропилен 2,0 11,1
Оксид пропилена 2,3
Пропин 2,1 12,5
Пиридин 2 12
Силан 1.5 98
Стирол 1,1 6,1
Тетрафторэтен 10 50
Тетрагидрофуран 2 12
Толуол 7,1 1,1 900
Трихлорэтилен 13 90
Триэтиленгликоль 0,9 9,2
Триптан 1.08 6,69
Триметиламин 2 11,6
Скипидар 0,8
Винилацетат 2,6 13,4
Винилбутаноат 1,4
Винилхлорид 3,6 33
о-ксилол 0,9 6,7
м-ксилол 1.1 7
пара-ксилол 1,1 7

Важно, чтобы помещения, в которых хранятся горючие газы, хорошо вентилировались. При проектировании систем вентиляции учитывайте удельный вес газа. Газовая смесь от утечки не будет однородной, и более легкие газы будут концентрироваться вдоль потолка. Тяжелые газы скапливаются вдоль пола.

Вентиляция, естественная или механическая, должна быть достаточной для ограничения концентрации горючих газов или паров до максимального уровня 25% от их «нижнего предела взрывоопасности или воспламеняемости» (НПВ / НПВ).

  • Требуемая минимальная вентиляция: 1 куб. Фут / фут 2 (20 м 3 / час 2 )
  • Рекомендуемая вентиляция: 2 куб. Фут / фут 2 (40 м 3 / hm 2 ) или 12 воздухообменов в час — половина подаваемого и отводимого воздуха около потолка и половина подаваемого и отводимого воздуха около пола
.Из

метанола в бензин Википедия

Для перевозки метана требуются дорогие танкеры для СПГ.

Газ в жидкости ( GTL ) — это процесс переработки природного газа или других газообразных углеводородов в углеводороды с более длинной цепью, такие как бензин или дизельное топливо. Газы, богатые метаном, превращаются в жидкое синтетическое топливо. Существуют две общие стратегии: (i) прямое частичное сжигание метана в метанол и (ii) процессы, подобные Фишеру-Тропшу, которые преобразуют окись углерода и водород в углеводороды.Стратегия II сопровождается различными методами преобразования смесей водорода и окиси углерода в жидкости. Прямое частичное горение было продемонстрировано в природе, но не было воспроизведено в коммерческих целях. Технологии, основанные на частичном сжигании, были коммерциализированы в основном в регионах, где природный газ недорог. [1] [2]

Мотивом для GTL является производство жидкого топлива, которое легче транспортировать, чем метан. Метан необходимо охладить ниже его критической температуры -82.3 ° C для сжижения под давлением. Из-за соответствующего криогенного оборудования для транспортировки используются танкеры для СПГ. Метанол — это легко обрабатываемая горючая жидкость, но его удельная энергия вдвое меньше, чем у бензина. [3]

Процесс Фишера – Тропша []

Процесс Фишера-Тропша начинается с частичного окисления метана (природного газа) до диоксида углерода, монооксида углерода, газообразного водорода и воды. Отношение моноксида углерода к водороду регулируется с помощью реакции конверсии водяного газа, при этом избыток диоксида углерода удаляется.Удаление воды дает синтез-газ (синтез-газ). Синтез-газ может реагировать на железном или кобальтовом катализаторе с образованием жидких углеводородов, включая спирты.

Процесс превращения метана в метанол []

Метанол получают из метана (природного газа) в результате трех реакций:

Паровой риформинг
CH 4 + H 2 O → CO + 3 H 2 Δ r H = +206 кДж моль −1
Реакция водного сдвига
CO + H 2 O → CO 2 + H 2 Δ r H = -41 кДж моль −1
Синтез
2 H 2 + CO → CH 3 OH Δ r H = -92 кДж моль −1

Образованный таким образом метанол можно превратить в бензин с помощью процесса Mobil и превратить метанол в олефины.

Метанол в бензин (MTG) и метанол в олефины []

В начале 1970-х годов Mobil разработала альтернативную процедуру, при которой природный газ превращается в синтез-газ, а затем в метанол. Метанол реагирует в присутствии цеолитного катализатора с образованием алканов. С точки зрения механизма, метанол частично дегидратируется с образованием диметилового эфира:

2 CH 3 OH → CH 3 OCH 3 + H 2 O

Смесь диметилового эфира и метанола затем подвергается дальнейшей дегидратации на цеолитном катализаторе, таком как ZSM-5, который на практике полимеризуется и гидрогенизируется с получением бензина с углеводородами из пяти или более атомов углерода, составляющими 80% от веса топлива. .Процесс Mobile MTG больше не практикуется. Более современная реализация MTG — это интегрированный синтез бензина Топсе (TIGS). [4]

Метанол можно превратить в олефины с использованием цеолита и гетерогенных катализаторов на основе SAPO. В зависимости от размера пор катализатора этот процесс может давать продукты C2 или C3, которые являются важными мономерами. [5] [6]

Синтез-газ в бензин плюс процесс (STG +) []

Третий процесс преобразования газа в жидкость основан на технологии MTG путем преобразования синтез-газа, полученного из природного газа, в бензин и топливо для реактивных двигателей с помощью термохимического одноконтурного процесса. [7]

Процесс STG + включает четыре основных этапа в одном непрерывном технологическом цикле. Этот процесс состоит из четырех последовательно соединенных реакторов с неподвижным слоем, в которых синтез-газ превращается в синтетическое топливо. Этапы производства высокооктанового синтетического бензина следующие: [8]

  1. Синтез метанола: Синтез-газ подается в реактор 1, первый из четырех реакторов, в котором большая часть синтез-газа (CO и H
    2) преобразуется в метанол (CH
    3OH) при прохождении через слой катализатора.
  2. Синтез диметилового эфира (ДМЭ): богатый метанолом газ из реактора 1 затем подается в реактор 2, второй реактор STG +. Метанол подвергается воздействию катализатора, и большая его часть превращается в ДМЭ, что включает дегидратацию из метанола с образованием ДМЭ (CH
    3OCH
    3).
  3. Синтез бензина: Газообразный продукт из реактора 2 затем подается в реактор 3, третий реактор, содержащий катализатор для превращения ДМЭ в углеводороды, включая парафины (алканы), ароматические соединения, нафтены (циклоалканы) и небольшие количества олефинов (алкенов), в основном от C
    6 (число атомов углерода в молекуле углеводорода) до C
    10.
  4. Обработка бензина: Четвертый реактор обеспечивает обработку трансалкилированием и гидрогенизацией продуктов, поступающих из реактора 3. Обработка восстанавливает компоненты дурена (тетраметилбензола) / изодурена и триметилбензола, которые имеют высокие точки замерзания и должны быть сведены к минимуму в бензине. В результате синтетический бензин имеет высокое октановое число и желаемые вязкостные свойства.
  5. Сепаратор: Наконец, смесь из реактора 4 конденсируется, чтобы получить бензин. Неконденсированный газ и бензин разделяются в обычном конденсаторе / сепараторе.Большая часть неконденсированного газа из сепаратора продуктов становится рециркулируемым газом и отправляется обратно в поток сырья в реактор 1, оставляя синтетический бензин, состоящий из парафинов, ароматических углеводородов и нафтенов.

Биологический переход газа в жидкость (Bio-GTL) []

Поскольку метан является преобладающей целью для GTL, большое внимание уделяется трем ферментам, которые обрабатывают метан. Эти ферменты поддерживают существование метанотрофов, микроорганизмов, которые метаболизируют метан как единственный источник углерода и энергии.Аэробные метанотрофы содержат ферменты, которые превращают метан кислородом в метанол. Соответствующими ферментами являются метанмонооксигеназы, которые находятся как в растворимой, так и в дисперсной (т.е. мембраносвязанной) форме. Они катализируют оксигенацию в соответствии со следующей стехиометрией:

CH 4 + O 2 + NADPH + H + → CH 3 OH + H 2 O + NAD +

Анаэробные метанотрофы основаны на биоконверсии метана с помощью ферментов, называемых метил-кофермент М-редуктазы.Эти организмы вызывают обратный метаногенез. Были предприняты активные усилия по выяснению механизмов этих метан-превращающих ферментов, которые позволят воспроизвести их катализ in vitro. [9]

Биодизель можно производить из CO
2 с использованием микробов Moorella thermoacetica и Yarrowia lipolytica. Этот процесс известен как биологический переход газа в жидкость. [10]

Использование в коммерческих целях []

Используя процессы преобразования газа в жидкость, нефтеперерабатывающие заводы могут преобразовывать некоторые из своих газообразных отходов (факельный газ) в ценное жидкое топливо, которое можно продавать как есть или смешивать только с дизельным топливом. 12 куб. Футов) природного газа сжигается или сбрасывается ежегодно, на сумму около 30,6 млрд долларов, что эквивалентно 25% потребления газа в США или 30% годового потребления газа в Европейском Союзе, [11] ресурс, который может быть полезен с использованием GTL. Процессы преобразования газа в жидкость также могут использоваться для рентабельной добычи газовых месторождений в местах, где неэкономично строить трубопровод. Этот процесс будет приобретать все большее значение по мере истощения запасов сырой нефти.

Royal Dutch Shell производит дизельное топливо из природного газа на заводе в Бинтулу, Малайзия. Еще одно предприятие Shell GTL — завод Pearl GTL в Катаре, крупнейшее в мире предприятие GTL. [12] [13] Компания SASOL недавно построила завод Oryx GTL в промышленном городе Рас-Лаффан, Катар, и вместе с Узбекнефтегазом и Petronas строит завод GTL в Узбекистане. [14] [15] [16] Корпорация Chevron в рамках совместного предприятия с Нигерийской национальной нефтяной корпорацией вводит в эксплуатацию Escravos GTL в Нигерии, в которой используется технология Sasol.

Перспективные и новые предприятия []

Новое поколение технологии GTL используется для преобразования нетрадиционного, удаленного и проблемного газа в ценное жидкое топливо. [17] [18] Установки GTL на основе инновационных катализаторов Фишера – Тропша были построены компанией INFRA Technology. Другие компании, в основном американские, включают Velocys, ENVIA Energy, Waste Management, NRG Energy, ThyssenKrupp Industrial Solutions, Liberty GTL, Petrobras, [19] Greenway Innovative Energy, [20] Primus Green Energy, [21] Compact GTL , [22] и Petronas. [23] Некоторые из этих процессов зарекомендовали себя во время демонстрационных полетов с использованием их реактивного топлива. [24] [25]

Другое предлагаемое решение проблемы выброшенного газа включает использование нового FPSO для морской конверсии газа в жидкости, такие как метанол, дизельное топливо, бензин, синтетическая нефть и нафта. [26]

Экономика GTL []

Использование природного газа

GTL более экономично, когда существует большой разрыв между преобладающей ценой на природный газ и ценой на сырую нефть на основе барреля нефтяного эквивалента (BOE).Коэффициент 0,1724 дает полный нефтяной паритет. [27] GTL — это механизм снижения мировых цен на дизельное топливо / бензин / сырую нефть на уровне цен на природный газ при расширении мировой добычи природного газа по цене ниже сырой нефти. Когда природный газ конвертируется в GTL, жидкие продукты легче экспортировать по более низкой цене, чем конвертировать в СПГ и затем преобразовывать в жидкие продукты в стране-импортере. [28] [29]

Однако GTL-топливо намного дороже в производстве, чем обычное топливо. Qatar Airways запускает самолет на новом топливе, The Wall Street Journal, среда, 14 октября 2009 г., стр. B2 .

метана | Определение, свойства, использование и факты

Метан , бесцветный газ без запаха, который широко встречается в природе и является продуктом определенной деятельности человека. Метан — простейший член парафинового ряда углеводородов и один из самых сильных парниковых газов. Его химическая формула — CH 4 .

метановый цикл Encyclopdia Britannica, Inc.

Британская викторина

Ветер и воздух: факт или вымысел?

Муссоны — результат встречи тепла и холода.

Химические свойства метана

Метан легче воздуха, его удельный вес составляет 0,554. Он слабо растворяется в воде. Легко горит на воздухе, образуя углекислый газ и водяной пар; пламя бледное, слегка яркое и очень горячее. Точка кипения метана составляет -162 ° C (-259,6 ° F), а точка плавления -182,5 ° C (-296,5 ° F). Метан в целом очень стабилен, но смеси метана и воздуха с содержанием метана от 5 до 14 процентов по объему взрывоопасны.Взрывы таких смесей часто случаются на угольных шахтах и ​​угольных шахтах и ​​являются причиной многих аварий на шахтах.

структура метана Тетраэдрическая структура метана (CH 4 ) объясняется в теории VSEPR (валентная оболочка-электронная пара отталкивания) молекулярной формы, предполагая, что четыре пары связывающих электронов (представленные серыми облаками) ) занимают позиции, минимизирующие их взаимное отталкивание. Encyclopædia Britannica, Inc.

Источники метана

В природе метан образуется в результате анаэробного бактериального разложения растительных веществ под водой (где его иногда называют болотным газом или болотным газом).Водно-болотные угодья являются основным естественным источником производимого таким образом метана. К другим важным природным источникам метана относятся термиты (в результате процессов пищеварения), вулканы, жерла на дне океана и отложения гидрата метана, которые встречаются вдоль окраин континентов и под антарктическим льдом и арктической вечной мерзлотой. Метан также является основным компонентом природного газа, который содержит от 50 до 90 процентов метана (в зависимости от источника) и встречается как компонент горючего газа (горючего газа) вдоль угольных пластов.

химическая структура метана Тетраэдрическая геометрия метана: (A) модель стержня и шарика и (B) диаграмма, показывающая валентные углы и расстояния. (Простые связи обозначают связи в плоскости изображения; клин и пунктир обозначают связи, направленные к зрителю и от него, соответственно.) Encyclopædia Britannica, Inc.

Производство и сжигание природного газа и угля являются основными антропогенными факторами. (связанные с человеком) источники метана. Такие виды деятельности, как добыча и переработка природного газа и деструктивная перегонка битуминозного угля при производстве угольного газа и коксового газа, приводят к выбросу значительных количеств метана в атмосферу.Другая деятельность человека, связанная с производством метана, включает сжигание биомассы, животноводство и управление отходами (где бактерии производят метан, разлагая отстой на очистных сооружениях и разлагающиеся вещества на свалках).

Britannica Premium: удовлетворение растущих потребностей искателей знаний. Получите 30% подписки сегодня. Подпишись сейчас

Использование метана

Метан — важный источник водорода и некоторых органических химикатов. Метан реагирует с паром при высоких температурах с образованием окиси углерода и водорода; последний используется при производстве аммиака для удобрений и взрывчатых веществ.Другие ценные химические вещества, полученные из метана, включают метанол, хлороформ, четыреххлористый углерод и нитрометан. При неполном сгорании метана образуется технический углерод, который широко используется в качестве армирующего агента в резине, используемой для автомобильных шин.

Роль как парниковый газ

Метан, который производится и выбрасывается в атмосферу, поглощается стоками метана, которые включают почву и процесс окисления метана в тропосфере (самый низкий уровень атмосферы).Большая часть метана, производимого естественным путем, компенсируется его поглощением в естественных стоках. Однако антропогенное производство метана может вызвать более быстрое увеличение концентраций метана, чем они компенсируются поглотителями. С 2007 года концентрация метана в атмосфере Земли увеличивалась на 6,8–10 частей на миллиард (ppb) в год. К 2020 году содержание метана в атмосфере достигло 1873,5 частей на миллиард, что примерно в два-три раза выше, чем доиндустриальные уровни, которые колебались на уровне 600-700 частей на миллиард.

Повышенная концентрация метана в атмосфере способствует парниковому эффекту, в результате чего парниковые газы (особенно углекислый газ, метан и водяной пар) поглощают инфракрасное излучение (чистую тепловую энергию) и повторно излучают его на поверхность Земли, потенциально задерживая тепло и производя существенные изменения климата.Повышенное содержание метана в атмосфере также косвенно увеличивает парниковый эффект. Например, при окислении метана гидроксильные радикалы (OH ) удаляют метан, вступая с ним в реакцию с образованием диоксида углерода и водяного пара, а по мере увеличения концентрации атмосферного метана концентрации гидроксильных радикалов уменьшаются, эффективно продлевая время жизни метана в атмосфере. .

The Editors of Encyclopaedia Britannica Эта статья была недавно отредактирована и обновлена ​​редактором Джоном П. Рафферти.

Узнайте больше в этих связанных статьях Britannica:

  • глобальное потепление: метан

    Метан (CH 4 ) — второй по значимости парниковый газ. CH 4 более мощный, чем CO 2 , потому что радиационное воздействие, производимое на одну молекулу, больше.Кроме того, инфракрасное окно менее насыщено в диапазоне длин волн излучения, поглощаемого CH 4 , поэтому больше…

  • парниковый газ: метан

    Метан (CH 4 ) — второй по значимости парниковый газ.CH 4 более мощный, чем CO 2 , потому что радиационное воздействие, производимое на одну молекулу, больше. Кроме того, инфракрасное окно менее насыщено в диапазоне длин волн излучения, поглощаемого CH 4 , поэтому больше…

  • Климат: Климат и жизнь

    … пар, двуокись углерода, окись углерода, метан, озон, двуокись азота, азотная кислота, аммиак и ионы аммония, закись азота, двуокись серы, сероводород, карбонилсульфид, диметилсульфид и сложный набор неметановых углеводородов.Из них…

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *