Утепление деревянного дома изнутри чем лучше: Correct insulation of a wooden house from the inside. The choice of insulation. Video

Изоляция дома — Palmatin.com

Теги: Комфорт, Строительство, Изоляция дома, Изоляция

Чтобы построить здоровую, устойчивую и долговечную конструкцию, материалы и элементы дома должны быть тщательно продуманы. Изоляция является одним из ключей к тому, чтобы сделать ваш дом комфортным, а интерьер приятным. Если вы хотите улучшить счета и сэкономить деньги на потреблении энергии, изоляция также может быть решением.

Зачем изолировать? Какие основные места в сборном доме, где установить изоляцию? Как оценить эффективность материалов и каков выбор продукции?

В этом месяце мы сосредоточимся на утеплении зданий.

ПРЕИМУЩЕСТВА ИЗОЛЯЦИИ В ДОМЕ

Основной целью при установке изоляции в здании является снижение потерь тепла, но от одного материала к другому можно получить много преимуществ. Надлежащая изоляция, также адаптированная к конструкции, даст вам много преимуществ.

Очень часто утепление связано с потерями тепла; в китовом доме важно не допустить выхода тепла через стены, крышу и другие слабые места, но не только. Изоляция также работает как регулятор температуры. Если дом правильно утеплен, вы получите приятную температуру внутри жилища круглый год, несмотря на внешний климат. Будет сбалансирована не только домашняя среда, а также приятная атмосфера, но и будет достигнута экономия на расходах на отопление, так как потребление тепла будет снижено. В сочетании с эффективными системами отопления и вентиляции хорошая изоляция гарантирует окупаемость инвестиций с течением времени после постройки дома или улучшения старого.

Экономия тепла и энергии также окажет положительное влияние на сокращение выбросов парниковых газов. Таким образом, многие негативные факторы, способствующие глобальному потеплению и загрязнению, также будут уменьшены. Хорошая изоляция поможет сохранить устойчивость дома, упростить обслуживание и продлить срок службы и устойчивость конструкции.

Новейшие правила строительства и строительной индустрии во многом связаны с экологическими и экологическими аспектами. Вот почему постепенно стандарты, касающиеся эффективности зданий, энергии и потребления, становятся все более строгими. Эти правила и стандарты поощряют использование возобновляемых источников энергии и эффективных и экологически чистых материалов в строительстве. Основные цели, установленные на ближайшие десятилетия, включают строительство зданий с нулевым уровнем выбросов и положительной энергией. Изоляция играет важную роль в достижении этих амбициозных, но реалистичных целей.

Многие изоляционные материалы помимо теплоизоляционных свойств обладают рядом свойств и изоляционными свойствами. При сохранении идеального гигрометрического баланса продукты, содержащие воздух, способны улавливать звук. Таким образом, они обеспечивают достаточную звукоизоляцию, обеспечивая конфиденциальность, уменьшая помехи и улучшая реверберацию в помещении.

Чтобы воспользоваться всеми преимуществами изоляции, необходимо выбрать подходящую и адаптированную. Эффективная изоляция начинается с точной, правильной и подходящей конструкции дома. Строительные материалы должны быть выбраны в соответствии с их использованием и качеством, а сборка должна быть тщательной, чтобы уменьшить точки утечки воздуха (соединения материалов между двумя разными строительными материалами…) и избежать ненужных инфильтраций воздуха через здания, которые могут сделает изоляцию менее эффективной, а тепловые цели труднее достичь.

Элементы и части здания, которые могут быть изолированы на ранней стадии строительства здания
, должны быть рассмотрены с особым вниманием. Это относится к фундаментам, подвальным помещениям или подвалам.

После того, как основная конструкция дома, включая стены, крышу и полы, построена, изоляция может быть установлена ​​практически в любом необходимом месте. Чтобы построить здоровую, устойчивую и долговечную конструкцию, необходимы материалы и элементы дома.

ГДЕ РАЗМЕСТИТЬ ИЗОЛЯЦИЮ В ДОМЕ

Установка эффективной изоляции в различных стратегических местах имеет важное значение для уменьшения потерь тепла из внутренних помещений дома и поддержания приятного климата в помещении в течение всего года. Таким образом, это позволит вам снизить годовое потребление энергии и тепла и, по сути, расходы, связанные с домом. Действительно, потребность в строительстве более эффективных зданий также связана с тем фактом, что примерно 40% общего потребления энергии и 36% выбросов CO2 связаны со зданиями в Европе, что делает этот сектор приоритетным, когда речь идет об инновациях, энергетике. экономия и окружающая среда. Здания являются крупными потребителями энергии, опережая промышленные отрасли.

Дом имеет около 6 основных мест, через которые в основном уходит тепло. Наиболее существенные потери тепла осуществляются через крышу и вентиляционные отверстия, через которые уходит соответственно 25% и 35% тепла. Те же явления наблюдаются и через другие воздуховоды дома, которые нельзя закрывать, например, трубы дымохода.

Наружные стены, окна и наружные двери пропускают тепло, если они не изолированы или плохо изолированы. В среднем 35 % теплопотерь приходится на наружные стены и 25 % — на окна и двери. Именно поэтому рекомендуется выбирать двери и окна с высокими эксплуатационными характеристиками. Например, количество стекол, материал рамы или покрытие стекла играют роль в изоляции дома. Таким образом, изоляционные характеристики этих элементов являются расчетными, и доступны различные категории с точки зрения эффективности гидроизоляции, воздухоизоляции и звукоизоляции.

Через воду для бытовых нужд может теряться до 15 % тепла, еще 15 % – через перекрытия дома. Правильное утепление фундамента и периметра дома не только сыграет роль в комфортности жилища, но и защитит его от образования плесени, скопления влаги, возможного нашествия насекомых и т. д.

Поэтому все указанные места здесь-верхние, от крыши до фундамента, должны быть должным образом изолированы и с использованием высококачественных материалов.

Начнем с крыши. Поскольку тепло перемещается вверх, неудивительно, что значительное количество тепла теряется через крышу. Изоляция, используемая на чердаке, обычно толще, чем в остальной части дома, поскольку в этом месте часто бывает много воздуха. Однако хорошая теплоизоляция не означает, что дом должен быть полностью герметичным, воздух должен правильно циркулировать и постоянно обновляться.
Хорошая теплоизоляция и адаптированная вентиляция идут рука об руку, поэтому, если циркуляция воздуха неэффективна, могут возникнуть проблемы с влажностью внутри жилища и его конструкции.

Изоляция также должна быть установлена ​​на потолках и между этажами. Это позволит стабилизировать температуру и обеспечить более однородный климат внутри дома и в разных комнатах. В дополнение к поддержанию надлежащей температуры изоляция также улучшит звукоизоляцию.

Конечно, внутренние и внешние стены также необходимо будет покрыть слоем изоляционного материала. Что касается наружных стен, ветрозащитные и водонепроницаемые мембраны иногда усиливают изоляционную эффективность. Как уже упоминалось, изоляция подвала, подвалов и фундамента будет играть большую роль во внутреннем климате дома. Среди прочего, это предотвратит риски влажности, инфильтрации и потенциального заражения насекомыми. Для утепления фундамента можно использовать разные методы, и изоляционные материалы обычно укладываются на ранней стадии строительства дома при возведении фундамента. Примыкания фундамента к стенам и перекрытиям дома также требуют большого внимания и качественных материалов.

Изоляция подвала поможет свести к минимуму слабые тепловые точки, через которые может выйти воздух, и, как следствие, снизить теплопотери, а также защитить гидроизоляцию от возможных повреждений, снизить уровень влажности и уменьшить риск образования конденсата на поверхностях.

Другими местами в доме, которые вы, возможно, захотите утеплить или от которых нужно изолировать жилые помещения, являются неотапливаемые помещения, такие как гаражи, складские помещения, зимние сады, другие холодные помещения и балки, например. Кроме того, хорошо подумать о контроле влаги и воздуха в местах с утечками и в более слабых местах.

МЕТОДЫ ИЗОЛЯЦИИ

Существует три основных способа утепления здания. Изоляционный материал может быть установлен изнутри конструкции, снаружи или встроен в строительные конструкции.

Каждый метод имеет свои плюсы и минусы, и выбор метода будет зависеть от различных факторов, таких как местоположение здания и уровень влажности, материал, используемый для изоляции, бюджет и т. д.

Большая часть изоляционные материалы, доступные на рынке, адаптированы для внутренней изоляции, хотя профессионалы могут рекомендовать определенные типы материалов больше, чем другие, например, жесткий пенопласт. В этом случае утеплитель размещается между наружными стенами и внутренней частью дома. Известно, что этот метод более доступен по цене, чем два других, обеспечивает хорошую звукоизоляцию благодаря эффективному звукопоглощению и сокращает время обогрева дома.

Однако у утепления изнутри есть и несколько отрицательных моментов: оно немного уменьшает площадь жилой площади, так как утеплитель уложен внутри дома. Большинство изоляционных материалов также требуют предварительного покрытия огнеупорным покрытием. При использовании внутреннего утепления гидроизоляционное покрытие не защищено, как в случае с наружным утеплением. Техника внутренней изоляции больше ценится в западноевропейских странах, тогда как техника внешней изоляции обычно используется, например, в северных странах.

Техника наружного утепления заключается в укладке изоляционного материала на наружные стены дома. Для красивой отделки стен изоляцию можно покрыть облицовкой, панелями или другими изделиями, предназначенными для этой цели. В отличие от предыдущего метода, толщина изоляции не влияет на поверхность жилой площади внутри дома.
Он также обеспечивает надежную гидроизоляцию и, таким образом, значительно снижает риск образования плесени и влаги в стенных полостях.

Кроме того, уменьшает тепловые мосты. Тепловые мосты расположены там, где соединяются материалы дома. Тепло может отводиться через балки легче, чем, например, через другие места. Мостики холода в основном располагаются там, где наружные стены соединяются с полом, внутренними стенами, оконными и дверными рамами. Таким образом, наружная изоляция обеспечивает эффективное покрытие, может использоваться как для существующих конструкций, так и для новых зданий.

Среди отрицательных сторон метода наружного утепления: стоимость. Действительно, метод внешней изоляции часто представляет собой более значительные инвестиции по сравнению с методом внутренней изоляции.

Третий метод заключается во встраивании изоляции внутрь конструкции здания. Этот метод в основном применяется к деревянным и железным каркасным домам. Тем не менее, он также может быть использован в традиционных типах зданий.

Теплоизоляция размещается между несущими балками, а теплоизоляция обеспечивается каждым из строительных материалов. Поэтому никаких дополнительных материалов использовать не нужно. Эта техника популярна и доступна. При использовании этого метода тепловые мосты встречаются реже, чем, например, при использовании метода внутренней изоляции. Однако он также может демонстрировать недостаточную тепловую инерцию, что часто приводит к необходимости дополнять его другим тонким изоляционным продуктом.

ЭФФЕКТИВНОСТЬ ИЗОЛЯЦИИ ПО ОСНОВНЫМ ПОКАЗАТЕЛЯМ

Несколько показателей позволяют оценить эффективность изоляционных материалов. При выборе материала они необходимы и предоставляют важную информацию. Среди основных показателей материальной эффективности три из них выделяются как существенные.

  • Теплопроводность ʎ материала описывает его способность передавать и проводить тепло. Чем ниже значение ʎ, тем выше эффективность материала для изоляции. Термическое сопротивление, R, рассчитывает сопротивление изоляции тепловому потоку. Значение R зависит от значения ʎ и толщины материала. R выражается в м²·К/Вт. Чем больше R, тем лучше, так как это означает, что тепловое сопротивление хорошее, а потери тепла низкие.
  • Теплопередача U, выраженная в Вт/м²K, противоположна тепловому сопротивлению R. U оценивает теплоемкость, отводимую от поверхности. Чем меньше U, тем меньше потери тепла.

Для измерения теплопроводности ʎ изоляцию помещают между двумя средами с двумя разными температурами. Разность между двумя температурами обозначается ΔT, толщина материала обозначается d, а А обозначает площадь поверхности изоляции. Количество переданного тепла (Q) внутри материала измеряется, когда поток стабилизируется. Количество необходимой энергии равно тепловому потоку, проходящему через материал, и количеству, необходимому для поддержания третьей температуры на постоянном уровне.

Следовательно, ʎ равно теплопередаче Q x толщина материала d / площадь поверхности A x разность температур ΔT и выражается в Вт (мК). Поскольку термическое сопротивление R представляет собой отношение толщины материала (d) к теплопроводности (ʎ), его значение рассчитывается следующим образом: R = d (м) / ʎ (Вт(мК))

Зная метод расчета эффективности изоляционного материала может быть полезен по разным причинам:

  • если вы хотите сравнить различные продукты,
  • , если вы не уверены в минимальной толщине, при которой продукт эффективен,
  • , если вы хотите проверить соответствие материала местным нормам и т. д.

Приведем пример: ищем термическое сопротивление изоляционного материала B толщиной 150 мм. Мы знаем, что теплопроводность ʎ материала составляет 0,0349 (Вт(мК)). По формуле R = d/ ʎ значение R равно 4,286 м²·К/Вт.
Это значение R относится только к изоляционному материалу. Например, чтобы узнать эффективность и термическое сопротивление стены, необходимо сложить R-значения различных компонентов стены.

Несмотря на местные правила и доступность материалов, регион и страна, где построен дом, местная погода, другие материалы дома также влияют на выбор надлежащих изоляционных материалов.

ИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

Изоляционные материалы могут быть классифицированы в зависимости от их компонентов и доступны на рынке в различных формах. К изоляционным материалам относятся расходуемые прокладки, жесткие плиты, войлок или даже сыпучие материалы. Они предлагают множество функций и более или менее адаптированы к различным местам в доме и использованию.

Вагонка и жесткая изоляция в основном используются в проектах реконструкции, когда необходимо заменить стены. Они эффективны для заполнения пространств и могут быть размещены между строительными материалами. Жесткая изоляция хорошо подходит, например, для изоляции стен, фундаментов и крыш.
Материалы с сыпучим наполнителем, обычно изготовленные из целлюлозы или стекловолокна, идеально подходят для чердака. Они также отлично подходят для заполнения труднодоступных мест, где другие типы изоляции было бы сложнее установить. Однако имейте в виду, что сыпучие материалы обрабатываются. Рекомендуется с осторожностью выбирать средства для ухода, так как некоторые из них могут взаимодействовать с другими строительными материалами, такими как металл, камень, дерево, и, возможно, повредить их.


Расширяющиеся прокладки и вдуваемая изоляция отлично подходят для доступа к труднодоступным местам, так как они очень похожи на сыпучие материалы. Поэтому они являются адаптированными решениями для изоляции старых зданий.

Изоляционные материалы можно разделить на четыре основные категории в зависимости от их компонентов:

  • Органические полимерные компоненты: вспененный полистирол, пенополиуретан, фенольная пена и т. д.
  • Компоненты растений и животных: целлюлоза, лен, перья, солома, древесная шерсть и т. д.
  • Минеральные компоненты: стекловата, минеральная вата, пеностекло и т. д.
  • Световозвращающие изделия: изделия с различными слоями из различных материалов.

На рынке доступно множество изоляционных материалов, отвечающих требованиям нескольких проектных рекомендаций, таких как бюджет, эффективность, воздействие на окружающую среду, качество внутреннего климата и т. д. Некоторые материалы более распространены в строительстве. Если вы решили утеплить дом самостоятельно, также внимательно ознакомьтесь с сертификатами продукции, каждый утепляющий материал должен соответствовать стандартам безопасности и производства.

Стекловолокно (или стекловата) является одним из наиболее часто используемых изоляционных материалов, и его успех обусловлен отличным соотношением цены и качества. Материал состоит из переработанного стекла, песка и связующего вещества. В среднем материал содержит от 40 до 60% переработанного стекла.

Изделия доступны в различных форматах и ​​с разной плотностью, для которых различаются толщина и значения термического сопротивления. Более плотные изделия предназначены для помещений с ограниченным пространством полостей, а самые тонкие можно использовать для стен и каркасов.
Среди материальных ценностей – устойчивость к огню и влаге, простота монтажа. Тем не менее, вы должны быть осторожны с установкой изоляции, так как она иногда раздражает кожу.
Другим распространенным материалом, используемым для утепления, является минеральная вата. В эту категорию входят два основных продукта. С одной стороны, минеральная вата состоит из базальта или диабаза. Компонент расплавляют до точки плавления, центрифугируют и превращают в волокна. С другой стороны, шлаковата представляет собой материал, изготовленный из металлургических шлаков, представляющих собой отходы, находящиеся на поверхности расплавленного металла. Шлаки превращаются в волокна и имеют вид стекловаты. Материалы из минеральной ваты также доступны в различных конфигурациях, но чаще всего их можно найти в виде войлока и насыпного наполнителя. В среднем он содержит 75% переработанных компонентов.

Изоляция из полистирола по-прежнему широко используется, несмотря на то, что продукты состоят из стирола, полученного в результате переработки сырой нефти. В процессе производства маленькие шарики захватывают воздух. Материал легкий, так как состоит на 98% из воздуха. Он также бесцветен и доступен в различных формах, таких как блоки, доски и сыпучие материалы. Можно найти более или менее толстый утеплитель из полистирола и с разными значениями термического сопротивления.

Обратите внимание, что материалы из полистирола следует использовать с осторожностью, и они плохо подходят для электроустановок. Если материал легкий, простой в монтаже и недорогой, он еще и накапливает статическое электричество, плохо приспособлен к улавливанию и борьбе с влагой. Он также часто имеет более низкую тепловую эффективность по сравнению с другими материалами.
Из трех вариантов наиболее экологичными являются минеральная вата и стекловолокно, а минеральная вата – особенно экологичная, безопасная и полезная для здоровья. Минеральная вата и стекловолокно безопасны в установке. Они широко используются, но для изоляции здания доступны и другие зеленые материалы.

Целлюлозная изоляция изготавливается из переработанной бумажной продукции на 85%, в том числе большей частью из газет. После измельчения бумажные изделия превращаются в волокна. Минеральные бораты добавляются для придания материалу огнестойкости, устойчивости к плесени и насекомых (включая термитов, тараканов, муравьев, уховерток и т.

д.). По сравнению со стекловолокном изоляция из целлюлозы представляет меньший риск для здоровья и более высокое значение термостойкости. Однако материал более подвержен влаге и нуждается в дополнении пароизоляцией. Другие недостатки включают стоимость установки и возможную усадку материала со временем, что приводит к снижению теплового сопротивления.
В остальном целлюлозная изоляция не содержит свободного формальдегида, сульфата аммония, стекловолокна и асбеста.

Также можно выбрать утеплитель из натуральных волокон, таких как хлопок, овечья шерсть, солома или пенька. Хлопковые изоляционные материалы состоят на 85% из переработанного хлопка, в основном из джинсовой промышленности, и еще на 15% из пластиковых волокон, обработанных боратом. К преимуществам хлопкового утеплителя можно отнести безопасный монтаж материала, отличные звуко- и водопоглощение.

Хлопок — экологически чистый и возобновляемый материал. С другой стороны, материал не расширяется быстро и стоит дороже, чем более традиционные изоляционные материалы.

Изоляция из овечьей шерсти устойчива к насекомым и плесени благодаря обработке. Материал имеет хороший уровень влагопоглощения, огнестойкий и долговечный, а также прост в монтаже и экологичен. К недостаткам материала можно отнести более низкую тепловую эффективность по сравнению с другими продуктами и дорогостоящий монтаж.

Изоляция из соломы, известная и давно используемая в строительной отрасли, также представляет собой зеленую альтернативу наиболее распространенным изоляционным материалам. Если это может показаться немного радикальным, производители вносят инновации, чей интерес к материалу возобновляется. В настоящее время они предлагают инновационные многослойные панели из прессованной соломы.

Конопляный шерстяной материал изготавливается из компонентов растений конопли. Обладает отличными изоляционными свойствами, как тепловыми, так и акустическими. Материал экологически чистый и сохраняет CO2. Конопля не раздражает кожу, не содержит вредных веществ, защищает от плесени и бактерий, не имеет запаха, обеспечивает регуляцию влажности.
Отрицательная сторона: материал относительно необычный и, следовательно, недостаточно протестированный.

Если разнообразие изоляционных материалов велико, имейте в виду, что некоторые из них, использовавшиеся в 60-х и 70-х годах, больше не рекомендуются, так как тесты и исследования выявили опасность для здоровья и сомнительную эффективность. Например, вермикулитовый материал и карбамидоформальдегидная пена.

КОГДА ИЗОЛЯЦИЯ СТАНОВИТСЯ БОЛЕЕ ЗЕЛЕНОЙ И ИННОВАЦИОННОЙ

По мере того, как сфера строительства становится более экологичной, предлагая более масштабные инновационные решения, экологически безопасные конструкции и обновленные продукты, чтобы лучше реагировать на экологические, социальные и социальные проблемы, теплоизоляционные решения нацелены на то же самое. цели. Это не просто глобальное осознание и необходимость соблюдать новейшие правила, но и искреннее желание меняться и предлагать более адаптированные и инновационные решения в области строительства и строительства, которые в настоящее время лидируют в отрасли.

Зеленые цели, описанные в последних правилах, включают обезуглероживание строительных материалов, в том числе изоляционных изделий. За последние десятилетия производители и производители предвидели усилия, направленные на то, чтобы внести изменения. Следовательно, рынок уже эволюционировал, чтобы преодолеть некоторые негативные последствия изоляционных материалов для безопасности и здоровья, делая доступными высококачественные материалы с эффективными тепло- и звукоизоляционными свойствами.

Материалы, частично состоящие из возобновляемых компонентов, как правило, более экологичны, как и
изделия из стекловолокна, за счет 100% интеграции элементов биологического происхождения.
Биоматериалы и экологически чистые материалы уже доступны. Это относится к продуктам из целлюлозы, материалам из древесного волокна и т. д. Эти продукты ценятся за их низкий углеродный след, их возобновляемые и экологически чистые стороны и способность накапливать CO2, но их критикуют за их стоимость и более низкую эффективность по сравнению с более традиционные теплоизоляционные элементы.
Чтобы считаться материалом биологического происхождения, продукт должен быть изготовлен из возобновляемых компонентов животного или растительного происхождения. Материал, произведенный из другого экологически чистого вещества (включая древесное волокно, утиное перо, переработанную ткань, бумажную целлюлозу и т. д.), также может быть квалифицирован как экологически чистый.

Тем не менее, все еще сложно квалифицировать изоляционный материал как 100% зеленый и экологически чистый, поскольку многие из них состоят не только из веществ биологического происхождения. Если некоторые из них приближаются, необходимо добавить дополнительные материалы, чтобы завершить характеристики материала. Так обстоит дело с минеральной ватой, для которой всегда необходима паровоздушная мембрана, так как она подвержена воздействию влаги. Если альтернативы промышленным продуктам находятся в стадии разработки и постепенно набирают популярность, то более традиционные материалы, такие как стекловата или минеральная вата, еще не свергнуты. Их характеристики хорошо известны и проверены годами, процессы установки также проще и быстрее, и по сравнению с более экологичными материалами они являются менее дорогими решениями с превосходной эффективностью.

ОТ СТАРОГО ОБЕСПЕЧЕНИЯ К СОВЕРШЕННО НОВОМУ ПРОЦЕССУ

Мы всегда стремились создавать дома со сбалансированным внутренним климатом, поскольку колебания температуры могут оказывать существенное влияние на нашу повседневную жизнь и комфорт. Когда становится слишком жарко, мы все ищем прохладное место, а когда температура падает, нет ничего лучше убежища, где можно согреться. Это верно, независимо от того, из какого мы века.

В Древнем Египте египтяне одними из первых начали создавать толстые камни из глины, чтобы поддерживать температуру внутри пирамид днем ​​и ночью, когда температура резко падала. Не зная о его токсичности, древние греки использовали асбест, чтобы утеплить свои дома и сохранить тепло. Они также были первыми, кто создал щели в стенах, что позволило воздуху лучше циркулировать. Римляне, помимо того, что они были первой цивилизацией с водопроводом в помещении, знали о горячих потерях, действующих через трубы. Чтобы решить эту проблему, они использовали пробку, чтобы закрыть трубы и уменьшить рассеивание тепла. В северных странах, особенно подверженных резким морозам, викинги заделывали щели в домах грязью.

Начиная со средних лет, большие ковры прикрепляли к стене, чтобы создать дополнительный изоляционный слой. Прием (или привычка)
сохранялся долгое время, так как некоторые здания и жилые дома прошлого века утеплялись точно так же. В настоящее время эта тенденция возобновляется в декоративных целях.

Потребность в изоляции возросла во время промышленной революции. Полотно труб широко использовалось, и потери тепла от них стали проблемой не только с точки зрения рассеивания тепла, но и для рабочих, например, которые могли навредить себе. На тот момент асбест в основном использовался в качестве изоляции и стал основным изоляционным материалом. Тем не менее, учитывая проблемы со здоровьем, которые это вызывает, использование материалов уменьшилось с 70-х годов.

Вообще говоря, с 30-х годов возросла осведомленность о необходимости теплоизоляции в строительстве и ее преимуществах. С этого периода количество утепленных зданий начало расти. Именно в этот период были изобретены окна с двойным остеклением. Если бы они были эффективными, окна с двойным остеклением также были дорогими, и не каждый мог их себе позволить. По сей день не редкость увидеть здания с одностеклянными окнами, хотя они становятся все реже.

Если потребность в теплоизоляции не нова, то за последнее десятилетие было предпринято большинство инноваций и инициатив, направленных на гармонизацию внутреннего климата и усиление изоляционных свойств строительных материалов за счет добавления новых технологий и приемов, что приносит пользу жителям. от преимуществ изоляции. Эта отрасль все еще молода, и инновации, безусловно, будут расширять рынок в будущем, принимая во внимание медицинские, экологические, социальные и социальные проблемы нашего современного общества.

Проконсультируйтесь со специалистом по строительству

Мы будем рады помочь вам найти эффективные решения для вашего следующего проекта дома.

Связаться с нами

Изоляция вашего старого дома: часть 1

В вашем старом доме зимой сквозняк, а летом болото? Почти невозможно эффективно нагревать и охлаждать?

Это потому, что когда ваш дом был построен полвека или более назад, никто особо не задумывался об утеплении. Энергия была в изобилии и дешева. Половина мировой нефти производилась в США. Экономия энергии была просто не очень важна. Эксперты считали, что 4-дюймового «мертвого» воздушного пространства, захваченного в полостях стоек ваших стен, в сочетании с пароизоляцией достаточно, чтобы сохранить тепло внутри вашего дома.

Теперь мы знаем, что эксперты ошибались.

Теоретически воздух является хорошим изолятором, если его можно удержать от движения. Сухой, абсолютно неподвижный воздух имеет R-значение 3,6 на дюйм воздуха — такой же хороший, как и у большинства изоляционных материалов.

Но воздух внутри ваших стен никогда не бывает неподвижным. Он постоянно движется, и при этом движении создается конвекционный поток, который приводит к значительной передаче тепла из вашего дома зимой в ваш дом летом.

Каждое из этих значений является мерой теплопередачи через материал.

U-значение (или U-фактор) является мерой теплопроводности — насколько хорошо тепло проходит между теплой стороной материала и его холодной стороной. Чем ниже значение U, тем медленнее передается тепло.

Значение R является мерой теплового сопротивления проводимости. Чем выше значение R, тем большее сопротивление теплопередаче имеет материал.

Две рейтинговые системы противоположны. Чем больше материал сопротивляется теплопередаче (высокое значение R), тем медленнее передается тепло (низкое значение U). Материал, который не сопротивляется теплопередаче (низкое значение R), очень хорошо проводит тепло (высокое значение U). На самом деле U-значение материала — это то, что математики называют обратной величиной его R-значения, и наоборот.

Преобразование значения U в значение R и обратно

Формула преобразования R-значения в U-значение: U-значение=1/R-значение. Так, если сопротивление материала теплопередаче R-2,2, его рейтинг проводимости или U-значение составляет 1, деленное на 10 (1/10), или U-0,45. Это типичное значение U для теплового окна с двойным остеклением или окна с одинарным остеклением и штормовым окном.

Значение U обычно используется в рейтинговых окнах. Значение U окна представляет собой среднее значение измерений, проведенных в нескольких точках окна. Преобразование их в более легкое для понимания значение R — это в основном тот же процесс, что и преобразование значения R в значение U. R-значение = 1/U-значение. Таким образом, оконное стекло с рейтингом U-0,45 имеет значение R 1/0,45 или R-2,2. Сравните это с R-13, требуемым для стен дома Энергетическим кодексом штата Небраска, и вы увидите, что окно представляет собой значительную дыру в изоляции вашей стены.

Американские и европейские (метрические) значения U

Чтобы сделать ситуацию еще более запутанной, на самом деле есть два широко используемых рейтинга U-значения: англо-американский рейтинг и европейский или метрический рейтинг, также называемый K-значением или K-фактором. Когда вы смотрите на U-значения, вам нужно знать, является ли это английским/американским U-значением или европейским рейтингом. Как правило, рейтинг США будет указан на этикетках окон в форме «значение U (США / I-P)», что отличает его от метрического фактора.

Значение R используется в основном в США и Канаде. Остальной мир использует европейское значение U, за исключением Великобритании, где используется английское значение U. Европейский рейтинг U (основанный на метрах и градусах Кельвина) не является обратной величиной американского значения R материала (основанного на футах и ​​градусах Фаренгейта). Чтобы получить метрическое значение U материала, разделите 1 на его значение R, а затем умножьте результат на 5,682. Чтобы преобразовать метрическое значение U в американское значение U, умножьте значение R на 0,176, а затем разделите 1 на результат.

Будет ли реальная R-ценность, пожалуйста, встанет?

Чтобы чрезвычайно усложнить решения об изоляционных материалах, существует не одно значение R, а несколько. Каждый из них передает полезную информацию, но может возникнуть путаница, если вы не знаете, о каком R-значении сообщается.

Центр полости R-значение

Сообщаемый рейтинг R-значения для изоляционного материала оценивает только изоляционный материал. 4-дюймовый войлок с рейтингом R-13 указывает только сопротивление самого материала войлока. Он не оценивает всю стену, в которой установлен войлок. Этот рейтинг обычно называют рейтингом «центра полости». Когда вы видите R-13, напечатанный на обратной стороне стекловолоконной плиты, это означает, что это центр его полости и, вероятно, будет выше, чем его фактическая производительность в вашей стене после его установки. отображать это значение R на своих материалах в соответствии с федеральным законом.

Чистая стена R-значение

Более точный способ измерения тепловых потерь заключается в установке материала в стену, а затем измерении теплового сопротивления стены, включая необходимые элементы каркаса (но не окна, углы или стыки на крышах, фундаменте и полах). Это значение R «Clear-Wall», и оно почти всегда ниже, чем рейтинг центра полости, потому что он включает в измерения такие вещи, как элементы деревянного каркаса, а элементы деревянного каркаса обычно не так изолируют, как специальная изоляция. материалов, таких как стекловолокно или целлюлоза. (см. схему в основной статье).

Значение R для всей стены

В недавнем исследовании рейтингов изоляции стен Окриджская национальная лаборатория (ORNL) разработала более точный рейтинг: рейтинг «Вся стена». Согласно исследованию, измерения теплового сопротивления «Чистая стена» и «Центр полости» вводят в заблуждение, поскольку они не учитывают все возможные «тепловые шорты» или «мостики» материала каркаса через изоляцию. Короткое замыкание или перемычка — это просто место в стене, где изоляция прерывается другими материалами. Шпилька в обычной стене короткая, как и зазор, оставленный для электрической коробки.

Oak Ridge предлагает рейтинг R-значения для всей непрозрачной стены (не включая окна и двери) для измерения тепловых характеристик не только изоляции и конструктивных элементов, но также эффектов их установки и типичных деталей интерфейса стены, таких как пересечения. с другими стенами, полами, фундаментами и окнами. Стандарт также учитывает ранее игнорируемые факторы, такие как влагостойкость (изоляционные свойства некоторых материалов во влажном состоянии могут значительно ухудшиться), тепловая масса и сопротивление воздухопереносу (тепло перемещается вместе с воздухом) изоляционных материалов.

Результаты были неожиданными и даже пугающими. Лабораторные исследования обнаружили большие различия между заявленными показателями изоляции и ее фактическими тепловыми характеристиками в стене. Материалы могут терять до половины своего номинального значения теплопроводности при установке в типовую стену. Лучшие показатели показали утепленные железобетонные формы и конструкционные утепленные панели (СИП). Было обнаружено, что 4-дюймовая стена SIP более эффективно блокирует теплопередачу, чем 6-дюймовая обычная стена с каркасом из стоек, и обеспечивает в 15 раз меньшую инфильтрацию воздуха. Наихудшими показателями были войлочные материалы, особенно войлок из стекловолокна. Даже очень тщательная установка этих материалов оставляет небольшие зазоры и пустоты, через которые уходит тепло, что резко снижает эффективное значение R материала.

Чтобы прочитать краткое изложение отчета об исследовании, перейдите на веб-сайт ORNL Building Envelope Research. Чтобы рассчитать R-коэффициент теплоизоляции в вашем доме, используйте Калькулятор тепловых характеристик стены ORNL. Результаты, вероятно, вас удивят.

В любом случае, теперь мы познакомились с U-значениями и R-значениями и лучше понимаем, почему подрядчики по теплоизоляции проводят значительную часть года в терапии.

Мы ничего не можем сделать, чтобы остановить движение воздуха и тепла вместе с ним. Все, что мы можем сделать, это замедлить его. Мы делаем это, создавая барьер между горячими и холодными объектами, чтобы передача занимала больше времени. Этот барьер является изоляцией.

Конверт здания

Независимо от формы или размера вашего дома, с точки зрения ученого-эколога, это просто коробка, состоящая из крыши, пола и стен. Эта коробка отделяет нас от внешней среды. Он защищает от ветра, дождя, жуков и тварей. Это также наша основная линия защиты от слишком жаркого или слишком холодного климата. Инженеры-экологи называют коробку «оболочкой здания».

Большинству людей наиболее комфортно, когда температура воздуха вокруг них составляет около 70 ° F, а влажность составляет около 40%. Чтобы поддерживать эту среду в наших домах, мы добавляем тепло (а иногда и влажность) в коробку зимой и извлекаем тепло и влажность с помощью кондиционера летом.

Когда мы делаем это, мы создаем тепловой дисбаланс. Добавление тепла в наш дом зимой означает, что внутри оболочки здания теплее, чем снаружи. Природа не терпит теплового дисбаланса и начинает искать способы восстановить баланс. Внутреннее тепло изо всех сил пытается выйти наружу, где есть холодный воздух, который можно согреть. Чтобы выйти наружу, он должен пройти через ограждающие конструкции здания. Здесь мы пытаемся его заблокировать.

Это соревнование, в котором мы не можем победить. Тепло всегда находит выход — в конце концов. Лучшее, что мы можем сделать, это партизанские отсрочки. Мы можем так усложнить выход, что это займет много времени. И это цель изоляции и других мер по защите от атмосферных воздействий — не удерживать тепло от прохождения через оболочку здания, а увеличивать его продолжительность.

Чем дольше мы можем удерживать тепло внутри ограждающих конструкций, тем реже нам приходится добавлять тепло. Чем реже нам приходится добавлять тепло, тем больше денег мы экономим и тем меньше загрязняем окружающую среду. Зимой без теплоизоляции наши дома могут терять все свое тепло до семи раз в час. С адекватной изоляцией и защитой от атмосферных воздействий мы можем сократить это время до одного раза в три часа. Это очень существенная разница, которая сэкономит вам много денег и уменьшит ваше влияние на глобальное потепление.

Как движется тепло

Тепло может передаваться через ограждающие конструкции здания тремя способами: конвекцией, теплопроводностью и (в гораздо меньшей степени в нашей местности) излучением.

Конвекция является звездным игроком. Он играет роль почти во всех тепловых потоках в вашем доме и из него. Конвекционные потоки перемещают воздух в ваш дом и из него через щели в стенах и крыше, а также вокруг окон и дверей. Тепло и холод комбинируются с движущимся воздухом. Горячий воздух, выходящий из вашего дома, уносит тепло из вашего дома, а холодный воздух, просачивающийся в ваш дом, должен быть нагрет.

Конвекция также переносит тепло через стены и крышу здания. Проводимость и излучение также играют роль, но основной движущей силой является конвекция. Если конвекцию можно замедлить, ваши теплопотери резко сократятся, а основная цель большинства теплоизоляционных материалов — уменьшить конвекцию.

Атмосферная конвекция: утечки воздуха и теплопередача

Тепло и холод в сочетании с потоком воздуха. Если вы открываете дверь зимой, горячий воздух выходит через верхнюю часть двери, а холодный – через нижнюю. Произошел теплообмен — инфильтрация холодного воздуха и эксфильтрация теплого воздуха. Тот же эффект возникает, когда в ваших стенах есть утечки воздуха. Воздух проходит даже через очень маленькие пустоты в настенных покрытиях и через щели, которые могут быть оставлены вокруг окон и дверей или там, где встречаются разные материалы.

Различные материалы расширяются и сжимаются с разной скоростью в ответ на изменения температуры и влажности. Стык, где встречаются два разных материала, всегда представляет собой проблему атмосферостойкости. Даже если стык изначально был хорошо запечатан, через несколько лет расширения и сжатия, вероятно, образовался зазор. Это может быть очень маленький разрыв, но каждый маленький разрыв причиняет боль. Тепло перемещается с воздушным потоком через щели в ограждающей конструкции.

Некоторое движение воздуха через оболочку здания необходимо. Вам нужно выпустить спертый воздух из дома и ввести свежий наружный воздух. Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха рекомендует не менее восьми полных воздухообменов каждые 24 часа. В жилищах, которые настолько плотно запечатаны, что происходит меньше минимального обмена, необходимо использовать какую-либо форму механической системы вентиляции для увеличения пассивного переноса воздуха.

Как владелец старого дома, у вас нет такой проблемы. У вас обратная проблема. У вас слишком сильный поток воздуха через стены и крышу. Старые дома могут допускать до 168 полных воздухообменов каждый день.

Каждый воздухообмен означает, что весь нагретый воздух в доме вышел наружу, а вместо него в дом пришел холодный наружный воздух, и все это необходимо нагреть или охладить в зависимости от времени года. До 40% потерь тепла происходит через воздух.

Контроль и минимизация этого переноса — это работа по «защите от атмосферных воздействий» — процессу герметизации трещин, зазоров и дыр (особенно вокруг дверей, окон, труб и проводки) с помощью герметика и уплотнения, а также замены сквозняков дверей и окон или их защиты от атмосферных воздействий.

Но шумоизоляция тоже играет роль. Некоторые виды изоляции, особенно пенопласт и целлюлоза, хорошо находят и герметизируют небольшие пустоты и трещины. Эти типы изоляции пропускают очень мало воздуха, и хотя они не заменяют хорошую программу защиты от атмосферных воздействий, они вносят значительный вклад в ее успех.

Конвекция внутри ваших стен: тепловой конвейер

Инфильтрация и эксфильтрация воздуха, однако, не являются единственным способом передачи тепла в дом и из него посредством конвекции. Большая часть теплопередачи через неизолированную стену осуществляется воздушной конвекцией, которая создает конвейерную ленту воздуха внутри вашей стены, которая очень эффективно перемещает тепло от теплой стороны стены к холодной стороне. Вот как это работает:

Допустим, зима. Вы наливаете тепло в свой дом, чтобы согреться. В вашем доме жаркие 75°. Таким образом, внутренний гипсокартон или штукатурка в полости стойки приятны и теплы. На улице 35°. Наружная обшивка и обшивка, закрывающая полость стены, очень холодная.

Самый большой тепловой разрыв в ваших стенах — это ваши окна.

С точки зрения инженера по теплоизоляции, окна — это дыры в стене, через которые уходит много тепла, независимо от того, насколько герметична и хорошо изолирована остальная часть стены. К сожалению, с этим мало что можно сделать.

Виной всему стекло. Стекло — ужасный изолятор. И окна в основном стеклянные. Одиночное стекло имеет коэффициент изоляции чуть меньше R-1. Добавление штормового окна улучшает это до R-2.2.

Тепловые окна с тройным стеклом, с использованием всех новейших технологий, включая заполнение газом аргона или криптона, покрытия с низким коэффициентом излучения (low-E) и тщательную герметизацию, могут в лучшем случае достигать R-7,5. Но многие из этих технологий являются временными. (низкоэмиссионные покрытия со временем разрушаются, теряя свою эффективность, а газовые наполнители в конечном итоге вытекают.) И R-7,5 все еще далек от минимального R-19.что должно быть в ваших стенах.

Мы когда-нибудь получим R-19 в окнах? Вероятно. В разработке находятся технологии почти научной фантастики, космической эры, но они еще не готовы к прайм-тайму.

Чтобы узнать больше об изоляции и ваших старых окнах, см. «Ваши старые окна».

Воздух рядом с внутренней стеной получает немного тепла от теплого внутреннего гипсокартона и, как и любой теплый воздух, начинает подниматься вверх. Поднимаясь, он продолжает отбирать тепло с теплой стороны стены. Когда он достигает верхней части полости шипа, он больше не может подняться. Но внизу есть более теплый воздух, который продолжает подниматься вверх, отталкивая наш маленький пакет воздуха, прижимая его к этой морозной внешней стороне стены. Как только он касается наружной стены, он начинает отдавать тепло, становясь холоднее.

Холодный воздух тяжелее теплого, поэтому он начинает падать. Падая, он отдает еще больше тепла холодной внешней поверхности полости стенки, становясь все холоднее и холоднее. В нижней части полости для стоек он останавливается и был бы рад остаться там навсегда, но над ним тяжелый столб холодного воздуха давит на него, пока он в конце концов не упирается в теплую внутреннюю сторону стены. Он снова начинает нагреваться и снова поднимается. И цикл начинается заново.

Это тепловой конвейер. Это происходит внутри каждой неизолированной полости стены. Чем больше разница температур между теплой стороной стены и холодной стороной, тем быстрее циркулирует воздух. Эта циркуляция является теплообменником — и, к сожалению, очень эффективным теплообменником. Он забирает тепло с внутренней стороны стены и передает его внешней стороне, которая, в свою очередь, передает его наружному воздуху.

Конвейер непрерывен, каждую минуту каждого дня круглый год, и его невозможно остановить. Летом он просто реверсирует, передавая тепло от теплой внешней стороны стены к кондиционируемой внутренней стороне. От 50% до 70% зимних потерь тепла в ваших стенах происходит именно благодаря этому конвейерному процессу.

Теплопроводность и тепловой мост

Тепло также может передаваться посредством теплопроводности — движения тепла на микроскопическом уровне от молекулы к молекуле внутри материала. Когда атом нагревается, его электроны движутся быстрее, что приводит к возбуждению электронов соседних атомов, поэтому они движутся быстрее. Они, в свою очередь, возбуждают еще больше электронов, и процесс распространяется. Так тепло переходит от одного атома к другому. Некоторые материалы, как и большинство металлов, являются хорошими проводниками тепла. Нагрейте один конец металлического стержня пропановой горелкой, и очень быстро другой конец станет горячим.

Большинство газов, включая воздух, являются плохими проводниками. Воздух в полости вашей стены — плохой проводник тепла. И когда его заменяют подходящим изоляционным материалом, конвекция замедляется, полость в стене становится эффективным барьером для теплопередачи. Но воздух — не единственный материал в ваших стенах. Существует также деревянный каркас стены. Деревянный каркас проникает сквозь стену снаружи внутрь, создавая так называемый «тепловой мост», по которому тепло может проходить посредством теплопроводности.

Древесина (которая плотнее воздуха и содержит воду — очень хороший проводник тепла) проводит тепло лучше, чем воздух, и намного лучше, чем большинство изоляционных материалов. Значение R сосны, пихты и ели, используемых в каркасе стен, составляет около 1,25 на дюйм. Сравните это с 3,6 на дюйм для сухого неподвижного воздуха, 3,85 на дюйм для плотной целлюлозы и 6,25 на дюйм для пенопласта с закрытыми порами. Другие материалы еще менее устойчивы к теплопередаче. Стальные шпильки, например, являются очень хорошими проводниками тепла. К счастью, они редко используются в жилом строительстве для наружных стен.

Чтобы свести к минимуму тепловые мосты, мы должны уменьшить количество элементов каркаса до минимума. Конечно, этому есть предел. Если вы уменьшите каркас слишком сильно, ваш дом может рухнуть. Но многое можно сделать. Например, расстановка стоек от 16 дюймов в центре до 24 дюймов в центре обеспечивает такие же прочные стены, но с меньшим количеством тепловых мостов. Использование меньшего количества пиломатериалов для каркаса также полезно для окружающей среды, поскольку требует уничтожения меньшего количества деревьев. Он также требует меньше труда, поэтому стоит немного меньше, чем традиционное обрамление.

Методы каркаса, используемые для сокращения использования пиломатериалов, были разработаны инженерами-строителями за последние 20 лет при спонсорской поддержке Министерства энергетики и жилищного строительства и городского развития (HUD). Все вместе они называются Optimum Value Engineering или OVE.

OVE использует инженерные принципы, чтобы свести к минимуму использование пиломатериалов при соблюдении требований к структурным характеристикам строительных норм и правил. (1) Это уменьшает количество элементов каркаса (2) устраняет карманы в каркасе, особенно в углах и пересечениях стен, которые невозможно эффективно изолировать, и (3) уменьшает количество элементов каркаса, которые полностью проходят через стену.

В новом строительстве или при надстройке, если мы не используем конструкцию из структурно-изолированных панелей (SIP) (которую мы предпочитаем), то мы используем методы OVE во всех наших стенах и каркасах крыш.

В вашем старом доме, построенном традиционным способом с использованием большого количества пиломатериалов, эти методы менее полезны. Но исследования, которые привели к разработке стандартов OVE, многое рассказали нам о том, где в традиционных стенах могут возникнуть проблемы с изоляцией.

Например, мы уделяем особое внимание углам и местам, где внутренние стены встречаются с внешними стенами, а также всем углам. Это особые проблемные места для установки эффективной изоляции.

Радиация

Тепло, как и свет, может перемещаться в виде электромагнитных волн. Это волны инфракрасного спектра. Мы не можем их видеть, но мы можем чувствовать их как тепловые волны. Подобно свету, им не нужен материал для движения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *