Схема соединения обмоток двигателя: Схема обмоток трехфазных электрических двигателей и их соединение на клеммных панелях Статьи

Схемы соединения обмоток.

В асинхронных трехфазных двигателях используются два способа соединения фаз обмоток между собой: в звезду и треугольник. Эти соединения могут выполняться как внутри машины — глухое соединение, так и вне двигателя — с помощью сменных перемычек на специальном щитке, установленном на корпусе машины. В первом случае к выводному щитку подводятся три вывода, во втором — шесть выводов (начала и концы фаз). Внешнее соединение фаз наиболее удобно с точки зрения ее эксплуатации. В таком случае начала и концы фаз обмоток могут свободно отсоединяться при необходимости и подключаться к испытательной аппаратуре.

Питающее напряжение.

Асинхронные двигатели общего назначения обычно выпускаются для работы на двух напряжениях, например 127/220, 220/380 и 380/660 В. При меньшем из каждых двух напряжений фазы двигателя соединяются в треугольник, а при большем — в звезду. При внешнем соединении фаз двигателя сравнительно просто можно подключить его к одному из указанных на щитке напряжений.

Некоторые электродвигатели выпускаются на одно напряжение, в этом случае фазы соединены в звезду.

Электротехнические материалы.

Для магнитопроводов (сердечников) статора и ротора асинхронных двигателей общего назначения широко применяются холоднокатаные низколегированные электротехнические стали. Они выпускаются в рулонах (лентах) нужной ширины, что позволило автоматизировать процесс штамповки листов и уменьшить отходы. Для двигателей серии 4А мощностью до 15-20 кВт применяется холоднокатаная сталь марки 2013(нелегированная), а для машин большей мощности — сталь марки 2212 (слаболегированная). Для двигателей старых серий (А, А2) применялась горячекатаная сталь марки 1211. Применение холоднокатаных сталей позволило снизить расход стали на 10-15 и массу конструктивных деталей на 5-7% .

Изоляционные материалы применяются для изоляции токоведущих проводов, расположенных в одном пазу (друг от друга) — витковая изоляция, проводов разных фаз между собой — междуфазовая изоляция, проводов от заземленных сердечников — корпусная изоляция.

Толщина изоляции определяется рабочим напряжением двигателя, классом нагревостойкости изоляции, условиями эксплуатации двигателя. В зависимости от предельно допускаемой температуры изоляционные материалы подразделяются на классы нагревостойкости. В свою очередь класс нагревостойкости изоляции (витковой, междуфазовой, корпусной) и пропиточных составов определяет допустимые превышения температуры для других частей двигателя в соответствии с ГОСТ 183-74.

В соответствии с ГОСТ 8865-70 изоляционные материалы разделены на семь классов нагревостойкости — У, А, Е, В, F, Н, С. Для изоляции асинхронных двигателей общего назначения обычно применяются четыре класса Е, В, F, Н с допустимыми температурами изоляционного материала 120, 130, 155, 180 °С соответственно. Обмоточные провода изготовляются с эмалевой, эмалево-волокнистой или волокнистой изоляцией. Толщина изоляционного слоя у проводов с эмалевой изоляцией в 1,5- 3 раза меньше, чем у проводов с волокнистой изоляцией; эмалевая изоляция, кроме того, лучше проводит тепло и является более влагостойкой.

Поэтому в двигателях современных серий применяются в основном провода с эмалевой изоляцией марок ПЭТВ, ПЭТВМ(класс нагревостойкости В) и ПЭТВ, ПЭТ 155 (класс F). Провода ПЭТВМ и ПЭТМ разработаны для механизированной укладки обмоток. В двигателях напряжением 3 кВ и выше кроме указанных проводов применяются также провода со стекловолокнистой изоляцией марок ПСД и ПСДК. Диаметр изолированного провода при механизированной укладке всыпной обмотки не превышает 1,4-1,6 мм, при ручной укладке — до 1,8 мм.

Общая электротехника с основами электроники

Общая электротехника с основами электроники
  

Попов В. С., Николаев С. А. Общая электротехника с основами электроники, М., «Энергия», 1972, — 504 c.

В книге рассмотрены электрические цепи, электрические машины и трансформаторы, электротехнические намерения и приборы, электропривод и аппаратура управления, передача и распределение электрической энергии, электронные лампы, газоразрядные приборы, полупроводниковые приборы, фотоэлектрические приборы, усилители и генераторы,

Книга предназначена для учащихся техникумов неэлектротехнических специальностей.



Оглавление

Предисловие
Введение
Часть первая. Общая электротехника
1-1. Основные понятия
1-2. Электрическое напряжение. Потенциал
1-3. Электропроводность
1-4. Электрическая емкость. Конденсаторы
1-5. Соединение конденсаторов
1-6. Энергия электрического поля
1-8. Электроизоляционные материалы
Глава вторая. Электрические цепи постоянного тока
2-1. Электрический ток
2-2. Электрическая цепь и ее элементы
2-3. Закон Ома
2-4. Электрические сопротивление и проводимость
2-5. Зависимость сопротивления от температуры
2-6. Проводниковые материалы
2-7. Работа и мощность
2-8. Преобразование электрической энергии в тепловую
2-9. Электрическая нагрузка проводов и защита их от перегрузки
2-10. Потеря напряжения в проводах
2-11. Первый закон Кирхгофа
2-12. Последовательное соединение сопротивлений — приемников энергии
2-13. Параллельное соединение сопротивлений — приемников энергии
2-14.
Смешенное соединение сопротивлений
2-15. Два режима работы источника питания
2-16. Второй закон Кирхгофа
2-17. Расчет сложных цепей
2-18. Химические источники питания
2-19. Соединение химических источников питания
2-20. Нелинейные электрические цепи
2-21. Лабораторная работа. Потеря напряжения в линии
Глава третья. Электромагнетизм
3-1. Магнитное поле тока. Магнитная индукция. Магнитный поток
3-2. Электромагнитная сила
3-3. Взаимодействие параллельных проводов с токами
3-4. Магнитная проницаемость
3-5. Напряженность магнитного поля. Магнитное напряжение
3-6. Закон полного тока
3-7. Магнитное поле катушки с током
3-8. Ферромагнетики, их намагничивание и перемагничивание
3-9. Ферромагнитные материалы
3-10. Магнитная цепь и ее расчет
3-11. Электромагниты
3-12. Электромагнитная индукция
3-13. Принцип работы электрического генератора
3-14. Принцип работы электродвигателя
3-15. Вихревые токи
3-16. Индуктивность. Электродвижущая сила самоиндукции
3-17. Энергия магнитного поля
3-18. Взаимная индуктивность
Глава четвертая. Электрические машины постоянного тока
4-1. Назначение машин постоянного тока
4-2. Устройство машины постоянного тока
4-3. Принцип работы машины постоянного тока
4-4. Устройство обмотки якоря
4-5. Электродвижущая сила обмотки якоря
4-6. Электромагнитный момент на валу машины
4-7. Механическая мощность машины постоянного тока
4-8. Реакция якоря машины постоянного тока
4-9. Коммутация тока
4-10. Понятие о номинальных данных и характеристиках электрических машин
4-11. Генератор с независимым возбуждением
4-12. Генератор с параллельным возбуждением
4-13. Генератор со смешанным возбуждением
4-14. Электродвигатели постоянного тока
4-15. Электродвигатель с параллельным возбуждением
4-16. Электродвигатель с независимым возбуждением
4-17. Электродвигатели с. последовательным и со смешанным возбуждением
4-18. Потери и коэффициент полезного действия
4-19. Лабораторная работа. Электродвигатель с параллельным возбуждением
4-20. Лабораторная работа. Генератор с параллельным возбуждением
Главе пятая. Основные понятия, относящиеся к переменным токам
5-1. Переменный ток
5-2. Получение синусоидальной э. д. с.
5-3. Сдвиг фаз
5-4. Действующие значения тока и напряжения
5-5. Векторная диаграмма
Глава шестая. Цепи переменного тока
6-1. Особенности цепей переменного тока
6-2. Цепь с сопротивлением
6-3. Цепь с индуктивностью
6-4. Цепь с активным сопротивлением и индуктивностью
6-5. Неразветвленная цепь с активными сопротивлениями и индуктивностями
6-6. Разветвленная цепь с активными сопротивлениями и индуктивностями
6-7. Цепь с емкостью
6-8. Колебательный контур
6-9. Резонанс напряжений
6-10. Резонанс токов
6-11. Коэффициент мощности
6-12. Активная и реактивная энергия
6-13. Лабораторная работа. Цепь переменного тока с активным сопротивлением, индуктивностью и емкостью
6-14. Лабораторная работа. Параллельное соединение катушки и конденсатора
Глава седьмая. Трехфазные цепи
7-1. Трехфазные системы
7-2. Соединение обмоток генератора звездой
7-3. Соединение обмоток генератора треугольником
7-4. Соединение приемников энергии звездой
7-5. Соединение приемников энергии треугольником
7-6. Лабораторная работа. Трехфазные цепи
Глава восьмая. Электротехнические измерения и приборы
8-1. Основные понятия
8-2. Классификация электроизмерительных приборов
8-3. Измерительные механизмы приборов
8-4. Измерение тока и напряжения
8-5. Измерение мощности
8-6. Измерение электрической энергии
8-7. Измерение сопротивлений
8-8. Измерение неэлектрических величин электрическими методами
8-9. Лабораторная работа. Измерение сопротивлений
8-10. Лабораторная работа. Поверка индукционного счетчика
8-11. Лабораторная работа. Измерение мощности в трехфазной цепи
Глава девятая. Трансформаторы
9-1. Назначение трансформаторов
9-2. Принцип действия и устройство однофазного трансформатора
9-3. Холостой ход однофазного трансформатора
9-4. Работа нагруженного трансформатора и диаграмма магнитодвижущих сил (м. д. с.)
9-5. Изменение напряжения трансформатора при нагрузке
9-6. Мощность потерь в обмотках нагруженного трансформатора
9-7. Трехфазный трансформатор
9-8. Регулирование напряжения трансформаторов
9-9. Автотрансформаторы
9-10. Трансформаторы для дуговой электросварки
9-11. Измерительные трансформаторы
9-12. Коэффициент полезного действия трансформатора
9-13. Нагрев и охлаждение трансформаторов
9-14. Лабораторная работа. Однофазный трансформатор
Глава десятая. Электрические машины переменного тока
10-1. Назначение машин переменного тока. Асинхронные электродвигатели
10-2. Получение вращающегося магнитного поля
10-3. Обмотка статора асинхронного электродвигателя
10-4. Обмотка ротора асинхронного двигателя
10-5. Принцип действия асинхронного двигателя
10-6. Электродвижущие силы в обмотках статора и ротора
10-7. Сопротивления обмотки ротора
10-8. Токи в обмотке ротора
10-9. Вращающий момент двигателя
10-10. Пуск в ход асинхронных двигателей
10-11. Регулирование частоты вращения асинхронного двигателя
10-12. Однофазный асинхронный двигатель
10-13. Потери и к. п. д. асинхронного двигателя
10-14. Синхронные машины
10-15. Универсальный коллекторный двигатель
10-16. Лабораторная работа. Трехфазный асинхронный электродвигатель
Глава одиннадцатая. Электропривод и аппаратура управления
11-1. Система электропривода
11-2. Нагрев и охлаждение электрических машин
11-3. Выбор мощности двигателя при продолжительном режиме
11-4. Выбор мощности двигателя при кратковременном режиме
11-5. Выбор мощности двигателя при повторно-кратковременном режиме
11-6. Рубильники
11-7. Пакетные выключатели
11-8. Реостаты для пуска и регулирования электродвигателей
11-9. Контроллеры
11-10. Плавкие предохранители
11-11. Автоматические воздушные выключатели
11-12. Контакторы
11-13. Реле
11-14. Схема управления асинхронным двигателем с помощью реверсивного магнитного пускателя
11-15. Схема включения двухскоростного асинхронного двигателя
11-16. Автоматический пуск асинхронного двигателя с кольцами
11-17. Автоматический пуск двигателя постоянного тока с параллельным возбуждением
11-18. Лабораторная работа. Сборка и проверка работы схемы релейноконтакторного управления трехфазным асинхронным двигателем с короткозамкнутым ротором
Глава двенадцатая. Передача и распределение электрической энергии
12-1. Схемы электроснабжения промышленных предприятий.
12-2. Трансформаторные подстанции и распределительные устройства промышленных предприятий
12-3. Электрические сети промышленных предприятий
12-4. Защитное заземление
Часть вторая. Основы промышленной электроники
13-1. Классификация и применение электронных приборов
13-2. Движение электронов в электрическом поле
13-3. Движение электронов в магнитном поле
13-4. Электронная эмиссия
13-5. Катоды электровакуумных приборов
13-6. Двухэлектродные электронные лампы — диоды
13-7. Применение двухэлектродных ламп
Глава четырнадцатая. Трехэлектродные лампы. Четырех- и пятиэлектродные лампы. Усилители
14-1. Устройство и принцип работы триода
14-2. Статические характеристики триода
14-3. Параметры триода
14-4. Простейший каскад усиления
14-5. Характеристики и параметры простейшего каскада усиления
14-6. Типы триодов
14-7. Четырехэлектродные лампы — тетроды
14-8. Пятиэлектродные лампы — пентоды
14-9. Комбинированные и многосеточные лампы. Типы ламп
14-10. Общие понятия, относящиеся к усилителям
14-11. Режимы работы усилителей
14-12. Многокаскадные ламповые усилители
14-13. Обратная связь в усилителях
14-14. Лабораторная работа. Снятие анодных и анодно-сеточных характеристик триода и определение по ним статических параметров
14-15. Лабораторная работа. Снятие частотных характеристик усилителя напряжения низкой частоты
Глава пятнадцатая. Газоразрядные приборы и их применение
15-1. Виды газового разряда и его вольт-амперная характеристика
15-2. Ионные приборы с несамостоятельным дуговым разрядом
15-3. Приборы с тлеющим разрядом
15-4. Ионные приборы с самостоятельным дуговым разрядом
15-5. Обозначения газоразрядных приборов
15-6. Лабораторная работа. Снятие анодносеточных и пусковых характеристик тиратрона
Глава шестнадцатая. Электронные генераторы. Осциллографы
16-1. Генераторы синусоидальных напряжений
16-2. Зарядка и разряд конденсатора
16-3. Релаксационные генераторы (генераторы пилообразного напряжения)
16-4. Мультивибраторы
16-5. Электроннолучевые трубки
16-6. Электроннолучевой осциллограф
16-7. Обозначения электроннолучевых трубок
16-8. Лабораторная работа. Экспериментальное, определение кривых напряжений в схемах выпрямителей
Глава семнадцатая. Полупроводниковые приборы и их применение
17-1. Собственная электропроводность полупроводников
17-2. Примесная электропроводность полупроводников
17-3. Полупроводниковый вентиль
17-4. Германиевые и кремниевые диоды
17-5. Меднозакисные и селеновые диоды
17-6. Применение полупроводниковых вентилей и схемы выпрямителей
17-7. Обозначения полупроводниковых диодов
17-8. Кремниевые стабилитроны (опорные диоды)
17-9. Транзисторы
17-10. Применение транзисторов для усиления колебаний
17-11. Схемы включения и характеристики транзисторов
17-12. Обозначения полупроводниковых триодов
17-13. Лабораторная работа. Снятие характеристик транзистора
Глава восемнадцатая. Фотоэлектронные приборы и электронные реле
18-1. Фотоэлементы с внешним фотоэффектом
18-2. Фоторезисторы
18-3. Полупроводниковые фотоэлементы
18-4. Электронные и ионные реле
18-5. Лабораторная работа. Электронное реле — триггер

[№ 13] Схема обмотки двигателя переменного тока

Здесь мы видим схему обмотки трехфазного асинхронного двигателя переменного тока или бесщеточного двигателя с постоянными магнитами (IPM), имеющего 4 полюса и 36 пазов. Эта обмотка фактически может использоваться с любой машиной переменного тока, включая синхронный реактивный двигатель или синхронный двигатель или генератор с возбуждением. Во многих отношениях это обычный классический пример, и цель здесь состоит в том, чтобы рассмотреть некоторые особенности схемы и ее условности, а не саму обмотку или какую-либо конкретную машину.

Отправной точкой является разработанная схема обмотки внизу слева. Термин «развитый» заимствован из геометрии цилиндров и означает, что наш взгляд на внутреннюю часть отверстия статора выкатывается на плоскость. Мы должны представить, что находимся внутри статора, где-то рядом с центральной линией или осью, и смотрим радиально наружу на внутреннюю поверхность с прорезями. Если мы повернем наш вид на 360°, мы увидим все 36 слотов.

На разработанной схеме показаны только несколько слотов, но мы видим, что всего катушек 36. Каждая катушка имеет две катушки- стороны , поэтому в каждом слоте должно быть две стороны катушки. Это то, что известно как двухслойная обмотка , один из самых распространенных типов. Катушки все одинаковые, и они уложены так, что одна сторона катушки находится внизу прорези, а другая вверху возле отверстия прорези. Нижние стороны катушки показаны пунктирными линиями, потому что они скрыты за верхними сторонами катушки, когда мы смотрим наружу от оси. Каждая катушка представлена ​​на разработанной схеме многоугольником с треугольными «лобовиками», иногда называемым «алмазной катушкой».

В машинах с большим количеством пазов разработанная схема может стать очень сложной, особенно когда обмотка рассчитана на различные последовательно-параллельные соединения. По этой причине часто используется чрезвычайно компактная форма схемы соединений, особенно в намоточных цехах. В дальнейшем мы предполагаем, что все катушки одинаковы и уложены в одном и том же направлении правильным образом; их полярность затем определяется межсоединителями, и что жизненно важно в цехе намотки, так это соединить их в группы с правильной полярностью, правильными последовательными или параллельными путями и в правильных фазах.

На компактной схеме показаны группы полюсов . В этом примере с 36 катушками, 3 фазами и 4 полюсами катушки естественным образом делятся на группы по 3, то есть 36/(3 × 4). Одна из этих групп выделена на разработанной схеме. Его начальная точка ( S ) — передний хвост первой катушки в группе, а конечная точка ( F ) — задний хвост последней (третьей). S и F ожидают подключения к другим группам полюсов в соответствии с основной схемой. Если предполагается параллельное соединение, ЭДС, генерируемые во всех параллельных группах полюсов, должны быть одинаковыми по величине и фазе.

На компактной диаграмме каждая группа полюсов представлена ​​простой дугой. Чтобы не касаться и не перекрывать соседние дуги, угловая протяженность этой дуги (в шагах пазов) немного меньше, чем количество пазов на полюс на фазу, в данном случае 3 шага пазов. Количество дуг равно количеству групп полюсов, поэтому количество катушек в группе равно количеству катушек, деленному на количество дуг: в этом случае 36/12 = 3.

Замечательное свойство эта схема заключается в том, что она не зависит от количества пазов и катушек. Например, если мы заменим статор с 48 пазами, схема не изменится, но количество катушек в группе увеличится с 3 до 4. В статоре с 24 пазами будет 2 катушки на группу. Все эти случаи являются примерами обмоток с «разбросом» 60°, что является чрезвычайно распространенным явлением. (Технически мы должны включить случай 12 слотов, но это вырожденно, если разброс равен нулю). Также обратите внимание, что на диаграмме нет информации о размахе или шаге катушки; таким образом, например, в случае с 36 пазами обмотка с полным шагом будет иметь размах витков 9, но также можно использовать 8, 7 или 6 (все с 2 сторонами катушки на слот).

Схема дуги содержит всю необходимую информацию для правильного соединения групп полюсов. Со всеми дугами на месте довольно просто с помощью «логики схемы» соединить их с правильной полярностью в соответствующие фазы. Чтобы облегчить интерпретацию соединений, справа добавлена ​​принципиальная схема для одной фазы, и мы видим, что в этом примере все катушки в одной фазе соединены последовательно. Другими словами, количество параллельных путей равно 1. Было бы полезно снова нарисовать основную диаграмму (и правую диаграмму) с 2 параллельными путями и снова с 4 параллельными путями (максимально возможное число в этот пример).

Детали важны. Группы полюсов пронумерованы от 1 до 12 при движении против часовой стрелки, и каждая группа полюсов имеет маркировку S F при движении против часовой стрелки. На дугах были добавлены стрелки, чтобы показать полярность подключения, а в центре диаграммы мы добавили письменный «график» подключений: например, « F1 до F4 » означает, что отделка группа полюсов 1 соединяется с концом группы полюсов 4.

В этом примере группы полюсов связаны с тремя фазами, и в соответствии со схемой начало фазы 2 должно быть смещено на 120° (электрически) от начало фазы 1, в направлении вращения вперед. Поскольку это 4-полюсная машина, то есть угол 60° (механический), поэтому, если фаза 1 начинается в слоте 1, фаза 2 должна начинаться в слоте 7, а фаза 3 — в слоте 13.

Хотя дуговая диаграмма может иметь дело с обмотками большой сложности, она не показывает положения отдельных сторон катушки: они неявны, когда известен пролет катушки и количество катушек в группе, но они не являются первичными. значение в процессе соединения полюсов- групп . Это может быть недостатком для инженера, рассчитывающего коэффициенты обмотки или анализирующего машину с помощью программы конечных элементов. Кроме того, дуги очень похожи на лобовые части обмотки, которые иногда отображаются в программе проектирования обмотки, и это можно рассматривать как отвлечение внимания, поскольку они не имеют никакого отношения к лобовым обмоткам.

Для аналитических целей разработанная схема обмотки, возможно, более полезна, поскольку она показывает физическое положение каждой катушки. Когда катушки аккуратно сгруппированы, как в этом примере с распределенной обмоткой, расчетные уравнения (в частности, коэффициенты обмотки) могут быть рассчитаны по формулам на основе разброса и размаха катушки; но в других случаях, таких как концентрические обмотки или обмотки с дробными пазами / полюсами, все становится сложнее, и может потребоваться собрать коэффициенты обмотки с помощью анализа ряда Фурье для каждой катушки. Опять же, есть особые случаи, когда могут использоваться совершенно неправильные обмотки, в том числе катушки с разным пролетом, и в таких случаях дуговая диаграмма не подходит.

Вероятно, не существует единого стиля схемы обмотки, который мог бы эффективно представить все технические характеристики широкого спектра обмоток, используемых в электрических машинах. Три элемента схемы здесь — развернутая схема, круговая схема полюсно-группового соединения с дугами и электрическая принципиальная схема — все это обычное дело, но не очень часто мы видим их все вместе, и есть еще другие представления. здесь вообще не обсуждается. В настоящее время сложности, как правило, возникают как с большими, так и с небольшими машинами, имеющими дробные пазы/полюса, где большое внимание уделяется форме волны ЭДС, зубчатому моменту и уровню реактивного сопротивления рассеяния гармоник. При подготовке схемы намотки с учетом этих расчетов требования не совсем такие же, как при подготовке технического чертежа для использования в намоточной мастерской, однако во всех этих процессах должна быть высокая степень согласованности, и в идеале набор Программное обеспечение для проектирования должно обрабатывать все эти аспекты одинаково тщательно.

Вероятно, будет справедливо сказать, что основной схемы подключения (даже без написанного графика в середине) достаточно, чтобы намоточный цех мог правильно установить и подключить многие виды обмотки переменного тока без использования разработанной схемы или схемы электрической цепи. . Если вам когда-нибудь посчастливится попасть в мастерскую по намотке, они могут даже показать вам несколько нарисованных от руки образцов, которые они используют для перемотки полностью сгоревших машин. Просто надеюсь, что вы не конструктор этой сгоревшей машины!


*Схема взята из обучающего курса Powersys/JMAG, проходившего в октябре в Страсбурге

Что такое схема подключения двигателя 302 в деталях с паспортной таблички

Есть несколько стандартных клеммных соединений двигателя. Производитель двигателя или генератора поставляет двигатель своему клиенту со стандартным клеммным соединением (СХЕМА СОЕДИНЕНИЯ). Он может быть изменен в соответствии с нашими требованиями. Давайте посмотрим, какой тип подключения двигателя используется. См. доступные клеммы двигателя. Обычно двигатель содержит 6 клемм (1U, 2U, 1В, 2В, 1Вт, 2Вт). Одна катушка имеет два вывода

Анимация пускателя двигателя «звезда-треугольник» …

Включите JavaScript

Анимация пускателя двигателя «звезда-треугольник» — схема питания и управления

Схема подключения: 201

Звездообразная коммутация непосредственно на главной клеммной колодке с прямыми разъемами. При этом терминальное соединение не может быть изменено. Мы должны запускать двигатель только с соединением звездой. Одна сторона клеммы с тремя катушками полностью припаяна к двигателю (стандартное соединение звездой). Пускатель звезда-треугольник не может быть использован. DOL, автотрансформаторный пускатель и частотно-регулируемый привод используются для запуска двигателя. Этот тип соединения в основном используется в двигателях мощностью менее 1 л. с. Пример: небольшой насос для циркуляции масла, небольшой дозирующий насос для химикатов и т. д.

Схема подключения 202:

Сетчатая (треугольник) коммутация непосредственно на основную клеммную колодку с прямыми разъемами. Стандартное соединение треугольником будет выполнено внутри самого двигателя. Терминальное соединение не может быть изменено. Пускатель звезда-треугольник не может быть использован. DOL, автотрансформаторный пускатель и частотно-регулируемый привод используются для запуска двигателя.

Схема подключения 301:

Звездообразное переключение непосредственно на главный автотрансформатор. В этом типе соединения производитель выводит все шесть клеммных соединений на клеммную колодку. Стандартное подключение показано на рисунке. Соединение может быть изменено в соответствии с нашим требованием. Можно использовать все виды стартера. Это очень редко используемая схема подключения. При использовании для этого пускателя «звезда-треугольник» и байпасного пускателя с частотно-регулируемым приводом необходимо удалить соединение «звезда», указанное в клеммной колодке. Вы должны подключить силовой кабель с фазным болтом клеммной колодки.

Схема подключения 302:

Переключение с обмоткой треугольником непосредственно на главный автотрансформатор. Это лучший способ подключения из всех. Он может быть изменен по нашему желанию. Можно использовать любой стартер. При использовании для этого пускателя звезда-треугольник и байпасного пускателя с частотно-регулируемым приводом необходимо удалить перемычку треугольником, указанную в клеммной колодке.
[wp_ad_camp_3]
Схема подключения 304:

Этот тип подключения использует большую мощность двигателя, а размер корпуса больше 280. Самый эффективный тип подключения, менее обслуживаемый и простой. При использовании пускателя звезда-треугольник необходимо тщательно идентифицировать клемму.

  1. Асинхронный двигатель с контактными кольцами

Схема подключения 3MS:

Этот тип подключения в основном используется для асинхронного двигателя с контактными кольцами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *