Схема работы ветрогенератора: ≋ Принцип работы ветрогенератора • Устройство, конструкция ветроэлектростанции

Содержание

Схема работы и подключения ветрогенераторов

Дата Автор ElectricianКомментироватьПросмотров: 21 733

Для питания электроприемников от ветроустановки необходимо осуществить подключение ее к нагрузке. Бывают не сетевые (без подключения к общественной сети) и сетевые (с подключением к общественной сети) схемы подключения инверторов напряжения. Рассмотрим их.

Не сетевая схема подключения

Данная схема подключения позволит частично или полностью использовать автономное электропитание. При такой схеме подключения совершенно неважно наличие общественной электросети.

В данной системе питание потребителей осуществляется с помощью инвертора напряжения или тока напрямую от ветряной электростанции или аккумуляторных батарей.

Сетевая схема подключения

Подключение таких систем целесообразно выполнять при большой мощности ветроустановки или довольно малой мощности потребителей. Такое подключение позволяет не только питать приемники электроэнергии от общественной сети, но и при излишней выработке энергии ветряной электростанции (солнечной электростанции или их комбинаций)  продавать электроэнергию по так называемому «зеленому тарифу».

 Аккумуляторные батареи

Как их часто еще обозначают  АБ или АКБ – накапливают выработанную ветрогенератором электроэнергию. Их главной задачей есть хранение энергии в промежутке между ее выработкой и потреблением. Если емкость аккумуляторной батареи будет мала, то она быстро зарядится и последующая выработка энергии будет бессмысленна, так как хранить ее будет негде. При питании от такой батареи потребителей возникнет обратная ситуация – она слишком быстро разрядится, соответственно не позволит питать от нее нагрузку длительное время. Поэтому следует выбирать аккумуляторные батареи большой емкости, для устранения перечисленных выше недостатков. Если купить аккумуляторы огромной емкости, то они никогда не будут заряжаться на полную емкость. Также емкость аккумуляторов влияет на их стоимость и габариты. При длительном хранении электрической энергии аккумуляторные батареи саморазряжаются, что также нужно учитывать. Поэтому для правильного выбора данных устройств необходимо проанализировать все варианты, чтоб подобрать наиболее оптимальный вариант именно для вашей системы, в зависимости от требований, которые вы задаете для вашей системы.

Емкость аккумуляторной батареи

Емкость должна быть такой, чтоб при работе солнечной или ветряной электростанции при максимальной мощности заряда (или потребления) электроэнергии заряд – разряд аккумуляторной батареи  должен составлять не менее 10 часов (что является обязательным условием для AGM, кислотных, щелевых, гелевых и свинцовых батарей).  Как пример, если мощность ветряка будет 5 кВт, то емкость аккумулятора должна составить не менее 50 кВт-часов.

Инвертор напряжения

Это устройство необходимо чтоб преобразовать постоянный ток аккумулятора в переменный промышленной частоты (для бытовых потребителей 220 В 50 Гц). Именно к инвертору подключаются потребители электрической энергии.

Немаловажным фактором является и правильный выбор инвертора напряжения или тока по мощности. Если мощность инвертора 5 кВт, то вы не можете подключить к нему нагрузку в 7 кВт. То есть максимальная суммарная нагрузка  на инвертор не должна превышать 5 кВт. Если, к примеру, вам необходимо подключить бойлер мощностью 4 кВт и чайник 2 кВт то у вас есть два выхода – либо увеличить мощность инвертора (до 6-7 кВт) или же подключать  нагрузку поочередно – сначала бойлер, а потом чайник, или наоборот. Если в инверторов слишком большой разброс в мощностях (например, 7 кВт и следующий 14 кВт) можно использовать параллельную работу частотных преобразователей.

Не следует также забывать, что в инверторов есть еще и напряжение собственных нужд, которые в нашем случае составляют примерно 5-10% электроэнергии. Если же мощность на выходе инвертора составляет 5 кВт, то необходимая мощность аккумуляторной батареи возрастет до 5,2 – 5,5 кВт. Поэтому необходим инвертор или группа инверторов тока или напряжения, которые смогут обеспечить нормальное подключение всех потребителей.

Основные характеристики ветроустановки

Данную систему можно охарактеризовать следующим образом:

  • Силой ветра;
  • Мощностью ветрогенератора;
  • Мощностью аккумуляторных батарей;
  • Мощностью инвертора;

Каждый из компонентов системы работает независимо от других компонентов, но оказывает важное влияние на работоспособность системы в целом. Для правильного расчета и, как следствие, успешной работы системы необходимо четко сформулировать задачи, которые необходимо решить при проектировании, а также собрать правильные исходные данные для расчета.

Posted in Альтернативная энергетика

Устройство и принцип работы ветрогенератора

Главная » Автономное электроснабжение дома

Опубликовано:

Содержание

  1. Как устроен ветрогенератор
  2. Принцип действия ветрогенератора
  3. Схемы работы ветрогенераторов

Как устроен ветрогенератор

Любой ветрогенератор состоит из таких компонентов как;

— генератор, который вырабатывает переменный ток, и в дальнейшем преобразуется в постоянное напряжение, предназначенное для зарядки аккумуляторов. От скорости ветра зависит и мощность генератора;- лопасти, предназначены для передачи вращения к валу генератора через редукторы и стабилизаторы скорости вращения ротора генератора;
— мачта ветряка должна иметь достаточную высоту. Чем выше находятся лопасти, тем больше они получат энергии ветра.

Также в устройство ветрогенератора входят;

— контроллер, необходимый для преобразования переменного напряжения идущего с генератора, в постоянное напряжение и последующей зарядкой аккумуляторов. Контроллер управляет поворотом лопастей, и контролируют направление ветра;
— аккумуляторы накапливают электроэнергию, чтобы использовать ее при небольшом ветре или его отсутствии. Батарея также хорошо стабилизирует электроэнергию, полученную от генератора;
— датчик направления ветра помогает лопастям «поймать» ветер;
— АВР представляет собой устройство автоматического переключения между ветрогенератором и другими источниками электроэнергии, например электросетью, генератором, солнечными панелями;
— инвертор предназначен для преобразования постоянного тока, поступающего с аккумуляторов, в переменное напряжение для домашней электросети. Инверторы могут разделяться по типу синусоиды для разных потребителей электроэнергии.

Устройство ветрогенератора
  1. Инвертор модифицированной синусоиды на выходе выдает квадратную синусоиду, предназначенную для не требовательных потребителей к качеству сети – это тэны, накальные лампы освещения.
  2. Инверторы с чистой синусоидой по качеству выходного напряжения подходят даже для самых требовательных потребителей электроэнергии.
  3. Инверторы трехфазного напряжения предназначены для трехфазных сетей.
  4. Сетевой инвертор работает без аккумулятора и способен к выводу электроэнергии в общую сеть.

Принцип действия ветрогенератора

Принцип работы ветрогенератора построен на преобразовании кинетической энергии силы ветра в энергию вращения вала генератора. Для вертикальных ветрогенераторов, вертикальная ось соединена с вертикальным ротором. Генератор и ротор расположены внизу конструкции. Лопасти закреплены в вертикальной оси.

Вращаясь, лопасти заставляют вращаться ротор генератора, который начинает вырабатывать переменный и нестабильный ток. Это ток идет на контроллер, который преобразует его в постоянное напряжение и заряжает аккумуляторы. С аккумулятора питание идет на инвертор, назначение которого превращение постоянного тока в переменное напряжением 220 В или 380 В, которое поступает к потребителям электроэнергии.

Схемы работы ветрогенераторов

Вариантов работы ветрогенератора может быть несколько:

  1. Автономная работа ветрогенератора.
Автономная работа ветрогенератора
  1. Такая совместная работа считается очень надежным и эффективным способом автономного электроснабжения. При отсутствии ветра, работают солнечные батареи. Ночью, когда не работают солнечные батареи, аккумулятор заряжается от ветровой установки.
Параллельная работа ветрогенератора с солнечными панелями
  1. Ветрогенератор также может работать параллельно с электросетью. При избытке электроэнергии, она поступает в общую сеть, а при недостатке ее потребители электроэнергии работают от общей электросети.
Параллельная работа ветрогенератора с электросетью

Ветряные генераторы могут прекрасно работать с любыми видом автономного электроснабжения и общей электросетью. Создавая при этом единую систему энергоснабжения.

 

 

Помогла вам статья?

Рейтинг

( 1 оценка, среднее 5 из 5 )

Понравилась статья? Поделиться с друзьями:

Как работает ветряная турбина.

Схема и руководство

Изучить принцип работы ветряной турбины  легко, если вы сначала убедитесь, что знаете , как работает турбогенератор.

Схема ветряной турбины выше представляет собой вид сбоку ветряной турбины с горизонтальной осью с лопастями турбины слева. Большинство современных ветряных турбин построены с горизонтальной осью, подобной той, что показана на рисунке.

На рисунке также показана обычная ветряная турбина, а это означает, что для эффективной работы турбины нос и лопасти турбины должны быть обращены к ветру.

Чтобы узнать больше о том, как работают ветряные турбины, можно начать с рассмотрения приведенной выше схемы и изучения каждого компонента ветряной турбины.

Пошаговый просмотр каждой части ветряной турбины на схеме выше:

(1)  Обратите внимание на рисунок, что направление ветра дует вправо и в носовую часть ветряной турбины сталкивается с ветром.

(2)   Носовая часть ветряной турбины имеет аэродинамическую конструкцию и обращена к ветру.

(3)   лопасти ветряной турбины крепятся к носу и ротору и начинают вращаться при достаточной скорости ветра.

(4) Главный вал турбины соединяет вращающиеся лопасти с внутренними механизмами машины. Вал турбины вращается вместе с лопастями и является механизмом, передающим вращательную/механическую энергию лопастей электрическому генератору.

(5)  A тормоз устанавливается для предотвращения механических повреждений от сильного ветра и высоких скоростей вращения. Он также может останавливать турбину, когда в ней нет необходимости.

(6) Редуктор используется для увеличения скорости вращения вала турбины. Коробка передач работает как шестерня на велосипеде, когда шестерни меняются, скорость вращения тоже меняется. Затем он передает энергию вращения на вал высокоскоростной турбины и на генератор.

(7)   9Вал высокоскоростной турбины 0018 соединяет коробку передач и генератор. Высокие скорости вращения — это то, что вращает турбогенератор.

(8)   Турбогенератор  – это наиболее важная часть работы ветряной турбины. Турбогенератор преобразует механическую энергию ветра в электрическую энергию, используя вращающую силу, передаваемую от шестерен и вала турбины.

(9)   Анемометр  – устройство для измерения скорости ветра. Обычно они устанавливаются, чтобы дать контроллеру команду остановить или запустить турбину при определенных условиях скорости ветра.

(10) Контроллер устанавливается на случай, если скорость ветра достигает нежелательной скорости, анемометр может дать указание контроллеру использовать тормоз и остановить вращающиеся лопасти. Контроллер также используется для запуска вращения лопастей и ротора при низких скоростях ветра.

(11)   флюгер — это прибор для измерения направления ветра. Флюгер важен для направленных вверх ветряных турбин, которые должны быть обращены к ветру, чтобы работать должным образом.

(12)   Привод рыскания в механизме, который получает данные от флюгера и дает команду ветряной турбине повернуться лицом к ветру.

(13)   Двигатель рыскания  – это устройство, которое физически поворачивает турбину по направлению ветра или в соответствии с указаниями привода рыскания.

(14)   Башня турбины содержит электропроводку, поэтому генератор может подавать электроэнергию в трансформатор или аккумулятор, который в конечном итоге будет распределять полезную электроэнергию. Башня также является важной структурной опорной системой, которая удерживает турбину высоко в воздухе, где скорость ветра более желательна.

(15) Ветряная турбина хорошо работает на открытом воздухе и при сильном ветре благодаря тому, что все компоненты установлены наверху башни турбины и безопасно размещены внутри турбины гондола . Башня и гондола ветряной турбины обычно изготавливаются из цилиндрической стали и могут поддерживаться растяжками и растяжками или стоять отдельно, используя решетчатое стоячее основание.

Опять же, на этой диаграмме показан пример ветряной турбины с горизонтальной осью, направленной против ветра, которая может быть сделана из стали и иметь высоту в несколько этажей. То, как работает ветряная турбина, требует не только тщательного проектирования, но и вдумчивого анализа и стратегии, чтобы найти желаемые места с достаточной скоростью ветра.

Сколько энергии производят ветряные турбины?

В 1919 году немецкий физик Альберт Бетц обнаружил, что ни один ветряк не может физически уловить более 59,3% кинетической энергии ветра. Простой способ объяснить это состоит в том, что если бы ветряная турбина когда-либо захватывала 100% ветра, через другую сторону лопастей ветряной турбины не проходил бы ветер. Если нет ветра, проходящего с другой стороны, то, согласно физическому закону движения ветра, больше не будет места для прохождения ветра через переднюю часть ветряной турбины, что сделает ветряную турбину бесполезной.

Итак, для расчета выработки ветровой энергии или количества ветровой электроэнергии, которое, как ожидается, будет произведено ветровой турбиной, вам потребуется краткий список зависимых переменных:

                     ( Cp ) – коэффициент полезного действия турбины, максимум 0,593

                              ( ρ )  –  Плотность воздуха, измеренная в фунтах на кубический фут

                       0006 ( V ) — скорость ветра, мили/час

( K ) — k — это постоянная, которая равна 0,000133, это покрывает ответ на киловатты

( p ) — выходная мощность, независимая переменная мы хотите рассчитать, в киловаттах

С приведенными выше переменными уравнение для расчета ветровой электрической мощности ветровой турбины:

P = k * Cp * (1/2) * ρ * A * (V^3 )

Обратите внимание на взаимосвязь каждой переменной в уравнении и на то, как она связана с работой ветряной турбины. Площадь лопасти ротора (A) имеет прямую положительную зависимость от выходной мощности, а скорость ветра (v) имеет положительную кубическую зависимость от выходной мощности.

Количество электроэнергии, которое может генерировать ветряная турбина, в основном зависит от размера турбины, площади, охватываемой лопастями турбины, плотности воздуха и скорости ветра. Общая конструкция ветряной турбины также имеет решающее значение для того, насколько эффективно лопасти могут захватывать ветер.

Меньшие ветряные турбины, используемые для лодок, караванов или небольших машин, обычно производят от 250 Вт до 100 киловатт ветровой электроэнергии. Некоторые из самых больших ветряных турбин в мире производят около 7 мегаватт электроэнергии.

Важно помнить, что скорость ветра непостоянна, поэтому теоретическая мощность электроэнергии, которую может производить ветряная турбина, представляет собой максимальный потенциал выработки энергии, который редко достигается. Фактическая энергия, вырабатываемая ветровой турбиной, в соотношении с теоретическими ожиданиями ветряной турбины называется коэффициентом мощности.

Ветряная турбина мощностью 10 киловатт в районе со скоростью ветра около 12 миль в час будет производить около 10 киловатт-часов ветровой электроэнергии в год, что примерно соответствует количеству, необходимому для снабжения электроэнергией среднего домохозяйства.

Ветряная турбина мощностью 5 мегаватт может производить около 15 миллионов киловатт-часов ветровой электроэнергии в год, что может обеспечивать электроэнергией более 1000 домохозяйств.

Вывод:   Ветряная турбина работает только тогда, когда дует ветер, и понимание того, как работает ветряная турбина, означает понимание аэродинамики ветра и лопастей, а также знание того, как турбогенератор вырабатывает электричество. По своей сути ветряная турбина работает, позволяя ветру вращать турбогенератор.

Ветроэнергетика с использованием энергии ветра:Системы и решения | Возобновляемая энергия

Системы и решения

Производство энергии ветра означает получение электроэнергии путем преобразования энергии ветра в энергию вращения лопастей и преобразования этой энергии вращения в электрическую энергию с помощью генератора. Энергия ветра увеличивается пропорционально кубу скорости ветра, поэтому ВЭУ следует устанавливать в зоне с более высокой скоростью ветра.
Мы работаем в партнерстве с производителями ветряных турбин, чтобы продавать ветряные турбины и строить электростанции, используя нашу торговую сеть. Мы также продолжаем разрабатывать электронные устройства, включая системы управления, используя наши знания и технологии, основанные на технологиях проектирования и производства тепловых и гидравлических электростанций. занимаемся производством ветровой энергии самостоятельно. Обладая сильной репутацией с обеих сторон, производителя и пользователя, мы предлагаем решения для удовлетворения потребностей клиентов в самых разных ситуациях.

Простая в установке/эксплуатации ветровая электростанция, не беспокоящаяся об истощении

В мире растет внедрение ветроэнергетики, которая имеет следующие характеристики:

  • • Отсутствие выбросов CO 2

  • • Ветер — безопасный источник энергии, существующий повсеместно, и не нужно беспокоиться об истощении, как ископаемое топливо

  • • Простое оборудование и простота в эксплуатации

  • • Мало привязанность к окружающей среде

В современном мире прогресс в технологиях создания более крупных ВЭУ заметен, что приводит к увеличению выработки электроэнергии на единицу ВЭУ и развитию большого поля ВЭУ, называемого «ветроэлектростанцией». Развиваются и технологии строительства морских ВТГ.

Высоконадежная технология ветряных турбин

Герметично закрытый синхронный генератор с постоянными магнитами (PMSG), обеспечивающий повышенную эффективность выработки электроэнергии без необходимости внешней системы возбуждения

При возбуждении от постоянных магнитов генератор не требует технического обслуживания и снижает частоту отказов за счет удаления токосъемных колец для внешнего возбуждения. Отсутствие необходимости во внешней системе возбуждения повышает эффективность выработки электроэнергии. Благодаря использованию систем водяного охлаждения и внутреннего вентиляторного охлаждения генератор не забирает воздух снаружи, что подходит для использования в среде с большим количеством мелких частиц в космосе или в прибрежных/морских районах.

Генератор для 2 МВ ВТГ

Более длинные лопасти обеспечивают более высокое годовое производство энергии даже при низкой скорости ветра

Использование более длинных лопастей позволяет преобразовывать больше энергии ветра в электричество. Для ВЭУ мощностью 2 МВт типа У93 применяются лопасти длиной 45 м и диаметром 93 м, что на 16% больше, чем у других производителей, что увеличивает площадь приема ветра и обеспечивает более высокую годовую выработку энергии даже при низкой скорости ветра.

Компоновка гондолы

Применены ГРМ с редуктором и полноразмерным преобразователем.

Внутренняя структура гондолы 2 МВ ВТГ

2 МВт ВТГ

Ветрогенератор Toshiba 2 МВт характеризуется следующими характеристиками:

  • • Модель: U88E

  • • Высокая надежность благодаря среднескоростной передаче (1:72)

  • • Малый синхронный генератор с постоянными магнитами (PMSG)

  • • Герметичный генератор с системой водяного охлаждения

  • • Affinity для высоковольтной системы в системе с полным преобразователем

Эту таблицу можно прокручивать по горизонтали.

Характеристики ВЭУ 2 МВт
Модель У88Е У88 У93
Диаметр ротора 88 м 93 м
Высота ступицы
75 м
80 м 80 м
Класс дизайна МЭК СА * МЭК IIA МЭК IIIA
Скорость ветра Экстремальная скорость ветра (V e50 ) 70 м/с 59,5 м/с 52,5 м/с
Ср. 8,5 м/с 7,5 м/с
Врезной 3 м/с
3 м/с
Рейтинг 12 м/с 11,5 м/с
Вырез 25 м/с 25 м/с
Номинальная скорость вращения от 6 до 17,5 об/мин
Температурный режим Общий от -20 °C до +45 °C (во время работы)
от -20 °C до +55 °C (не работает)
Холодный от -30 °C до +45 °C (во время работы)
от -40 °C до +55 °C (не работает)

* Стандарт IEC: базовая скорость ветра 50 м/с, средняя скорость ветра 8,5 м/с, предельная скорость ветра (Ve50) 70 м/с.

* Если скорость ветра превышает 70 м/с, проконсультируйтесь с нами.

Компания Toshiba по производству ветроэнергетики

Чтобы удовлетворить потребности клиентов, Toshiba предоставляет всестороннюю поддержку во многих различных бизнес-ситуациях, от геологических/экологических исследований и бизнес-планирования до проектирования, производства, строительства, ввода в эксплуатацию и эксплуатации и обслуживания после запуска генератора.

Всесторонняя поддержка от назначения участков-кандидатов –Планирование–

Мы поддерживаем наших клиентов от назначения участков-кандидатов, включая геологические или экологические исследования, решение вопросов законов/нормативных актов, до планирования строительства. Также мы предоставляем упаковочные решения с аккумуляторной/вторичной батареей для стабильной мощности генератора и оптимизируем точку установки путем микроразметки с помощью CFD для сложной структуры земли.

Достижение высокой ветроустойчивости с помощью длинных лопастей – Дизайн/Производство–

※1

У нас есть различные ветрогенераторы с длинными лопастями, которые охватывают широкий диапазон скоростей ветра, поэтому мы можем предоставить ветрогенераторы, подходящие для каждого участка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *