Проверка тиристоров схема
Эта памятка конструктору предназначена оказать деловую помощь и подготовить персонал к тестированию мощных тиристоров и диодов на основе простого переносного оборудования. Измерение характеристик этих приборов создает определенные трудности, если не используется необходимая аппаратура. Измерительное оборудование Одним из лучших способов измерения этих приборов является развертка, тока и напряжения на подходящем дисплее. Используя развертку, можно определить, исправен прибор или нет, измерением пробивных напряжений, токов утечки, прямого напряжения и т. Однако индикатор развертки типа Тектроникс является дорогостоящей частью оборудования, которое используется почти неограниченно для мощных приборов.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Как проверить тиристор
- Тиристор SCR (управляемый кремниевый выпрямитель)
- Как проверить тиристор мультиметром?
- Проверка тиристора. Как убедиться в работоспособности
- Как проверить тиристор
- Проверка тиристора
- Как проверить тиристор?
- КАК ПРОВЕРИТЬ ТИРИСТОР И СИМИСТОР
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: о ТИРИСТОРе
Как проверить тиристор
Тиристор — переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Как и полупроводниковый диод, тиристор проводит ток в одном направлении, но может находиться в двух состояниях: выключено и включено.
Управление осуществляется по входу УЭ см рис. После включения для возврата тиристора в исходное выключенное состояние необходимо, чтобы с управляющего электрода было снято напряжение или было закорочено с катодом, как на рисунке 1в. Закрытие тиристора так же можно произвести сменой полярности, т. Схема прибора для проверки исправности тиристора с таблицей состояния, исходя из принципов работы тиристора, представлена на рисунке 2.
Прибор проверки тиристора питается от сети переменного тока через понижающий трансформатор Т1. В приборе для проверки тиристора применены резисторы МЛТ, причем резистор R1 составлен из трех резисторов МЛТ-2 сопротивлением по Ом, соединенных параллельно.
Диоды кремневые маломощные на рабочее напряжение более 30 вольт. В качестве понижающего трансформатора подойдет любой, мощностью более 10 ватт и напряжением на вторичной обмотке 22…27 вольт.
Тиристор SCR (управляемый кремниевый выпрямитель)
У каждого радиолюбителя должна быть своя маленькая лаборатория. Но что делать, если денег не хватает даже на простенькую паяльную станцию? В этой статье пойдет речь о том, как же сделать из доступных радиоэлементов нехитрый приборчик для проверки тиристоров, который добавится в вашу копилку полезных устройств для радиолюбителя. Теперь вы уже точно будете знать, пробит ли ваш тиристор или все-так жив. А вот и схемка:. Схема состоит из:. Можно использовать любой маломощный.
Ввиду особенностей этих полупроводниковых элементов проверить их на FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров.
Как проверить тиристор мультиметром?
Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод — управляющий электрод. Тиристор — это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:. Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение. Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости открытое , а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом. Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами. Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик.
Проверка тиристора. Как убедиться в работоспособности
Тиристор — это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА. Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят.
В книге «Кашкаров А. Радиолюбителям: схемы для дома.
Как проверить тиристор
Большинство тиристоров можно проверить с помощью лампочки и постоянного напряжения, способного ее засветить. Плюс подаем на анод, а лампочку минус соединяем с катодом тиристора см. Кратковременно соединив анод и управляющий вывод, открываем тиристор. Даже поссле рассоединения лампочка должна светиться. Для проверки тиристора в большинстве случаев достаточно энергии полуторавольтового питания мини-тестера в режиме «xl кОм».
Проверка тиристора
Тиристор — переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Как и полупроводниковый диод, тиристор проводит ток в одном направлении, но может находиться в двух состояниях: выключено и включено. Управление осуществляется по входу УЭ см рис. После включения для возврата тиристора в исходное выключенное состояние необходимо, чтобы с управляющего электрода было снято напряжение или было закорочено с катодом, как на рисунке 1в.
Проверка симисторов и тиристоров мультиметром, батарейкой с Для диагностики неисправностей электронной схемы нужно.
Как проверить тиристор?
Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие.
КАК ПРОВЕРИТЬ ТИРИСТОР И СИМИСТОР
Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку. Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле — это электромеханическое изделие, а тиристор — чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-.
Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками.
Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод — управляющий электрод. Тиристор — это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:. Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение. Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами. Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик.
Принципиальная электрическая схема устройства представлена на рис. Питающий трансформатор TR1 снижает сетевое напряжение В и обеспечивает гальваническую развязку между сетью и цепями пробника. Двухполупериодный выпрямитель собран на диодном мосте D1. Сглаживание положительного и отрицательного напряжений обеспечивается конденсаторами С1 — С4.
Как проверить тиристор мультиметром на примере прозвона ку202н
Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.
Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.
Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.
Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.
Основные характеристики
Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.
Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.
Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.
Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.
Самодельный пробник
Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.
Схема самодельного пробника представлена сочетанием следующих элементов:
- Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
- Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
- Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
- В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
- Создается сопротивление с номиналом 47 Ом.
- Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.
Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.
Определение управляющего напряжения
Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.
У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:
для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;- подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
- перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
- убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.
Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.
Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.
Применение тиристоров
Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.
Общее применение делится на четыре группы:
- Экспериментальные устройства.
- Пороговые устройства.
- Силовые ключи.
- Подключение постоянного тока.
Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.
Вот некоторые характеристики данного тиристора:
- Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
- Напряжение в положении низкой проводимости 100 В.
- Импульс в состоянии высокой проводимости – 30 А.
- Повторный импульс в этом же положении – 10 А.
- Постоянное напряжение 7 В.
- Обратный ток – 4 мА
- Ток постоянного типа – 200 мА.
- Среднее напряжение -1,5 В.
- Время включения – 10мкс.
- Выключение – 100 мкс.
Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.
Тиристоры быстродействующие ТБ333-250
Проверка исправности
Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.
К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.
Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.
Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.
После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.
Где взять питание тестировщику
Адаптер телефона дает ток 100 – 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:
- Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
- Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.
Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).
Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль.
Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.
Будет интересно➡ Проверка реле при помощи мультиметра
Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:
- +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
- Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
- – 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
- Оранжевый провод обычно несет напряжение +3,3 В.
Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться.
Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА.
Проверка динистора
Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.
Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.
Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.
Значения тестера должны лежать в пределах милливольт. Динистор открылся.
Конструкция
Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.
При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.
Советуем Вам также ознакомиться с параметрами стабилитрона д814а.
Необычный способ
Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.
Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.
На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.
Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.
Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.
Блиц-советы
Рекомендации:
- Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
- Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
- Во избежание неприятных ситуаций все схемы должны собираться в точности.
- В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.
Защита тиристора:
Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.
Проверка в схеме
Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.
Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.
Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.
Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.
Устройство и принцип работы
Устройство тиристора выглядит следующим образом:
- 4 полупроводниковых элемента имеют последовательное соединение друг с другом, они различаются по типу проводимости.
- В конструкции имеется анод – контакт к внешнему слою полупроводника и катод, такой же контакт, но к внешнему n-слою.
- Всего имеются не более 2 управляющих электродов, которые подсоединены к внутренним слоям полупроводника.
- Если в устройстве полностью отсутствуют управляющие электроды, то такой прибор является особой разновидностью – динистором. При наличии 1 электрода, прибор относится к классу тринисторов. Управление может осуществляться через анод или катод, данный нюанс зависит от того, к какому слою был подключен управляющий электрод, но на сегодняшний день наиболее распространен второй вариант.
- Данные приборы могут подразделяться на виды, в зависимости от того, пропускают они электрический ток от анода к катоду или сразу в обоих направлениях. Второй вариант устройства получил название симметричные тиристоры, обычно состоящие из 5 полупроводниковых слоев, по своей сути они являются симисторами.
- При наличии в конструкции управляющего электрода, тиристоры могут быть разделены на запираемую и незапираемую разновидность. Отличие второго вида заключается в том, что такой прибор не может быть никаким способом переведен в закрытое состояние.
- Включение прибора происходит благодаря получению цепью импульсов электрического тока. Подача происходит на полярность, которая является положительной относительно катода.
- На протяженность процесса перехода оказывает влияние целый ряд различных факторов: вид нагрузки; температура полупроводникового слоя; показатель напряжения; параметры тока нагрузки; скорость, с которой происходит нарастание управляющего тока и его амплитуда.
- Несмотря на значительную крутизну управляющего сигнала, скорость нарастания напряжения не должна достигать недопустимых показателей, поскольку это может вызвать внезапное отключение прибора.
- Принудительное отключение устройства может быть осуществлено разными способами, наиболее распространен вариант с подключением в схему коммутирующего конденсатора, обладающего обратной полярностью. Такое подключение может происходить благодаря наличию второго (вспомогательного) тиристора, который спровоцирует возникновение разряда на основной прибор. В таком случае, разрядный ток, прошедший через коммутирующий конденсатор, столкнется с прямым током основного прибора, что понизит его значение до нулевого показателя и вызовет отключение.
принцип работы
Немного отличается принцип действия тиристора, подключенного к цепи переменного тока:
- В таком положении прибор может осуществлять включение или отключение цепей с разными типами нагрузки, а также изменять значения электрического тока через нагрузку. Это происходит благодаря возможности тиристорного прибора изменять момент, в который осуществляется подача управляющего сигнала.
- При подключении тиристора в подобные цепи, применяется исключительно встречно-параллельное включение, поскольку он может проводить ток лишь в одном направлении.
- Показатели электрического тока изменяются благодаря внесению изменений в момент, когда происходит передача открывающих сигналов на тиристоры. Этот параметр регулируется при помощи специальной системы управления, относящейся к фазовой либо широтно-импульсной разновидности.
- При использовании фазового управления, кривая электрического тока будет обладать несинусоидальной формой, это также вызовет искажение формы и напряжения в электросети, от которой происходит питание внешних потребителей. Если они обладают высокой чувствительностью к высокочастотным помехам, то это может вызвать сбои в процессе функционирования.
Регулятор мощности
В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.
В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.
Аналоги КУ202Н
Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.
К зарубежным аналогам тиристора КУ202Н относятся устройства:
- ВТ138;
- ВТ151.
Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.
SCR / ТЕСТЕР ДИОДОВ | CEHCO
Приложения SCR Схема проверки тиристоров Кремниевый выпрямитель pdf Тестирование SCR pdf Схема цепи SCR Тиристор SCR Проекты цепей SCR Характеристики SCR SCR-тестирование Проверка диодов Проверка тиристоров Тестер диодов SCR Тестер SCR Тестер диодов Тиристорный тестер Труднодоступный тестер диодов SCR Сменный тестер диодов SCR Устаревший тестер диодов SCR Снято с производства Тестер диодов SCR Снято с производства Тестер диодов SCR Т101Р/2В Т101Р/3В Т101Р/4В Т101Р/5В Т101Р/6В Т101Р/7В Ремонт тестера диодов SCR Модернизация тестера диодов SCR Аренда тестера диодов SCR Модификация тестера диодов SCR Демонстрационный тестер диодов SCR Управление питанием переменного и постоянного тока Принципы и схемы SCR Что такое кремниевый выпрямитель Применение и преимущества SCR Проблемы SCR электростанции Промышленный контроллер питания SCR Рекомендации по применению SCR Схемы приложений SCR Промышленный SCR PowerController Как проверить SCR Кремниевый выпрямитель (SCR) Тестер SCR PowerBLOCK Как работает тиристор? Проверка SCR Цепь управления питанием SCR Тиристорный тестер ТЕСТЕР ТИРИСТОРОВ И СИМИСТОРОВ Тестирование кремниевого выпрямителя Теория мощности SCR Основная цепь переменного тока SCR Тиристор, триак и диак Тиристорный или кремниевый выпрямитель Понимание управления питанием SCR Базовый Triac-SCR Цепь управления подогревом с использованием SCR Цепи SCR Тиристорные регуляторы Тиристорная цепь и схемы включения тиристоров SCR Отключить цепи коммутации Тиристоры в цепях переменного тока V-I Характеристики SCR Характеристики SCR и режим работы Характеристика SCR Переходные характеристики scr SCR-Вольт-Ампер-Характеристики Характеристики устойчивого состояния SCR Тиристор – Ресивер с кремниевым управлением SCR УСТРОЙСТВА SCR ДЛЯ ПОЛЕВЫХ ИСПЫТАНИЙ Простые схемы тестирования Triac-SCR Как проверить диод Как проверить, неисправен ли диод Как проверить транзистор и диод Как проверить диод с помощью цифрового и аналогового мультиметра Проверка транзистора мультиметром Методы проверки диодов Процедура проверки диодов Проверка полупроводников аналоговыми и цифровыми мультиметрами Измерение тиристоров/диодов с помощью мультиметра Метод испытания тиристоров Проверка тиристора Тестирование стабилитронов Как проверить SCR/тиристор? Испытания больших твердотельных устройств Моделирование и испытание тиристора для тиристорного управления Устройство для проверки тиристоров Тестовый тиристорный модуль Основные испытания полупроводниковых приборов Измерительная проверка диода Тестер диодов/транзисторов Как проверить, неисправен ли диод Как проверить диодный выпрямитель Как проверить транзистор и диод Тестер диодов и светодиодов Тестер транзисторов и диодов Системы тестирования диодов и выпрямителей Снято с производства Тестер диодов SCR Специалист по тестированию диодов SCR Индивидуальный дизайн тестера диодов SCR Сильноточный тестер диодов SCR Приложение OEM Тестер диодов SCR Сделано в США, тестер диодов SCR Недорогой тестер диодов SCR Тестер диодов SCR 30 лет в бизнесе Высоковольтный тестер диодов SCR Эквивалентный сменный тестер диодов SCR Многофункциональный тестер диодов SCR Тестер диодов SCR 300 А Применение в печи Тестер диодов SCR Тестер диодов SCR нагревательного элемента Тестер диодов SCR 500 А Тестер диодов SCR 700 А Ремонт тестера диодов SCR Восстановление тестера диодов SCR Реактор ограничения тока с воздушным сердечником с внутренним корпусом Промышленный тестер диодов SCR Промышленный высоковольтный тестер диодов SCR Ремонт всех моделей SCR Diode Testerна базе LiveChat
Кремниевый выпрямитель (SCR) | Строительство | Операция | Характеристики | Тестирование
Хотите создать сайт? Найдите бесплатные темы и плагины WordPress.
В этой статье рассматривается конструкция выпрямителя с кремниевым управлением (SCR), работа, коммутация, характеристики, требования к затвору, тестирование и применение, а также соответствующие схемы и блок-схемы.
Тиристор представляет собой кремниевый односторонний трехвыводной тиристор. В настоящее время это наиболее часто используемый тиристор с наивысшей номинальной мощностью. Доступны SCR с номинальным током от 1,0 А до значений, превышающих 1000 А, и номинальным напряжением до 5 кВ.
Устройство работает почти так же, как диод p–n ; то есть он позволит току течь в одном направлении и заблокирует ток в другом направлении. Основное отличие состоит в том, что в SCR можно контролировать прямую проводимость. Проводимость контролируется пропусканием тока через клемму затвора.
Символ SCR показан на Рисунок 1 .
Рисунок 1 SCR Стандартный символ
SCR выпускаются в различных стилях корпуса, в основном в зависимости от рейтинга SCR. Некоторые стили чехлов показаны на Рисунок 2 .
Рисунок 2 Типы корпусов SCR
SCR большего размера изготавливаются в конфигурации «хокки-шайба». Они устанавливаются на радиаторы для отвода избыточного тепла, выделяемого во время работы с большим током.
На рисунке 3 показаны две хоккейные шайбы, два тринистора и два согласующих диода, установленные на радиаторах с водяным охлаждением. Батарейка типа «двойной А» включена в фото для сравнения размеров.
9Рис. 3 типа полупроводниковых материалов. Эта структура обозначается как p–n–p–n. Таким образом, в устройстве образуются три полупроводниковых перехода. Рисунок 4 на обороте представлена структура слоев в SCR.Рисунок 4 Конструкция слоя SCR
Когда само устройство смещено в прямом направлении, т. е. имеет положительный анод по отношению к катоду, два перехода будут смещены в прямом направлении, а третий — в обратном. Именно этот переход с обратным смещением позволяет тринистору блокировать анодный ток до тех пор, пока не потечет ток затвора. Фактический размер кремниевой пластины будет варьироваться во время изготовления для достижения требуемых значений напряжения и тока в штате. Чем выше мощность SCR, тем больше размер пластины.
Несмотря на то, что SCR представляет собой устройство с тремя клеммами, некоторые SCR могут иметь только две клеммы. Это связано с тем, что анод или катод соединены с корпусом.
Некоторые более крупные промышленные SCR также могут иметь четыре клеммы. Это связано с предоставлением отведения «ссылка на ворота». Этот вывод соединен с катодом и скручен вместе с фактическим выводом затвора. Это сводит к минимуму возможность возникновения наведенного напряжения в выводе затвора, вызывающего неправильное срабатывание.
Работа тиристора
Тиристор блокирует прямой ток до тех пор, пока он не будет переведен во включенное состояние с помощью пускового импульса. Это нормальный режим работы SCR. Подобно диоду p–n , тиристор должен быть смещен в прямом направлении, чтобы протекать анодный ток (прямой ток). Это означает, что анод должен быть положительным по отношению к катоду.
Тиристор переключается из выключенного состояния во включенное, если прямое напряжение слишком велико. Напряжение, при котором тринистор переключается из выключенного состояния во включенное, называется «прямым напряжением пробоя» (9).0487 В BR ). Этот режим работы обычно не используется, так как нет реального контроля над SCR. Это пробивное напряжение приводит к включению тиристора, когда он преодолевает переход с обратным смещением в устройстве.
Нормальным режимом работы является управление проводимостью с помощью тока затвора. Ток проходит от затвора к катоду. Это означает, что переход затвор-катод должен быть смещен в прямом направлении; то есть затвор положителен по отношению к катоду.
Рассмотрим схему в Рисунок 5 . Если переключатель затвора ( S 1 ) разомкнут, ток затвора не течет, поэтому тринистор не будет переведен во включенное состояние (при условии, что анодное напряжение не превышает номинальное напряжение отключения устройства).
Рисунок 5 Работа SCR
Если S 1 замкнут, протекает небольшой ток затвора. Это заставит тиристор переключиться во включенное состояние и потечет анодный ток. После включения тиристора и при условии, что анодный ток достаточно высок, ток затвора можно отключить, и тиристор продолжит проводить ток. Теперь он действует так же, как p–n диод.
Прямое падение напряжения является относительно постоянным и имеет номинальное значение 0,6 В. На практике это значение оказывается близким к 1,0 В и может достигать 2,0 В для очень сильноточных тиристоров.
В некоторых случаях может обнаружиться, что тринистор снова выключается при отключении тока затвора. Это означает, что SCR не «защелкнулся» должным образом.
Чтобы тиристор зафиксировался, анодный ток должен подняться до значения, известного как «запирающий ток». Как только это значение будет превышено, тиристор защелкнется и продолжит работу, даже если ток затвора будет снят.
Чтобы тиристор выключился, анодный ток должен снизиться почти до нуля. Если ток анода упадет ниже значения, известного как «ток удержания», он вернется в выключенное состояние. Процессы, связанные с уменьшением анодного тока до этого значения, обсуждаются в разделе 10.2.3.
Токи удержания и фиксации для конкретного тринистора всегда очень малы по сравнению с номинальным анодным током. Ток фиксации немного выше, чем ток удержания. Например, тиристор C122E имеет следующие номинальные значения тока:
- ток анода — 8,0 А
- ток фиксации — 25 мА
- ток удержания — 20 мА.
Обратная работа SCR идентична работе диода p–n . Он будет блокировать ток до тех пор, пока не произойдет пробой. Это вызвано тем, что обратное напряжение превышает номинальное пиковое обратное напряжение (PRV) устройства.
Работа тиристора в прямом направлении может быть продемонстрирована с помощью тиристора и аналогового омметра (см. , рисунок 6 ):
Рисунок 6 Этапы работы SCR
1. Переключите омметр на диапазон Ω × 1 и закоротите провода, чтобы обнулить показания. При выполнении этого теста помните, что аналоговый мультиметр изменит полярность своих клемм при переключении на диапазон омов. Во избежание путаницы подсоедините красный провод к клемме с пометкой «минус», а черный провод к клемме с пометкой «плюс». Затем считайте красный провод положительным, а черный — отрицательным.
2. Определите конфигурацию выводов для SCR, используя таблицы данных производителя.
3. Подключите положительный провод к аноду, а отрицательный — к катоду SCR. Наблюдайте за чтением. Это показание должно быть высоким (около бесконечности), потому что SCR должен находиться в режиме прямой блокировки.
4. Подсоедините второй положительный провод мультиметра к клемме затвора и наблюдайте за эффектом. Показание должно упасть до низкого значения (около 20 Ом).
5. Снимите провод с клеммы ворот и наблюдайте за эффектом. Показание должно оставаться низким, так как SCR должен быть зафиксирован.
Важно понимать, что этот тест не является надежным для сильноточных тиристоров, поскольку омметр может быть не в состоянии обеспечить ток, достаточный для того, чтобы тиристоры защелкнулись. Аналогичные тесты можно провести с использованием источника постоянного тока и подходящей нагрузки.
Из этого исследования работы тиристора следует отметить, что для того, чтобы заставить тиристор переключаться из выключенного состояния во включенное состояние и оставаться во включенном состоянии, должны быть выполнены следующие условия:
- тиристор должен быть смещен в прямом направлении
- импульс тока должен протекать от затвора к катоду
- анодный ток должен подняться до уровня, превышающего ток фиксации, чтобы тиристор зафиксировался во включенном состоянии
- анодный ток должен оставаться выше тока удержания, чтобы оставаться во включенном состоянии.
Коммутация SCR
Процесс отключения SCR известен как «коммутация». Чтобы коммутировать SCR, анодный ток должен быть уменьшен до значения ниже тока удержания. Коммутацию можно принудительно вызвать несколькими способами, например:
1. Уменьшите или отключите напряжение питания — в большинстве случаев этот метод нецелесообразен.
2. Кратковременно закоротите клеммы анода и катода тиристора — этот метод может быть опасен в цепях с высоким током и/или высоким напряжением. В большинстве ситуаций это непрактично.
3. Обратное смещение тиристора и инжекция короткого импульса тока от катода к аноду — это наиболее удачный и широко используемый метод обеспечения принудительной коммутации тиристора. Это может быть достигнуто путем обеспечения вспомогательных цепей для подключения заряженного конденсатора или внешнего импульса через SCR, чтобы вызвать коммутацию.
Когда SCR подключен к источнику переменного тока для обеспечения управляемого выпрямления или управления нагрузкой переменного тока, анодный ток упадет до нуля, когда напряжение питания переменного тока упадет до нуля. Когда питание реверсируется, SCR будет смещен в обратном направлении. Это означает, что SCR коммутируется напряжением питания переменного тока и известен как «коммутация сети переменного тока».
Характеристики и номинальные значения SCR
Типичные прямые и обратные характеристики SCR показаны на Рис. 7 .
Рис. 7 Кривая прямой и обратной характеристик тиристора
Как и многие другие электронные компоненты, тиристоры имеют много электрических номиналов. Номиналы, наиболее важные в практической ситуации, особенно при замене компонентов, следующие:
1. Пиковое обратное напряжение (PRV) — максимальное пиковое значение напряжения, которое тиристор может непрерывно выдерживать при обратном смещении.
2. Прямое напряжение пробоя (VBR) — максимальное значение прямого напряжения, которое можно приложить к тиристору при прямом смещении, не вызывая переключения тиристора во включенное состояние.
3. Средний прямой ток (IT(ср)) — максимальный средний прямой анодный ток, который может выдержать тиристор. Чтобы пропускать это значение тока без повреждения тиристора, может потребоваться установка тиристора на радиаторе для отвода тепла, выделяемого в переходах устройства.
4. Ток удержания (IH) —минимальный анодный ток, который будет поддерживать проводимость в тринисторах. Если анодный ток упадет ниже этого значения, SCR переключится из включенного состояния в выключенное.
5. Ток фиксации (IL) —минимальный анодный ток, при котором тиристор фиксируется во включенном состоянии. Если анодный ток не превысит это значение при срабатывании тока затвора, тринистор вернется в выключенное состояние при снятии тока затвора.
6. Dv/dt — максимальная скорость нарастания анодного напряжения, которую может выдержать тринистор в выключенном состоянии, не переключаясь обратно во включенное состояние. Это значение обычно измеряется в вольтах на микросекунду
7. Di/dt — максимальная скорость нарастания анодного тока, допустимая в тринисторах при переключении из выключенного во включенное состояние. Если анодный ток растет слишком быстро, плотность тока в кремниевой пластине может быть слишком высокой.
8. Максимальное обратное напряжение затвора (VRGM) — величина аналогична номинальному значению PRV тиристора, но относится к переходу затвор-катод. Это значение является максимальным обратным напряжением, которое может быть приложено к переходу затвор-катод. Это значение обычно значительно ниже рейтинга PRV SCR.
9. Максимальное напряжение во включенном состоянии (VT) — максимальное падение прямого напряжения, которое можно ожидать, когда тринистор находится во включенном состоянии.
Для получения всей необходимой информации, относящейся к конкретному SCR, может потребоваться обращение к листам технических данных производителя. Технические специалисты и торговцы, работающие в ситуациях, когда используются тиристорные устройства, могут счесть полезным получить полный набор спецификаций от производителя.
Требования к шлюзу SCR
Чтобы обеспечить точное и надежное срабатывание тиристоров, пусковые импульсы должны удовлетворять следующим требованиям:
- Ток и напряжение затвора должны быть достаточно высокими для срабатывания тиристора.
- Ток и напряжение затвора не должны быть достаточно высокими, чтобы вызвать повреждение перехода затвор-катод.
- Импульс стробирования должен подаваться на период, позволяющий полностью включить SCR.
По мере увеличения тока затвора тиристора напряжение, необходимое для перехода тиристора в состояние проводимости, уменьшается. Чувствительность тиристора также увеличивается с повышением температуры. Рисунок 8 показывает зависимость между током затвора и напряжением пробоя.
Рис. 8 Влияние затвора на напряжение пробоя тиристора
Важны не только величины тока и напряжения затвора, но также фактическая форма и длительность импульса.
Импульс тока затвора должен иметь очень быстрое время нарастания, чтобы обеспечить максимально быстрое распространение проводимости по кремниевой пластине. Это позволяет SCR включаться быстрее. В идеале импульс тока затвора должен иметь время нарастания менее 1 мкс.
Импульс тока затвора должен иметь достаточную длительность для завершения процесса включения. Процесс включения завершается, когда SCR фиксируется. В простой резистивной цепи это может занять всего несколько микросекунд, в то время как в индуктивной цепи процесс может занять больше времени.
Чтобы обеспечить полное включение SCR до того, как ток затвора будет удален, длительность затвора должна составлять от 50 до 200 мкс.
Амплитуда и длительность стробирующего импульса зависят от типа SCR и характера нагрузки. Рисунок 9 показывает типичный стробирующий импульс для SCR.
Рис. 9 Типичный импульс тока затвора тиристора
В некоторых случаях, когда нагрузка является высокоиндуктивной, необходимо иметь «последовательность импульсов», а не одиночный импульс. Это необходимо для того, чтобы SCR включился и зафиксировался до того, как ток затвора будет удален. «Последовательность импульсов» состоит из серии одиночных импульсов длительностью около 20 мкс с задержкой около 100 мкс между каждым импульсом.
Характеристики переключения SCR делают их идеальными для многих применений. SCR можно включать и выключать очень быстро. SCR классифицируются по времени включения и выключения. Они будут классифицироваться как:
- тиристоры управления фазой — типичное время включения 20 мкс, типичное время выключения 40 мкс
- инверторные тиристоры — типичное время включения 10 мкс, типичное время выключения 20 мкс.
Важно отметить, что время, необходимое для включения или выключения SCR, может зависеть от характеристик нагрузки. Время переключения больше при высокой индуктивной нагрузке, чем при резистивной.
Охлаждение и защита
Несмотря на то, что тиристор представляет собой экономически эффективное средство управления мощностью, некоторые сильноточные тиристоры очень дороги и могут стоить несколько сотен долларов каждый. Поэтому стоит инвестировать разумную сумму денег в компоненты или устройства для защиты SCR.
Тиристоры требуют защиты от:
- чрезмерного тока (защита от короткого замыкания)
- быстро нарастающих токов
- быстро нарастающих прямых напряжений
- чрезмерная температура перехода.
1. Защита от короткого замыкания — последовательно с тиристором устанавливаются специальные предохранители. Эти предохранители могут ограничивать предполагаемый ток короткого замыкания, а также прерывать подачу питания. Они представляют собой разновидность обычного предохранителя HRC. Иногда их называют полупроводниковыми предохранителями или предохранителями с ловушкой.
2. Быстро нарастающий ток (di/dt) — если анодный ток возрастает слишком быстро, плотность тока в кремниевой пластине может стать слишком высокой и повредить тринистор, даже если фактическое значение тока не превышает тока Рейтинг СКР. Чтобы свести к минимуму вероятность этого, индуктивность подключается последовательно с тиристором, чтобы ограничить скорость нарастания анодного тока при включении тиристора.
3. Быстро нарастающие прямые напряжения (dv/dt) — при работе тиристора в режиме прямой блокировки и слишком быстром увеличении анодного напряжения тиристор может включиться, вызывая некорректную работу схемы. Обычно это происходит, когда SCR только что был выключен. Для предотвращения этого резистор и конденсатор соединены последовательно. Эта последовательная комбинация подключается параллельно с SCR. Сеть RC известна как «демпферная сеть» и ограничивает скорость нарастания прямого напряжения на SCR.
4. Чрезмерная температура перехода — несмотря на то, что мощность, рассеиваемая в SCR, относительно мала, температура перехода может стать чрезмерной из-за относительно небольшой массы устройства. Чтобы предотвратить чрезмерное накопление тепла, тиристоры обычно монтируются на радиаторе. Это может быть плоский кусок алюминия или экструдированный алюминиевый радиатор с ребрами для улучшения отвода тепла. Чтобы улучшить теплопроводность между устройством и радиатором, между устройством и радиатором часто смазывают теплоотводящий состав. Рассеивание тепла дополнительно улучшается, если радиатор выполнен из черного анодированного алюминия. В крайних случаях радиаторы могут иметь вентиляторное и/или жидкостное охлаждение.
На следующей схеме ( Рисунок 10 ) показано подключение защитных устройств к SCR.
Рисунок 10 Схема защиты SCR
В некоторых устройствах, использующих тиристорные устройства, могут использоваться другие, более сложные методы защиты. Сюда могут входить методы, предотвращающие включение тиристора при обнаружении неисправности в нагрузке.
Тестирование тиристора
На тиристорном тиристре можно провести ряд внутрисхемных тестов. Это простые тесты, которые дают представление о состоянии SCR. Например:
1. | Измерьте прямое падение напряжения — оно должно быть около номинального значения 0,6 В, если SCR включен, или около напряжения питания, если SCR выключен. Если тиристор включен, а прямое падение напряжения равно 0 В, скорее всего, тиристор закорочен. Эта неисправность обычно вызвана чрезмерным обратным напряжением. |
2. | Используйте осциллограф (или высокоимпедансный вольтметр) для обнаружения запускающих импульсов. Если триггерные импульсы отсутствуют, это может быть связано либо с неисправной триггерной цепью, либо с коротким замыканием перехода затвор-катод. |
3. | Если подозревается неисправность цепи запуска, отсоедините затвор и очень осторожно подключите резистор между анодом и затвором (подходящим значением может быть около 1 кОм). Если SCR исправен, это действие обычно приводит к его включению. Если это не помогло, SCR следует удалить из цепи для более тщательного тестирования. |
Проверка вне цепи может быть выполнена с помощью подходящего аналогового мультиметра, переключенного на диапазон Ω × 1. Помните, что большинство аналоговые мультиметры меняют полярность при переключении на диапазон Ом.
Измерьте сопротивление между каждой из клемм любой полярности, затем сравните результаты со стандартным набором. Ожидаемые сопротивления указаны ниже в Таблице 1 .
Таблица 1 Результаты испытаний SCR — SCRICALE SCR