Подключение электродвигателя через конденсатор: Схема подключения двигателя через конденсатор

Содержание

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 0,1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».


Расчет конденсатора для пуска двигателя, схема подключения

  1. Главная
  2. Электрические машины
  3. Конденсатор для пуска двигателя

Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.

Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

Коротенько про трехфазные асинхронные электродвигатели

Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор - вращающаяся часть, статор неподвижная (на рисунке его не видно).

Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже - С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный - С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов - аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

почему для пуска от однофазной сети используют именно конденсаторы

Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

На схеме мы видим, что обмотка разделилась на две ветви - пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.

как подключить электродвигатель через конденсатор

Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая - напротяжении всей работы двигателя.

конденсаторы для запуска электродвигателя

Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:

схема “звезда”:

Рабочая емкость = 2800*Iном.эд/Uсети

схема “треугольник”:

Рабочая емкость = 4800*Iном/Uсети

Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.

В формулах выше Iном - это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети - напряжение питающей сети(~127, ~220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются - пусковыми.

Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Схема Подключения Электродвигателя Через Конденсатор

Затем мотор работает как асинхронный двигатель на основной обмотке. Расчет емкости должен производиться с учетом номинальной мощности ЭД.


Найти требуемую емкость опытным путем — самое правильное решение.

Для запуска электромашины этого типа, может быть использован пусковой резистор. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока.
Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.

При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Подключается все просто, на толстые провода подается в. Они играют роль шунтов, однако действую не мгновенно.

Эти соединения и будут выводами двигателя для подключения к электропитанию. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Различные виды двигателей использовались для испытаний на пригодность выполнять функции генератора. В документации описаны способы подключения конденсаторов для реверсирования двигателя.

Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.

Подключение

Но тогда параметры элементов цепи, которые зависят от мощности и схемы соединения обмоток будет необходимо менять, что не очень удобно в эксплуатации. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. Подключение производится по этой схеме. Подключение трехфазного двигателя по схеме треугольник Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

Для возможности работы электродвигателя в однофазной сети вольт необходимо для начала его обмотки переключить на схему треугольник.

Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

Называют их конденсаторными.

Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности.
Подключение 3-фазного двигателя в сеть 220В через пусковой и рабочий конденсаторы

Навигация по записям

Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Заключение Асинхронники на В широко применяются в быту. В качестве основы для статора и ротора используется электротехническая сталь

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей.

Принцип схемы там очень прост — изменение направления тока в рабочей обмотке С1-С2. А они есть не у всех, даже у электриков. От однофазной сети трехфазные устройства работают с помощью емкостных или индуктивно-емкостных цепей, сдвигающих фазу. Последний предназначен для отключения дополнительной обмотки от источника питания после запуска.

Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Главную функцию берут на себя рабочие конденсаторы.

Принцип действия и схема запуска


Конденсаторы, которые находятся в цепи, могут быть заряжены. Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД. И во многих случаях электрооборудование приводится в движение трехфазными двигателями.

Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно Установка и подбор компонентов Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно распределительная коробка на корпусе электродвигателя. Сразу же заниматься расчетами схемы подключения не имеет смысла.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего. Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Подключается все просто, на толстые провода подается в.
подключение двигателя 380 на 220 вольт

Для чего нужен конденсатор

Например, если ток равен 1. Подключение трехфазного двигателя к однофазной сети Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть.

В качестве кнопки так же можно использовать обычный выключатель. Как правильно подобрать конденсаторы Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент.

Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. На какой из них разницы нет, направление вращения от этого не зависит.

Мы не будем изменять направление тока в той или иной обмотке. Трехфазные агрегаты на практике получили большее распространение, чем однофазные. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Еще по теме: Составление сметы и плана электромонтажных работ

Это тоже одна из разновидностей обмоток. При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Она всегда работает короткое время и служит для запуска двигателя. Напряжение на них может достигать больших значений.

Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Статор электродвигателя.

На этом все. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого. Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Были сделаны выводы, что скорость вращения ротора прибора, который используется в качестве генератора, не зависит от напряжения, которое подано на питающую однофазную сеть. Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе.
Как подключить электродвигатель на 220 вольт.

Подключение пусковых конденсаторов к электродвигателю.

В одной из прошлых статей мы говорили о подборе рабочих конденсаторов для работы  3 ф.(380 Вольт) асинхронного электродвигателя от 1 ф. сети (220 Вольт). А именно о подборе рабочих конденсаторов  по амперметру . Спасибо Вам мои читатели за  множество отзывов и благодарностей, ведь если бы не Вы  уже давно бы забросил это дело.  В одном из писем  присланных мне на почту были вопросы: « Почему  не рассказал о пусковых конденсаторах?», «Почему у меня не запускается двигатель, ведь я всё сделал, как было написано».  А ведь правда что не всегда хватает «рабочих» конденсаторов для пуска электродвигателя под  нагрузкой, и возникает вопрос: «Что же делать?». А вот что: «Нам нужны пусковые конденсаторы». А вот как их подобрать правильно мы сейчас поговорим. И так что мы имеем: 3 фазный электродвигатель, к которому на основе прошлой статье  мы подобрали ёмкость рабочего конденсатора 60 мкФ. Для пускового конденсатора мы берем емкость в 2 - 2,5 раза больше чем ёмкость рабочего конденсатора. Таким образом, нам понадобится конденсатор ёмкостью 120 – 150 мкФ. При этом рабочее напряжение этих конденсаторов должно быть в 1,5 раза больше напряжения сети. Сейчас у многих возникает вопрос: « А почему не 300 мкФ или даже 1000 мкФ, ведь кашу маслом не испортишь?». Но в не этом случае, всего должно быть в меру, при слишком большей ёмкости пусковых конденсаторов  нечего очень страшного не случиться, но эффективность пуска электродвигателя будет хуже. Таким образом не стоит тратить лишние средства на покупку слишком большой ёмкости.

Но какие, же конденсаторы нужны для пуска электродвигателя?

Если нам нужна небольшая ёмкость пускового конденсатора то вполне подойдёт конденсаторы того же типа которые мы использовали для рабочих конденсаторов.  Но если нам нужно довольно таки  большая ёмкость? Для такой цели не целесообразно использовать такой тип конденсаторов через их дороговизну и размеры (при сборе большой батареи конденсаторов размеры её будут велики).  Для таких целей нам служат специальные пусковые (стартовые) конденсаторы, которые сейчас присутствуют в продаже, в большом ассортименте.  Такие конденсаторы встречаются разных форм и типов, но в их названиях присутствует маркировка (надпись): «Start», «Starting»,  « Motor Start» или что-то в этом роде, все они служат для пуска электродвигателя. Но для лучшей убедительности лучше спросить у продавца при покупке, он всегда подскажет.

 


А вот сейчас Вы скажете: «А как же конденсаторы от старых советских ч/б телевизоров, так называемые «электролиты»?»

Да что я Вам могу сказать по этому поводу. Я сам их не использую, и Вам не рекомендую и даже отговариваю. Всё потому что их использование в качестве пусковых конденсаторов не вполне безопасно. Потому что они могут вздуваться или и того хуже взрываться. К тому же такой тип конденсаторов со временем высыхает и теряет  свою номинальную ёмкость, и мы не можем точно знать, какую именно мы применяем в данный момент.

И так у нас есть электродвигатель, рабочий и пусковой конденсатор. Как нам всё это подключить?

Для этого нам понадобится кнопка ПНВС.

  

Кнопка ПНВС (пускатель нажимной с пусковым контактом) имеет три контакта: два крайних –   с фиксацией и один посередине – без фиксации. Он и служит для включения пускового конденсатора, а при прекращении нажатия на кнопку возвращается в исходное положение (пусковой конденсатор «Сп» включается только во время пуска двигателя, а рабочий конденсатор «Ср» постоянно находиться в работе), другие два крайних контакта остаются включенными и отключаются при нажатии кнопки «Стоп». Кнопку «Пуск» нужно удерживаться до тех пор, пока скорость вала не достигнет максимальных оборотов, и только после её отпустить. Также не стоит забывать, что конденсатор имеет свойство иметь заряд электрического тока, и Вы можете попасть под поражения электрическим током. Что бы этого не случилось, по окончанию работы  отключите электродвигатель от сети, и включите на одну две секунды кнопку «Пуск», чтобы конденсаторы могли разрядиться. Либо параллельно пусковому конденсатору поставьте резистор около 100 килоом, чтобы конденсатор разряжался на него.

У нас с двигателя выходят три провода. Первый и третий  мы подключаем к двум крайним контактам кнопки. Второй же провод мы подключаем к одному из контактов пускового конденсатора «Сп», а второй контакт этого конденсатора к средней  клемме копки ПНВС. Ко второму и третьему проводу, как показано на схеме, подключаем рабочий конденсатор  «Ср».  С другой стороны кнопки два крайних контакта подключаем к сети, а к среднему подключаем «перемычку» к контакту, к которому подключен рабочий конденсатор «Ср».

Схематически это выглядит так:

вариант схемы с реверсом:


Удачи Вам в ваших экспериментах.

Как подключить электродвигатель 380В на 220В

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Схема №1.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Читайте также:

Схема №2.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Читайте также:

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Читайте также:

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

Запуск трехфазных электродвигателей с помощью конденсаторов

Существует масса разнообразных электрических двигателей, но все они имеют две характеристики, основанные на напряжении сети, к которой привязаны они и их мощность. Многие не имеют представления, как подключить двигатель 380 на 220В. Статья раскроет эту тему.

Как подключить электродвигатель 380 на 220?

Существует две схемы такого подсоединения. Каждая имеет свои особенности.

  1. Звезда-треугольник;
  2. Конденсаторы.

В хозяйстве иногда возникает потребность подключения к однофазной электросети электрический двигатель, который рассчитан на работу в трехфазной сети. Этот случай считается исключительным, и к нему стоит прибегать только, если нет возможности подключиться к трехфазной электросети, так как в ней сразу создается магнитное вращающееся поле, которое создает условия для вращения ротора в статоре. Ко всему прочему в этом режиме достигается максимальная мощность и эффективность работы электродвигателя.

Если вы подключаете к бытовой однофазной электрической сети, то совершайте три обмотки по схеме «треугольник» для того, чтобы получить наибольшую выходную мощность асинхронного электромотора ( это будет максимум 70%, если сравнивать с трехфазным подключением). Если подключаете схемой «звезда», то максимальная мощность будет достигать 50% от возможной.

Однофазное подключение на два выхода дает возможность подключить фазу и ноль, третьей фазы нет, но она восполняется конденсатором.

Направление вращения электрического двигателя будет зависеть от того, как будет сформирован третий контакт: через фазу или ноль. В режиме одной фазы частота вращения будет идентичной трехфазному режиму. Как подключить двигатель 380 на 220? Какова схема подключения электрического двигателя 380 на 220 В с конденсатором?

Подключение электродвигателя с конденсатором

При подключении маломощных асинхронных электрических двигателей до 1,5 кВт, запускающихся без нагрузки, необходимо иметь только рабочий конденсатор. К нулю подключаем один его конец, другой же к третьему выходу треугольника. Чтобы изменить направление вращения мотора подключение конденсатора ведем не от нуля , а от фазы.

В случае работы двигателя сразу при запуске под нагрузкой или когда его мощность более 1,5 кВт, то для успешного запуска нужно внести в схему пусковой конденсатор, который будет включаться в работу параллельно рабочему. Он нужен для увеличения пускового толчка при старте, он станет включаться всего на несколько секунд.

Обычно пусковой конденсатор имеет кнопочное подключение, остальная же схема подключается от электрической сети через тумблер либо же через кнопку с двумя фиксирующимися положениями. Чтобы произвести запуск требуется подключить питание через тумблер или двухпозиционную кнопку, затем произвести нажатие на пусковую кнопку и удерживать ее до тех пор, пока не запустится электрический двигатель. Как только запуск произошел, отпускаем кнопку, при этом ее пружина разомкнет контакты и произведет отключение пусковой емкости.

Если необходим реверсивный запуск трехфазного двигателя в сети 220 вольт, тогда нужно будет занести в схему тумблер переключения. Он нужен для подключения одного конца рабочего конденсатора к фазе и к нулю.

В случае, если двигатель не желает запускаться либо очень медленно набирает скорость оборотов, то необходимо внести в схему пусковой конденсатор, который подключен через кнопку «Пуск». Для подключения этой кнопки на реверсивной схеме для обозначения проводов используется фиолетовый цвет. Если в реверсе нет необходимости, то со схемы выпадает кнопка вместе с проводами и пусковой правый конденсатор.

Подключение электродвигателя без конденсаторов

Как ни крути, но работать трехфазный электродвигатель будет в однофазной сети на 220 В только с конденсаторами. Они не нужны для запуска электромоторов, которые рассчитаны на работу с напряжением сети в 220 вольт.

Собрать самостоятельно схему подключения не так и сложно. Сложность будет заключаться в подборе необходимой емкости рабочего конденсатора, дополнительные хлопоты возникнут, если потребуется пусковой.

Выбор конденсаторов для электродвигателей

Как подобрать нужные модели? На корпусе находятся обозначения и величина емкости. Заострите внимание только на моделях типа МБГЧ, МБПГ, МБГО, БГТ с рабочим напряжением, которое обозначает (U раб), не менее 300 вольт.

Как рассчитать емкость конденсаторов для электродвигателей?

  • Чтобы рассчитать рабочую емкость конденсатора для схемы подключения звездой, необходимо использовать формулу Cраб=2800х(I/U). В случае подключения обмоток треугольником, тогда по такой формуле: Сраб=4800х(I/U).
  • Для получения результатов по величине в мкФ емкости рабочего конденсатора Сраб, нужно потребляемый двигателем ток (по паспорту) разделить на напряжение сети U, которое равняется 220 вольт, полученные данные умножаются на 4800, если задействован треугольник, или 2800, если работа производилась со звездой.

Экспериментальным способом подбирается емкость пусковых. Обычно их емкость превосходит емкость рабочих в 2-3 раза.

К примеру, есть электродвигатель обмотки, провода которого имеют соединение треугольником, величина потребляемого тока равна 3 амперам. Эти данные подставляем в формулу Сраб= 4800 x (3 / 220)≈ 65 мкФ. При этом пусковой будет иметь пределы в 130-160 мкФ. Но такая емкость редко встречается у конденсаторов, что приводит к параллельному подключению для рабочего, к примеру, шесть по десять плюс один на 5 мкФ.

Учтите то, что расчет составляется на номинальную мощность. Работая в половину силы, электрический двигатель станет нагреваться, поэтому следует уменьшить емкость рабочего конденсатора, чтобы уменьшить ток в обмотке.

При не достающей до требуемой емкости, мощность, развиваемая электрическим двигателем, будет низкой.

Профессионалы рекомендуют начинать подбирать конденсатор для трехфазного двигателя с наименьшего допустимого значения емкости, постепенно увеличивая показатель до оптимального значения.

Помните о том, что если электрический двигатель, переделанный с 380 на 220 вольт, будет долго работать без нагрузки, он сгорит.

Обратите внимание! После отключения конденсаторы на своих выводах достаточно долго сохраняют напряжение опасной величины . Не забывайте следить за соблюдением мер по безопасности: всегда их ограждайте, чтобы исключить случайное прикосновение. Перед эксплуатацией конденсаторов каждый раз не забывайте производить их разрядку.

Всегда помните о том, что не следует подключать трехфазный двигатель, у которого мощность более 3 кВт, к обычной электросети дома на 220В. Это приводит к тому, что начинает происходить выбивание пробок, плавиться изоляция проводов, если неправильно подобрана защита.

Подключение однофазного двигателя через конденсатор — 3 схемы

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Конструкция асинхронного однофазного электродвигателя

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

Пример размещения конденсатора на внешней стороне корпуса электродвигателя

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Конденсаторы для подключения однофазного двигателя

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Похожие статьи: Схемы однофазных электродвигателей

и клеммные соединения

Уважаемый г-н электрик: Где я могу найти схемы подключения однофазного электродвигателя?

Ответ: Я составил группу схем подключения однофазного внутреннего электродвигателя и клеммных соединений ниже. Внизу поста также видео о шунтирующих двигателях постоянного тока. ПРИМЕЧАНИЕ. Некоторые текстовые ссылки ниже ведут к применимым продуктам на Amazon, EBay и Northern Tool and Equipment .

Клеммы вращения двигателя - одно напряжение

ВРАЩЕНИЕ L1 L2
По часовой стрелке 1,5 4,8
Против часовой стрелки 1,8 4,5

Вращение двигателя - двойное напряжение, только основная обмотка

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая Против часовой стрелки 1 4, 5 2 и 3 и 8
Высокая CW 1 4, 8 2 и 3 и 5
Низкая Против часовой стрелки 1, 3, 8 2, 4, 5 -
Низкая CW 1, 3, 5 2, 4, 8 -

Вращение двигателя - двойное напряжение, основная и вспомогательная обмотки

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая Против часовой стрелки 1, 8 4, 5 2 и 3, 6 и 7
Высокая CW 1, 5 4, 8 2 и 3, 6 и 7
Низкая Против часовой стрелки 1, 3, 6, 8 2, 4, 5, 7 -
Низкая CW 1, 3, 5, 7 2, 4, 6, 8 -

Подключения переключателя вспомогательной обмотки должны быть выполнены таким образом, чтобы обе вспомогательные обмотки были обесточены при размыкании переключателя.

СХЕМА ЭЛЕКТРОДВИГАТЕЛЯ

Внутренние электрические схемы электродвигателей малой и малой мощности

Индукция с разделенной фазой
Постоянно подключенный конденсатор с разделенной фазой
Запуск с разделенным фазным конденсатором
Работа с разделенным фазным конденсатором
Запуск с другой разделенной фазой с конденсатором Отталкивание
Индукция начала отталкивания (обратимая)
Затененный полюс
Каркасный затененный полюс
Универсальный

Электродвигатель с разделенной фазой.

Асинхронный электродвигатель с расщепленной фазой оснащен короткозамкнутым ротором для работы с постоянной скоростью и имеет пусковую обмотку с высоким сопротивлением, которая физически смещена в статоре от основной обмотки.

Последовательно с пусковой обмоткой находится центробежный пусковой выключатель, который размыкает пусковую цепь, когда двигатель достигает примерно 75-80 процентов синхронной скорости. Функция пускового выключателя заключается в том, чтобы предотвратить потребление двигателем чрезмерного тока, а также защитить пусковую обмотку от чрезмерного нагрева.Двигатель может быть запущен в любом направлении путем реверсирования основной или вспомогательной (пусковой) обмотки.

Эти двигатели подходят для масляных горелок, воздуходувок, бизнес-машин, полировальных машин, шлифовальных машин , и т. Д.

Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой.

Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой также имеет короткозамкнутый ротор с основной и пусковой обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой.Двигатели этого типа запускаются и работают с фиксированным значением емкости последовательно с пусковой обмоткой.

Двигатель получает свой пусковой крутящий момент от вращающегося магнитного поля, создаваемого двумя физически смещенными обмотками статора. Основная обмотка подключается непосредственно к линии, а вспомогательная или пусковая обмотка подключается к линии через конденсатор , обеспечивающий электрическое смещение фаз.

Этот двигатель подходит для приводов с прямым подключением, требующих низкого пускового момента, таких как вентиляторы, нагнетатели, некоторые насосы и т. Д.

Электродвигатель запуска конденсатора с расщепленной фазой.

Электродвигатель с пусковым механизмом с разделенным фазным конденсатором может быть определен как разновидность электродвигателя с расщепленной фазой, в котором конденсатор включен последовательно со вспомогательной обмоткой. Вспомогательная цепь размыкается центробежным переключателем, когда двигатель достигает 70-80 процентов синхронной скорости.

Также известен как асинхронный двигатель с конденсаторным пуском. Ротор представляет собой беличью клетку. Основная обмотка подключается непосредственно через линию, в то время как вспомогательная или пусковая обмотка подключается через конденсатор, который может быть включен в схему через трансформатор с обмоткой соответствующей конструкции и конденсатором таких значений, что две обмотки будут разнесены примерно на 90 градусов. .

Двигатели этого типа подходят для систем кондиционирования и охлаждения, вентиляторы с ременным приводом и т. Д.

Электродвигатель, работающий через конденсатор, разделенный фазой

Электродвигатель, работающий через конденсатор, разделенный фазой. A Конденсатор с разделенной фазой Электродвигатель рабочего типа имеет рабочий конденсатор, постоянно включенный последовательно со вспомогательной обмоткой. Пусковой конденсатор подключен параллельно рабочему конденсатору только во время пускового периода. Двигатель запускается при замкнутом центробежном выключателе.

Northern Tool продает различные электродвигатели и аксессуары

Когда двигатель достигает 70–80 процентов синхронной скорости, пусковой выключатель размыкается и отключает пусковой конденсатор. Рабочий конденсатор обычно представляет собой масляно-заполненный конденсатор с промежутками между бумагами, обычно рассчитанный на 330 В переменного тока для непрерывной работы. Они могут варьироваться от 3 до 16 микрофарад.

Пусковой конденсатор обычно электролитического типа и может иметь диапазон от 80 до 300 мкФ для двигателей на 110 В, 60 Гц.

Эти двигатели подходят для применений, требующих высокого пускового момента, таких как компрессоры, нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Другой электродвигатель, работающий через конденсатор с расщепленной фазой.

Другой тип электродвигателя типа «Split Phase Capacitor Run » использует блок конденсаторного трансформатора и является короткозамкнутым ротором с расщепленной фазой, в котором основная и вспомогательная обмотки физически смещены в статоре. В нем используется однополюсный двухпозиционный переключатель для подачи высокого напряжения на конденсатор во время запуска.

После того, как двигатель достигнет скорости от 70 до 80 процентов синхронной, передаточный переключатель срабатывает для изменения отводов напряжения на трансформаторе. Напряжение, подаваемое на конденсатор с помощью трансформатора, может варьироваться от 600 до 800 вольт во время запуска. Для непрерывной работы выдается около 350 вольт.

Подходит для применений с высоким пусковым моментом, таких как компрессоры , нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Асинхронный электродвигатель (реверсивный), работающий с расщепленным конденсатором.

Асинхронный электродвигатель, работающий с разделенным фазным конденсатором (реверсивный). Когда реверсивный переключатель находится в положении «B», вспомогательная обмотка становится основной обмоткой, а основная обмотка становится вспомогательной. В положении «A» обмотки работают, как показано на схеме.

В двигателях с расщепленной фазой смена обмотки заставляет двигатель работать в обратном направлении. Обе обмотки должны быть идентичны по размеру провода и количеству витков.

Используйте это, если вам нужен реверсивный двигатель конденсаторного типа с переменным номинальным током и высоким крутящим моментом.

Электродвигатель с разделенной фазой и запуском реактора.

Асинхронный электродвигатель с разделенной фазой и пуском реактора. Этот двигатель снабжен вспомогательной обмоткой, смещенной в магнитном положении относительно основной обмотки и включенной параллельно ей. Реактор снижает пусковой ток и увеличивает запаздывание по току в основной обмотке.

При примерно 75% синхронной скорости пусковой выключатель срабатывает, чтобы шунтировать реактор, отключая вспомогательную обмотку от цепи.

Это двигатель с постоянной скоростью вращения, который лучше всего подходит для легких работающих машин, таких как вентиляторы, небольшие воздуходувки, бизнес-машины, шлифовальные машины и т. Д.

Щелкните здесь, чтобы просмотреть различные инструменты для работы с двигателями

Электродвигатель с однофазным конденсатором с расщепленной фазой (тип двойного напряжения).

Электродвигатель с однофазным конденсатором, разделенный фазой (тип двойного напряжения). Этот двигатель имеет две одинаковые основные обмотки, которые могут быть включены последовательно или параллельно. При параллельном включении основной обмотки напряжение в сети обычно составляет 240 Ом.Когда основные обмотки соединены последовательно, используется 120 вольт.

Вспомогательная пусковая обмотка смещена в пространстве от основной обмотки на 90 градусов. Он также имеет центробежный выключатель и пусковой конденсатор. Обмотка такого типа дает только половину пускового момента при 120 вольт, чем при подключении на 240 вольт.

Электродвигатель отталкивания.

Отталкивающий электродвигатель по определению является однофазным двигателем, который имеет обмотку статора, предназначенную для подключения к источнику энергии, и обмотку ротора, подключенную к коммутатору.Щетки и коммутаторы закорочены и расположены так, чтобы магнитная ось обмотки ротора была наклонена к магнитной оси обмотки статора.

Он имеет изменяющуюся характеристику скорости, высокий пусковой момент и умеренный пусковой ток. Благодаря низкому коэффициенту мощности, за исключением высоких скоростей, он может быть преобразован в двигатель с компенсированным отталкиванием, у которого есть еще один набор щеток, расположенный посередине между короткозамкнутым набором, и этот дополнительный набор соединен последовательно с обмотками статора.

Электродвигатель индукционный с пуском отталкивания (реверсивный).

Асинхронный электродвигатель с отталкиванием (реверсивный) Асинхронный электродвигатель с отталкивающим запуском - это однофазный двигатель, имеющий ту же обмотку, что и отталкивающий двигатель, но при заданной скорости обмотка ротора замкнута накоротко или иным образом соединена для получения эквивалента обмотка беличьей клетки.

Этот двигатель запускается как отталкивающий двигатель, но работает как асинхронный двигатель с постоянной скоростью.Имеет однофазную обмотку с распределенным возбуждением, ось щеток которой смещена относительно оси обмотки возбуждения. Якорь имеет изолированную обмотку. Ток, индуцированный в якоре, переносится щетками и коммутатором, что приводит к высокому пусковому моменту.

Когда достигается почти синхронная скорость, коммутатор замыкается накоротко, так что якорь по своим функциям аналогичен якорю с короткозамкнутым ротором. На схеме изображен реверсивный тип, в котором две обмотки статора смещены, как показано.Реверс двигателя достигается путем перестановки соединений обмотки возбуждения.

Электродвигатель с экранированными полюсами.

Электродвигатель с экранированными полюсами - это однофазный асинхронный двигатель, снабженный вспомогательной короткозамкнутой обмоткой или обмоткой, смещенной в магнитном положении относительно основной обмотки. Используется несколько различных методов строительства, но основной принцип тот же.

Затеняющая катушка состоит из медных перемычек с низким сопротивлением, встроенных с одной стороны каждого полюса статора и используемых для обеспечения необходимого пускового момента.Когда ток увеличивается в основных катушках, в затеняющих катушках индуцируется ток, который противодействует магнитному полю, которое создается в части полюсных наконечников, которые они окружают.

Когда ток основной катушки уменьшается, ток в затеняющей катушке также уменьшается до тех пор, пока полюсные наконечники не будут намагничены равномерно. По мере того как ток основной катушки и магнитный поток полюсного наконечника продолжают уменьшаться, ток в экранирующих катушках меняется на противоположный и стремится поддерживать магнитный поток в части полюсных наконечников.

Когда ток основной катушки падает до нуля, ток все еще течет в затеняющих катушках, создавая магнитный эффект, который заставляет катушки создавать вращающееся магнитное поле, вызывающее самозапуск двигателя.

Используется там, где требования к питанию невелики, например, в часах, приборах, фенах , маленьких вентиляторах и т. Д.

Каркасный электродвигатель с экранированными полюсами

Каркасный электродвигатель с экранированными полюсами. Электродвигатель с экранированными полюсами каркасного типа предназначен для приложений, в которых требования к мощности очень малы. Цепь возбуждения с ее обмоткой построена вокруг обычного ротора с короткозамкнутым ротором и состоит из перфораций, которые поочередно уложены друг на друга, образуя перекрывающиеся соединения, так же, как собираются сердечники небольших трансформаторов.

Такие двигатели могут работать только на переменном токе, они просты по конструкции, дешевы и чрезвычайно прочны и надежны. Однако их основными ограничениями являются низкий КПД и низкий пусковой и рабочий крутящий момент.

Электродвигатель с экранированным полюсом не является реверсивным, если на каждой стороне полюса не предусмотрены экранирующие катушки и не предусмотрены средства для размыкания одной и замыкания другой катушки. По своей сути высокое скольжение двигателя с экранированными полюсами позволяет удобно получать изменение скорости при нагрузке вентилятора, например, за счет снижения напряжения.

Ebay продает ручные пускатели двигателей

Универсальный электродвигатель.

Универсальный электродвигатель разработан для работы от переменного или постоянного тока (AC / DC). Это двигатель с серийным заводом. Он снабжен обмоткой возбуждения на статоре, которая последовательно соединена с коммутирующей обмоткой на роторе. Обычно производится с дробными размерами в лошадиных силах.

Скорость вращения при полной нагрузке обычно составляет от 5000 до 10 000 об / мин, а скорость холостого хода - от 12 000 до 18 000 об / мин.Типичное применение - переносные инструменты, офисная техника, электрические чистящие средства, кухонная техника, швейные машины и т. Д.

Скорость универсальных двигателей можно регулировать, последовательно подключив к двигателю сопротивление соответствующего значения. Это делает его подходящим для таких приложений, как швейные машины, которые работают в диапазоне скоростей. Универсальные двигатели могут быть как компенсированными, так и некомпенсированными, причем последний тип используется только для более высоких скоростей и более низких номиналов.

Реверс этого двигателя достигается путем замены проводов щеткодержателя, при этом якорь подключен к нейтрали.В трехпроводном универсальном электродвигателе реверсивного типа с разделением последовательностей одна обмотка статора используется для получения одного направления, а другая обмотка статора - для получения другого направления, при этом в цепи одновременно находится только одна обмотка статора. Соединения якоря должны находиться в нейтральном положении, чтобы обеспечить удовлетворительную работу в обоих направлениях вращения.

РАЗМЕР РАМЫ

Ниже приведена таблица размеров корпуса двигателя, которую я нашел в старой книге.

Таблица размеров электродвигателя

Эту информацию о монтажных размерах двигателя я нашел в той же книге.

Таблица монтажных размеров электродвигателя NEMA C и J-Face.
НЕКОТОРЫЕ СВЕДЕНИЯ О ДВИГАТЕЛЯХ ПОСТОЯННОГО ТОКА Схема электрических соединений двигателя постоянного тока

Другие электрические схемы можно найти здесь .

Пусковой конденсатор двигателя | Приложения

Конденсаторы моторные

Асинхронные двигатели

переменного тока, также известные как асинхронные двигатели, используют вращающееся магнитное поле для создания крутящего момента. Трехфазные двигатели получили широкое распространение, поскольку они надежны и экономичны.Вращающееся магнитное поле легко достигается в трехфазных асинхронных двигателях, поскольку сдвиг фазового угла между отдельными фазами составляет 120 градусов. Однако однофазные двигатели переменного тока требуют внешней схемы, которая создает сдвиг фазового угла для создания вращающегося магнитного поля. Эта схема может быть реализована с использованием усовершенствованной силовой электроники или, проще говоря, с использованием конденсатора двигателя.

На видео ниже показано простое для понимания объяснение принципа работы асинхронного двигателя переменного тока.

Однофазные асинхронные двигатели переменного тока

Однокатушечные асинхронные двигатели переменного тока

Асинхронные двигатели

переменного тока обычно используют две или более катушек для создания вращающегося магнитного поля, которое создает крутящий момент на роторе. Когда используется одна катушка, она генерирует пульсирующее магнитное поле, которого достаточно для поддержания вращения, но недостаточно для запуска двигателя с места. Двигатели с одной катушкой должны запускаться с использованием внешней силы и могут вращаться в любом направлении.Направление вращения зависит от внешней силы. Если двигатель был запущен по часовой стрелке, он будет продолжать вращаться и набирать скорость по часовой стрелке, пока не достигнет максимальной скорости, которая определяется частотой источника питания. Точно так же он продолжит вращение против часовой стрелки, если первоначальное вращение было против часовой стрелки. Эти двигатели непрактичны из-за невозможности самостоятельно надежно начать вращение.

Пусковой конденсатор асинхронных двигателей переменного тока

Одним из способов улучшения конструкции с одной катушкой является использование вспомогательной катушки последовательно с пусковым конденсатором двигателя.Вспомогательная катушка, также называемая пусковой катушкой, используется для создания начального вращающегося магнитного поля. Для создания вращающегося магнитного поля ток, протекающий через основную обмотку, должен быть в противофазе по отношению к току, протекающему через вспомогательную обмотку. Роль пускового конденсатора заключается в том, чтобы задерживать ток во вспомогательной обмотке, выводя эти два тока в противофазе. Когда ротор достигает достаточной скорости, вспомогательная катушка отключается от цепи с помощью центробежного переключателя, а двигатель остается запитанным от одной катушки, создающей пульсирующее магнитное поле.В этом смысле вспомогательную катушку в этой конструкции можно рассматривать как пусковую катушку, поскольку она используется только во время запуска двигателя.

Пусковые / рабочие конденсаторные асинхронные двигатели переменного тока

Другим способом дальнейшего улучшения конструкции однофазного асинхронного двигателя с одной катушкой является введение вспомогательной катушки, которая остается под напряжением не только во время фазы запуска двигателя, но и во время нормальной работы. В отличие от двигателя переменного тока, использующего только пусковой конденсатор двигателя, который создает пульсирующее магнитное поле во время нормальной работы, двигатели переменного тока, использующие пусковой конденсатор двигателя и рабочий конденсатор двигателя, создают вращающееся магнитное поле во время нормальной работы.Функция пускового конденсатора двигателя остается такой же, как и в предыдущем случае - он отключается от цепи после того, как ротор достигает заданной скорости с помощью центробежного переключателя. После этого вспомогательная обмотка остается запитанной через рабочий конденсатор двигателя. На рисунке ниже показан этот тип конструкции.

Конденсаторы запуска и работы двигателя

Пусковые конденсаторы

Пусковые конденсаторы двигателя используются во время фазы запуска двигателя и отключаются от цепи, когда ротор достигает заданной скорости, которая обычно составляет около 75% максимальной скорости для этого типа двигателя.Эти конденсаторы обычно имеют емкость более 70 мкФ. Они бывают разных номиналов напряжения, в зависимости от области применения, для которой они предназначены.

Рабочие конденсаторы

В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем. Эти конструкции работают, создавая вращающееся магнитное поле. Конденсаторы для работы двигателя предназначены для непрерывного режима работы и остаются под напряжением при включении двигателя, поэтому не используются электролитические конденсаторы и вместо них используются полимерные конденсаторы с низкими потерями.Значение емкости рабочих конденсаторов обычно ниже, чем емкость пусковых конденсаторов, и часто находится в диапазоне от 1,5 мкФ до 100 мкФ. Выбор неправильного значения емкости для двигателя может привести к неравномерному магнитному полю, что может проявляться как неравномерная скорость вращения двигателя, особенно под нагрузкой. Это может вызвать дополнительный шум от двигателя, падение производительности и повышенное потребление энергии, а также дополнительный нагрев, который может вызвать перегрев двигателя.

Приложения

Пусковые и пусковые конденсаторы двигателя используются в однофазных асинхронных двигателях переменного тока.Такие двигатели используются, когда однофазный источник питания более практичен, чем трехфазный, например, в бытовых приборах. Однако они не так эффективны, как трехфазные асинхронные двигатели переменного тока. Фактически, однофазные двигатели переменного тока в 2-4 раза менее эффективны, чем трехфазные двигатели переменного тока, поэтому они используются только для менее мощных двигателей. Типичные области применения, в которых используются пусковые и работающие конденсаторы двигателя, включают электроинструменты, стиральные машины, сушильные барабаны, посудомоечные машины, пылесосы, кондиционеры и компрессоры.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме "звезда", обычно без внешнего подключения к нейтральной точке, или по схеме "треугольник". Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке ток в фазе a является максимально положительным, а в фазах b и c - это половина отрицательного значения.Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения положительный. В результате, как показано на рисунке для t 2 , снова будет синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки.Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора закорочены друг с другом на каждом конце, в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.На этом рисунке показана диаграмма токов ротора для моментов времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение снижается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже полевой скорости (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты путем создания машины с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f - частота в герцах (циклов в секунду), а p - количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с использованием катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, передаваемый от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц - 1800 и 1200 оборотов в минуту.

Как конденсатор работает в цепи двигателя переменного тока 120 В?

Пытаться запустить однофазный двигатель только с одной обмоткой - все равно что пытаться запустить велосипед только с одной педалью. Все в порядке, если у вас все получится, но пытаться получить правильное направление старта и начинать с верхней или нижней мертвой точки неудобно.

смоделировать эту схему - Схема создана с помощью CircuitLab

Асинхронный двигатель с квадратным ротором, поскольку в редакторе схем нет инструмента круга.

Однофазный асинхронный двигатель аналогичен. Чтобы решить эту проблему, к двигателю добавляется вспомогательная, обычно более слабая, обмотка, которая смещена от основной обмотки, скажем, на 30 °. Конденсатор включен последовательно с этой катушкой, и он вызывает сдвиг фазы тока во вспомогательной обмотке относительно фазы основной обмотки. В результате магнитное поле в одной обмотке ведет к другой, и это сообщает ротору вращающую силу, достаточную для:

  • получить его для начала.
  • старт в правильном направлении.

Некоторые двигатели оснащены центробежным переключателем, который отключает вспомогательную обмотку, когда двигатель превышает определенную скорость, поскольку она больше не требуется. Это экономит немного энергии и снижает нагрев двигателя.

Что такое ток конденсатора

Но не могли бы вы прояснить мне эту часть? Когда крышка полностью заряжается, когда 120v пересекает ноль, что происходит с накопленным отрицательным зарядка на насыщенной крышке пластины? Пульсирует ли он вверх по потоку от предыдущий поток напряжения или он просто там сидит? - Скотт

Обычно мы узнаем о конденсаторах в цепях постоянного тока, где легко визуализировать заряд конденсатора, а затем его разрядку, а напряжение конденсатора следует кривой заряда / разряда RC.Обычно в этих сценариях подаваемое напряжение не меняется выше и ниже нуля вольт. Такой образ мышления не очень помогает нам при анализе цепей переменного тока.

Давайте снова рассмотрим пусковую обмотку. Для простоты мы проигнорируем индуктивность обеих обмоток и будем рассматривать их как резисторы. Используя нашу простую модель:

  • Ток в главной обмотке будет соответствовать напряжению L-N и будет синфазным с ним.
  • Нам нужен фазовый сдвиг тока в ветви L2-C1 для генерации вращения.

Ток конденсатора определяется правилом \ $ I = \ frac {dQ} {dt} \ $, где Q - заряд. Это просто говорит нам о том, что ток будет наибольшим, когда скорость движения заряда наибольшая. Заряд конденсатора определяется как \ $ Q = C \ cdot V \ $, и объединяя их, мы получаем \ $ I = C \ frac {dV} {dt} \ $. Все, что мы здесь говорим, это то, что ток конденсатора пропорционален скорости изменения напряжения .

смоделировать эту схему

Упрощение : Мы снова игнорируем индуктивность и рассматриваем обмотки как резисторы с низким сопротивлением (относительно импеданса конденсатора).

При 270 ° напряжение (красный) максимально отрицательное. Конденсатор заряжен полностью отрицательно, и, поскольку напряжение перестало падать (становиться отрицательным), ток упал до нуля (синяя кривая находится на нуле).

С 270 ° до 0 ° напряжение будет увеличиваться. Скорость изменения будет становиться все быстрее и быстрее по мере приближения к нулю. По этой причине ток будет увеличиваться от нуля до максимального тока при 0 °.

При 0 ° конденсатор полностью разряжен, но скорость изменения напряжения самая высокая (самая крутая на кривой).Это зарядит конденсатор, и, поскольку скорость заряда - ток - пропорциональна скорости изменения напряжения, ток здесь достигает максимума.

Для следующих от 0 ° до 90 ° скорость изменения напряжения уменьшается, и ток уменьшается до нуля.

Тот же рисунок повторяется, но в противоположных направлениях на следующие 180 °.


Примечания:

  • При таком расположении формы сигналов напряжения и тока всегда синусоидальны.Нет внезапных зарядов / разрядов или скачков напряжения или тока.
  • Единственная «бесконечная пауза» - это когда напряжение или ток меняют направление. Это не более чем пауза, чем когда поршень двигателя достигает максимума хода. Скорость = 0 на мгновение, но в этот момент ускорение самое высокое (если я правильно думаю).
  • То, что входит в провод под напряжением / под напряжением на этой ножке, должно выходить на нейтраль на этой ножке.
  • C1, и коммутатор может работать по обе стороны от L2.
Двигатели с конденсаторным запуском

: схема и объяснение того, как конденсатор используется для запуска однофазного двигателя

Однофазный асинхронный двигатель может быть выполнен с возможностью самозапуска различными способами. Один из часто используемых методов - это двигатели с расщепленной фазой. Другой метод - это индукционные двигатели с конденсаторным пуском.

Индукционные двигатели с конденсаторным пуском

Нам известно об активности конденсатора в чистой цепи переменного тока. Когда конденсатор вводится таким образом, напряжение отстает от тока на некоторый фазовый угол.В этих двигателях необходимая разность фаз между Is и Im достигается за счет включения конденсатора последовательно с обмоткой стартера. В этих двигателях используются конденсаторы электролитического типа, которые обычно видны, поскольку они установлены вне двигателя как отдельный блок. (щелкните изображение, чтобы увеличить его).

Во время пуска, поскольку конденсатор включен последовательно с обмоткой пускателя, ток через обмотку пускателя Is опережает напряжение V, которое прикладывается к цепи.Но ток через основную обмотку Im по-прежнему отстает от приложенного напряжения V. Таким образом, чем больше разница между Is и Im, тем лучше результирующее вращающееся магнитное поле.

Когда двигатель достигает примерно 75% скорости полной нагрузки, центробежный переключатель S размыкается, отсоединяя обмотку стартера и конденсатор от основной обмотки. Из векторной диаграммы важно отметить, что разность фаз между Im и Is составляет почти 80 градусов по сравнению с 30 градусами в асинхронном двигателе с расщепленной фазой.Таким образом, асинхронный двигатель с конденсаторным пуском создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Из векторной диаграммы видно, что ток через обмотку пускателя Is опережает напряжение V на небольшой угол, а ток через основную обмотку Im отстает от приложенного напряжения. Следует понимать, что результирующий ток I небольшой и почти совпадает по фазе с приложенным напряжением V.

Крутящий момент, развиваемый асинхронным двигателем с расщепленной фазой, прямо пропорционален синусу угла между Is и Я.Также угол составляет 30 градусов в случае двигателей с расщепленной фазой. Но в случае асинхронных двигателей с конденсаторным пуском угол между Is и Im составляет 80 градусов. Тогда очевидно, что только увеличение угла (с 30 градусов до 80 градусов) увеличивает пусковой крутящий момент почти вдвое по сравнению со стандартным асинхронным двигателем с расщепленной фазой. Кривая характеристики «скорость-крутящий момент» показывает пусковой и рабочий крутящие моменты асинхронного двигателя с конденсаторным пуском.

Типы двигателей

Существуют различные типы двигателей с конденсаторным пуском, разработанные и используемые в различных областях.Это следующие:

  1. Одно напряжение, внешне реверсивное,
  2. Одно напряжение, нереверсивное,
  3. Одно напряжение, реверсивное, с термостатом,
  4. Одно напряжение, нереверсивное, с магнитным переключателем тип,
  5. Двухвольтный, нереверсивный тип,
  6. Двухвольтный, реверсивный тип,
  7. Одно-напряжение, трехпроводный, реверсивный тип,
  8. Одно-напряжение, мгновенно-реверсивный тип,
  9. Двухскоростной тип ,
  10. и
  11. двухскоростной с двухконденсаторным типом.

Эти двигатели могут использоваться для различных целей в зависимости от потребностей пользователя. Пусковые характеристики, характеристики скорости / крутящего момента каждого из вышеперечисленных двигателей могут быть проанализированы перед их использованием в работе.

Моя следующая статья об однофазных двигателях с расщепленными полюсами; Вы можете прочитать это здесь.

Кредиты изображений:

www.tpub.com

www.allaboutcircuits.com

Машины A / C-D / C от A.K & B.L. Тераджа.

Конденсаторный двигатель - обзор

Испытания конденсаторов двигателя

Помимо содержания конденсаторов в чистоте, они практически не требуют профилактического обслуживания. Не допускать попадания пыли, грязи, жира, масла. или любые металлические частицы, собирающиеся между выводами. Это может привести к пробою изоляции между выводами и возникновению дуги. Содержите корпуса в чистоте, чтобы тепло, выделяемое конденсаторами, могло передаваться в окружающий воздух. Большинство конденсаторов двигателей имеют срок службы около 60 000 часов при непрерывной работе при номинальном напряжении и температурах не выше 70 ° C.

Конденсаторы необходимо время от времени наблюдать и проверять в рамках программы планового технического обслуживания. Помните, что конденсатор может сохранять свой заряд даже после отключения питания от цепи. Перед работой с конденсаторами обязательно разряжайте конденсаторы заземляющим стержнем.

Обратите внимание на работу двигателя. Если двигатель набирает обороты, развивает нормальный крутящий момент и работает на скорости, конденсатор, вероятно, в порядке. В противном случае указывается дальнейшая проверка состояния конденсатора.

Осмотрите конденсатор на предмет вздутия корпуса или утечки электролита. Если существует какая-либо из этих проблем, замените конденсатор.

Проверить конденсатор на короткое замыкание с помощью омметра. Перед подключением измерителя убедитесь, что конденсатор разряжен. Конденсатор может хранить достаточно энергии, чтобы разрушить счетчик.

Установите омметр на максимальное значение. Подключите провода к конденсатору. На обычном конденсаторе измеритель будет отклоняться вверх по шкале и быстро вернется к очень большому оммическому значению.Если конденсатор показывает ноль Ом или очень низкое значение сопротивления, это плохо. Замени это. Полномасштабное показание стандартного омметра составляет 0 Ом (рисунок 10-49).

РИСУНОК 10-49. Проверка конденсатора на короткое замыкание и обрыв с помощью омметра.

Если конденсатор не может отклоняться вверх по шкале, когда омметр установлен на высокий множитель, вероятно, конденсатор открыт. Замени это. С очень маленькими конденсаторами [пикофарады (пФ)] вы можете не получить прогиб. Это нормально. Однако все конденсаторы, используемые с двигателями, намного больше.Если вы повторили тест из-за того, что не наблюдали внимательно за счетчиком, обязательно разрядите конденсатор. Он будет заряжаться до потенциала напряжения батареи счетчика.

Ни один из этих тестов не является абсолютным из-за низкого напряжения, подаваемого омметром. Короткий тест может показать, что конденсатор исправен, но при подаче сетевого напряжения переменного тока происходит большая утечка тока. Кроме того, тест омметром не скажет вам, изменилось ли значение конденсатора.

На рынке имеются коммерческие тестеры конденсаторов. Эти тестеры позволяют проводить испытания конденсатора номинальным напряжением при измерении его утечки по току.Кроме того, в этих приборах используется конденсаторная мостовая схема, которая позволяет определять значение конденсатора в фарадах. Когда этот тип устройства станет доступен, научитесь его использовать. В большинстве случаев у вас не будет средства проверки конденсаторов, поэтому необходим другой метод.

Настройте схему, как показано на Рисунке 10-50. Рекомендуется установить предохранитель в цепи в случае, если максимальное сопротивление в цепи отсутствует, когда она находится под напряжением, и конденсатор находится в закороченном состоянии.

РИСУНОК 10-50. Схема проверки конденсаторов.

Во время проверки отключите конденсатор от цепи двигателя. Большинство производителей двигателей используют коричневые изолированные проводники для подключения конденсатора к цепи. Один из коричневых проводов может иметь индикаторный цвет по всей длине. Перед подачей питания установите реостат так, чтобы в цепи было максимальное сопротивление.

Если ток, протекающий через конденсатор, и напряжение на нем известны, значение емкости в микрофарадах можно рассчитать по формуле

C = IK / V

K - постоянная, равная

K = 1 / (2πF × 10−6) = 1 000 0006.28 × 60

Для 60 герц K равно 2650. Эта константа выводится из формулы емкостного реактивного сопротивления. Значение K будет меняться с изменением частоты.

Предполагая 120 В переменного тока на конденсаторе и ток 2 ампера, как показано на рисунке 10-50, значение конденсатора будет равно

C = (2 A × 2650) / 120 В = 44,16 мкФ

Большинство конденсаторов двигателя иметь допуск 20%. Если экспериментальное значение конденсатора в фарадах не находится в пределах 20% от его номинального значения, замените конденсатор.Допустимый диапазон емкости конденсатора в этом примере составляет плюс-минус 9 мкФ или от 36 до 54 мкФ.

Как заменить конденсатор в потолочном вентиляторе? 3 способа

Как установить и подключить конденсатор в потолочный вентилятор?

Если вы когда-либо сталкивались с проблемой с потолочным вентилятором, такой как гудение, низкая скорость, вентилятор не работает или комплект освещения вентилятора работает, но вентилятор остановлен даже при правильном источнике питания, тогда вы подходящий форум. из наиболее частых причин - неисправный или перегоревший конденсатор вместо неисправных внутренних обмоток, отказ источника питания или заклинивание подшипников.Вы можете проверить и протестировать конденсатор 6 методами, если он неисправен или находится в хорошем состоянии.

Попросту говоря, в потолочном вентиляторе есть однофазный (асинхронный двигатель с расщепленной фазой), где нам нужен пусковой конденсатор, чтобы разделить фазовый угол между пусковой и рабочей обмотками для создания магнитного поля. Конденсатор просто делает это, поскольку он обеспечивает сдвиг опережающей фазы на 90 ° (поскольку через начальную обмотку течет некоторый ток). Таким образом, напряжение на пусковой и бегущей обмотках имеет разность фаз, которая обеспечивает вращающееся магнитное поле, приводящее к вращению ротора двигателя.

Как упомянуто выше и показано на рисунке ниже, в двигателе потолочного вентилятора есть две обмотки, которые известны как основная (рабочая) и вспомогательная (пусковая) обмотки. Нам нужно подключить конденсатор к пусковой обмотке (вспомогательной) последовательно. Нейтраль должна быть соединена с нейтралью. Не забудьте подключить заземляющий провод к правильному заземлению.

Примечание: Цвета проводки в этом руководстве предназначены только для иллюстрации и пояснения i.е. эти цвета, используемые в данном руководстве, предназначены только для ознакомления и не обязательно отражают региональные различия. См. Нижние примечания для цветовых кодов проводки США и ЕС (NEC и IEC). Кроме того, некоторые производители могут использовать провода разных цветов, при этом следуйте региональной цветовой кодировке или обратитесь к руководству пользователя, чтобы получить четкое объяснение. Если вы все еще не уверены, обратитесь к лицензированному электрику для правильной установки.

Заявление об ограничении ответственности: Эти диаграммы должны использоваться только в качестве руководства. Ответственность за использование этого руководства несет установщик.Компания Electric Technology и автор этого руководства не несут ответственности за травмы, убытки или ущерб, возникшие в результате использования этого руководства. Для правильной установки вы можете обратиться к лицензированному электрику. Внимательно прочтите меры предосторожности в конце этого руководства.

Теперь, если у нас неисправный конденсатор, мы можем заменить его тремя разными способами, как показано ниже.

  • Замена вышедшего из строя конденсатора в потолочном вентиляторе.
  • Подключение пускового конденсатора с потолочным вентилятором.
  • Подключение конденсатора 3-в-1 с потолочным вентилятором, переключателем реверса и натяжной цепью.

Связанное сообщение: Как определить размер и количество потолочных вентиляторов в комнате?

Замена неисправного конденсатора в потолочном вентиляторе

Предположим, что простой вентилятор без комплекта освещения необходимо заменить новым рабочим конденсатором того же номинала, следуйте инструкциям ниже:

  • Прежде всего, выключите выключите главный автоматический выключатель в домашнем распределительном щите, чтобы отключить электропитание.
  • Теперь удалите неисправный конденсатор, отрезав точные провода, подключенные к неисправному конденсатору.
  • Замените конденсатор новым, подключив красный (под напряжением) провод (от потолочного вентилятора) к первой клемме конденсатора и подключив синий провод ко второй клемме конденсатора.
  • Подключите красный и синий провод, наденьте гайку для провода и электрический кран и вставьте его в соединитель проводов, как показано на рис. Ниже.
  • Подключите черный (нейтральный) провод потолочного вентилятора ко второму разъему соединителя проводов.
  • Теперь подключите фазу и нейтраль к источнику питания. Включите главный автоматический выключатель, чтобы проверить потолочный вентилятор.

Полезно знать: Не подключайте конденсатор к нейтральному проводу, т.е. подключайте конденсатор только красный и черный (или синий и черный, в зависимости от производителя и руководства пользователя), в противном случае, вместо анти-часов В правильном направлении вентилятор начнет вращаться в обратном направлении, то есть в обратном направлении (по часовой стрелке).

Связанное сообщение:

Подключение пускового конденсатора к потолочному вентилятору

Если у вас возникла проблема с пусковым конденсатором потолочного вентилятора, выполните следующие действия, чтобы установить и подключить новый конденсатор.

  • Отключите основное питание, отключив автоматический выключатель в DB.
  • Снимите перегоревший / неисправный конденсатор с вентилятора, отрезав соответствующие провода.
  • Подключите красный провод к первой клемме нового конденсатора, а вторая клемма должна быть соединена с синим проводом с гайкой для проводов (не забудьте также использовать электрический кран) и подключите к первому слоту соединителя проводов, как показано на рис.
  • Теперь подключите красный (под напряжением) провод от соединителя к регулятору скорости вращения вентилятора или диммерному переключателю вентилятора и к SPST (однополюсному однопроходному или одностороннему переключателю) последовательно.
  • Подключите заземляющий провод и нейтраль вентилятора к заземляющему и нейтральному проводу главного распределительного щита.
  • Включите главный выключатель, чтобы проверить, работает ли вентилятор должным образом.

Связанные сообщения:

Подключение 3-в-1 Потолочный вентилятор Конденсатор с обратным переключателем и тягово-сцепным устройством

-1, и необходимо соблюдать цветовую кодировку проводки, используемую на схеме подключения (цветовые коды проводки NEC и IEC приведены ниже).Чтобы заменить конденсатор «три в одном» на потолочный вентилятор со встроенным комплектом освещения и переключателем реверса, следуйте приведенным ниже инструкциям.

  • Прежде всего, выключите главный выключатель в бытовой электросети, чтобы отключить основное питание.
  • Подключите зелено-желтый провод заземления к бытовой системе заземления
  • Теперь удалите ранее установленный конденсатор в потолочном вентиляторе, отрезав красный и серый провода.
  • Сделайте то же самое для выключателя с тяговой цепью, т. Е.отсоедините (серый, коричневый, пурпурный и черный) провода от конденсатора к переключателю тяговой цепи и переключателю реверса потолочного вентилятора.
  • Теперь подключите новый конденсатор 3-в-1, подключив серый провод к слоту 1 в переключателе тянущей цепи, второй серый провод от конденсатора к среднему выводу переключателя реверса.
  • Подсоедините коричневый и фиолетовый провод к гнездам 2 и 3 соответственно в переключателе тягового цепи.
  • Подсоедините оранжевый и розовый провода от вентилятора к гнездам 1 и 3 переключателя заднего хода, как показано на рис.
  • Подключите белый провод в качестве нейтрали от основной платы к вентилятору, среднему разъему переключателя заднего хода и световому комплекту.
  • Подключите черный провод, находящийся под напряжением (фаза или линия), к L пазу переключателя тяговой цепи. Дополнительное соединение через гайку провода к синему проводу от вентилятора к встроенному световому комплекту, как показано на рис.
  • Теперь включите главный распределительный щит, чтобы проверить потолочный вентилятор с помощью переключателя реверса (который используется для изменения направления вращения вентилятора), потяните цепной переключатель для различных скоростей и управления ВКЛ / ВЫКЛ.

Связанное сообщение: Как управлять одной лампой с двух или трех мест?

Цветовые коды проводки NEC и IEC:

Мы использовали красный для Live или фазы , черный для нейтральный и зеленый / желтый для заземления. Вы можете использовать коды конкретных регионов, например I EC - Международная электротехническая комиссия (Великобритания, ЕС и т. Д.) Или NEC (Национальный электрический код [США и Канада], где:

NEC:

Однофазный 120 В Переменный ток:

  • Черный = Фаза или Линия
  • Белый = Нейтраль
  • Зеленый / Желтый = Заземляющий провод 0004

    0 000

    0

    Однофазный 230 В перем. Тока:

    • Коричневый = Фаза или Линия
    • Синий = Нейтраль
    • Зеленый = Заземляющий провод
    • 42

      24 Как подключить автоматический и ручной переключатель / переключатель (1 и 3 фазы)

      Общие меры безопасности 9 0363
      • Электричество - наш враг, если вы дадите ему шанс убить вас, Помните, они никогда не упустят его.Пожалуйста, прочтите все предостережения и инструкции при выполнении этого руководства на практике.
      • Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования.
      • Используйте кабель подходящего размера с помощью этого простого метода расчета (Как определить подходящий размер кабеля для электромонтажа)
      • Никогда не пытайтесь работать с электричеством без надлежащего руководства и ухода.
      • Работать с электричеством только в присутствии лиц, имеющих хорошие знания, практическую работу и опыт, умеющих обращаться с электричеством.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *