Содержание: УЗО — расшифровывается как устройство защитного отключения, основной функцией которого отсечка тока при его утечке на землю. Устройства защитного отключения обеспечивают защиту от поражения током, особенно в тех случаях, когда отсутствует возможность подключения к заземлению. Отключающая защитная аппаратура способна работать в однофазных и трехфазных сетях с переменным током 220 и 380В. Устройство заключено в корпус из негорючих ПВХ материалов и способно пропускать через себя токи различной величины. Для чего устанавливают УЗООчень многие только слышали о том, что существуют устройства, специально предназначенные для защитного отключения. Сокращенно они называются УЗО. Полное представление о его работе можно получить, обладая хорошими знаниями электротехники. Однако понять общие принципы работы устройства, его специфические особенности вполне возможно и не имея специальных знаний. В большинстве квартир и частных домов УЗО ранее не использовались. Этим и объясняется отсутствие знаний об устройстве, назначении, особенностях эксплуатации данных приборов. Каждое устройство защитного отключения представляет собой коммутационный электромеханический прибор. Основной функцией которого является автоматическое прерывание цепи, когда ток превышает установленное определенное значение. УЗО расшифровка в электрике, означает устройства защитного отключения. Они представлены большим количеством разнообразных моделей, в целом, обладающих одинаковой функциональностью и принципом работы. УЗО очень эффективны при использовании в системе электробезопасности. Однако многие хозяева квартир и домов при самостоятельном монтаже проводки забывают о существовании защитных устройств и пренебрегают их использованием. УЗО защищает жизнь и здоровье человека от поражения электротоком в случае нарушения изоляции, а также при случайных контактах с неизолированными проводами и токопроводящими частями электрооборудования. В отличие от автоматов, защищающих электропроводку от перегрузок и коротких замыканий, устройства защитного отключения обеспечивают безопасность людей. Своевременно реагируя и отключая напряжение при уходе тока «на землю». Как правило токовые утечки имеют небольшие значения, поэтому традиционные автоматы на них просто не реагируют. Практически каждый человек подвергался воздействию слабых токов, возникающих в домашней сети. Несмотря на малое значение тока в 4-5 мА, человеческий организм его ощущает, например, при касании холодильника, стиральной машины и другой бытовой техники. С возрастанием силы тока возрастает и угроза жизни человека. Основной причиной подобного состояния считается нарушенная изоляция проводов. В результате ток начинает проходить непосредственно через корпус прибора, который оказывается под напряжением. Последствия касания к нему могут быть такими же, как и в случае соприкосновения с оголенным проводом. В момент касания возникает замыкание на землю, и далее, при отсутствии защитного заземления, человек получает удар током. В настоящее время не во всех домах существует возможность заземления корпусов электроприборов и оборудования, поскольку это не предусмотрено схемой и конструкцией проводки. Поэтому для защиты от поражения током используются УЗО, устанавливаемые вместе с автоматическими выключателями, которые способны реагировать даже на слабые токи и своевременно отключать сетевое напряжение. Принцип действия устройства защитного отключенияПринцип работы устройства защитного отключения основан на фиксации токовых утечек «на землю» и своевременном отключении напряжения при возникновении подобного состояния. При нормальном значении напряжения в сети, отсутствии утечек и скачков, сила тока на входе и выходе прибора будет одинаковой. Их отличие будет заключаться лишь в противоположном направлении. Определение самого факта утечки определяется по разнице значений входящего и выходящего тока. При наличии токовой утечки, например, при пробое на корпус оборудования, человек, соприкасаясь с ним, превращается в своеобразный проводник тока на землю. В результате, значение тока, возвращающегося в УЗО по нейтральному проводу, снижается. К такой же ситуации приводит нарушение целостности изоляционного покрытия, возникающее в электроприборах и оборудовании. Разница входного и выходного тока регистрируется трансформатором с кольцевым сердечником. Фазный и нейтральный проводники размещаются внутри трансформатора и выполняют функцию первичного витка обмотки. Подключение вторичной обмотки сердечника осуществляется к механизму, который размыкает контакты, разрывает цепь и предотвращает дальнейшее течение тока. При повреждении изоляционного покрытия, образование отводящего контура происходит независимо от того, касается человек токоведущих частей или нет. В любом случае устройство срабатывает и размыкает электрическую цепь. Это и есть ответ на вопрос: что такое УЗО в электрике. Современные УЗО предназначены для работы в двухфазных и трехфазных сетях. Последний вариант отличается наличием системы слежения. Она контролирует и фиксирует изменения нагрузки, когда напряжение неравномерно распределяется по фазам. Исправление ситуации осуществляется путем восстановления симметрии в каждой из них. Где устанавливают УЗОПрежде всего установка УЗО предназначена для защиты групповых линий от избыточных нагрузок. Они представляют собой обычную электрическую проводку, включающую себя различные группы розеток, в которые подключаются бытовые приборы или производственное оборудование. Использование УЗО обязательно в следующих случаях:
Устройства защитного отключения запрещено применять на линиях, от которых поступает питание к системам аварийного освещения или оповещения. При выборе УЗО следует обращать внимание на номинал, который должен быть выше номинала автоматического выключателя. В противном случае контакты устройства перегреются. Если в сети установлено сразу несколько автоматов, значение минимальной номинальной мощности УЗО рассчитывается, исходя из суммы номиналов всех автоматических выключателей. Как установить УЗОСуществуют различные варианты подключения УЗО вместе с автоматическими выключателями. В одном из них одно устройство обеспечивают защиту нескольких групповых линий. Которое устанавливается на первом месте, а за ним устанавливаются автоматы. Эта простая схема широко используется в бюджетных щитках. Ее работу можно рассмотреть на примере аварийной ситуации, когда короткое замыкание произошло на одной из групповых линий. Ток будет проходить по маршруту от УЗО к групповому автомату, далее по кабелю к розетке. Считается, что в данной ситуации УЗО должно сгореть под действием тока короткого замыкания, поскольку автомат установлен после прибора и не способен защитить от высокого тока и напряжения. В другом варианте линия защищена одним автоматом и одним УЗО, причем автоматический выключатель устанавливается на первом месте. Если предположить, что в розетке произошло короткое замыкание, то путь тока будет проходить от автомата к УЗО и далее по кабелю к розетке. Есть мнение что в данной ситуации наступает срабатывание автомата и таким образом пресекается разрушающее действие тока. Однако по схеме ток все-таки доходит до розетки. Получается, что независимо от места расположения, УЗО не выйдет из строя по нескольким причинам. Защитное устройство остается целым так же как и провода, подключенные к розетке. Под действием короткого замыкания возникает высокая температура, от которой изоляция проводов и корпуса приборов начинают плавиться. Тем не менее, для этого нужно определенное время, в течение которого срабатывает автоматический выключатель и дальнейший процесс разогрева прекращается. Нет разницы где его подключать, до или после автомата. Выбор того или иного варианта связан лишь в удобством монтажа. Большое значение имеет правильный выбор номинала защитного устройства, чтобы исключить его выход из строя в результате перегрузок. На корпусе каждого УЗО обозначен номинал, то есть величина максимально длительного тока, который может протекать через него без какого-либо вреда. Контакты прибора своевременно обесточивают линию в случае возникновения в ней утечки. Не допускается прохождение через контакты тока, превышающего номинальное значение, поскольку это вызовет их разогрев, плавление корпуса и другие повреждения. В связи с этим УЗО защищается с помощью автоматического выключателя, срабатывающего от перегрузок раньше, чем будет причинен вред устройству. Для наиболее эффективной защиты УЗО от перегрузок его номинал должен выбираться на одну ступень больше, чем у защищающего автомата. Например, если номинал автоматического выключателя составляет 16А, то устройство защитного отключения должно иметь номинал 25А. Такой запас по току необходим для исключения протекания через УЗО повышенного тока, прежде чем произойдет срабатывание автомата от перегрузки. Электромонтажные работыПрактическая установка УЗО в электрическую цепь квартиры не вызывает каких-либо затруднений. Непосредственное подключение осуществляется на DIN-рейке, которая может быть встроена в щиток или расположена отдельно. Она оборудована специальными перфорированными отверстиями, куда вставляются защелки прибора. На корпусе имеется маркировка верхних и нижних клемм фазного и нулевого проводов. В соответствии со схемой подключение вводного силового кабеля осуществляется сверху, а нагрузок – снизу. Порядок подключения защитного устройства:
Другая схема предполагает подключение УЗО в электрике в двухфазную цепь. Работа устройства обеспечивает своевременное отключение оборудования в случае утечки тока на корпус. Практически такую же функцию выполняет и заземление, предотвращающее прохождение тока через участки, не предназначенные для этого. Таким образом, УЗО и система заземления выполняют обесточивание приборов различными способами, а в некоторых ситуациях они дополняют друг друга. Основным преимуществом УЗО является возможность использования его в старых зданиях, где до сих пор используются двухфазные цепи, а заземляющий провод отсутствует. Подключение УЗО в электрощитке зависит от схемы и разводки домашней сети. В одном из вариантов применяется одноуровневая защита с использованием одного УЗО. Для этой цели подбирается аппарат с высокой мощностью, в расчете на нагрузку от всех имеющихся потребителей. Применяется следующая схема подключения: с выхода УЗО проводник подключается к автоматам, после чего он разводится на розетки и приборы освещения. Эта простая и компактная схема имеет существенный недостаток: в случае неисправности УЗО или автомата подача электричества в квартиру прекращается. Как правило, одноуровневая защита устанавливается для отключения какого-то одного потребителя (стиральной машины или бойлера). |
Озу что это такое в электрике
УЗО – устройство защитного отключения, отсекающее подачу тока в цепь при утечке на землю и тем самым предохраняющее от поражения током. Этот тип электрооборудования используется там, где нет возможности подключиться к заземлению, а это не только в быту, но и на производстве, где утечка тока через металлический корпус, также очень распространенное явление.
Некоторые производители оснащают свою технику УЗО, благодаря чему, пользователю не приходится отдельно приобретать и устанавливать его.
Устройства защитного отключения – это электротехническая защитная аппаратура, предназначенная для работы в сетях переменного тока 220 и 380 вольт, в однофазных и трехфазных цепях. Прибор выполнен в корпусе из негорючего ПВХ и рассчитан на протекание тока различной величины.
УЗО выпускаются с пределом по току утечки с номиналами, согласно стандарту:
Еще один параметр прибора – это номинальный ток нагрузки, который устройство может транзитом пропускать через себя.
Область применения
Поскольку устройства используются для защиты, то применять их целесообразно везде, где работают электрические аппараты, не оснащенные защитой от постороннего доступа, то есть там, где возможно случайное прикосновение.
В промышленности, для этих целей применяется заземляющий контур, однако, в большинстве жилых домов постройки советского периода, он отсутствует, и до появления УЗО в широком доступе, жители квартир подвергали себя опасности.
То же самое относится и к офисным электрическим сетям, серверным и другим помещениям, где используется электрическое оборудование и нет заземляющей шины.
УЗО используется в электрических сетях 220/380 вольт, для предотвращения электротравм, при пробитии фазы на корпус.
В большинстве случаев, появление потенциала на корпусе, не приводит к сбою в функционировании, поэтому, человеку, несведущему в вопросах электробезопасности, может показаться, что никакой опасности нет.
Устройство
Не следует путать УЗО и автоматический выключатель, между ними есть существенные различия в конструкции, принципе действия и назначении:
- АВ предназначен для подачи или отключения нагрузки, защиты от короткого замыкания и перегрева.
- УЗО предназначено для предотвращения токов утечки и защиты от поражения током.
- АВ реагирует на выделение тепла при прохождении больших токов и токи КЗ.
- УЗО реагирует на ток утечки и не предохраняет цепь от КЗ и перегрева.
Тем не менее, очень часто можно встретить конструктивное исполнение в виде автомата и УЗО в одном корпусе, что достаточно удобно, особенно, если аппаратура размещается в небольшом щитке. Также, можно приобрести и отдельно каждое из устройств.
Работа УЗО построена на использовании дифференциального трансформатора тока, имеющего три обмотки – две первичных, включенных последовательно в фазный и нулевой провод и одну вторичную, от которой питается поляризованное реле.
Оно может быть электромеханическим или электронным, из-за чего различают электронные или механические устройства ЗО. Когда ток утечки отсутствует, первичные обмотки не возбуждаются.
Где устанавливается?
Устройства защиты устанавливаются в электрическом щите, либо непосредственно перед нагрузкой, но только после узла учета электрической энергии. Последний вариант, как правило, используется в технологических помещениях, и для нагрузки без стационарного сетевого шнура.
Обычно, применяется установка для отсечки какой-то конкретной нагрузки, так как УЗО установленное на вводе, отключит всю электросеть.
Порядок установки, начиная от счетчика:
При установке комбинированного прибора, необходимость в сохранении такой последовательности отпадает.
Типы и классификация
Принято различать три типа УЗО по роду дифференциального тока утечки, для чего наносится соответствующая маркировка на корпусе:
- АС – синусоидальный переменный, внезапный, либо нарастающий.
- А – синусоидальный переменный, внезапный, либо нарастающий и выпрямленный пульсирующий.
- В – переменный и постоянный.
Устройства классифицируются по следующим параметрам:
- По стойкости при импульсном напряжении:
- отключающие ток при его наличии;
- устойчивые к импульсному напряжению;
- По способу действия:
- не имеющие вспомогательного питания;
- подключаемые к вспомогательному питанию;
- с питанием и автоматическим отключением при его отказе;
- По способу установки:
- стационарные, с монтажом на DIN рейку;
- переносные, с гибкими удлинителями;
- По числу полюсов:
- двухпроводные с одним полюсом;
- двухполюсные;
- трехпроводные двухполюсные;
- трехполюсные;
- четырехпроводные трехполюсные;
- четырехполюсные;
- По виду защиты от перегрузок:
- оснащаемые защитой от перегрузок;
- без защиты;
- По возможности регулирования:
- не регулируемые.
- с плавной регулировкой;
- со ступенчатой регулировкой;
- Технические параметры:
- для однофазных цепей;
- для трехфазных цепей;
Критерии выбора и стоимость
При покупке УЗО учитывается значение тока утечки, а также номинальный ток нагрузки, на который был рассчитан автоматический выключатель. Однако, для устройства защиты, данное значение должно выбираться на порядок выше, чем у автомата.
Дело в том, что диффавтомат довольно дорогостоящее оборудование и, как правило, дешевле приобрести модель без функции отключения в случае возникновения КЗ.
Выбранный же в соответствии с вышеописанным порядком, он не выйдет из строя, если произойдет замыкание, а выключатель обесточит цепь. Для жилых помещений рекомендуется устанавливать дифавтоматы с током утечки не более 30 мА, поскольку большее значение уже опасно для жизни.
Это оборудование, даже для бытовой установки, имеет достаточно высокую стоимость, что объясняется несколькими причинами.
Основная из них – это наличие дифференциального трансформатора, он выполняется из дорогостоящих материалов, и составляет до 50% всей стоимости.
Играет роль и название торговой марки. Так, например, аппарат на 30 мА, для установки дома, от российской компании IEK можно приобрести в среднем за 10 $. От известной же во всем мире французской Legrand минимум в два раза дороже.
Как правильно установить и подключить?
Установка и монтаж любого электротехнического оборудования требует соответствующей квалификации, тем более, если это касается средств безопасности.
Для работы понадобится:
- УЗО.
- Крестообразная отвертка.
- Индикатор напряжения, мультиметр.
- Монтажный нож.
- Соединительные провода.
- Перфоратор, сверло и корпус для УЗО – в том случае, если монтаж производится непосредственно возле потребителя.
Этапы работы
Монтаж возле потребителя:
- Размечаем место установки корпуса и просверливаем отверстия для монтажа.
- Монтируем корпус и подводим провода.
- Проверяем отсутствие напряжения на фазе, зачищаем провода ножом и заводим в соответствующие разъемы с маркировкой L и N, строго соблюдая полярность, как указано на схеме.
- УЗО фиксируется на DIN рейке в корпусе, после чего можно подать напряжение и проверить работу нажав кнопку «TEST»
Монтаж в электрощите:
- Найти необходимую пару проводов и определить полярность.
- Отключить питание и зачистить проводники.
- Установить УЗО на DIN рейку и подсоединить провода, к соответствующим разъемам, соблюдая полярность.
- Включить питание и протестировать работу.
Современные аппараты защиты выполнены таким образом, что ошибиться в установке невозможно. Основная ошибка допускается на стадии расчета, как правило, это неверный выбор предела рабочего тока относительно параметров автоматического выключателя.
Если данное значение ниже или соответствует тому, на которое рассчитан АВ, то устройство защиты выходит из строя и в большинстве случаев, восстановлению не подлежит.
Многие люди слышали о том, что существует устройство защитного отключения – УЗО, но, что такое узо, для чего оно нужно в электрике, какие функции должно выполнять и можно ли вообще его не использовать в сети, знает не так много человек. Для того чтобы получить полное представление о том, что такое узо в электрике, о его функциях, устройстве, принципе работы нужно работать в области электрики, иметь диплом, но общие принципы действия и описание этого устройства сможет понять любой человек.
В большинстве квартир и домов не применяется и не применялось раньше УЗО, поэтому многие и не знают для чего его устанавливать, как оно работает. Если говорить языком принятым среди электриков, то УЗО, или устройство защитного отключения, представляет собой механический коммутационный прибор служащий для автоматического прерывания цепи при превышении тока небаланса заданного значения возникающего при определенных условиях.
Разные модели УЗО уже довольно давно продаются на рынке, многие профессионалы отлично знакомы с принципом их устройства, работы и активно применяют их при построении электрической проводки. Но многие электрики, хозяева домов и квартир, которые сами занимаются монтажом электрической системы не зная о преимуществах применения УЗО пренебрегают этим мощным средством предназначенным для защиты.
УЗО отлично защищает людей от поражения электричеством в случаях когда произошло нарушение изоляции, при случайных прикосновениях к токопроводящим неизолированным частям различного вида электрического оборудования и защищает имущество от теплового воздействия тока.
Самым вероятным местом поражения током в доме или квартире является кухня и ванная, где установлено очень большое количество электрических приборов, есть естественные заземлители – газовые, водопроводные трубы, мало свободного места и повышенная влажность воздуха. Практика показала, что УЗО, которое еще иногда называют дифференциальным выключателем, очень эффективное защитное устройство для быта, и сегодня только в одной Западной части Европы применяется сотни миллионов этих приборов разного типа.
Но все же, что такое узо в электрике? – это современное, очень эффективное, во многих схемах безальтернативное средство призванное защищать людей от поражения электричеством. УЗО также защищает электроустановки от возникновения пожара, от возгорания, которое может произойти в результате протекания тока утечки.
Понятие – устройство защитного отключения, принятое в литературе, самым точным образом определяет значение этого прибора, само название говорит за себя – это оборудование отключающее электричество с целью защиты. Но, что и кого оно защищает? Если автоматический выключатель должен защищать электрическую проводку, то УЗО служит на страже безопасности людей. Оно обеспечивает отключение напряжения при утечке тока на землю. Что понимается под выражением утечка тока?
Под этим выражением понимается любой ток проходящий мимо электропроводки или мимо подключенных в сеть приборов. Вот как раз на эту утечку тока и реагирует УЗО, если ток пошел мимо электропроводки или электроприбора УЗО срабатывает и отключает сеть.
Токи утечки обычно имеют малые значения, поэтому защита от короткого замыкания и от перегрузки, которую обеспечивают обычные автоматические выключатели, на токи утечки не реагируют. Как видим УЗО защищает от возникновения пожара возникающего из-за замыкания и тлеющей изоляции и от поражения током людей.
Для чего устанавливают устройства защитного отключения
Практически каждый человек за свою жизнь подвергался удару током в домашней сети напряжением 220 вольт. Этот ток составляет примерно 4-5 миллиампера, а если бы сила тока была большей, то опасность для здоровья и жизни значительно увеличилась.
Чтобы человека ударило током не обязательно нужно ковыряться в розетке или лезть в распределительный щит, достаточно просто дотронуться до стиральной машинки или холодильника, плойки и других приборов. Но почему так происходит?
Ответ простой – в том случае если в любом электрическом приборе нарушается изоляция токоведущих проводов, они начнут пропускать ток на корпус. То есть корпус прибора окажется под напряжением, а это все равно, что прикоснутся к оголенному проводу. При прикосновении к такому прибору возникает ток замыкания с землей и если прибор не имеет заземления, то током ударит человека.
В большей части домов и квартир нет возможности заземлить корпуса электрических приборов, это не предусмотрено конструкцией, схемой проводки. От такого удара не сможет защитить никакой супер автоматический выключатель, установленный в щитке. Гарантию от поражения током в таких случаях дает только применение более надежного и совершенного прибора, каким и является УЗО.
Так, что такое узо? – это прибор защищающий от токов утечки путем отключения сети в случае их появления. В случае когда произойдет выше описанная ситуация с повреждением изоляции какого-либо прибора, то по телу человека, который замыкает цепь фаза-земля ударит током.
Но поскольку сила тока утечки не очень большая, в сравнении с номинальным током, то обычные автоматы этого не чувствуют и не отключатся. А человек в тоже время может и погибнуть при определенных условиях. УЗО, в отличии от автоматов, сразу среагирует на возникновение тока утечки и моментально разорвет цепь.
Где устанавливается УЗО
УЗО чаще всего устанавливают в тех цепях, в которых возможны утечки тока и может возникнуть опасность поражения людей электрическим током.
В доме или квартире такими опасными местами являются кухня и ванна, по вполне понятным всем причинам, поскольку там чаще всего существует повышенная влажность и именно эти места наиболее насыщены разного рода электрическими приборами, в которых может образоваться ток утечки, например, это может произойти со стиральной машиной или бойлером.
Поэтому, все бытовые приборы и розетки в этих и других помещениях должны быть защищены путем установки такого прибора защиты как УЗО.
Надо отметить тот факт что устройство защитного отключения хоть и предназначено для защиты человека от поражения электрическим током но работает оно только когда появляются утечки тока. То есть если человек возьмет и засунет два пальца в розетку – УЗО не сработает. А не сработает оно, потому что нет утечки тока, а человек в такой ситуации является обычной нагрузкой.
Надеюсь, данная статья помогла вам разобраться с вопросом, что такое УЗО в электрике. Если будут вопросы пожалуйста обращайтесь в комментариях, с удовольствием отвечу.
Назначение
Сперва рассмотрим, какое назначение устройства защитного отключения (на фото ниже вы можете ознакомиться с его внешним видом). Ток утечки возникает в случае нарушения целостности изоляции кабеля одной из линии электропроводки либо в случае повреждения конструктивных элементов в бытовом электроприборе. Утечка может привести к возгоранию электропроводки или эксплуатируемого бытового электроприбора, а также к поражению электричеством в процессе эксплуатации поврежденного электроприбора или неисправной электропроводки.
УЗО в случае возникновения нежелательной утечки за доли секунды производит отключение поврежденного участка электропроводки или поврежденного электроприбора, чем защищает людей от поражения электричеством и предотвращает возникновение пожара.
Очень часто задают вопрос о том, чем отличается дифавтомат от УЗО. Отличие первого в том, что данный защитный аппарат, помимо защиты от утечки электричества (функции УЗО), дополнительно имеет защиту от перегрузки и короткого замыкания, то есть выполняет функции автоматического выключателя. Устройство защитного отключения не имеет защиты от сверхтоков, поэтому помимо него для реализации защиты в электрических сетях устанавливают автоматические выключатели.
Устройство и принцип действия
Рассмотрим конструкцию устройства защитного отключения, и как оно работает. Основные конструктивные элементы УЗО — дифференциальный трансформатор, осуществляющий измерение тока утечки, пусковой орган, осуществляющий воздействие на механизм отключения и непосредственно сам механизм расцепления силовых контактов.
Принцип работы УЗО в однофазной сети следующий. Дифференциальный трансформатор однофазного устройства защиты имеет три обмотки, одна из которых подключается к нулевому проводнику, вторая к фазному, а третья служит для фиксации разностного тока. Первая и вторая обмотки подключаются таким образом, что токи в них являются противоположными по направлению. Они в нормальном режиме работы электрической сети равны и наводят в магнитопроводе трансформатора магнитные потоки, которые направлены друг к другу встречно. Суммарный магнитный поток в данном случае равен нулю и соответственно в третьей обмотке отсутствует ток.
В случае возникновения повреждения электроприбора и появления на его корпусе фазного напряжения, при прикосновении к металлическому корпусу оборудования, человек попадет под действие утечки электричества, которое будет протекать через его тело на землю либо на другие токопроводящие элементы, имеющие другой потенциал. В данном случае токи в двух обмотках дифференциального трансформатора УЗО будут отличаться, и соответственно в магнитопроводе будут наводиться разные по величине магнитные потоки. В свою очередь результирующий магнитный поток будет отличен от нуля и наведет в третьей некоторое значение тока — так называемого дифференциального. Если он достигнет порога срабатывания, то устройство сработает. Основные причины срабатывания УЗО мы описали в отдельной статье.
Подробнее о том, как работает УЗО и из чего оно состоит, рассказывается на видео уроках:
Хотите узнать, как работает устройство защитного отключения в трехфазной сети? Принцип действия схожий с однофазным аппаратом. Тот же дифференциальный трансформатор, но он уже осуществляет сравнение не одной, а трех фаз и нулевого провода. То есть в трехфазном защитном аппарате (3P+N) пять обмоток — три обмотки фазных проводников, обмотка нулевого проводника и вторичная обмотка, посредством которой фиксируется наличие утечки.
Помимо вышеприведенных конструктивных элементов обязательным элементом устройства защитного отключения является проверочный механизм, который представляет собой резистор, подключенный через кнопку “TEST” к одной из обмоток дифференциального трансформатора. При нажатии на данную кнопку резистор подключается к обмотке, чем создается разностный ток и соответственно на выходе вторичной третьей обмотки он появляется и происходит, по сути, имитация наличия утечки. Срабатывание устройства защитного отключения свидетельствует о его исправном состоянии.
Ниже приведем условное обозначение УЗО на схеме:
Область применения
Устройство защитного отключения применяется для защиты от утечек тока в однофазных и трехфазных электропроводках различного назначения. В домашней электропроводке УЗО должно в обязательном порядке быть установлено для защиты наиболее опасных с точки зрения электробезопасности бытовых электроприборов. Тех электроприборов, при эксплуатации которых происходит соприкосновение с металлическими частями корпуса непосредственно либо через воду или другие предметы. В первую очередь это электрическая печь, стиральная машина, водонагреватель, посудомоечная машина и др.
Как и любое электротехническое устройство, УЗО может в любой момент выйти из строя, поэтому помимо защиты отходящих линий необходимо установить данный аппарат на вводе домашней электропроводки. В данном случае АВДТ будет не только резервировать защитные аппараты отдельных линий проводки, но и выполнять противопожарную функцию, осуществляя защиту всей домашней электропроводки от возгораний.
Вот и все, что хотелось рассказать вам о том, какая конструкция, назначение и принцип работы УЗО. Надеемся, предоставленная информация помогла вам разобраться с тем, как выглядит и работает данный модульный аппарат, а также для чего применяется.
Наверняка вы не знаете:
Что такое озу в электричестве
УЗО — расшифровывается как устройство защитного отключения, основной функцией которого отсечка тока при его утечке на землю. Устройства защитного отключения обеспечивают защиту от поражения током, особенно в тех случаях, когда отсутствует возможность подключения к заземлению. Отключающая защитная аппаратура способна работать в однофазных и трехфазных сетях с переменным током 220 и 380В. Устройство заключено в корпус из негорючих ПВХ материалов и способно пропускать через себя токи различной величины.
Для чего устанавливают УЗО
Очень многие только слышали о том, что существуют устройства, специально предназначенные для защитного отключения. Сокращенно они называются УЗО. Полное представление о его работе можно получить, обладая хорошими знаниями электротехники. Однако понять общие принципы работы устройства, его специфические особенности вполне возможно и не имея специальных знаний. В большинстве квартир и частных домов УЗО ранее не использовались. Этим и объясняется отсутствие знаний об устройстве, назначении, особенностях эксплуатации данных приборов.
Каждое устройство защитного отключения представляет собой коммутационный электромеханический прибор. Основной функцией которого является автоматическое прерывание цепи, когда ток превышает установленное определенное значение. УЗО расшифровка в электрике, означает устройства защитного отключения. Они представлены большим количеством разнообразных моделей, в целом, обладающих одинаковой функциональностью и принципом работы.
УЗО очень эффективны при использовании в системе электробезопасности. Однако многие хозяева квартир и домов при самостоятельном монтаже проводки забывают о существовании защитных устройств и пренебрегают их использованием. УЗО защищает жизнь и здоровье человека от поражения электротоком в случае нарушения изоляции, а также при случайных контактах с неизолированными проводами и токопроводящими частями электрооборудования.
В отличие от автоматов, защищающих электропроводку от перегрузок и коротких замыканий, устройства защитного отключения обеспечивают безопасность людей. Своевременно реагируя и отключая напряжение при уходе тока «на землю». Как правило токовые утечки имеют небольшие значения, поэтому традиционные автоматы на них просто не реагируют.
Практически каждый человек подвергался воздействию слабых токов, возникающих в домашней сети. Несмотря на малое значение тока в 4-5 мА, человеческий организм его ощущает, например, при касании холодильника, стиральной машины и другой бытовой техники. С возрастанием силы тока возрастает и угроза жизни человека. Основной причиной подобного состояния считается нарушенная изоляция проводов. В результате ток начинает проходить непосредственно через корпус прибора, который оказывается под напряжением. Последствия касания к нему могут быть такими же, как и в случае соприкосновения с оголенным проводом. В момент касания возникает замыкание на землю, и далее, при отсутствии защитного заземления, человек получает удар током.
В настоящее время не во всех домах существует возможность заземления корпусов электроприборов и оборудования, поскольку это не предусмотрено схемой и конструкцией проводки. Поэтому для защиты от поражения током используются УЗО, устанавливаемые вместе с автоматическими выключателями, которые способны реагировать даже на слабые токи и своевременно отключать сетевое напряжение.
Принцип действия устройства защитного отключения
Принцип работы устройства защитного отключения основан на фиксации токовых утечек «на землю» и своевременном отключении напряжения при возникновении подобного состояния. При нормальном значении напряжения в сети, отсутствии утечек и скачков, сила тока на входе и выходе прибора будет одинаковой. Их отличие будет заключаться лишь в противоположном направлении. Определение самого факта утечки определяется по разнице значений входящего и выходящего тока.
При наличии токовой утечки, например, при пробое на корпус оборудования, человек, соприкасаясь с ним, превращается в своеобразный проводник тока на землю. В результате, значение тока, возвращающегося в УЗО по нейтральному проводу, снижается. К такой же ситуации приводит нарушение целостности изоляционного покрытия, возникающее в электроприборах и оборудовании.
Разница входного и выходного тока регистрируется трансформатором с кольцевым сердечником. Фазный и нейтральный проводники размещаются внутри трансформатора и выполняют функцию первичного витка обмотки. Подключение вторичной обмотки сердечника осуществляется к механизму, который размыкает контакты, разрывает цепь и предотвращает дальнейшее течение тока. При повреждении изоляционного покрытия, образование отводящего контура происходит независимо от того, касается человек токоведущих частей или нет. В любом случае устройство срабатывает и размыкает электрическую цепь. Это и есть ответ на вопрос: что такое УЗО в электрике.
Современные УЗО предназначены для работы в двухфазных и трехфазных сетях. Последний вариант отличается наличием системы слежения. Она контролирует и фиксирует изменения нагрузки, когда напряжение неравномерно распределяется по фазам. Исправление ситуации осуществляется путем восстановления симметрии в каждой из них.
Где устанавливают УЗО
Прежде всего установка УЗО предназначена для защиты групповых линий от избыточных нагрузок. Они представляют собой обычную электрическую проводку, включающую себя различные группы розеток, в которые подключаются бытовые приборы или производственное оборудование.
Использование УЗО обязательно в следующих случаях:
- При отсутствии системы уравнивания потенциалов в том или ином помещении.
- В помещениях с повышенной опасностью (кухни, ванные комнаты).
- При наличии питающих розеток, установленных вне помещений.
- В сооружениях с несущими элементами в виде металлических каркасов.
- При наличии автоматов или предохранителей, со скоростью срабатывания выше, чем 0,4 секунды.
Устройства защитного отключения запрещено применять на линиях, от которых поступает питание к системам аварийного освещения или оповещения. При выборе УЗО следует обращать внимание на номинал, который должен быть выше номинала автоматического выключателя. В противном случае контакты устройства перегреются. Если в сети установлено сразу несколько автоматов, значение минимальной номинальной мощности УЗО рассчитывается, исходя из суммы номиналов всех автоматических выключателей.
Как установить УЗО
Существуют различные варианты подключения УЗО вместе с автоматическими выключателями. В одном из них одно устройство обеспечивают защиту нескольких групповых линий. Которое устанавливается на первом месте, а за ним устанавливаются автоматы. Эта простая схема широко используется в бюджетных щитках. Ее работу можно рассмотреть на примере аварийной ситуации, когда короткое замыкание произошло на одной из групповых линий. Ток будет проходить по маршруту от УЗО к групповому автомату, далее по кабелю к розетке. Считается, что в данной ситуации УЗО должно сгореть под действием тока короткого замыкания, поскольку автомат установлен после прибора и не способен защитить от высокого тока и напряжения.
В другом варианте линия защищена одним автоматом и одним УЗО, причем автоматический выключатель устанавливается на первом месте. Если предположить, что в розетке произошло короткое замыкание, то путь тока будет проходить от автомата к УЗО и далее по кабелю к розетке. Есть мнение что в данной ситуации наступает срабатывание автомата и таким образом пресекается разрушающее действие тока. Однако по схеме ток все-таки доходит до розетки. Получается, что независимо от места расположения, УЗО не выйдет из строя по нескольким причинам.
Защитное устройство остается целым так же как и провода, подключенные к розетке. Под действием короткого замыкания возникает высокая температура, от которой изоляция проводов и корпуса приборов начинают плавиться. Тем не менее, для этого нужно определенное время, в течение которого срабатывает автоматический выключатель и дальнейший процесс разогрева прекращается. Нет разницы где его подключать, до или после автомата. Выбор того или иного варианта связан лишь в удобством монтажа.
Большое значение имеет правильный выбор номинала защитного устройства, чтобы исключить его выход из строя в результате перегрузок. На корпусе каждого УЗО обозначен номинал, то есть величина максимально длительного тока, который может протекать через него без какого-либо вреда. Контакты прибора своевременно обесточивают линию в случае возникновения в ней утечки. Не допускается прохождение через контакты тока, превышающего номинальное значение, поскольку это вызовет их разогрев, плавление корпуса и другие повреждения. В связи с этим УЗО защищается с помощью автоматического выключателя, срабатывающего от перегрузок раньше, чем будет причинен вред устройству.
Для наиболее эффективной защиты УЗО от перегрузок его номинал должен выбираться на одну ступень больше, чем у защищающего автомата. Например, если номинал автоматического выключателя составляет 16А, то устройство защитного отключения должно иметь номинал 25А. Такой запас по току необходим для исключения протекания через УЗО повышенного тока, прежде чем произойдет срабатывание автомата от перегрузки.
Электромонтажные работы
Практическая установка УЗО в электрическую цепь квартиры не вызывает каких-либо затруднений. Непосредственное подключение осуществляется на DIN-рейке, которая может быть встроена в щиток или расположена отдельно. Она оборудована специальными перфорированными отверстиями, куда вставляются защелки прибора. На корпусе имеется маркировка верхних и нижних клемм фазного и нулевого проводов. В соответствии со схемой подключение вводного силового кабеля осуществляется сверху, а нагрузок – снизу.
Порядок подключения защитного устройства:
- Вводный автоматический выключатель подключается к силовому кабелю наружной сети. Данный прибор выбирается по максимальному току в соответствии с нагрузками, предусмотренными для конкретной квартиры.
- Далее устанавливается электросчетчик для регистрации расхода электроэнергии и передачи напряжения на защитное устройство.
- В верхние клеммы УЗО подключаются кабели от счетчика – фаза и ноль, к нижним клеммам подключаются кабели нагрузки. Порядок подключения должен соблюдаться, в противном случае защитное устройство не будет работать.
- К оборудованию повышенной мощности подключаются отдельные автоматические выключатели.
Другая схема предполагает подключение УЗО в электрике в двухфазную цепь. Работа устройства обеспечивает своевременное отключение оборудования в случае утечки тока на корпус. Практически такую же функцию выполняет и заземление, предотвращающее прохождение тока через участки, не предназначенные для этого. Таким образом, УЗО и система заземления выполняют обесточивание приборов различными способами, а в некоторых ситуациях они дополняют друг друга. Основным преимуществом УЗО является возможность использования его в старых зданиях, где до сих пор используются двухфазные цепи, а заземляющий провод отсутствует. Подключение УЗО в электрощитке зависит от схемы и разводки домашней сети.
В одном из вариантов применяется одноуровневая защита с использованием одного УЗО. Для этой цели подбирается аппарат с высокой мощностью, в расчете на нагрузку от всех имеющихся потребителей. Применяется следующая схема подключения: с выхода УЗО проводник подключается к автоматам, после чего он разводится на розетки и приборы освещения. Эта простая и компактная схема имеет существенный недостаток: в случае неисправности УЗО или автомата подача электричества в квартиру прекращается. Как правило, одноуровневая защита устанавливается для отключения какого-то одного потребителя (стиральной машины или бойлера).
УЗО – устройство защитного отключения, отсекающее подачу тока в цепь при утечке на землю и тем самым предохраняющее от поражения током. Этот тип электрооборудования используется там, где нет возможности подключиться к заземлению, а это не только в быту, но и на производстве, где утечка тока через металлический корпус, также очень распространенное явление.
Некоторые производители оснащают свою технику УЗО, благодаря чему, пользователю не приходится отдельно приобретать и устанавливать его.
Устройства защитного отключения – это электротехническая защитная аппаратура, предназначенная для работы в сетях переменного тока 220 и 380 вольт, в однофазных и трехфазных цепях. Прибор выполнен в корпусе из негорючего ПВХ и рассчитан на протекание тока различной величины.
УЗО выпускаются с пределом по току утечки с номиналами, согласно стандарту:
Еще один параметр прибора – это номинальный ток нагрузки, который устройство может транзитом пропускать через себя.
Область применения
Поскольку устройства используются для защиты, то применять их целесообразно везде, где работают электрические аппараты, не оснащенные защитой от постороннего доступа, то есть там, где возможно случайное прикосновение.
В промышленности, для этих целей применяется заземляющий контур, однако, в большинстве жилых домов постройки советского периода, он отсутствует, и до появления УЗО в широком доступе, жители квартир подвергали себя опасности.
То же самое относится и к офисным электрическим сетям, серверным и другим помещениям, где используется электрическое оборудование и нет заземляющей шины.
УЗО используется в электрических сетях 220/380 вольт, для предотвращения электротравм, при пробитии фазы на корпус.
В большинстве случаев, появление потенциала на корпусе, не приводит к сбою в функционировании, поэтому, человеку, несведущему в вопросах электробезопасности, может показаться, что никакой опасности нет.
Устройство
Не следует путать УЗО и автоматический выключатель, между ними есть существенные различия в конструкции, принципе действия и назначении:
- АВ предназначен для подачи или отключения нагрузки, защиты от короткого замыкания и перегрева.
- УЗО предназначено для предотвращения токов утечки и защиты от поражения током.
- АВ реагирует на выделение тепла при прохождении больших токов и токи КЗ.
- УЗО реагирует на ток утечки и не предохраняет цепь от КЗ и перегрева.
Тем не менее, очень часто можно встретить конструктивное исполнение в виде автомата и УЗО в одном корпусе, что достаточно удобно, особенно, если аппаратура размещается в небольшом щитке. Также, можно приобрести и отдельно каждое из устройств.
Работа УЗО построена на использовании дифференциального трансформатора тока, имеющего три обмотки – две первичных, включенных последовательно в фазный и нулевой провод и одну вторичную, от которой питается поляризованное реле.
Оно может быть электромеханическим или электронным, из-за чего различают электронные или механические устройства ЗО. Когда ток утечки отсутствует, первичные обмотки не возбуждаются.
Где устанавливается?
Устройства защиты устанавливаются в электрическом щите, либо непосредственно перед нагрузкой, но только после узла учета электрической энергии. Последний вариант, как правило, используется в технологических помещениях, и для нагрузки без стационарного сетевого шнура.
Обычно, применяется установка для отсечки какой-то конкретной нагрузки, так как УЗО установленное на вводе, отключит всю электросеть.
Порядок установки, начиная от счетчика:
При установке комбинированного прибора, необходимость в сохранении такой последовательности отпадает.
Типы и классификация
Принято различать три типа УЗО по роду дифференциального тока утечки, для чего наносится соответствующая маркировка на корпусе:
- АС – синусоидальный переменный, внезапный, либо нарастающий.
- А – синусоидальный переменный, внезапный, либо нарастающий и выпрямленный пульсирующий.
- В – переменный и постоянный.
Устройства классифицируются по следующим параметрам:
- По стойкости при импульсном напряжении:
- отключающие ток при его наличии;
- устойчивые к импульсному напряжению;
- По способу действия:
- не имеющие вспомогательного питания;
- подключаемые к вспомогательному питанию;
- с питанием и автоматическим отключением при его отказе;
- По способу установки:
- стационарные, с монтажом на DIN рейку;
- переносные, с гибкими удлинителями;
- По числу полюсов:
- двухпроводные с одним полюсом;
- двухполюсные;
- трехпроводные двухполюсные;
- трехполюсные;
- четырехпроводные трехполюсные;
- четырехполюсные;
- По виду защиты от перегрузок:
- оснащаемые защитой от перегрузок;
- без защиты;
- По возможности регулирования:
- не регулируемые.
- с плавной регулировкой;
- со ступенчатой регулировкой;
- Технические параметры:
- для однофазных цепей;
- для трехфазных цепей;
Критерии выбора и стоимость
При покупке УЗО учитывается значение тока утечки, а также номинальный ток нагрузки, на который был рассчитан автоматический выключатель. Однако, для устройства защиты, данное значение должно выбираться на порядок выше, чем у автомата.
Дело в том, что диффавтомат довольно дорогостоящее оборудование и, как правило, дешевле приобрести модель без функции отключения в случае возникновения КЗ.
Выбранный же в соответствии с вышеописанным порядком, он не выйдет из строя, если произойдет замыкание, а выключатель обесточит цепь. Для жилых помещений рекомендуется устанавливать дифавтоматы с током утечки не более 30 мА, поскольку большее значение уже опасно для жизни.
Это оборудование, даже для бытовой установки, имеет достаточно высокую стоимость, что объясняется несколькими причинами.
Основная из них – это наличие дифференциального трансформатора, он выполняется из дорогостоящих материалов, и составляет до 50% всей стоимости.
Играет роль и название торговой марки. Так, например, аппарат на 30 мА, для установки дома, от российской компании IEK можно приобрести в среднем за 10 $. От известной же во всем мире французской Legrand минимум в два раза дороже.
Как правильно установить и подключить?
Установка и монтаж любого электротехнического оборудования требует соответствующей квалификации, тем более, если это касается средств безопасности.
Для работы понадобится:
- УЗО.
- Крестообразная отвертка.
- Индикатор напряжения, мультиметр.
- Монтажный нож.
- Соединительные провода.
- Перфоратор, сверло и корпус для УЗО – в том случае, если монтаж производится непосредственно возле потребителя.
Этапы работы
Монтаж возле потребителя:
- Размечаем место установки корпуса и просверливаем отверстия для монтажа.
- Монтируем корпус и подводим провода.
- Проверяем отсутствие напряжения на фазе, зачищаем провода ножом и заводим в соответствующие разъемы с маркировкой L и N, строго соблюдая полярность, как указано на схеме.
- УЗО фиксируется на DIN рейке в корпусе, после чего можно подать напряжение и проверить работу нажав кнопку «TEST»
Монтаж в электрощите:
- Найти необходимую пару проводов и определить полярность.
- Отключить питание и зачистить проводники.
- Установить УЗО на DIN рейку и подсоединить провода, к соответствующим разъемам, соблюдая полярность.
- Включить питание и протестировать работу.
Современные аппараты защиты выполнены таким образом, что ошибиться в установке невозможно. Основная ошибка допускается на стадии расчета, как правило, это неверный выбор предела рабочего тока относительно параметров автоматического выключателя.
Если данное значение ниже или соответствует тому, на которое рассчитан АВ, то устройство защиты выходит из строя и в большинстве случаев, восстановлению не подлежит.
Многие люди слышали о том, что существует устройство защитного отключения – УЗО, но, что такое узо, для чего оно нужно в электрике, какие функции должно выполнять и можно ли вообще его не использовать в сети, знает не так много человек. Для того чтобы получить полное представление о том, что такое узо в электрике, о его функциях, устройстве, принципе работы нужно работать в области электрики, иметь диплом, но общие принципы действия и описание этого устройства сможет понять любой человек.
В большинстве квартир и домов не применяется и не применялось раньше УЗО, поэтому многие и не знают для чего его устанавливать, как оно работает. Если говорить языком принятым среди электриков, то УЗО, или устройство защитного отключения, представляет собой механический коммутационный прибор служащий для автоматического прерывания цепи при превышении тока небаланса заданного значения возникающего при определенных условиях.
Разные модели УЗО уже довольно давно продаются на рынке, многие профессионалы отлично знакомы с принципом их устройства, работы и активно применяют их при построении электрической проводки. Но многие электрики, хозяева домов и квартир, которые сами занимаются монтажом электрической системы не зная о преимуществах применения УЗО пренебрегают этим мощным средством предназначенным для защиты.
УЗО отлично защищает людей от поражения электричеством в случаях когда произошло нарушение изоляции, при случайных прикосновениях к токопроводящим неизолированным частям различного вида электрического оборудования и защищает имущество от теплового воздействия тока.
Самым вероятным местом поражения током в доме или квартире является кухня и ванная, где установлено очень большое количество электрических приборов, есть естественные заземлители – газовые, водопроводные трубы, мало свободного места и повышенная влажность воздуха. Практика показала, что УЗО, которое еще иногда называют дифференциальным выключателем, очень эффективное защитное устройство для быта, и сегодня только в одной Западной части Европы применяется сотни миллионов этих приборов разного типа.
Но все же, что такое узо в электрике? – это современное, очень эффективное, во многих схемах безальтернативное средство призванное защищать людей от поражения электричеством. УЗО также защищает электроустановки от возникновения пожара, от возгорания, которое может произойти в результате протекания тока утечки.
Понятие – устройство защитного отключения, принятое в литературе, самым точным образом определяет значение этого прибора, само название говорит за себя – это оборудование отключающее электричество с целью защиты. Но, что и кого оно защищает? Если автоматический выключатель должен защищать электрическую проводку, то УЗО служит на страже безопасности людей. Оно обеспечивает отключение напряжения при утечке тока на землю. Что понимается под выражением утечка тока?
Под этим выражением понимается любой ток проходящий мимо электропроводки или мимо подключенных в сеть приборов. Вот как раз на эту утечку тока и реагирует УЗО, если ток пошел мимо электропроводки или электроприбора УЗО срабатывает и отключает сеть.
Токи утечки обычно имеют малые значения, поэтому защита от короткого замыкания и от перегрузки, которую обеспечивают обычные автоматические выключатели, на токи утечки не реагируют. Как видим УЗО защищает от возникновения пожара возникающего из-за замыкания и тлеющей изоляции и от поражения током людей.
Для чего устанавливают устройства защитного отключения
Практически каждый человек за свою жизнь подвергался удару током в домашней сети напряжением 220 вольт. Этот ток составляет примерно 4-5 миллиампера, а если бы сила тока была большей, то опасность для здоровья и жизни значительно увеличилась.
Чтобы человека ударило током не обязательно нужно ковыряться в розетке или лезть в распределительный щит, достаточно просто дотронуться до стиральной машинки или холодильника, плойки и других приборов. Но почему так происходит?
Ответ простой – в том случае если в любом электрическом приборе нарушается изоляция токоведущих проводов, они начнут пропускать ток на корпус. То есть корпус прибора окажется под напряжением, а это все равно, что прикоснутся к оголенному проводу. При прикосновении к такому прибору возникает ток замыкания с землей и если прибор не имеет заземления, то током ударит человека.
В большей части домов и квартир нет возможности заземлить корпуса электрических приборов, это не предусмотрено конструкцией, схемой проводки. От такого удара не сможет защитить никакой супер автоматический выключатель, установленный в щитке. Гарантию от поражения током в таких случаях дает только применение более надежного и совершенного прибора, каким и является УЗО.
Так, что такое узо? – это прибор защищающий от токов утечки путем отключения сети в случае их появления. В случае когда произойдет выше описанная ситуация с повреждением изоляции какого-либо прибора, то по телу человека, который замыкает цепь фаза-земля ударит током.
Но поскольку сила тока утечки не очень большая, в сравнении с номинальным током, то обычные автоматы этого не чувствуют и не отключатся. А человек в тоже время может и погибнуть при определенных условиях. УЗО, в отличии от автоматов, сразу среагирует на возникновение тока утечки и моментально разорвет цепь.
Где устанавливается УЗО
УЗО чаще всего устанавливают в тех цепях, в которых возможны утечки тока и может возникнуть опасность поражения людей электрическим током.
В доме или квартире такими опасными местами являются кухня и ванна, по вполне понятным всем причинам, поскольку там чаще всего существует повышенная влажность и именно эти места наиболее насыщены разного рода электрическими приборами, в которых может образоваться ток утечки, например, это может произойти со стиральной машиной или бойлером.
Поэтому, все бытовые приборы и розетки в этих и других помещениях должны быть защищены путем установки такого прибора защиты как УЗО.
Надо отметить тот факт что устройство защитного отключения хоть и предназначено для защиты человека от поражения электрическим током но работает оно только когда появляются утечки тока. То есть если человек возьмет и засунет два пальца в розетку – УЗО не сработает. А не сработает оно, потому что нет утечки тока, а человек в такой ситуации является обычной нагрузкой.
Надеюсь, данная статья помогла вам разобраться с вопросом, что такое УЗО в электрике. Если будут вопросы пожалуйста обращайтесь в комментариях, с удовольствием отвечу.
в чем разница между «автоматом» и УЗО
Защитные устройства, применяемые в электрической сети дома, предназначены для защиты проводки от возможных неисправностей. А значит – и для предохранения человека от поражения электрическим током. Распространенных устройств два — УЗО и автомат . Рассмотрим, какими они бывают и в чем между ними разница.
На фото:
Дифференциальный автомат. Он представляет собой симбиоз автомата и УЗО, смонтированных в одном корпусе. Выгода от его приобретения состоит лишь в том, что упрощаются процессы монтажа и подключения, а также незначительно экономится место внутри распределительного щитка. Во всем остальном дифференциальный автомат не имеет никаких преимуществ перед комбинацией автоматического выключателя и УЗО как отдельных устройств.
На фото: блок дифференциальной защиты от фабрики Siemens.
Автоматический выключатель (в просторечии – «автомат») и устройство защитного отключения (УЗО) – два наиболее распространенных типа указанных устройств. В чем между ними разница и и какими бывают «автоматы» и УЗО.
Автоматический выключатель
Контролирует силу тока в цепи. Его задача – не допустить возникновения так называемых сверхтоков, сила которых превышает значение, максимально допустимое для данной проводки.
На практике такая ситуация может произойти при подключении слишком высокой нагрузки (большого количества мощных электроприборов) или вследствие короткого замыкания (соприкосновения фазового и нулевого проводов – в большинстве случаев это происходит из-за нарушения изоляции).
Сила тока в контролируемой автоматом цепи увеличивается, и, когда она доходит до критического значения, устройство мгновенно обесточивает проблемный участок сети.
Разновидности автоматических выключателей:
Автоматический выключатель срабатывает под действием имеющихся в нем расцепителей. Данные устройства бывают двух видов: тепловые и электромагнитные.
На фото: автоматический выключатель ВА63 от фабрики Schneider Electric.
- Тепловые расцепители состоят из биметаллической пластины, способной нагреваться и менять форму под воздействием протекающего по ней электрического тока. Как только его сила достигает определенного значения (порога срабатывания автомата), пластина высвобождает специальную пружину и силовые контакты устройства расцепляются.
- Электромагнитные расцепители срабатывают и выглядят примерно так же. Разница лишь в том, что в этом приспособлении используется индуктивная катушка с магнитным сердечником.
Когда сила тока в цепи достигает порога срабатывания, сердечник приходит в движение под воздействием электромагнитного поля катушки. При этом высвобождается пружина, размыкающая силовые контакты.
Каждый из этих расцепителей обладает собственным запасом надежности, и даже профессионалу сложно судить о том, какой из них лучше справляется с возложенной на него задачей. Поэтому в современных автоматических выключателях применяются сразу оба описанных устройства, работающих параллельно и отлично дополняющих друг друга.
Устройство защитного отключения (УЗО)
контролирует наличие тока утечки (называемого также разностным или дифференциальным). Последний чаще всего появляется из-за нарушения изоляции фазового провода. В результате под напряжением оказываются внешние, нетоковедущие части электроприбора – это называется утечкой тока на корпус. Прикоснувшись к ним либо по неосмотрительности взяв в руки оголенный фазовый провод, человек подвергает свою жизнь и здоровье большой опасности. И здесь на выручку приходит УЗО, которое мгновенно обесточивает подконтрольный участок сети.
На фото:
Принцип действия УЗО. Основан на постоянном контроле силы тока в подающем (фазовом) и обратном (нулевом рабочем) проводниках, которые идут, соответственно, к электроприбору и от него. При нормальных условиях сила тока в них будет примерно одинаковой – разумеется, ее значение берется по модулю, без учета математических знаков «плюс» и «минус». Замыкание одного из проводов на корпус прибора или тело человека вызывает нарушение этого баланса, то есть сила тока в фазовом проводе значительно отличается от таковой в нулевом проводнике.Зафиксировав эту разницу, УЗО приводит в действие механизм расцепителя и прекращает подачу напряжения на аварийный участок сети. В данном случае порог срабатывания устройства – это значение силы дифференциального тока, при котором происходит отключение электроэнергии. Проще говоря, это максимально допустимая разница между силой тока в фазовом и нулевом рабочем проводах. Так, например, аппарат, рассчитанный на 30 мА, сработает именно при таком значении возникшего тока утечки.
УЗО+«автомат» Следует отметить, что УЗО, так же как и остальные электроприборы в доме, должно находиться под защитой автомата. Последний не допустит воздействия токов большой силы (токов короткого замыкания) на силовые контакты УЗО, сохраняя тем самым его работоспособность. Поэтому УЗО всегда устанавливается строго после автоматического выключателя.
Монтаж и подключение
автоматического выключателя и УЗО производятся по одинаковой схеме. Специальная защелка на корпусе устройства позволяет прочно закрепить его на предназначенной для этого DIN-рейке внутри распределительного щитка.
Никаких дополнительных инструментов и приспособлений не требуется. Провода подсоединяют при помощи стандартного винтового зажима. Оголенный провод вставляют между шляпкой винта и фиксирующей шайбой (для этого в пластиковом корпусе устройства предсумотрены прорези), после чего винт затягивают обычной отверткой.
На фото:
Так выглядит ДИН-рейка для монтажа УЗО
В статье использованы изображения moeller.net, siemens.com, schneider-electric.com, doepke.de, abb.com, eaton.com
Какие параметры ОЗУ мне нужно знать перед покупкой ОЗУ сервера?
При обновлении памяти существующего сервера вам, вероятно, следует начать с подтверждения того, какие модули памяти вы установили сейчас и какие дополнительные / новые / сменные модули фактически поддерживаются поставщиком (основной платой) и BIOS.
Для соблюдения гарантийных обязательств и контрактов на поддержку аппаратного обеспечения вам может потребоваться купить оригинальные запасные части у поставщика, а не использовать модули памяти, выпущенные после продажи. Большинство поставщиков перечисляют сертифицированные запасные части для своего оборудования, а у большинства производителей памяти также есть селекторы, указывающие на продукты, которые должны работать с вашим сервером.
Распространенной ошибкой является то, что старые серверы не поддерживают новые модули памяти большей емкости, которые соответствуют всем их другим свойствам и должны работать.
Наиболее распространенным подходом является заполнение в настоящее время пустых банков памяти, а не обновление до модулей памяти большего размера. NB Нельзя заполнять банки памяти, назначенные пустым разъемам ЦП.
Узнай что у тебя сейчас
Некоторые консоли удаленного управления, такие как HP ILO, будут отображать текущую конфигурацию памяти.
Команда Linux dmidecode -t memory
отобразит максимальный объем памяти, поддерживаемый основной платой, а также информацию о том, какая память присутствует в заполненных банках памяти, а какие еще пусты.
Для систем Windows WMI должен предоставлять аналогичную информацию с wmic MemoryChip
.
Модули памяти разных размеров
Хотя это всегда кажется чем-то неправильным, я не видел убедительных причин, по которым он сам по себе плохой. В Инструкции подтверждает , что он поддерживается конфигурация, при условии , что все правила , касающиеся памяти соблюдены.
В многопроцессорных конфигурациях вам нужна сбалансированная конфигурация памяти, где каждый ЦП имеет одинаковый объем памяти на одинаковых каналах памяти: т.е. в конфигурации с 2 ЦП вы можете иметь 2 ГБ в слоте А1 и 4 ГБ в слоте А2, пока это отражается во втором процессоре, 2 ГБ в слоте B1 и 4 ГБ в слоте B2.
Смешивание модулей памяти разных скоростей
Вы можете смешивать модули разных скоростей, пока основная плата поддерживает эти скорости. Предполагается, что BIOS находит наименьший общий знаменатель и регулирует работу всех модулей с одинаковой скоростью. Поскольку, как правило, более быстрая память обходится дороже, это, кажется, пустая трата денег, хотя и позволяет вам каннибализировать некоторые старые системы для обновления других.
Чем больше объем оперативной памяти, тем лучше производительность?
Значок песочных часов, пожалуй, является самым ненавистным из всех символов, что появляются на экране монитора компьютера. Увеличение объема оперативной памяти сокращает ожидания и улучшает производительность компьютера, но не во всех случаях это так. Давайте посмотрим, в каких ситуациях целесообразно увеличить объем оперативной памяти для повышения производительности компьютера.
Многозадачный режим
Если Вы запустите несколько ресурсоемких программ одновременно то, вероятно, заметите, как снизится общая производительность компьютера, возможно, что компьютер даже начнет притормаживать. Увеличение объема оперативной памяти успешно решает эту проблему. В этом случае, наращивание дополнительного объема оперативной памяти является правильным решением.
Видеомонтаж и другие ресурсоемкие задачи
Увеличение оперативной памяти оправданно и в случае, когда вы используете компьютер для видеомонтажа. Видео файлы съедают довольно много памяти. Хороший процессор и достаточное количество оперативной памяти, залог быстрого запуска Photoshop и других ресурсоемких программ. Создание мультимедийных презентаций станет гораздо более приятным занятием, с достаточным объемом ОЗУ. Практически все программы, работающие с графикой и мультимедиа требовательны к объему оперативной памяти.
Если к вашему компьютеру подсоединен принтер, то недостаток памяти будет негативно сказываться на скорости его работы, а если быть точнее, то на скорости выполнения задач программного обеспечения принтера. Достаточное количество оперативной памяти позволит графике или документу быстро загрузиться. В противном случае вам придется томиться в ожидании длительной загрузки в буфер, а при недостатке оперативной памяти еще и ждать пока система скинет часть данных в файл подкачки.
Может ли оперативной памяти быть слишком много?
С точки зрения продвинутого пользователя, да, может. Если вы хорошо разбираетесь в компьютере и программах, то можете примерно представлять, какой объем памяти вам необходим.
- Большой объем оперативной памяти увеличивает общую производительность компьютера. Пользователю, запускающему программы, которые используют небольшой объем памяти, возможно, не потребуется большой объем ОЗУ. Например, Вы запускаете программу, использующую 200 Мб, этот показатель может казаться несущественным, но допустим, что вы запустили несколько программ подобного объема и, увы, объем ОЗУ заканчивается. Процессор начинает скидывать часть данных на винчестер в виртуальную память. Как результат, компьютер начинает притормаживать.
- Если вы не игроман, для которого и 8 Гб не предел, то воспользуйтесь следующим рецептом. Когда на вашем компьютере запущенны основные, используемые вами программы, запустите «Диспетчер задач», для этого нажмите комбинацию клавиш CTRL+Shift+Esc. Обратите внимание, какое количество памяти в настоящий момент использует ваш компьютер и какой объем свободен. Это даст вам представление о том, настал ли момент для увеличения оперативной памяти в вашей системе.
- Поможет ли увеличение объема ОЗУ при «подтормаживании» в компьютерных играх? Эта ситуация несколько сложнее предыдущих. К сожалению, объем оперативной памяти не является определяющим в производительности системы во всех случаях. В случае с компьютерными играми большую роль играет видеокарта. Некоторые современные игры предъявляют очень высокие требования к характеристикам видеокарты. Поэтому, в первую очередь изучите спецификацию конкретной компьютерной игры и технические параметры видеокарты, установленной в вашей системе.
- Вы может установить 8 Гб оперативной памяти и потом окажется, что ваше программное обеспечение его даже не определило. Причиной этому является то, что 32-разрядные версии некоторых программ не могут использовать оперативную память объемом свыше 4 Гб. Таким образом, если вы считаете оправданным использование памяти объемом 8 Гб, то убедитесь, что у вас есть 64-битная версия программного обеспечения.
Покупая тот или иной модуль оперативной памяти, не забудьте проверить совместимость стандарта модуля памяти и материнской платы.
Подводя итог, заметим, что чем больше оперативной памяти установлено в вашей системе, тем быстрее она будет работать. Это неоспоримый факт. В настоящее время, модули памяти новейшего стандарта DDR3 достаточно дешевы. И установка дополнительного модуля памяти может решить многие проблемы связанные с «подвисаниями» компьютера.
Что такое УЗО в электрике: как расшифровывается, где применяется
Всем домовладельцам хорошо знакомы выключатели-автоматы, которые защищают квартирные электросети от перегрузки (например, из-за короткого замыкания) и связанных с нею неприятностей. Но одними автоматическими выключателями полной безопасности сети не добиться. Для этого используется ряд других приспособлений, самым популярным из которых сегодня являются устройство, известное как УЗО, что это такое в электрике — рассказываем в статье.
Все об УЗО
Назначение
Отличия от автомата
Места установки
Итак, что такое УЗО в электрике? Аббревиатура расшифровывается как «устройство защитного отключения», а инженеры и специалисты предпочитают называть его выключателем дифференциального тока. Прибор предназначен для отслеживания утечек тока, возникающих при повреждении электропроводки и электроприборов.
В нормальных условиях ток, упрощённо говоря, перетекает от линейного к нейтральному проводнику (от «фазы» к «нулю») через устройство, которое приводится в работу (например, лампочке или электродвигателю). Если, скажем, в результате повреждения оголена проводка или металлический корпус бытовой техники (к примеру, стиральной машины) оказывается под напряжением, может возникнуть ситуация, когда ток начинает утекать не на «ноль», а буквально на землю. Такое бывает, к сожалению, часто — человек прикоснулся к проводу и получил удар током — ток через его тело пошёл в землю. Автоматический выключатель даже не заметит этой небольшой нагрузки и не сработает, а удар тока может быть смертельным. Вот для защиты от таких утечек и необходимо УЗО.
Приборы особенно важны для защиты электросети в местах повышенной опасности, например, во влажных помещениях, а также везде, где есть контакт с землёй и повышенная влажность. Устройства защитного отключения в обязательном порядке ставятся на линии электропроводки для ванных комнат и для уличной сети, например, на даче.
Итак, чем отличается УЗО от автомата в электрике? Не вдаваясь в подробности конструкции — автомат срабатывает при токах, превышающих предельную нагрузку на сеть (например, есть автоматы на 10, 16, 25 ампер), а самые популярные модели защитного отключения срабатывают от тока утечки 30 миллиампер (мА). То есть ток получается почти в 1 000 раз слабее. Скорость срабатывания защиты составляет примерно 100 миллисекунд (0,1 с). За такой короткий момент воздействия человек даже не ощутит удара.
В отличие, скажем, от автоматических выключателей устройство защитного отключения требует регулярного профилактического обслуживания. Впрочем, в этом нет ничего трудного — ежемесячно владелец должен нажимать на кнопку на корпусе.
Прибор может устанавливаться как на отдельные ветки электросети, обслуживающие особо опасные зоны (ванная, сауна, гараж, двор), так и на всю домовую сеть. В западных странах вообще часто не принято мелочиться с защитой, их могут ставить чуть ли не на каждую группу розеток.
Для мокрых зон и улицы
Для защиты от поражения током во влажных и сырых помещениях, а также уличной сети применяются УЗО на 30 либо (реже) 10 мА. Эти устройства обеспечивают комфортный уровень безопасности, но они слишком чувствительны, и если их поставить на всю домовую сеть, могут происходить ложные срабатывания.
Для всей домовой сети
Выключатели на 100 мА (и тем более 300 мА) не так комфортны — человек почувствует удар током, но не пострадает — но они и менее чувствительны. Их ставят на домовую сеть как дополнительную защиту, а также как защиту от пожара. Эти устройства способны улавливать утечки, возникающие в скрытых местах нарушения проводки. Например, где-то в стене или в розетке за мебелью произошёл надлом жил в проводе или ослабли винтовые зажимы контактов. Провод или розетка начинает греться. Если утечки недостаточно большие (меньше токов короткого замыкания), то автоматический выключатель не срабатывает. Для таких случаев как раз и необходим специальный выключатель дифференциального тока с током срабатывания 100 или 300 мА.
Места установки
Устанавливаются приборы обычно в общедомовой распределительный щиток на DIN-рейку. Порядок подключения устройства защитного отключения и автоматического выключателя может быть любым (главное, чтобы схема подключения была корректная), но чаще впереди ставится УЗО, а за ним автоматический выключатель — такая схема проще, и в ней меньше шансов запутаться для неопытного монтажника.
Важнее очерёдности подключения номинальные характеристики по току этих устройств. Важно, чтобы УЗО было рассчитано на прохождения тока такого же по силе или большего, как выключатель. Например, если у вас стоит автомат на 10 А, то УЗО тоже должно быть рассчитано на ток не менее 10 А. А для пущей безопасности рекомендуется брать прибор, рассчитанный на более мощный ток, на одну ступень выше. То есть в паре с автоматом 10 А берут УЗО 16 А, для 16 А берут 25 А, и т. д.
Интересной разновидностью УЗО являются модели с встроенной защитой от превышения напряжения. Если вместо 220 В по сети начнут «передавать» 260-270 В, то с домовым оборудованием возникнут серьёзные неприятности. Для защиты от таких скачков и служит подобные приспособления.
Автоматические выключатели и УЗО могут быть объединены в одно устройство, которое называется автоматическим выключателем дифференциального тока (АВДТ или дифавтоматом). Какой именно вариант удобнее использовать (два последовательно подключённых устройства или одно), зависит от схемы подключения всех нагрузок сети, но по сути это, как говорится, дело вкуса.
- Материал подготовил: Борис Безель
Напряжение, ток, сопротивление и закон Ома
Добавлено в избранное Любимый 114Основы электроэнергетики
Приступая к изучению мира электричества и электроники, важно начать с понимания основ напряжения, тока и сопротивления. Это три основных строительных блока, необходимых для управления электричеством и его использования. Поначалу эти концепции могут быть трудными для понимания, потому что мы не можем их «видеть».Невооруженным глазом нельзя увидеть энергию, протекающую по проводу, или напряжение батареи, стоящей на столе. Даже молния в небе, хотя и видимая, на самом деле не является обменом энергии между облаками и землей, а является реакцией в воздухе на энергию, проходящую через него. Чтобы обнаружить эту передачу энергии, мы должны использовать измерительные инструменты, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать, что происходит с зарядом в системе. Однако не бойтесь, это руководство даст вам общее представление о напряжении, токе и сопротивлении, а также о том, как они соотносятся друг с другом.
Георг Ом
Рассмотрено в этом учебном пособии
- Как электрический заряд соотносится с напряжением, током и сопротивлением.
- Что такое напряжение, сила тока и сопротивление.
- Что такое закон Ома и как его использовать для понимания электричества.
- Простой эксперимент для демонстрации этих концепций.
Рекомендуемая литература
и nbsp
и nbsp
Электрический заряд
Электричество — это движение электронов.Электроны создают заряд, который мы можем использовать для работы. Ваша лампочка, стереосистема, телефон и т. Д. — все используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.
Три основных принципа этого урока можно объяснить с помощью электронов или, более конкретно, заряда, который они создают:
- Напряжение — разница заряда между двумя точками.
- Текущий — это скорость, с которой происходит начисление.
- Сопротивление — это способность материала сопротивляться прохождению заряда (тока).
Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь — это замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.
Георг Ом был баварским ученым, изучавшим электричество. Ом начинается с описания единицы сопротивления, которая определяется током и напряжением.Итак, начнем с напряжения и продолжим.
Напряжение
Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на каждый кулон заряда, который проходит через них (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».
При описании напряжения, тока и сопротивления часто используется аналогия с резервуаром для воды. По этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Итак, для этой аналогии запомните:
- Вода = Заряд
- Давление = Напряжение
- Расход = Текущий
Рассмотрим резервуар для воды на определенной высоте над землей.На дне этой емкости находится шланг.
Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.
Мы можем представить этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы опорожняем наш бак определенным количеством жидкости, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет по мере разрядки батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.
Текущий
Мы можем представить себе количество воды, протекающей по шлангу из бака, как ток. Чем выше давление, тем выше расход, и наоборот. С водой мы бы измерили объем воды, протекающей по шлангу за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку в цепи. Амперы представлены в уравнениях буквой «I».
Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.
Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряда) в баке с помощью более узкого шланга.
Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через бак. Это аналогично увеличению напряжения, которое вызывает увеличение тока.
Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга — это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:
.- Вода = заряд (измеряется в кулонах)
- Давление = напряжение (измеряется в вольтах)
- Расход = ток (измеряется в амперах, или сокращенно «амперах»)
- Ширина шланга = сопротивление
Сопротивление
Снова рассмотрим наши два резервуара для воды, один с узкой трубой, а другой с широкой.
Само собой разумеется, что мы не можем пропустить через узкую трубу такой же объем, как более широкий, при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, даже если вода находится под тем же давлением, что и резервуар с более широкой трубой.
В электрических терминах это представлено двумя цепями с одинаковым напряжением и разным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.18 электронов. На схемах это значение обычно обозначается греческой буквой «& ohm;», которая называется омега и произносится как «ом».
Закон Ома
Объединив элементы напряжения, тока и сопротивления, Ом разработал формулу:
Где
- В = Напряжение в вольтах
- I = ток в амперах
- R = Сопротивление в Ом
Это называется законом Ома.Скажем, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:
Допустим, это наш резервуар с широким шлангом. Количество воды в баке определяется как 1 В, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.
Используя эту аналогию, давайте теперь посмотрим на бак с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом составляет
.а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:
Значит, в баке с большим сопротивлением ток меньше. Теперь мы видим, что если мы знаем два значения закона Ома, мы можем решить третье.Продемонстрируем это на эксперименте.
Эксперимент по закону Ома
Для этого эксперимента мы хотим использовать батарею на 9 В для питания светодиода. Светодиоды хрупкие и могут пропускать через них только определенное количество тока, прежде чем они перегорят. В документации к светодиоду всегда будет «текущий рейтинг». Это максимальное количество тока, которое может пройти через конкретный светодиод, прежде чем он перегорит.
Необходимые материалы
Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:
ПРИМЕЧАНИЕ. Светодиоды — это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V = IR. Светодиод вызывает в цепи то, что называется «падением напряжения», тем самым изменяя величину протекающего через нее тока. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрегаем токовыми характеристиками светодиода и выбираем номинал резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.
В этом примере у нас есть батарея на 9 В и красный светодиод с номинальным током 20 мА, или 0.020 ампер. Чтобы быть в безопасности, мы бы предпочли не управлять максимальным током светодиода, а его рекомендуемым током, который указан в его техническом описании как 18 мА или 0,018 А. Если просто подключить светодиод непосредственно к батарее, значения закона Ома будут выглядеть так:
следовательно:
, а поскольку сопротивления еще нет:
Деление на ноль дает бесконечный ток! Ну, на практике не бесконечно, но столько тока, сколько может доставить аккумулятор. Поскольку мы НЕ хотим, чтобы через светодиод проходил такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:
Мы можем использовать закон Ома точно так же, чтобы определить значение резистора, которое даст нам желаемое значение тока:
следовательно:
вставляем наши значения:
решение для сопротивления:
Итак, нам нужно сопротивление резистора около 500 Ом, чтобы ток, проходящий через светодиод, не превышал максимально допустимый.
500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор 560 Ом.Вот как выглядит наше устройство вместе.
Успех! Мы выбрали номинал резистора, достаточно высокий, чтобы ток через светодиод не превышал его максимального номинала, но достаточно низкий, чтобы ток был достаточным, чтобы светодиод оставался красивым и ярким.
Этот пример светодиода / токоограничивающего резистора — частое явление в хобби-электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего по цепи. Другой пример такой реализации — светодиодные платы LilyPad.
При такой настройке вместо того, чтобы выбирать резистор для светодиода, резистор уже встроен в светодиод, поэтому ограничение тока осуществляется без необходимости добавлять резистор вручную.
Ограничение тока до или после светодиода?
Чтобы немного усложнить задачу, вы можете разместить токоограничивающий резистор по обе стороны от светодиода, и он будет работать точно так же!
Многие люди, впервые изучающие электронику, борются с идеей, что резистор, ограничивающий ток, может находиться по обе стороны от светодиода, и схема по-прежнему будет работать как обычно.
Представьте себе реку в непрерывной петле, бесконечную, круглую, текущую реку. Если бы мы построили в нем плотину, то перестала бы течь вся река, а не только одна сторона. Теперь представьте, что мы помещаем водяное колесо в реку, которое замедляет течение реки. Неважно, где в круге находится водяное колесо, оно все равно замедлит поток на всей реке .
Это чрезмерное упрощение, поскольку токоограничивающий резистор нельзя размещать где-либо в цепи ; он может быть размещен на с любой стороны светодиода для выполнения своей функции.
Чтобы получить более научный ответ, обратимся к закону напряжения Кирхгофа. Именно из-за этого закона резистор, ограничивающий ток, может располагаться по обе стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и некоторых практических задач с использованием KVL посетите этот веб-сайт.
Ресурсы и движение вперед
Теперь вы должны понять концепции напряжения, тока, сопротивления и их взаимосвязь. Поздравляю! Большинство уравнений и законов для анализа цепей можно вывести непосредственно из закона Ома.Зная этот простой закон, вы понимаете концепцию, лежащую в основе анализа любой электрической цепи!
Эти концепции — лишь верхушка айсберга. Если вы хотите продолжить изучение более сложных приложений закона Ома и проектирования электрических цепей, обязательно ознакомьтесь со следующими руководствами.
электрического тока | Формула и определение
Электрический ток , любое движение носителей электрического заряда, таких как субатомные заряженные частицы (например,g., электроны с отрицательным зарядом, протоны с положительным зарядом), ионы (атомы, потерявшие или получившие один или несколько электронов) или дырки (недостаток электронов, которые можно рассматривать как положительные частицы).
Британская викторина
27 правильных или ложных вопросов из самых сложных викторин «Британника»
Что вы знаете о Марсе? Как насчет энергии? Думаете, будет проще, если вам придется выбирать только истину или ложь? Узнайте, что вы знаете о науке, с помощью этой увлекательной викторины.
Электрический ток в проводе, носителями заряда которого являются электроны, является мерой количества заряда, проходящего через любую точку провода за единицу времени. В переменном токе движение электрических зарядов периодически меняется на противоположное; в постоянном токе это не так. Во многих случаях направление тока в электрических цепях принимается за направление потока положительного заряда, направление, противоположное фактическому дрейфу электронов. При таком определении ток называется обычным током.
Ток обычно обозначается символом I . Закон Ома связывает ток, протекающий по проводнику, с напряжением В и сопротивлением R ; то есть В = I R . Альтернативная формулировка закона Ома: I = V / R .
Ток в газах и жидкостях обычно состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных ионов в противоположном направлении.Для обработки общего эффекта тока его направление обычно принимается за направление положительного носителя заряда. Ток отрицательного заряда, движущийся в противоположном направлении, эквивалентен положительному заряду той же величины, движущемуся в обычном направлении, и должен быть включен как вклад в общий ток. Ток в полупроводниках состоит из движения дырок в обычном направлении и электронов в противоположном направлении.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишись сейчасСуществуют токи многих других видов, такие как пучки протонов, позитронов или заряженных пионов и мюонов в ускорителях частиц.
Электрический ток создает сопутствующее магнитное поле, как в электромагнитах. Когда электрический ток течет во внешнем магнитном поле, он испытывает магнитную силу, как в электродвигателях. Потери тепла или энергия, рассеиваемая электрическим током в проводнике, пропорциональна квадрату тока.
Распространенной единицей электрического тока является ампер, который определяется как поток заряда в один кулон в секунду, или 6.2 × 10 18 электронов в секунду. Единицы тока сантиметр – грамм – секунда — это электростатическая единица заряда (esu) в секунду. Один ампер равен 3 × 10 9 esu в секунду.
Коммерческие линии электропередач обеспечивают ток около 100 ампер в обычном доме; 60-ваттная лампочка потребляет около 0,5 ампер тока, а однокомнатный кондиционер — около 15 ампер. (Подробнее об электрическом токе, см. электричество: Постоянный электрический ток и электричество: Переменные электрические токи.)
электрическая схема | Схемы и примеры
Электрическая цепь , путь для передачи электрического тока. Электрическая цепь включает в себя устройство, которое передает энергию заряженным частицам, составляющим ток, например батарею или генератор; устройства, использующие ток, такие как лампы, электродвигатели или компьютеры; и соединительные провода или линии передачи. Два основных закона, которые математически описывают характеристики электрических цепей, — это закон Ома и правила Кирхгофа.
Основная электрическая схема с выключателем, батареей и лампой.
© Открыть индексПодробнее по этой теме
Магнитная керамика: электрические цепи
Хотя керамические ферриты имеют меньшую намагниченность насыщения, чем магнитные металлы, их можно сделать гораздо более резистивными к электрическому …
Электрические цепи классифицируются по нескольким признакам.В цепи постоянного тока проходит ток, который течет только в одном направлении. В цепи переменного тока проходит ток, который пульсирует вперед и назад много раз каждую секунду, как и в большинстве домашних цепей. (Для более подробного обсуждения цепей постоянного и переменного тока, см. электричество: Постоянный электрический ток и электричество: Переменные электрические токи.) Последовательная цепь представляет собой путь, по которому весь ток протекает через каждый компонент. Параллельная цепь состоит из ветвей, так что ток разделяется, и только часть его течет через любую ветвь.Напряжение или разность потенциалов на каждой ветви параллельной цепи одинаковы, но токи могут отличаться. В домашней электрической цепи, например, одно и то же напряжение подается на каждый светильник или прибор, но каждая из этих нагрузок потребляет разное количество тока в зависимости от требований к мощности. Несколько одинаковых батарей, подключенных параллельно, обеспечивают больший ток, чем одна батарея, но напряжение такое же, как и у одной батареи. См. Также интегральная схема; настроенная схема.
Сеть транзисторов, трансформаторов, конденсаторов, соединительных проводов и других электронных компонентов в одном устройстве, таком как радиоприемник, также представляет собой электрическую цепь. Такие сложные схемы могут состоять из одной или нескольких ветвей в комбинациях последовательного и последовательно-параллельного расположения.
амперметрДве схемы, показывающие амперметр, подключенный к простой цепи в двух разных положениях.
Encyclopædia Britannica, Inc. Схема с вольтметромСхема, показывающая вольтметр, подключенный к простой цепи.
Британская энциклопедия, Inc.Энергия в электрических цепях | Закон Ома
Помимо напряжения и тока, есть еще один важный параметр, связанный с электрическими цепями: мощность . Во-первых, нам нужно понять, что такое мощность, прежде чем анализировать ее в каких-либо схемах.
Что такое мощность и как ее измерить?
Мощность — это мера того, сколько работы можно выполнить за определенный промежуток времени. Работа обычно определяется как подъем груза против силы тяжести.Чем тяжелее вес и / или чем выше он поднимается, тем больше работы было выполнено. Мощность — это показатель того, насколько быстро выполняется стандартный объем работы.
Для американских автомобилей мощность двигателя оценивается в единицах, называемых «лошадиные силы», которые изначально были изобретены производителями паровых двигателей для количественной оценки работоспособности своих машин с точки зрения самого распространенного в их время источника энергии: лошадей.
Одна лошадиная сила определяется в британских единицах как 550 фут-фунт работы в секунду времени.Мощность двигателя автомобиля не будет указывать на высоту холма, на которую он может подняться, или на какой вес он может буксировать, но он покажет, насколько быстро он может подняться на определенный холм или буксировать определенный вес.
Мощность механического двигателя зависит как от частоты вращения двигателя, так и от его крутящего момента на выходном валу. Скорость выходного вала двигателя измеряется в оборотах в минуту или об / мин.
Крутящий момент — это величина крутящего момента, создаваемого двигателем, и обычно измеряется в фунт-футах или фунт-футах (не путать с фут-фунтами или фут-фунтами, которые являются единицей измерения работы).Ни скорость, ни крутящий момент сами по себе не являются мерой мощности двигателя.
Дизельный двигатель трактора мощностью 100 лошадиных сил вращается относительно медленно, но обеспечивает большой крутящий момент. Двигатель мотоцикла мощностью 100 лошадиных сил вращается очень быстро, но обеспечивает относительно небольшой крутящий момент. Оба будут производить 100 лошадиных сил, но с разной скоростью и разным крутящим моментом. Уравнение для мощности на валу простое:
Обратите внимание, что в правой части уравнения есть только два переменных члена, S и T.Все остальные члены на этой стороне постоянны: 2, пи и 33000 — все константы (они не меняются по значению). Мощность меняется только при изменении скорости и крутящего момента, ничего больше. Мы можем переписать уравнение, чтобы показать эту взаимосвязь:
Поскольку единица «лошадиных сил» не совпадает в точности со скоростью в оборотах в минуту, умноженной на крутящий момент в фунт-футах, мы не можем сказать, что лошадиных сил равно ST. Однако они на пропорциональны друг другу.По мере изменения математического произведения ST значение мощности изменится в той же пропорции.
Мощность как функция напряжения и тока
В электрических цепях мощность зависит как от напряжения, так и от тока. Неудивительно, что это соотношение имеет поразительное сходство с приведенной выше формулой «пропорциональной» мощности:
Однако в этом случае мощность (P) в точности равна току (I), умноженному на напряжение (E), а не просто пропорциональна IE.При использовании этой формулы единицей измерения мощности является ватт , сокращенно обозначаемая буквой «W.»
Следует понимать, что ни напряжение, ни ток сами по себе не составляют мощность. Скорее, мощность — это комбинация напряжения и тока в цепи. Помните, что напряжение — это удельная работа (или потенциальная энергия) на единицу заряда, а ток — это скорость, с которой электрические заряды проходят через проводник.
Напряжение (удельная работа) аналогична работе, выполняемой при поднятии веса против силы тяжести.Ток (скорость) аналогичен скорости, с которой поднимается этот груз. Вместе как произведение (умножение) напряжение (работа) и ток (скорость) составляют мощность.
Так же, как в случае дизельного двигателя трактора и двигателя мотоцикла, цепь с высоким напряжением и низким током может рассеивать такое же количество мощности, что и цепь с низким напряжением и большим током. Ни количество напряжения, ни сила тока не указывают на количество энергии в электрической цепи.
Питание при обрыве / коротком замыкании
В разомкнутой цепи, где напряжение присутствует между выводами источника и есть нулевой ток, рассеивается нулей мощности, независимо от того, насколько велико это напряжение. Поскольку P = IE и I = 0 и все, что умножается на ноль, равно нулю, мощность, рассеиваемая в любой разомкнутой цепи, должна быть равна нулю.
Точно так же, если бы у нас было короткое замыкание, состоящее из петли из сверхпроводящего провода (абсолютно нулевое сопротивление), у нас могло бы быть состояние тока в петле с нулевым напряжением, и аналогичным образом не рассеивалась бы мощность.Поскольку P = IE и E = 0 и все, что умножается на ноль, равно нулю, мощность, рассеиваемая в сверхпроводящем контуре, должна быть равна нулю. (Мы рассмотрим тему сверхпроводимости в следующей главе).
Как мощность связана с ваттами?
Независимо от того, измеряем ли мы мощность в единицах «лошадиные силы» или «ватты», мы все равно говорим об одном и том же: сколько работы можно выполнить за заданный промежуток времени. Эти две единицы численно не равны, но они выражают одно и то же.
Фактически, европейские производители автомобилей обычно рекламируют мощность своих двигателей в киловаттах (кВт) или тысячах ватт, а не в лошадиных силах! Эти две единицы мощности связаны друг с другом простой формулой преобразования:
Таким образом, наши 100-сильные дизельные и мотоциклетные двигатели также могут быть оценены как двигатели мощностью «74570 Вт» или, точнее, как двигатели «74,57 кВт». В европейской технической документации этот рейтинг был бы скорее нормой, чем исключением.
ОБЗОР:
- Мощность — это мера того, сколько работы можно выполнить за определенный промежуток времени.
- Механическая мощность обычно измеряется (в Америке) в «лошадиных силах».
- Электрическая мощность почти всегда измеряется в «ваттах» и может быть рассчитана по формуле P = IE.
- Электроэнергия является продуктом как напряжения , так и тока , а не любого из них по отдельности.
- лошадиных сил и ватт — это просто две разные единицы для описания одного и того же физического измерения, при этом 1 лошадиная сила равна 745.7 Вт.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Учебник по физике: электрический ток
Если два требования к электрической цепи выполнены, заряд будет проходить через внешнюю цепь. Говорят, что есть ток — поток заряда. Использование слова current в этом контексте означает просто использовать его, чтобы сказать, что что-то происходит в проводах — заряд движется. Однако ток — это физическая величина, которую можно измерить и выразить численно.Как физическая величина, , ток, — это скорость, с которой заряд проходит через точку в цепи. Как показано на диаграмме ниже, ток в цепи можно определить, если можно измерить количество заряда Q , проходящего через поперечное сечение провода за время t . Сила тока — это просто отношение количества заряда и времени.
Текущее — это величина ставки. В физике есть несколько скоростных величин. Например, скорость — это величина скорости — скорость, с которой объект меняет свое положение.Математически скорость — это отношение изменения положения к времени. Ускорение — это величина скорости — скорость, с которой объект меняет свою скорость. Математически ускорение — это отношение изменения скорости к времени. А мощность — это величина нормы — скорость, с которой работа выполняется на объекте. Математически мощность — это отношение работы к времени. В каждом случае величины скорости математическое уравнение включает некоторую величину во времени. Таким образом, ток как величина скорости будет математически выражен как
.Обратите внимание, что в приведенном выше уравнении используется символ I для обозначения величины тока.
Как обычно, когда количество вводится в Физическом классе, также вводится стандартная метрическая единица, используемая для выражения этой величины. Стандартная метрическая единица измерения тока — ампер . Ампер часто сокращается до А и обозначается условным обозначением A . Ток в 1 ампер означает, что 1 кулон заряда проходит через поперечное сечение провода каждую 1 секунду.
1 ампер = 1 кулон / 1 секундаЧтобы проверить свое понимание, определите ток для следующих двух ситуаций.Обратите внимание, что в каждой ситуации дается некоторая посторонняя информация. Нажмите кнопку Проверить ответ , чтобы убедиться, что вы правы.
Провод изолируют поперечным сечением 2 мм и определяют, что заряд 20 C пройдет через него за 40 с. | Сечение провода длиной 1 мм изолируется, и определяется, что заряд 2 Кл проходит через него за 0,5 с. |
I = _____ Ампер | I = _____ Ампер |
Частицы, переносящие заряд по проводам в цепи, являются подвижными электронами.Направление электрического поля в цепи по определению является направлением проталкивания положительных испытательных зарядов. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю. Но в то время как электроны являются носителями заряда в металлических проводах, носителями заряда в других цепях могут быть положительные заряды, отрицательные заряды или и то, и другое. Фактически, носители заряда в полупроводниках, уличных фонарях и люминесцентных лампах одновременно являются как положительными, так и отрицательными зарядами, движущимися в противоположных направлениях.
Бен Франклин, проводивший обширные научные исследования статического и токового электричества, считал положительные заряды носителями заряда. Таким образом, раннее соглашение о направлении электрического тока было установлено в том направлении, в котором будут двигаться положительные заряды. Конвенция прижилась и используется до сих пор. Направление электрического тока условно является направлением, в котором должен двигаться положительный заряд. Таким образом, ток во внешней цепи направлен от положительной клеммы к отрицательной клемме аккумулятора.Электроны действительно будут двигаться по проводам в противоположном направлении. Зная, что настоящими носителями заряда в проводах являются отрицательно заряженные электроны, это соглашение может показаться немного странным и устаревшим. Тем не менее, это соглашение, которое используется во всем мире, и к которому студент-физик может легко привыкнуть.
Зависимость тока от скорости дрейфаТок связан с количеством кулонов заряда, которые проходят точку в цепи за единицу времени.Из-за своего определения его часто путают со скоростью дрейфа количества. Скорость дрейфа — это среднее расстояние, пройденное носителем заряда за единицу времени. Как и скорость любого объекта, скорость дрейфа электрона, движущегося по проводу, является отношением расстояния ко времени. Путь типичного электрона через проволоку можно описать как довольно хаотический зигзагообразный путь, характеризующийся столкновениями с неподвижными атомами. Каждое столкновение приводит к изменению направления электрона.Однако из-за столкновений с атомами в твердой сети металлического проводника на каждые три шага вперед приходится два шага назад. С электрическим потенциалом, установленным на двух концах цепи, электрон продолжает движение до , перемещаясь вперед на . Прогресс всегда идет к положительной клемме. Однако общий эффект бесчисленных столкновений и высоких скоростей между столкновениями заключается в том, что общая скорость дрейфа электрона в цепи ненормально мала. Типичная скорость дрейфа может составлять 1 метр в час.Это медленно!
Тогда можно спросить: как может быть в цепи ток порядка 1 или 2 ампер, если скорость дрейфа составляет всего около 1 метра в час? Ответ таков: существует множество носителей заряда, движущихся одновременно по всей длине цепи. Ток — это скорость, с которой заряд пересекает точку в цепи. Сильный ток является результатом нескольких кулонов заряда, пересекающих поперечное сечение провода в цепи. Если носители заряда плотно упакованы в провод, тогда не обязательно должна быть высокая скорость, чтобы иметь большой ток.То есть носители заряда не должны преодолевать большое расстояние за секунду, их просто должно быть много, проходящих через поперечное сечение. Ток не имеет отношения к тому, как далеко за секунду перемещаются заряды, а скорее к тому, сколько зарядов проходит через поперечное сечение провода в цепи.
Чтобы проиллюстрировать, насколько плотно упакованы носители заряда, мы рассмотрим типичный провод, используемый в цепях домашнего освещения — медный провод 14-го калибра. В срезе этого провода длиной 0,01 см (очень тонком) их будет целых 3.51 x 10 20 атомов меди. Каждый атом меди имеет 29 электронов; маловероятно, что даже 11 валентных электронов одновременно будут двигаться как носители заряда. Если мы предположим, что каждый атом меди вносит только один электрон, то на тонком проводе длиной 0,01 см будет до 56 кулонов заряда. При таком большом количестве подвижного заряда в таком маленьком пространстве небольшая скорость дрейфа может привести к очень большому току.
Чтобы проиллюстрировать это различие между скоростью заноса и течением, рассмотрим аналогию с гонками.Предположим, что была очень большая гонка черепах с миллионами и миллионами черепах на очень широкой гоночной трассе. Черепахи не очень быстро двигаются — у них очень низкая скорость дрейф . Предположим, что гонка была довольно короткой, скажем, длиной 1 метр, и что значительный процент черепах достиг финишной черты одновременно — через 30 минут после начала гонки. В таком случае течение будет очень большим — миллионы черепах пройдут точку за короткий промежуток времени.В этой аналогии скорость связана с тем, как далеко перемещаются черепахи за определенный промежуток времени; а ток зависит от того, сколько черепах пересекли финишную черту за определенное время.
Природа потока зарядаКак только было установлено, что средняя скорость дрейфа электрона очень и очень мала, вскоре возникает вопрос: почему свет в комнате или в фонарике загорается сразу после включения переключателя? Не будет ли заметной задержки по времени перед тем, как носитель заряда перейдет от переключателя к нити накала лампочки? Ответ — нет! и объяснение того, почему раскрывает значительную информацию о природе потока заряда в цепи.
Как упоминалось выше, носителями заряда в проводах электрических цепей являются электроны. Эти электроны просто поставляются атомами меди (или любого другого материала, из которого сделан провод) внутри металлической проволоки. Как только переключатель переводится в положение на , цепь замыкается, и на двух концах внешней цепи устанавливается разность электрических потенциалов. Сигнал электрического поля распространяется почти со скоростью света ко всем мобильным электронам в цепи, приказывая им начать марш с маршем .По получении сигнала электроны начинают двигаться по зигзагообразной траектории в обычном направлении. Таким образом, щелчок переключателя вызывает немедленную реакцию во всех частях схемы, заставляя носители заряда повсюду двигаться в одном и том же направлении. В то время как фактическое движение носителей заряда происходит с низкой скоростью, сигнал, который сообщает им о начале движения, движется со скоростью, составляющей долю от скорости света.
Электроны, которые зажигают лампочку в фонарике, не должны сначала пройти от переключателя через 10 см провода к нити накала.Скорее электроны, которые зажигают лампочку сразу после того, как переключатель переводится в положение на , являются электронами, которые присутствуют в самой нити накала. Когда переключатель повернут, все подвижные электроны повсюду начинают движение; и именно подвижные электроны, присутствующие в нити накала, непосредственно ответственны за зажигание ее колбы. Когда эти электроны покидают нить, в нее входят новые электроны, которые ответственны за зажигание лампы. Электроны движутся вместе, как вода в трубах дома.Когда кран поворачивается с на , вода в кране выходит из крана. Не нужно долго ждать, пока вода из точки входа в ваш дом переместится по трубам к крану. Трубы уже заполнены водой, и вода везде в водяном контуре одновременно приводится в движение.
Развиваемая здесь картина потока заряда представляет собой картину, на которой носители заряда похожи на солдат, идущих вместе, повсюду с одинаковой скоростью.Их движение начинается немедленно в ответ на установление электрического потенциала на двух концах цепи. В электрической цепи нет места, где носители заряда расходуются или расходуются. Хотя энергия, которой обладает заряд, может быть израсходована (или лучше сказать, что электрическая энергия преобразуется в другие формы энергии), сами носители заряда не распадаются, не исчезают или иным образом не удаляются из схема. И нет места в цепи, где бы носители заряда начали скапливаться или накапливаться.Скорость, с которой заряд входит во внешнюю цепь на одном конце, такая же, как скорость, с которой заряд выходит из внешней цепи на другом конце. Ток — скорость потока заряда — везде одинакова. Поток заряда подобен движению солдат, идущих вместе, повсюду с одинаковой скоростью.
Проверьте свое понимание1.Говорят, что ток существует всякий раз, когда _____.
а. провод заряженг. аккумулятор присутствует
г. электрические заряды несбалансированные
г. электрические заряды движутся по петле
2. У тока есть направление. По соглашению ток идет в направлении ___.
а. + заряды перемещаютсяг.- движение электронов
г. + движение электронов
3. Скорость дрейфа подвижных носителей заряда в электрических цепях ____.
а. очень быстро; меньше, но очень близко к скорости светаг. быстрый; быстрее, чем самая быстрая машина, но далеко не скорость света
г. медленный; медленнее Майкла Джексона пробегает 220-метровую
г.очень медленно; медленнее улитки
4. Если бы электрическую цепь можно было сравнить с водяной цепью в аквапарке, то ток был бы аналогичен ____.
Выбор:
A. давление воды | Б. галлонов воды, стекающей по горке в минуту |
с.вода | D. нижняя часть ползуна |
E. водяной насос | F. верх горки |
5. На схеме справа изображен токопроводящий провод. Две площади поперечного сечения расположены на расстоянии 50 см друг от друга. Каждые 2,0 секунды через каждую из этих областей проходит заряд 10 ° C.Сила тока в этом проводе ____ А.
а. 0,10 | г. 0,25 | г. 0,50 | г. 1.0 |
e. 5,0 | ф. 20 | г. 10 | ч.40 |
и. ни один из этих |
6. Используйте диаграмму справа, чтобы заполнить следующие утверждения:
а. Ток в один ампер — это поток заряда со скоростью _______ кулонов в секунду.
г. Когда заряд 8 C проходит через любую точку цепи за 2 секунды, ток равен ________ A.
г. Если за 10 секунд поток заряда проходит через точку A (диаграмма справа) на 5 ° C, то ток равен _________ A.
г. Если ток в точке D равен 2,0 А, то _______ C заряда проходит через точку D за 10 секунд.
e. Если заряд 12 ° C пройдет мимо точки A за 3 секунды, то за ________ секунд пройдет 8 ° C заряда.
ф. Верно ли:
Ток в точке E значительно меньше тока в точке A, поскольку в лампочках расходуется заряд.
Что такое электрический ток »Электроника
Электрический ток возникает при движении электрических зарядов — это могут быть отрицательно заряженные электроны или положительные носители заряда — положительные ионы.
Учебное пособие по электрическому току Включает:
Что такое электрический ток
Единица измерения тока — Ампер
ПЕРЕМЕННЫЙ ТОК
Электрический ток — одно из самых основных понятий, существующих в области электротехники и электроники. Электрический ток лежит в основе науки об электричестве.
Будь то электрический нагреватель, большая электрическая сеть, мобильный телефон, компьютер, удаленный сенсорный узел или что-то еще, понятие электрического тока является центральным для его работы.
Однако ток как таковой обычно нельзя увидеть, хотя его эффекты можно видеть, слышать и чувствовать все время, и в результате иногда трудно получить представление о том, что это такое на самом деле.
Удар молнии — впечатляющее зрелище электрического токаФотография сделана с вершины башен Петронас в Куала-Лумпуре Малайзия
Определение электрического тока
Определение электрического тока:
Электрический ток — это поток электрического заряда в цепи.Более конкретно, электрический ток — это скорость прохождения заряда через заданную точку в электрической цепи. Заряд может представлять собой отрицательно заряженные электроны или положительные носители заряда, включая протоны, положительные ионы или дырки.
Величина электрического тока измеряется в кулонах в секунду, обычно единицей измерения является ампер или ампер, обозначаемый буквой «А».
Ампер или усилитель широко используется в электрических и электронных технологиях вместе с умножителями, такими как миллиампер (0.001A), микроампер (0,000001A) и т. Д.
Ток в цепи обычно обозначается буквой «I», и эта буква используется в уравнениях, таких как закон Ома, где V = I⋅R.
Что такое электрический ток: основы
Основная концепция тока состоит в том, что это движение электронов внутри вещества. Электроны — это мельчайшие частицы, которые существуют как часть молекулярной структуры материалов. Иногда эти электроны плотно удерживаются внутри молекул, а иногда они удерживаются свободно, и они могут относительно свободно перемещаться по структуре.
Одно очень важное замечание относительно электронов — это то, что они заряженные частицы — они несут отрицательный заряд. Если они перемещаются, то перемещается некоторое количество заряда, и это называется током.
Также стоит отметить, что количество электронов, которые могут двигаться, определяет способность определенного вещества проводить электричество. Некоторые материалы позволяют току двигаться лучше, чем другие.
Движение свободных электронов обычно очень случайное — оно случайное — столько электронов движется как в одном направлении, так и в другом, и в результате отсутствует общее движение заряда.
Случайное движение электронов в проводнике со свободными электронамиЕсли на электроны действует сила, перемещающая их в определенном направлении, то все они будут дрейфовать в одном и том же направлении, хотя и в некоторой степени случайным образом, но в целом движение происходит в одном направлении. Одно направление.
Сила, действующая на электроны, называется электродвижущей силой или ЭДС, а ее величина — это напряжение, измеряемое в вольтах.
Электронный поток под действием приложенной электродвижущей силыЧтобы лучше понять, что такое ток и как он действует в проводнике, его можно сравнить с потоком воды в трубе.У этого сравнения есть ограничения, но оно служит очень простой иллюстрацией тока и протекания тока.
Ток можно рассматривать как воду, текущую по трубе. Когда давление оказывается на один конец, вода движется в одном направлении и течет по трубе. Расход воды пропорционален давлению на конце. Давление или силу, приложенную к концу, можно сравнить с электродвижущей силой.
Когда к трубе прилагается давление или вода течет в результате открытия крана, вода течет практически мгновенно.То же самое и с электрическим током.
Чтобы получить представление о потоке электронов, требуется 6,24 миллиарда миллиардов электронов в секунду для тока в один ампер.
Обычный ток и поток электронов
Часто существует множество недоразумений относительно обычного потока тока и потока электронов. Сначала это может немного сбивать с толку, но на самом деле все довольно просто.
Частицы, переносящие заряд по проводникам, являются свободными электронами.Направление электрического поля в цепи по определению является направлением проталкивания положительных испытательных зарядов. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю.
Электронный и обычный токЭто произошло потому, что первоначальные исследования статических и динамических электрических токов были основаны на том, что мы теперь называем носителями положительного заряда. Это означало, что тогда раннее соглашение о направлении электрического тока было установлено как направление, в котором будут двигаться положительные заряды.Это соглашение сохранилось и используется до сих пор.
Итого:
- Обычный ток: Обычный ток идет от положительного к отрицательному выводу и указывает направление, в котором будут протекать положительные заряды.
- Электронный поток: Электронный поток идет от отрицательного полюса к положительному. Электроны заряжены отрицательно и поэтому притягиваются к положительному полюсу, так как притягиваются разные заряды.
Это соглашение, которое используется во всем мире по сей день, даже если оно может показаться немного странным и устаревшим.
Скорость движения электрона или заряда
Скорость передачи электрического тока сильно отличается от скорости реального движения электронов. Сам электрон отскакивает в проводнике и, возможно, движется вдоль проводника только со скоростью несколько миллиметров в секунду. Это означает, что в случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.
Возьмем другой пример. В почти полном вакууме внутри электронно-лучевой трубки электроны движутся почти по прямым линиям со скоростью примерно в одну десятую скорости света.
Последствия тока
Когда электрический ток течет по проводнику, есть несколько признаков, указывающих на то, что ток течет.
- Тепло рассеивается: Возможно, наиболее очевидным является то, что тепло выделяется. Если ток небольшой, то количество выделяемого тепла, вероятно, будет очень небольшим и его можно не заметить.Однако если ток больше, возможно, выделяется заметное количество тепла. Электрический огонь — яркий пример того, как ток вызывает выделение тепла. Фактическое количество тепла зависит не только от тока, но также от напряжения и сопротивления проводника.
- Магнитный эффект: Другой эффект, который можно заметить, состоит в том, что вокруг проводника создается магнитное поле. Если в проводнике течет ток, это можно обнаружить.Если поднести компас к проводу, по которому идет достаточно большой постоянный ток, можно увидеть, что стрелка компаса отклоняется. Обратите внимание, что это не будет работать с сетью, потому что поле слишком быстро меняется, и игла не может реагировать, а два провода (под напряжением и нейтраль), расположенные близко друг к другу в одном кабеле, нейтрализуют поле.
Магнитное поле, создаваемое током, находит хорошее применение во многих областях. Намотав провод в катушку, можно усилить эффект и создать электромагнит.Реле и множество других предметов используют этот эффект. Громкоговорители также используют переменный ток в катушке, чтобы вызвать колебания в диафрагме, которые позволяют преобразовывать электронные токи в звуки.
Как измерить ток
Одним из важных аспектов тока является знание величины тока, который может протекать в проводнике. Поскольку электрический ток является таким ключевым фактором в электрических и электронных схемах, очень важно знать, какой ток течет.
Есть много разных способов измерения тока. Один из самых простых — использовать мультиметр.
Как измерить ток с помощью цифрового мультиметра:
Используя цифровой мультиметр, цифровой мультиметр, легко измерить ток, поместив цифровой мультиметр непосредственно в цепь, по которой проходит ток. Цифровой мультиметр даст точные показания тока, протекающего в цепи
.Узнайте, , как измерить ток с помощью цифрового мультиметра.
Хотя существуют и другие методы измерения тока, это наиболее распространенный.
Ток — один из самых важных и фундаментальных элементов в электрических и электронных технологиях. Ток, протекающий в цепи, можно использовать различными способами: от генерирования тепла до переключения схем или сохранения информации в интегральной схеме.
Дополнительные основные понятия:
Напряжение
Текущий
Сопротивление
Емкость
Мощность
Трансформеры
RF шум
Децибел, дБ
Q, добротность
Вернуться в меню «Основные понятия».. .
Что такое электроэнергия | Ватт
Мощность — одно из ключевых понятий и единиц измерения, связанных с наукой об электричестве, измеряется в ваттах, мощность — важный параметр.
Электроэнергия Включает:
Что такое мощность
Важным аспектом любой электрической или электронной схемы является связанная с ней мощность. Обнаружено, что при протекании тока через резистор электрическая энергия преобразуется в тепло.Этот факт используется электрическими нагревателями, которые состоят из резистора, через который протекает ток. Лампочки работают по тому же принципу, нагревая элемент так, что он светится добела и излучает свет. В других случаях используются гораздо меньшие резисторы и гораздо меньшие токи. Здесь количество выделяемого тепла может быть очень небольшим. Однако при протекании некоторого тока выделяется некоторое количество тепла. В этом случае выделяемое тепло представляет собой количество рассеиваемой электроэнергии.
Определение мощности
Вне зависимости от того, используется ли энергия в механической или электрической среде, определение мощности остается неизменным.Способ его обсуждения может немного отличаться, но, тем не менее, его определение и актуальность точно такие же.
Определение электрической мощности:
Электрическая мощность — это скорость в единицу времени, с которой электрическая энергия передается по электрической цепи. Это скорость выполнения работы.
С точки зрения электрической цепи, электрическая мощность — это скорость в единицу времени, с которой электрическая энергия передается по электрической цепи.
Из определения видно, что:
W = V QtА как:
Qt = Current, IПодстановка:
W = V I Где:
W = мощность в ваттах
V = потенциал в вольтах
I = ток в амперах
Q = заряд в кулонах
t = время в секундах
Что такое ватт: единица мощности
Единица измерения мощности — ватт, который обозначается символом W и назван в честь шотландского инженера Джеймса Ватта (1736–1819).
Определение ватта:
Ватт — это единица измерения мощности в системе СИ, определяющая скорость преобразования энергии, и она эквивалентна одному джоулю в секунду.
Ватт может быть определен в соответствии с приложением:
- Электрическое определение ватта: один ватт — это скорость, с которой выполняется работа, когда ток в один ампер I протекает через сеть, которая имеет разность электрических потенциалов в один вольт, В.W = V I
- Механическое определение ватта: один ватт — это скорость, с которой выполняется работа, когда скорость объекта поддерживается постоянной на уровне одного метра в секунду против постоянной противодействующей силы в один ньютон.
Как и многие другие единицы СИ, существуют кратные и под-кратные, поскольку диапазон уровней мощности может варьироваться от незначительных уровней излучения, принимаемого радиоантеннами от далеких звезд, до огромных уровней, генерируемых крупными электростанциями.
Множители и субмножители ватт | ||
---|---|---|
Текущий | Имя | Аббревиатура |
10 -15 Вт | фемтоватт | FW |
10 -12 Вт | пиковатт | пол |
10 -9 Вт | нановатт | нВт |
10 -6 Вт | микроватт | мкВт |
10 -3 Вт | милливатт | мВт |
Вт | Вт | Вт |
10 3 Вт | киловатт | кВт |
10 6 Вт | Мегаватт | МВт |
Часто помогает увидеть типичные уровни мощности различных элементов, которые упоминаются в связи с электронными и электрическими системами.
Некоторые примеры типичных уровней мощности приведены в таблице ниже.
Типичные уровни мощности различных электрических и электронных устройств и систем | |
---|---|
Устройство | Детали |
Электрокамин | Обычно 1 кВт на бар |
Настольный компьютер | обычно менее 100 Вт |
Чайник | Типичный 2.5 кВт |
42-дюймовый ЖК-телевизор с плоским экраном | ~ 100 Вт |
Лампа накаливания бытовая | до 150 Вт |
Светодиодная лампа Domstic | До 20 Вт |
Расчетная мощность
Количество мощности, рассеиваемой в цепи, можно легко определить. Это просто произведение разности потенциалов или напряжения на конкретном элементе, умноженное на ток, протекающий через него.Другими словами, электрический огонь, работающий от источника питания 250 вольт и потребляющий 4 ампера тока, рассеивает 250 x 4 = 1000 ватт или 1 киловатт. Другими словами.
В некоторых случаях фактическое сопротивление элемента схемы может быть известно. Используя закон Ома (V = I x R), можно рассчитать мощность, если известно напряжение или ток. Например, известно, что напряжение сети составляет 250 вольт, а сопротивление элемента может быть известно 62,5 Ом.
Выполняя простую алгебру, можно найти очень полезные формулы:
W = V2R.. и . .
W = I2 RИспользуя эти формулы, просто вычислить мощность, рассеиваемую на резисторе 62,5 Ом, когда на него подается напряжение 250 В
Power — одно из ключевых звеньев во многих электронных схемах. Его можно использовать для указания уровня тепла, рассеиваемого в блоке или даже отдельном компоненте, его можно использовать для определения потребляемой мощности, а также для определения количества энергии, генерируемой системой для передачи в следующий пункт.В этих и очень многих других областях мощность, измеряемая в ваттах, является ключевым параметром, который имеет большое значение.