Определение фазы: Как найти фазу: простые и действенные способы

Содержание

Фаза, ноль, заземление. Как их определить и что это такое

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.

Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля - N).

Еще момент - чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой - фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между "нулем" и "землей" будет близко к нулевому значению (определяется сопротивлением заземления), а "земля" - "фаза", в нашем случае 220 Вольт.

Кроме того, если гипотетически (На практике так делать нельзя!) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение "фаза" - "ноль" у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и "землей" (рис.4).

Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток "уйдет" по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается - тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль - вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.

Одним щупом мультиметра (каким - безразлично) касаемся участка измеряемой цепи, другим - естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис. 8).

Обращаю Ваше внимание - если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.

Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


С какой стороны в розетке находится фаза, а с какой ноль – справа или слева?

Современная жизнь невозможна без электричества, но иногда возникает необходимость в смене розеток или включателей.

Приступая к работе с электропроводкой, нужно знать расположение фазы и ноля. Это обезопасит человека от ударов током и возможных ожогов, а также избежать короткого замыкания в проводке.

Методы определения фазы в розетке

Совершая монтаж или демонтаж розеток самостоятельно, человеку, незнакомому с тонкостями подключения электроприборов, необходимо знать, как правильно определить фазу и ноль.

В электроэнергетике есть несколько видов проводов разного назначения. Некоторые используются для питания сети, другие применяются с целью защиты. Подключая розетку, важно не перепутать какой провод куда подключить, чтобы не возникло замыкание.

Фаза и ноль в розетке: зачем это нужно знать?

Важнее правильно подсоединить провода к розетке. В конструкциях старого образца подключается два провода – один из них под напряжением, второй – нулевой. Современные устройства имеют еще и место для подсоединения заземлительного провода.

Есть мнение, что при неверном подключении фазы и нуля возникнет короткое замыкание, от чего бытовые устройства выйдут из строя или возникнет пожар.

Но этого бояться не нужно, поскольку штепсельные розетки, которыми человек пользуется ежедневно, не имеют полярности. Кроме того, вилки приборов созданы без симметричного устройства, что позволяет подключать их к питанию любой стороной. При этом с фазой переменно контактирует то один штырь, то второй.

Ноль – справа или слева в старых розетках?

Для подключения розетки старого образца используются только два провода – один фазный, второй нулевой. Фаза может быть подключена справа или слева.

Некоторые современные электрические приборы подключаются строго по инструкции, и поэтому расположение фазного провода играет важную роль. Установка производится только профессионалами. Например, газовый котел, в который встроен электроконтролер, не имеющий вилки и поэтому подключаемый стационарно.

Расположение фазы не указано и в правилах установки электроприборов. Электрики придерживаются определенного стандарта: с правой стороны фаза, с левой – ноль.

Как узнать, где фаза, а где ноль в современной розетке

Для определения фазы в розетке и электромонтажных работ воспользуйтесь следующими инструментами:

  • индикаторной отверткой;
  • тестером;
  • мультиметром;
  • маркером;
  • пассатижами;
  • ножом, для зачистки изоляции.

Приступая к замене розетки, нужно обесточить квартиру. Для этого в распределительном щитке перевести рычаг в положение «выкл» или выкрутить пробки.

Ремонтные работы проводятся только при выключенном питании.

Индикаторная отвертка

С помощью индикаторной отвертки определить фазу и ноль можно только в розетках старого образца. Для этого инструмент рабочей частью вставляется в одно из отверстий.

Если лампочка загорается, то здесь подключена фаза. Если индикатор не горит – сюда подсоединен нулевой провод.

Свечения на нуле нет потому, что в нем отсутствует напряжение до тех пор, пока не произойдет соединение с фазой.

Ни в коем случае при проверке фазы в розетке нельзя прикасаться рукой к рабочей части отвертки. Незначительное напряжение тока причинит вред здоровью человека и несет угрозу для жизни.

Мультиметр: бесконтактный или контактный способ

В квартирах, где установлены современные розетки, определить месторасположение фазы и нуля с помощью индикаторной отвертки уже не получится.

Воспользуйтесь мультиметром. Прибор работает в диапазоне от 220В и выше.

Один щуп вставляют в отверстие, обозначенное маркировкой «COM» или «V». Если на экране появится показатель от 8 до 15 вольт, то здесь подключен фазный провод. Во втором отверстии, где ноль, прибор не будет показывать напряжения.

Чтобы определить где заземление, а, где ноль, потребуется провести измерения двумя щупами. Один вставляется в отверстие с фазой, а вторым поочередно прикасаются к другим клемам. При касании фазного провода к нулю мультиметр покажет напряжение в 220В, к заземлению – намного меньшее напряжение.

Указатель напряжения

Определить напряжение в розетке можно с помощью двухполюсного указателя напряжения.

Прикоснитесь одновременно двумя щупами к гнездам розетки и на индикаторе увидите, есть ли напряжение или нет. Также указатель издает световой или звуковой сигнал.

Аппарат подходит и для установления обрыва цепи электропроводки.

Как можно определить фазу и ноль без специальных устройств

При условии, что проводку в квартире прокладывал профессионал, определить, где фаза и ноль, можно визуально. Изоляция проводников имеет разную расцветку:

  • Провод, предназначенный для постоянного напряжения, коричневый.
  • Нулевой – синий.
  • Заземление – желтый с зеленым.

Проверьте расположение проводников в распределительном щитке, если изоляция имеет другие цвета. Затем осмотрите узлы в квартире. Если проводка сделана правильно, то для определения фазы прикоснитесь к проводу соответствующего цвета индикаторной отверткой.

Опасные способы определения: цветовая маркировка и «контрольная лампа»

Определение фазы и нуля без специальных устройств возможно. Для этого можно воспользоваться цветовой маркировкой. Но в старых домах, где электропроводка проводилась достаточно давно, часто использовали провода одинаковых цветов.

Поэтому визуальное определение практически не возможно. Чтобы в будущем не путаться промаркируйте проводку самостоятельно, насадив на них при монтаже розетки термоусадочные трубочки разных цветовых оттенков.

Еще один способ, цель которого определить наличие напряжения в розетке, – это «контрольная лампочка». Легко делается своими руками. Для этого понадобится взять:

  • патрон;
  • обычную лампочку;
  • два полуметровых многожильных провода.

«Контролька» делается следующим способом:

  1. Провода подсоединяются к патрону.
  2. В патрон закручивается лампа.

Чтобы проверить наличие фазы в розетке необходимо подыскать предмет для заземления. К примеру, труба отопительной системы, небольшую часть которой очистить от краски до железа. Один провод присоединить к заземлению, а вторым проверять жилы проводки. Когда коснетесь фазы, лампочка засветится.

Озвученные методы опасны, поскольку при малейшей неосторожности высок риск получения удара током.

Советы по работе с “пробниками”

Используя контрольную лампу, нужно быть максимально осторожным. Кроме того, что человека может поразить током, лампа при неправильном подключении взорвется и поранит человека осколками стекла.

Изготавливая самостоятельно указатели напряжения, нужно выбирать металлический стержень, который не превысит двух сантиметров. В противном случае возможно прикасание рукой к рабочей поверхности, что приведет к удару током. Кроме того, со стороны стержня рекомендуется закрепить защитное кольцо, которое не позволит руке соскальзывать с корпуса.

Для индикатора используется лампочка, которая выдерживает более, чем 90В. Материал для изготовления аппарата должен быть темного цвета, что позволит заметить свечение лампочки. Изготавливать прибор лучше из эбонита. При работе с электроприборами необходимо выполнять правила техники безопасности.

Если человек не разбирается в электричестве, а также не уверен в своих силах, то лучше попросить мастера произвести работу с электропроводкой. Таким образом можно избежать неприятных последствий, которые могут возникнуть при малейшей ошибке.

Полезное видео

Как определить фазу и ноль — Построй свой дом

 

Любые электромонтажные работы в частном доме связаны с определением назначения жил проводки. Если сказать проще, возникает необходимость определить фазу и «ноль», а также заземляющий провод. Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. О том, как определить фазу и ноль в вашей электрической сети мы и поговорим в этой статье.

 

Устройство бытовых электрических сетей

 

В предыдущей статье мы уже говорили, что при технологическом присоединении вашего дома, вам подводится трехфазное напряжение 380 В. Разводка по дому имеет напряжение 220 В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. О том, как устроен заземляющий контур мы говорили в предыдущей статье. В домах старой застройки заземляющего проводника может и не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

 

Правила подключения электрических приборов

 

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого провода производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. В выключатель подключают фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения. Это обеспечит безопасность при смене ламп. Сложные бытовые приборы необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

 

Приборы и инструменты для электромонтажных работ

 

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

 

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели и УЗО. Обычно их устанавливают в распределительном щитке. Все операции по подключению электроаппаратуры и зачистке проводов необходимо проводить при отключенных автоматах.

 

Правила работы с индикаторной отверткой

 

Чтобы проверить фазу с помощью индикаторной отвертки необходимо зажать отвертку между большим и средним пальцем руки, не касаясь не изолированной части. Указательным пальцем дотронуться до металлического пятачка на торце ручки. Металлическим концом отвертки прикасаются к оголенным концам проводов. Если провод фазный, загорится светодиод.

 

Визуальный метод определения фазы

 

Если проводка выполнена по всем правилам, то определить фазу, ноль и заземляющий проводник в распределительной коробке можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках. Для этого необходимо сделать следующие действия:

  • Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы может быть подключен только фазный провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  • Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите соединения проводов. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  • К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.

 

Определение фазы, нуля и заземляющего провода

 

Если сеть трех проводная и выполнена проводом одного цвета, либо вы не уверены в правильности подключения проводов, необходимо определять назначение проводников перед установкой каждого элемента сети.

 

 

  • Определите фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  • Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  • Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  • Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй поочередно к двум другим. Лампа загорится при касании нулевого проводника.

 

Если все указанные рекомендации, как определить фазу и ноль, не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут прозвонку всех цепей. Не забывайте, что речь идет о вашей безопасности.

 

В следующей статье я расскажу о видах ламп и цоколей.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Прибор для определения фазы электроэнергетических систем PVS 100

Технические данные

PVS 100

ЖК-сенсорный экран

240 х 128 (дисплей, работающий на пропускании и отражении)

GPS антенна с кабелем для подключения

Длина 20 м

Радиомодем для вв-датчика

Bluetooth, Макс. 10м

Объем ЗУ

1 Гб ЗУ/ USB интерфейс

Погрешность:

   При напряжении до 400 В

   До 120 кВ

 

± 0,5°

± 10°

Рабочее напряжение

115 В / 230 В АС 50/60 Гц

Время работы от аккумулятора

10 час.

Рабочая температура

20 °C … +50 °C

Габариты (Ш х В х Г)

235 х 105 х 181 mm

Вес

3,2 кг

Класс защиты

IP 54 при закрытом корпусе

Высоковольтный датчик HVS 120

Радиомодем

Bluetooth, Макс. 10м

Макс.напряжение

120 kВ

Время работы от аккумулятора

7 час.

Габариты (Ш х Д)

85 х 220 мм

Вес

0,9 кг

Класс защиты

IP 43

Фаза, определение - Справочник химика 21

    Концентрации фаз изменяются при их движении вдоль поверхности раздела, и соответственно изменяется движущая сила процесса. При расчетах процессов массопередачи вычисляют, как правило, среднюю движущую силу по известным начальным и конечным концентрациям реагирующих компонентов в одной из фаз. Определение средней движущей силы зависит от того, является ли линия равновесия прямой или кривой (при прочих равных условиях). В общем случае, когда линия равновесия является кривой, среднюю. движущую силу процесса массопередачи можно определить по уравнениям [c.141]
    Для измерения величины поверхности раздела фаз широко использовались две системы СО2 — водный раствор ЫаОН и кислород— раствор сульфита натрия в присутствии жидкого катализатора. В обеих системах абсорбция протекает только в режиме перехода от быстрой реакции к мгновенной кроме того, реакция второй системы, вероятно, не соответствует первому порядку. Несмотря на это, порядок величины поверхности раздела фаз, определенный с помощью этих систем, вероятно, корректен. Физический смысл поверхности раздела фаз можно трактовать аналогично описанному в разделе 8.1. [c.98]

    Зная состав сосуществующих фаз, определенный прямым измерением или путем расчета из объемных данных, можно легко рассчитать коп- [c.61]

    При абсорбции хорошо растворимых газов, в частностя при поглощении хлористого водорода водой, основное сопротивление массопередаче сосредоточено не в жидкой, а в газовой фазе. Поэтому величина коэффициента массопередачи близка к значению коэффициента массоотдачи в газовой фазе и мало зависит от величины коэффициента массоотдачи в жидкой фазе, определению которого посвящен данный пример. (Прим. ред.) [c.290]

    Поверхностным натяжением называется термодинамическая характеристика поверхности раздела фаз, определенная как работа обратимого изотермического образования единицы площади этой поверхности. Для жидкости поверхностное натяжение рассматривается как сила, действующая на единицу длины контура поверхности и стремящаяся сократить поверхность до минимума при заданных объемах фаз. [c.21]

    Таким образом, при ограничении круга вопросов рассмотрением квазистатических процессов удалось доказать существование абсолютной температуры и энтропии как функции состояния для каждой фазы, определенной уравнениями (10.15) или (10.25), и показать, что энтропия всей системы в целом складывается аддитивно из энтропий фаз. [c. 51]

    Таким образом, накопление данных и их обработка должны проводиться с использованием пакета программ. В него входят собственно программы аппроксимации табличных данных, программы обработки данных по фазовому равновесию. Последние соответствуют последовательности подготовки данных, подлежащих записи в базу. Этот комплекс программ основан на алгоритмах проверки термодинамической совместимости равновесных данных, выбора уравнений для описания неидеальности фаз, определения параметров этих уравнений. [c.118]


    Производные в уравнениях (7.132) вычисляются при составах фаз, определенных путем решения уравнений материального баланса (7.120), по уравнениям [c.312]

    Правило рычага. При количественных расчетах фазовых равновесий нередко возникает задача определить, каким будет общий состав системы, если равновесные между собой фазы определенного состава взять в тех или иных относительных количествах. Часто возникает также необходимость определить, в каких относительных количествах образуются фазы известного состава при разложении на них системы заданного исходного состава. Для рещения этих и других подобных им задач (в том числе и задач, относящихся не только к фазовьщ равновесиям) удобно пользоваться полуграфическим методом, основанным на так называемом правиле рычага. [c.321]

    При расчете реакторов для систем газ - твердое вещество (частицы) основными задачами при моделировании являются оценка гидродинамической структуры фаз определение удельной поверхности реакции оценка изменения состояния твердых частиц в ходе реакции определение соотношения скоростей процессов тепло- и массопереноса. [c.19]

    В равновесии с обеими жидкими фазами находится одна паровая фаза определенного состава. Это справедливо для смесей любого состава в преде- [c.77]

    Для расчета кажущейся константы обмена К. 2 по уравнению Никольского (П. 27) необходимо точно определить равновесные концентрации обменивающихся ионов в твердой и жидкой фазах. Определение лишь одной концентрации и расчет остальных трех по разности значительно уменьшает точность величины константы обмена. Поскольку константа входит в уравнения динамики ионообменной сорбции, то появляются новые возможности разработки динамических методов определения констант ионного обмена. [c.125]

    С обеими жидкими фазами в равновесии находится одна паровая фаза определенного состава. Следовательно, независимо от состава исходной смеси в пределах до при данной температуре имеем неизменные составы каждой из двух жидких фаз и равновесную с ними паровую фазу. При изменении состава исходной смеси от О до и от до 1, когда при данной температуре образуется однородный раствор, состав паровой фазы, равновесной с таким однородным раствором, будет изменяться с изменением концентрации этого раствора. [c.68]

    Поверхность отдельной фазы, определенная по физической адсорбции инертного газа (N2. Аг, Кг) и отнесенная к единице веса, называется удельной поверхностью. [c.16]

    Таким образом, объем перенесенной жидкости V, рассчитанный на единицу количества электричества величиной постоянной для границы раздела между фазами определенного состава [c.182]

    В микрогетерогенных системах каждому метастабильному состоянию отвечает равновесие с частицей новой фазы определенного размера [180]. Особенностью такого равновесия является то, что одна из фаз находится в метастабильной, а другая - в стабильной области. При такой трактовке ширина метастабильной области определяется изменением размера равновесного зародыша новой фазы от нулевого до макроскопического и соот- [c.86]

    Аналитический сигнал получают в виде тока пика анодного растворения накопленного металла во второй фазе определения. [c.291]

    Определение коэффициентов распределения и коэффициентов активности раствора газа (пара) в жидкой неподвижной фазе. Определение коэффициентов диффузии. [c.298]

    Температуру кипения можно определять как и паровой, так и в жидкой фазе. (Определение температуры кипеиия в парах дает более точные результаты, так как температура пара практически не зависит от некоторых колебаний температуры внутри жидкости, неизбежных ири ее нагревании. [c.81]

    Определим заряд как количество электричества, которое нужно сообщать электроду при увеличении его площади поверхности на единицу для того, чтобы разность потенциалов электрод — раствор осталась постоянной при постоянных химических потенциалах всех компонентов раствора (как заряженных, так и незаряженных), а также компонентов металлической фазы. Определенный таким образом заряд электрода было предложено назвать полным (или термодинамическим) зарядом и обозначать В соответствии с этим строго термодинамическое уравнение Липпмана для идеально поляризуемого [c.71]

    Нанесение жидкой фазы должно обеспечить удержание определенного ее количества на твердом носителе, а также равномерное покрытие зерен носителя ее пленкой. Эти условия могут быть выполнены несколькими приемами, из которых наиболее часто используется следующий. Рассчитав требуемое количество жидкой фазы, определенную ее навеску растворяют в таком растворителе, который был бы достаточно летуч и одновременно хорошо растворял бы выбранную жидкую фазу. Затем подготовленный, т. е. просушенный и измельченный твердый носитель тщательно [c.103]

    Составление материальных балансов процессов физической переработки природных газов, в которых принимают участие двухфазные системы, связано с определением составов сосуществующих жидкой и паровой фаз. Определение составов этих фаз основано на законах термодинамического равновесия многокомпонентных двухфазных систем. [c.16]

    Поскольку в двойном слое есть свободные заряды, электростатический потенциал не постоянен, а изменяется от точки к точке. Поэтому возникновение двойного слоя приводит к установлению между фазами определенной по величине и направлению разности потенциалов ф, зависящей от свойств обеих фаз.[c.81]

    Для выяснения роли механических примесей на стадии вторичных процессов термоокисления топлив — уплотнения продуктов окисления и накопления твердой фазы — были поставлены следующие эксперименты. Топливо Т-6 предварительно окисляли в приборе ТСРТ-2, тщательно отфильтровывали на мембранном фильтре № 4 и фильтрат делили на две порции. В один из фильтратов вводили 0,004% (масс.) механических примесей, выделенных из отстоя топлива. Затем образцы обескислорожива-ли в вакууме и нагревали при 150 °С в течение 4 ч в герметически закрытых сосудах в среде аргона. После такой обработки окисленного топлива определяли количество образующейся твердой фазы весовым методом (вследствие большого количества твердой фазы определение ее гранулометрического состава оказалось невозможным). [c.256]

    До сих пор рассматривались системы, в которых из расплава всегда кристаллизовалась твердая фаза определенного состава это были либо чистые компоненты, либо химические соединения.[c.132]

    Эффективность тарелки по газовой фазе, определенная в отсутствие перемешивания газа у1ежду тарелками, для прямоточных тарелок [c.276]

    Частицы дисперсной системы, с одной стороны, испытывают действие земного притяжения с другой стороны, они подвержены диффузии, стремящейся выравнять концентрацию во всех точках системы. Когда между этими двумя силами наступает равновесие, частицы дисперсной фазы определенным образом распределяются относительно поверхности Земли. [c.324]

    Разумеется, эта геометрия системы, в свою очередь, предопределена ее историей, т. е. совокупностью химических и физико-химических процессов формирования частиц дисперсной фазы определенных размеров при диспергировании или конденсации. Однако в еще большей мере и большем разнообразии физико-химические и химические аспекты выступают в характеристике р прочности индивидуальных контактов — силы сцепления между отдельными частицами. В зави- [c. 315]

    Термическая стабильность обменных форм цеолитов типа X и V зависит от среды (воздух, водяной пар и др.) и длительности прокаливания. С увеличением длительности прокаливания разрушение цеолита возможно при более низких температурах [9]. Прокаливание в атмосфере водяного пара приводит к существенной аморфизации обменных форм цеолитов типа X и У при температурах, значительно меньших температур разрушения их кристаллической решетки, определенных методом ДТА [10]. На рис. 3.6 представлены зависимости содержания кристаллической фазы, определенной рентгеноструктурныхМ методом, от химического состава образцов цеолита типа V, прокаленных в течение 6 ч в атмосфере водяного пара при 750 °С. Содержание кристалли- [c.30]

    Следует с осторожностью пользоваться данными, относящимися к нитридам, карбидам, боридам и другим веществам, образующим фазы нестехиометрического состава, в частности фазы переменного состава и твердые растворы. В более ранних работах этот вопрос часто не учитывался. Позднее некоторые авторы относили полученные экспериментальные результаты к стехиометрическому составу фаз, хотя не всегда такие фазы могут существовать в рассматриваемых условиях. В других случаях, когда существуют устойчивые фазы определенного, хотя и нестехиометрического состава, данные относят к составу таких фаз (Рео,э47, О, Со,9э, Н1Со,98, УСо,8з)- Сейчас уже накопилась обширная литература по этому вопросу, в особенности по полупроводниковым материалам (см. работы 34-36 до справочные данные еще не упорядочены. [c.316]

    Для определения состава сосуществующих фаз многокомнонентной системы требуется установление равновесия между фазами, определение давления, температуры и состава каждой фазы. В большинстве случае пробы каждой из фаз отбирают нри поддержании постоянных давления и температуры. На рис. 1 дана схема аппаратуры, используемой для определения состава сосуществующих фаз путем отбора проб. Вещество вводится в камеру 1. Равновесие достигается путем псиользования мехатсичесьой [c. 57]


Фаза и ноль - что такое, как определить фазу и ноль в электричестве

Далеко не всегда хочется вызывать специалистов при необходимости заменить люстру, повесить бра или дополнительный светильник. Но когда электромонтажными работами занимаешься впервые, так или иначе начинаешь задаваться вопросом, что представляют собой такие понятия как «ноль» и «фаза».

Разбираться в этих обозначениях необходимо хотя бы для того, чтобы правильно подключить провода. Желательно восполнить пробелы в знаниях об электричестве, при отсутствии опыта в данной сфере, перед началом работ.

Выделяют три обозначения проводов:

  • фаза
  • ноль
  • заземление

Определить, какой кабель в розетке или осветительном приборе к чему относится, можно подручными средствами или по цвету. Под понятием «ноль», как правило, подразумевают «рабочий ноль», «фаза» - «фазные провода», а под «заземлением» - «защитный ноль».

Профессиональные электрики могут различать кабели с первого взгляда. А вот для рядового человека различать данные обозначения немного сложно. Тем более что специальные инструменты, позволяющие определить, где фаза и ноль, имеются далеко не у всех.

В реальности способов распознания проводов не так уж и много. А безопасных – еще меньше. Поэтому чаще всего определяют кабели по цвету.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки.

Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Самостоятельное определение фазы и ноля при помощи подручных средств

Специалисты рекомендуют для облегчения определения проводов начинать именно с распознавания фазы. Этот способ можно использовать совместно с предыдущим (по цвету).

Индикаторная отвертка непременно найдется в арсенале каждого домашнего мастера. Она необходима как для проведения комплекса работ по электромонтажу, так и при элементарной замене ламп либо установке осветительных приборов.

Метод до смешного прост. При касании жалом индикаторной отвертки провода определенного цвета, находящегося под напряжением, и одномоментного прикосновения контакта на инструменте, должен загореться индикатор. Он сигнализирует о наличии сопротивления. Значит, проверяемый провод является фазным.

Определение при помощи этого метода строится на том, что внутри инструмента располагается лампочка и резистор (сопротивление). Когда электрическая цепь замыкается, загорается сигнал. Именно наличие в индикаторной отвертке сопротивления и позволяет производить процедуру совершенно безопасно для человека, способствуя снижению тока до минимальных значений.

Метод определения фазы и ноля при помощи контрольной лампы

Этот способ подразумевает использование контрольной лампы для определения проводов определенного цвета в трехпроводной сети. Применять данный метод следует с особой осторожностью. 

Применение этого метода подразумевает создание контрольной лампы. Для этого в патрон вкручивается обычная лампочка. В клеммах патрона размещаются провода, на концах которых отсутствует изоляция. При отсутствии возможности создать такую конструкцию допустимо использовать традиционную настольную лампу, оснащенную электрической вилкой. Теперь для определения необходимо поочередно, по цветам присоединять провода.

Стоит отметить, что использование данного метода позволяет определить, присутствует ли среди пары проверяемых проводов фазный. А какой именно из этих двух – фаза, распознать будет непросто. Загорание контрольной лампы означает, что с высокой долей вероятности одни провод – фаза, а другой – ноль.

Отсутствие света говорит о том, что фазный провод среди проверяемых отсутствует. Хотя возможен вариант, что нет именно нуля. Поэтому применение этого метода целесообразно, скорее всего, для определения правильности монтажа и работоспособности проводки.

Определение сопротивления петли фаза-ноль

Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание. Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.

Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.

Измеряют сопротивление в этом контуре следующими методами:

  • падением уровня напряжения в отключенной цепи
  • падением уровня напряжения в результате сопротивления возрастающей нагрузки
  • использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи

Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.

Что такое фаза и ноль в электричестве

Электрическая фаза колебаний в электротехнике - это аргумент колебательной функции, то есть угол, на который смещены колебания значения ЭДС в пространстве относительно нуля.

Различают начальную фазу $φ_0$, описывающую начало колебательного процесса в нулевое время и полную фазу, описывающую состояние колебательного процесса в любой момент времени.

Пример уравнения c полной фазой, которое может описывать колебательный процесс: $cos(ωt + βx + φ_0)$. В момент времени, равный $t = 0$, угол колебаний составит $φ_0$, а если колебание начинается в точке с координатами $(0;0)$, то уравнение будет иметь вид типа $cos(φ_0)$.

Чаще всего для электроснабжения жилья используются трёхфазные системы электроснабжения, фазовый угол между генерируемыми ЭДС в которых равен $\frac{2π}{3}$ или $120°$.

Что такое фаза в электричестве — определение понятия

Фаза в электричестве - это разговорное название провода, находящегося под напряжением относительно другого, который называют нуль. Это название произошло из-за того что вырабатываемый на подстанциях ток, подающийся в дома, является переменным, то есть ЭДС, создаваемые на подстанциях, имеют одну и ту же частоту (для России и стран СНГ она составляет 50 Гц), но сдвинуты относительно друг друга во времени на определённый фазовый угол. В дома обычно подаются все три фазы и нет никакого значения, к какой фазе подключена ваша квартира.

Рисунок 1. Электрика и электричество – схематическое изображение фазы, нуля и земли

На рис. 1 схематично нарисована схема проведения электрического тока в квартиру от общей системы. Буквами $L1$, $L2$, $L3$ обозначены 1-3 фазы, а буквой $N$ - нулевой провод.

На рис. 2 показано схематическое подключение тока к квартире от трасформатора, буквой $L_T$ обозначена фаза на трансформаторе, буквой $L$ - фаза в квартире, а буква $R_H$ - это подключенный электроприбор, обладающий некоторым сопротивлением $R_H$.

От трансформатора идёт 2 провода, один - так называемый фазовый провод с напряжением, а другой – нулевой провод, от которого отведено заземление, осуществляемое помещением контакта в землю. Существуют и другие источники заземления помимо собственно земли, на данных рисунках заземление обозначено буквами $Змл$.

На рис. 3 изображён случай, когда нулевой заземлённый провод не проведён в квартиру от подстанции, а заземлён непосредственно в квартире. Напряжение $L_T$ между нулём и фазой будет одинаково для рисунков 2 и 3, однако, не рекомендуется заземлять напряжение от трансформатора непосредственно в квартире.

Что такое ноль в электричестве — определение

Ноль – это провод, необходимый для замыкания электрического контура, по нему ток возвращается к источнику.

Для чего нужен ноль в электричестве? Ноль в электричестве нужен для равномерного распределения напряжения между фазами. При отсутствии нулевого провода напряжение между фазовыми проводами будет распределяться неравномерно, в результате чего на одной фазе может быть повышенное напряжение, которое может привести к пожару, а на других – пониженное, с которым часть электроприборов может не работать или работать некорректно. Для ноля также используются другие названия – его называют нейтральным или нулевым контактом.

Что такое нулевая фаза в электричестве

Нулевая фаза – это ещё одно народное название нулевого провода, не стоит путать его с землёй.

Ток в нулевом проводе не всегда равен нулю, он будет ненулевым при подключении электроприборов.

Что такое «земля» в электричестве

«Земля» – это провод, отводимый от нулевого, используемый для безопасности. Суть в том, что в случае обрыва электрической цепи или отсутствия сопротивления ток направляется в землю, что помогает избежать удара током.

Напряжение $U$ между нулевым проводом и землёй равняется нулю, тогда как напряжение между нулём и фазой для обычной квартиры будет равно $220$ В.

Электрика для чайников: фаза и ноль – что это и как определить где что

В случае, когда вы имеете дело с проводкой, состоящей из двух проводов – один из них всегда будет фазой, а второй нулём. Для того чтобы определить где какой - достаточно воспользоваться специальной пластиковой отвёрткой с индикатором.

Для этого необходимо сначала отключить электричество и развести 2 имеющихся провода во избежание короткого замыкания.

Затем нужно включить электричество обратно и аккуратно, не прикасаясь голыми руками к оголённой части проводов, приложить конец индикаторной отвёртки к проводу. Тот, на котором сработает лампочка индикаторной отвёртки, является фазой, второй провод будет нулём.

В случае же если вам приходится иметь дело с трёхжильным проводом – определить где фаза, а где ноль будет несколько сложнее. Для этого используют специальные приборы, например, можно определить где земля, а где ноль с помощью вольтметра. Для этого сначала нужно измерить напряжение $U$ по очереди между каждым из двух неизвестных проводов и фазовым проводом. Напряжение $U$ на «земле» всегда будет больше, чем на нулевом. Также можно отличить замелю от нуля с помощью омметра - сопротивление на заземлении всегда будет достаточно небольшим и будет в районе 4 Ом.

Замечание 1

Также нулевой провод, фаза и заземление обычно имеют разную расцветку. Для обозначения фазы используют чаще всего чёрную, коричневую или серую обмотку, для земли – жёлтую или зелёную, а для ноля – синюю или белую.

Как работает автофокус с определением фазы

Когда дело доходит до технологии DSLR, кажется, существует некоторая путаница в том, как именно работает автофокус с определением фазы. Хотя для большинства людей эта тема может быть не очень интересной, если вам интересно, как и почему у камеры может быть проблема с автофокусом, эта статья прольет свет на то, что происходит внутри камеры с точки зрения автофокуса, когда делается снимок. . Существует огромное количество отрицательных отзывов о проблемах с автофокусировкой на таких точных инструментах, как Canon 5D Mark III, Nikon D800, Pentax K-5 и других цифровых зеркальных фотоаппаратах, и похоже, что большинство фотографов, похоже, не понимают, что основная проблема не обязательно с конкретной моделью или типом камеры, а скорее с конкретным способом фокусировки этих камер.Если вы поищете в Интернете, вы найдете тысячи отчетов об автофокусировке по всем видам зеркальных фотокамер, возраст которых насчитывает более 10 лет. Следовательно, проблемы с передним фокусом и задним фокусом, которые мы видим в современных камерах, не являются чем-то новым - они существуют с тех пор, как была создана первая зеркальная фотокамера с датчиком фазового обнаружения.

Как работают камеры DSLR

Чтобы разобраться в этом вопросе более подробно, важно сначала узнать, как работает камера DSLR. На типичных иллюстрациях зеркалки показано только одно зеркальное зеркало, расположенное под углом 45 градусов.Чего они не показывают, так это того, что за зеркалом есть вторичное зеркало, которое отражает часть света в датчик фазового детектирования. Взгляните на упрощенную иллюстрацию ниже, которую я сделал из образца изображения Nikon D800:

Вот описание каждого числа, показанного на иллюстрации выше:

  1. Луч света
  2. Основное / отражающее зеркало
  3. Вторичное Зеркало, также известное как «дополнительное зеркало»
  4. Затвор камеры и датчик изображения
  5. Эксцентриковый штифт (1. 5 мм шестигранник) для регулировки главного зеркала
  6. Эксцентриковый штифт (шестигранник 1,5 мм) для регулировки дополнительного зеркала
  7. Датчик определения фазы (датчик автофокусировки)
  8. Пентапризма
  9. Видоискатель

Давайте посмотрим, что происходит внутри камеры когда сделан снимок. Лучи света попадают в объектив (1) и попадают в камеру. Частично прозрачное главное зеркало (2) расположено под углом 45 градусов, поэтому оно отражает большую часть света вертикально в пентапризму (8).Пентапризма волшебным образом преобразует вертикальный свет обратно в горизонтальный и переворачивает его, так что вы видите именно то, что получаете, когда смотрите в видоискатель (9). Небольшая часть света проходит через главное зеркало и отражается вторичным зеркалом (3), которое также наклонено под углом (54 градуса на многих современных камерах Nikon, как показано выше). Затем свет достигает датчика фазового обнаружения / автофокусировки (7), который перенаправляет его на группу датчиков (два датчика на точку автофокусировки). Затем камера анализирует и сравнивает изображения с этих датчиков (аналогично тому, как оценивается фокусировка на дальномере), и, если они не выглядят одинаково, она дает команду объективу произвести правильную настройку (подробнее см. Ниже).

Хотя описанный выше процесс выглядит более или менее простым, с этим подходом связана одна серьезная проблема. Датчик фазового определения - это датчик, который дает команду объективу произвести правильную настройку, в то время как изображение захватывается совершенно другим устройством - датчиком на задней панели камеры. Почему это проблема? Помните, что когда вы делаете снимок, оба зеркала заднего вида поднимаются, затвор открывается, и свет от объектива попадает прямо на датчик камеры (4).Для правильной работы фазовой автофокусировки расстояние между креплением объектива и датчиком камеры, а также расстояние между креплением объектива и датчиком фазового определения должно быть идентичным . Если есть даже небольшое отклонение, автофокус будет некорректным. Вдобавок ко всему, если угол вторичного зеркала не совсем такой, каким должен быть, это также приведет к проблемам с автофокусировкой.

Как работает датчик фазового определения

Как я уже сказал выше, система фазового определения работает аналогично дальномерной камере.Свет, отражающийся от вторичного зеркала, принимается двумя или более небольшими датчиками изображения (в зависимости от того, сколько точек фокусировки имеет система автофокусировки) с микролинзами над ними. Для каждой точки фокусировки, которую вы видите в видоискателе, есть два крошечных датчика разности фаз - по одному для каждой стороны объектива, как показано на иллюстрации вверху страницы (7) (на иллюстрации это поведение чрезмерно преувеличено. показаны два отдельных световых луча, достигающих двух отдельных датчиков.

На самом деле, на современном устройстве обнаружения фаз гораздо больше датчиков, чем два, и эти датчики расположены очень близко друг к другу).Когда свет достигает этих двух датчиков, если объект находится в фокусе, световые лучи с крайних сторон линзы сходятся прямо в центре каждого датчика (как на датчике изображения). На обоих сенсорах будут одинаковые изображения, указывающие на то, что объект действительно находится в идеальном фокусе. Если объект находится не в фокусе, свет больше не будет сходиться и попадет на разные стороны датчика, как показано ниже (изображение любезно предоставлено Википедией):

На рисунках 1–4 представлены условия, при которых объектив сфокусирован (1 ) слишком близко, (2) правильно, (3) слишком далеко и (4) слишком далеко.Из графиков видно, что разность фаз между двумя профилями может использоваться, чтобы определить не только в каком направлении, но и на сколько нужно изменить фокус для достижения оптимальной фокусировки. Обратите внимание, что на самом деле вместо сенсора движется объектив.

Так как система фазового детектирования знает, находится ли объект в фокусе спереди или сзади, она может отправлять точные инструкции на объектив камеры о том, в какую сторону и на сколько повернуть фокус. Вот что происходит, когда камера фокусируется на объекте (операция автофокусировки с замкнутым контуром):

  1. Свет, проходящий через крайние стороны объектива, оценивается двумя датчиками изображения
  2. В зависимости от того, как свет достигает изображения датчиков, система автофокусировки может определить, фокусируется ли объект спереди или сзади, и по тому, насколько
  3. Затем система автофокусировки дает команду объективу отрегулировать фокус.
  4. Вышеупомянутое повторяется столько раз, сколько необходимо, пока не будет достигнута идеальная фокусировка.Если фокусировка не может быть достигнута, объектив сбрасывается и начинает повторную фокусировку, что приводит к «поиску» фокусировки.
  5. После достижения идеальной фокусировки система автофокусировки отправляет подтверждение того, что объект находится в фокусе (зеленая точка внутри видоискателя, звуковой сигнал и т. д.)

Все это происходит за доли времени, поэтому система определения фазы работает намного быстрее, чем система определения контраста (которая полагается на изменение фокуса вперед и назад до тех пор, пока фокус не будет достигнут, с большим количеством изображений анализ данных происходит на уровне датчика изображения).

Система фазового детектирования / автофокуса - очень сложная система, в которой практически каждый раз улучшается качество изображения, когда обновляется линейка камер более высокого класса. С годами количество точек автофокусировки увеличивалось, а также количество более надежных точек автофокусировки крестового типа. Например, Canon 1D X и Canon 5D Mark III имеют колоссальную 61 точку фокусировки, 41 из которых являются перекрестными. Взгляните на эту сложную матрицу датчиков автофокусировки на камере:

Увеличено не только количество точек автофокусировки, но и их надежность.Большинство современных профессиональных фотоаппаратов сегодня поставляются с чрезвычайно быстрыми и легко настраиваемыми системами автофокусировки, которые могут непрерывно отслеживать объекты и фокусироваться.

Проблемы с автофокусом DSLR

Как вы можете видеть выше, система автофокусировки с определением фазы очень сложна и требует высокой точности для получения точных результатов. Самое главное, что система фазового обнаружения / автофокусировки должна быть правильно установлена ​​и выровнена в процессе производства. Если есть даже небольшое отклонение, которое случается довольно часто при производстве, автофокус отключится.Это основная причина, по которой фазовое обнаружение было источником проблем в значительной степени с тех пор, как появилась первая зеркальная фотокамера с датчиком фазового обнаружения. Понимая эти возможные отклонения, все производители зеркальных фотокамер разработали систему высокоточной калибровки, которая учитывает это и позволяет выполнять калибровку отдельной камеры в процессе проверки и обеспечения качества (QA).

Если обнаружена проблема выравнивания датчика с определением фазы, система выполняет автоматическое компьютеризированное тестирование, которое проходит через каждую точку фокусировки и вручную настраивает ее в камере.Отклоненные точки повторно калибруются и регулируются, затем значения компенсации записываются в прошивку камеры. Думайте об этом как о процессе, аналогичном процессу точной настройки AF / Micro Adjust, который происходит на уровне определения фазы, за исключением того, что он выполняется для каждой точки фокусировки AF отдельно.

Страница не найдена »ExpertPhotography

404 - Страница не найдена» ExpertPhotography

404

Извини! Страница, которую вы искали, не найдена.

..

Он был перемещен, удален, переименован или, возможно, никогда не существовал. Пожалуйста, свяжитесь с нами, если вам понадобится помощь.

Мне нужна помощь с…

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1 ', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

Страница не найдена »ExpertPhotography

404 - Страница не найдена» ExpertPhotography

404

Извини! Страница, которую вы искали, не найдена...

Он был перемещен, удален, переименован или, возможно, никогда не существовал. Пожалуйста, свяжитесь с нами, если вам понадобится помощь.

Мне нужна помощь с…

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1 ', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo. RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

Страница не найдена »ExpertPhotography

404 - Страница не найдена» ExpertPhotography

404

Извини! Страница, которую вы искали, не найдена...

Он был перемещен, удален, переименован или, возможно, никогда не существовал. Пожалуйста, свяжитесь с нами, если вам понадобится помощь.

Мне нужна помощь с…

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1 ', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo. RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx.RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

[type = 'text']

[type = 'text']

[type = 'password']

[type = 'password']

['rmockx. RealPlayer G2 Control ', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', 'RealPlayer']

['rmockx.RealPlayer G2 Control', 'rmocx.RealPlayer G2 Control.1', 'RealPlayer.RealPlayer (tm) ActiveX Control (32-разрядный)', 'RealVideo.RealVideo (tm) ActiveX Control (32-бит)', «RealPlayer»]

Автофокус: определение фазы по сравнению с контрастом

Легко принять автофокус как должное.Честно говоря, трудно представить, как фотографы прошлого могли обходиться без этого. Но как бы часто мы ни использовали возможности автофокусировки наших камер, большинство фотографов не понимают, как именно работает эта технология:

Как объясняет фотограф Дэвид Флорес из B&H, есть несколько способов автофокусировки. Более того, понимание функциональных различий между двумя основными системами обнаружения может действительно улучшить качество ваших фотографий.

Обнаружение фазы

Как это работает

Когда свет проходит через объектив SLR, внутреннее зеркало отражает изображения вверх и через пентапризму, что позволяет нам видеть сквозь видоискатели. При автоматической фокусировке с определением фазы часть света, отражающегося от сцены, проходит через главное зеркало в меньшее вспомогательное зеркало. Это дополнительное зеркало затем делит входящий свет на два отдельных луча и отражает их вниз. Датчик, расположенный в нижней части камеры, может затем рассчитать расстояние до объекта на основе того, куда падают световые лучи.Затем датчик запускает двигатель, который управляет фокусировкой объектива.

Технологии, используемые каждым из основных производителей камер, немного отличаются, но концептуально процесс остается одинаковым для всех.

Когда использовать

Фазовый автофокус работает значительно быстрее, чем системы автофокусировки с определением контраста. Спорт, дикая природа или любые движущиеся объекты получаются более четкими и четкими при использовании фазовой автофокусировки. Однако важно иметь в виду, что системы определения фазы могут не совмещаться и работать по-разному в зависимости от объектива.Прежде чем отправиться в поле, вам может потребоваться время для точной настройки системы фокусировки камеры.

Определение контраста

Как это работает

В отличие от фазовой автофокусировки, системы определения контраста анализируют все точки контраста, регистрируемые сенсором камеры, пиксель за пикселем. Перемещая фокус вперед и назад, камера может вычислять самые высокие точки контрастности в кадре. Хотя это может показаться немного трудоемким по сравнению с непосредственным определением фазы, автофокусировка с определением контраста чрезвычайно точна, что делает ее желательной функцией для многих фотографов.

Когда использовать

Время, необходимое для калибровки определения контраста, может означать упускать подходящий момент с быстро движущимся объектом. Тем не менее, это действительно может принести пользу портретам, пейзажам и фотографиям всех жанров. Помимо повышения точности фокусировки, автофокусировка с обнаружением контраста предлагает больший набор потенциальных точек фокусировки.

У каждой системы есть свои плюсы и минусы, обусловленные ее технологией. Ни одна из систем не превосходит другую.Фактически, они хорошо дополняют друг друга. По этой причине многие современные камеры предлагают варианты контрастной фокусировки фазы и для выполнения поставленной задачи.

Использование автофокусировки немного облегчает жизнь каждому фотографу. Знание о том, как применять функции автофокусировки, не только упрощает работу, но и делает нас более эффективными создателями изображений.

«Системы автофокусировки имеют огромное значение для работы вашей камеры и объективов от объекта к объекту.”

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

(PDF) Простая модель для алгоритма фазовой автофокусировки на датчике

Простая модель для алгоритма фазовой автофокусировки на датчике

Открытый доступ JCC

[4,18]. Следовательно, общая сложность составляет O (nlog2n).

Когда, в свою очередь, алгоритм Кифера-Вольфовица используется для определения положения фокуса

, количество контрольных точек в

, по которым вычисляется корреляция, обычно фиксировано (и

немного больше, чем O (logn)) .5

6.6. Проблемы считывания изображения

Использование датчика изображения для фокусировки явно выгодно

с точки зрения совместимости с видео. Однако это

также означает, что скорость алгоритма ограничена частотой кадров датчика

. Ясно, что эта проблема более значительна -

cant в алгоритмах CD, чем в алгоритмах PD (особенно в версии

с разомкнутым контуром с одним изображением последнего), но в ei-

этот случай может быть дополнительно уменьшен, если Имеющийся датчик

предлагает произвольный доступ к пикселям, и

интересует фокусировку в выбранной области сцены.

Благодарности

Работа поддержана грантом NCN UMO-2011/01/

B / ST7 / 00666.

ССЫЛКИ

[1] Дж. В. Гудман, «Статистическая оптика», Wiley-Interscience,

Нью-Йорк, 2000.

[2] П. Зейтц и А. Дж. Тьювиссен, «Однофотонное изображение»,

Springer, 2011.

http://dx.doi.org/10.1007/978-3-642-18443-7

[3] SJ Ray, «Прикладная фотографическая оптика», 3-е издание,

Focal Press, Oxford, 2004 .

[4] Дж. Кифер, «Последовательный минимаксный поиск максимума»,

Proceedings of the American Mathematical Society, Vol.

4, № 3, 1953, стр. 502-506.

http://dx.doi.org/10.1090/S0002-9939-1953-0055639-3

[5] Х.Дж. Кушнер и Г.Г. Инь, «Стохастическая аппроксимация

и рекурсивные алгоритмы и приложения», 2-е издание,

Springer, New York, 2003.

[6] Дж. Липпманн, «Epreuves Reversibles Donnant la Sensa-

tion du Relief», Журнал теоретической и прикладной

Physics, Vol. 7, No. 1, 1908, pp. 821-825.

http://dx.doi.org/10.1051/jphystap:01

70082100

[7] Л. Ковач и Т. Сираньи, «Извлечение фокусной области с помощью

слепой деконволюции для определения областей интереса»,

транзакций IEEE по анализу моделей и машинному анализу

, Vol. 29, No. 6, 2007, pp. 1080-1085.

http://dx.doi.org/10.1109/TPAMI.2007.1079

[8] К.С. Прадип и А. Н. Раджагопалан, «Улучшение формы

от фокуса с помощью Defocus Cue», IEEE Transactions on

Image Processing, Vol.16, No. 7, 2007, pp. 1920-1925.

http://dx.doi.org/10.1109/TIP.2007.899188

[9] А. Н. Р. Харихаран, «Форма из фокуса с помощью тензорного

Голосование», IEEE Transactions on Image Processing, Vol.

21, № 7, 2012 г., стр. 3323-3328.

http://dx.doi.org/10.1109/TIP.2012.21

[10] М. Суббарао и Ж.-К. Тян, «Выбор оптимальной меры Fo-

cus для автофокусировки и глубины от фокуса»,

Транзакции IEEE по анализу шаблонов и машинному контролю,

telligence, Vol. 20, No. 8, 1998, pp. 864-870.

http://dx.doi.org/10.1109/34.709612

[11] П. Сливинский, «Автофокусировка с помощью ортогональных преобразований серии

», Международный журнал электроники

и телекоммуникаций, Vol. 56, No. 1, 2010, pp. 31-37.

http://dx.doi.org/10.2478/v10177-010-0004-5

[12] А. Коэн и Ж.-П. Д'Алес, «Нелинейное приближение

случайных функций», SIAM Journal of Applied Mathe-

matics, Vol.57, No. 2, 1997, pp. 518-540.

http://dx.doi.org/10.1137/S0036139994279153

[13] Р.А. Деворе, Б. Джаверт и Б. Люсьер, «Image Com-

сжатие с помощью кодирования вейвлет-преобразования», IEEE

Транзакции по информации Теория, Vol. 38, No. 2, 1992,

pp. 719-746. http://dx.doi.org/10.1109/18.119733

[14] A. Chambolle, RA DeVore, NY Lee и BJ Lucier,

«Нелинейная вейвлет-обработка изображений - Вариационная-

Проблемы, сжатие и Удаление шума с помощью

вейвлет-усадки, IEEE Transactions on Image Pro-

cessing, Vol. 7, No. 3, 1998, pp. 319-335.

http://dx.doi.org/10.1109/83.661182

[15] Д.Л. Донохо, М. Веттерли, Р.А. Деворе и И. Даубе -

chies, «Сжатие данных и гармонический анализ», IEEE

Транзакции по теории информации, Vol. 44, No. 6, 1998,

pp. 2435-2476. http://dx.doi.org/10.1109/18.720544

[16] Р. М. Грей и Л. Д. Дэвиссон, «Введение в статистическую обработку сигналов Sta

», Cambridge University Press,

Нью-Йорк, 2011.

[17] С. Яковиц, П. Лекуйер и Ф. Васкес-Абад, «Глобальная стохастическая оптимизация

с наборами точек с низкой дисперсией»,

Operations Research, Vol. 48, No. 6, 2000, pp. 939-950.

http://dx.doi.org/10.1287/opre.48.6.939.12393

[18] WH Press, SA Teukolsky, WT Vetterling и BP

Flannery, «Числовые рецепты на C ++: Искусство науки -

».

специальных вычислений », Cambridge University Press, Кембридж,

2009.

[19] Дж. Кифер и Дж. Вулфовиц, «Стохастическая оценка максимума

функции регрессии», Анналы тематической статистики Ma-

, Vol.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *