Какой объем воды: Вода на Земле: Сколько её у нас на планете, и какой объём этой воды приходится на питьевую воду?

Содержание

Вода на Земле: Сколько её у нас на планете, и какой объём этой воды приходится на питьевую воду?

Вода на Земле: Сколько её у нас на планете, и какой объём этой воды приходится на питьевую воду?

На Земле имеется примерно 1,3 зетта-литров воды, но лишь 0,12% можно использовать для потребления, промышленности и сельского хозяйства.

Во вселенной Земля выглядит как огромный голубой гигант – более двух третей её поверхности покрыто водой. Но жажду восьми миллиардов человек можно утолить объёмом меньше одного процента от её общего количества. Некоторым приходится ежедневно бороться за один лишь глоток питьевой воды.

Поверхность Земли

Обычно такую воду можно найти в реках, озерах, снеге, во льду и под землёй. Наконец, лишь 1% воды на самом деле доступен жителям этой планеты.

Однако доля питьевой воды падает ещё ниже, насчитывая лишь 0,007% от общего объема воды на нашей планете.

Страны с самыми большими запасами питьевой воды

По данным Продовольственной и сельскохозяйственной организации Объединённых Наций (ЮНФАО) самые большие в мире запасы питьевой воды находятся в следующих 9 странах:

Источник: FAO.org

Оказывается, что первое место занимает пятая по величине страна в мире – Бразилия, с её 8233 кубическими километрами питьевой воды. В основном благодаря реке Амазонке, её водосборной площади и субтропическому климату с обильными осадками.

Река Амазонка в Южной Америке имеет самый большой суммарный поток по сравнению со всеми реками мира.

Однако парадокс заключается в том, что в последние годы обитатели крупнейшего города Бразилии Сан-Пауло страдают от серьёзного дефицита питьевой воды.

В основном, это более бедная часть населения, обитающая на городских окраинах — на холмах, куда редко поступает вода по трубопроводу.

В частности, это происходит из-за плохого устройства канализации, недостаточной муниципальной очистки сточных вод и сухого лета два года подряд.

Озеро Байкал под угрозой

До 1/5 мировых запасов питьевой воды находится в озере Байкал. Оно находится рядом с крупнейшим сибирским городом Иркутском и считается старейшим и самым глубоким озером на Земле.

Озеро Байкал содержит до 1/5 мировых запасов питьевой воды.

Но уже в 2015 г. учёные сделали предупреждение, поскольку уровень озера упал до своего 30-летнего минимума. В настоящее время ему также угрожают планы монгольских инвесторов, намеревающихся построить два водохранилища на реке Селенге, основной реке, питающей это озеро.

Эксперты предупреждают, что это может повлечь такие же последствия, как и перемещение двух основных притоков Аральского моря в 1960-х гг. Советы отвели русла рек Амударья и Сырдарья в пустыню, где они должны были орошать поля риса, арбузов и хлопка. Вот почему Аральское озеро почти высохло за 40 лет.

Размеры Аральского озера сильно сократились, лишившись своих основных двух притоков. Слева – спутниковый снимок озера, сделанный в 1989 г., фотографии справа датированы 2014 г. Источник: Wikimedia.org

Хранение питьевой воды

По информации Всемирной организации здравоохранения (ВОЗ), примерно 8 миллионов людей в мире не имеют доступа к чистой питьевой воде.

Свыше 3,5 миллионов человек умирает каждый год из-за болезней, вызванных потреблением грязной и нефильтрованной воды.

Девочка пьёт загрязнённую воду. Источник: Allaboutwaterfilters.com

Учитывая явление прямо пропорционального роста населения и стагнирующего уровня мировых водных потоков, по расчетам, к 2025 г. до 1,8 млрд. людей будут жить в зонах, лишенных доступа к безопасной питьевой воде.

Кризис питьевой воды в Кейптауне – они столкнулись с кризисом питьевой воды с начала 2018 г. Источник: QZ.com

Кроме того, две трети населения будет жить в областях, где вода станет драгоценным природным ресурсом из-за её непродуманного использования, избыточного роста сельхозпроизводства и ухудшения климата.

Также ввиду таких оценок ещё важнее, чем в прошлом становится планирование, реализация и использование систем очистки сточных вод. Обратитесь к нам и давайте вместе выберем подходящую систему очистки сточных вод для вас.

Поделиться статьей о социальных сетях

ОБЪЕМ ВОДЫ В ТРУБАХ

Главная ТЕХПОДДЕРЖКА ОБЪЕМ ВОДЫ В ТРУБАХ

 

 

Внутренний диаметр трубы, ммВнутренний объем 1м погонного трубы, литровВнутренний объем 10 м погонных трубы, литров
40,01260,1257
50,01960,1963
60,02830,2827
70,03850,3848
80,05030,5027
90,06360,6362
100,07850,7854
110,09500,9503
120,11311,1310
130,13271,3273
140,15391,5394
150,17671,7671
160,20112,0106
170,22702,2698
180,25452,5447
190,2835
2,8353
200,31423,1416
210,34643,4636
220,38013,8013
230,41554,1548
240,45244,5239
260,53095,3093
280,61586,1575
300,70697,0686
320,80428,0425
34
0,90799,0792
361,017910,1788
381,134111,3411
401,256612,5664
421,385413,8544
441,520515,2053
461,661916,6190
481,809618,0956
501,963519,6350
522,1237
21,2372
542,290222,9022
562,463024,6301
582,642126,4208
602,827428,2743
623,019130,1907
643,217032,1699
663,421234,2119
683,631736,3168
703,848538,4845
72
4,071540,7150
744,300843,0084
764,536545,3646
784,778447,7836
825,281052,8102
845,541855,4177
865,808858,0880
886,082160,8212
906,361763,6173
926,6476
66,4761
946,939869,3978
967,238272,3823
987,543075,4296
1007,854078,5398
1058,659086,5901
1109,503395,0332
11510,3869103,8689
12011,3097113,0973
12512,2718122,7185
13013,2732132,7323
13514,3139143,1388
14015,3938153,9380
14516,5130165,1300
15017,6715176,7146
16020,1062201,0619
17022,6980226,9801
18025,4469254,4690
19028,3529283,5287
20031,4159314,1593
21034,6361346,3606
22038,0133380,1327
23041,5476415,4756
24045,2389452,3893
25049,0874490,8739
26053,0929530,9292
27057,2555572,5553
28061,5752615,7522
29066,0520660,5199
30070,6858706,8583
32080,4248804,2477
34090,7920907,9203
360101,78761017,8760
380113,41151134,1149
400125,66371256,6371
420138,54421385,4424
440152,05311520,5308
460166,19031661,9025
480180,95571809,5574
500196,34951963,4954
520212,37172123,7166
540229,02212290,2210
560246,30092463,0086
580264,20792642,0794
600282,74332827,4334
620301,90713019,0705
640321,69913216,9909
660342,11943421,1944
680363,16813631,6811
700384,84513848,4510
720407,15044071,5041
740430,08404300,8403
760453,64604536,4598
780477,83624778,3624
800502,65485026,5482
820528,10175281,0173
840554,17695541,7694
860580,88055808,8048
880608,21236082,1234
900636,17256361,7251
920664,76106647,6101
940693,97786939,7782
960723,82297238,2295
980754,29947542,9640
1000785,39827853,9816

 

 

Нахождение объема — метод вытеснения воды | Глава 3: Плотность

Пропустить навигацию

  • Скачать
  • Электронная почта
  • Печать
  • Добавить в закладки или поделиться

Тебе это нравится? Не нравится ? Пожалуйста, найдите время, чтобы поделиться с нами своими отзывами. Спасибо!

Урок 3.2

Ключевые понятия

  • Погруженный объект вытесняет объем жидкости, равный объему объекта.
  • Один миллилитр (1 мл) воды имеет объем 1 кубический сантиметр (1 см 3 ).
  • Различные атомы имеют разные размеры и массы.
  • Атомы в периодической таблице расположены в порядке, соответствующем числу протонов в ядре.
  • Хотя атом может быть меньше другого атома, он может иметь большую массу.
  • Масса атомов, их размер и то, как они расположены, определяют плотность вещества.
  • Плотность равна массе объекта, деленной на его объем; Д = м/об.
  • Объекты с одинаковой массой, но разным объемом имеют разную плотность.

Резюме

Учащиеся используют метод вытеснения воды, чтобы найти объем различных стержней, имеющих одинаковую массу. Они рассчитывают плотность каждого стержня и используют характеристическую плотность каждого материала для идентификации всех пяти стержней. Затем учащиеся рассматривают взаимосвязь между массой, размером и расположением атомов, чтобы объяснить, почему разные стержни имеют разную плотность. Учащиеся кратко знакомятся с периодической таблицей.

Цель

Учащиеся смогут объяснить, что материалы имеют характерную плотность из-за различной массы, размера и расположения их атомов. Студенты смогут использовать метод смещения объема, чтобы найти объем объекта.

Оценка

Загрузите лист с заданиями учащегося и раздайте по одному учащемуся, если это указано в задании. Рабочий лист будет служить компонентом «Оценить» каждого плана урока 5-E.

Безопасность

Убедитесь, что вы и ваши ученики носите подходящие защитные очки.

Материалы для каждой группы

  • Набор из 5 различных стержней одинаковой массы
  • Градуированный цилиндр, 100 мл
  • Вода в стакане
  • Калькулятор

Примечания к материалам:

Для этого урока вам понадобится набор из пяти цельных стержней одинаковой массы, диаметра, но разного объема. Каждый стержень изготовлен из разного материала. Существует несколько версий этих удилищ от разных поставщиков. В этом упражнении используется комплект Equal Mass от Flinn Scientific (номер продукта AP4636), но его можно адаптировать к любому набору удилищ равной массы. Поскольку в наборе Equal Mass всего пять образцов, вам может понадобиться два набора, чтобы каждая группа могла работать с образцом.

Эта таблица поможет вам идентифицировать каждый стержень. Не сообщайте эту информацию учащимся. Позже в этом уроке они обнаружат идентичность каждого стержня и обратную зависимость между плотностью и длиной каждого стержня.

Таблица 1. Физические свойства неизвестных твердых цилиндров.
Образец Материал Приблизительная плотность (г/см 3 ) Относительная длина
Самый маленький металл Латунь 7,5 самый короткий
Блестящий серый металл Алюминий 3,0
Темно-серый ПВХ 1,4
Высокий не совсем белый Нейлон 1. 1
Самый высокий белый Полиэтилен 0,94 самый длинный
  1. Покажите учащимся пять стержней одинаковой массы, но разного объема.

    Покажите учащимся пять стержней и объясните, что все они имеют одинаковую массу. Затем поднимите самые длинные, средние и самые короткие стержни и напомните учащимся, что они имеют одинаковую массу.

    Попросите учащихся сделать прогноз:

    • Какой стержень самый плотный? Наименее плотный? Между?

    Учащиеся могут предположить, что, поскольку масса каждого стержня одинакова, объем каждого стержня должен иметь какое-то отношение к его плотности. Некоторые могут дойти до того, что скажут, что стержень с наименьшим объемом должен иметь наибольшую плотность, потому что одна и та же масса упакована в наименьший объем. Или что стержень с наибольшим объемом должен иметь наименьшую плотность, потому что одна и та же масса распределена по наибольшему объему.

    Скажите учащимся, что, как и в случае с кубиками в предыдущем упражнении, им необходимо знать объем и массу каждого из образцов. Они также рассчитывают плотность каждого образца и используют это значение, чтобы выяснить, из какого материала сделан каждый стержень.

  2. Покажите анимацию и продемонстрируйте, как измерить объем с помощью метода вытеснения воды.

    Спроектируйте анимацию Water Displacement.

    Воспроизведите анимацию, демонстрируя метод вытеснения воды с использованием чашки с водой, мерного цилиндра и стержня, как учащиеся будут делать в этом упражнении. Используйте темно-серый пластиковый образец, чтобы учащиеся могли его лучше видеть.

    Том

    1. Продемонстрируйте, что будут делать учащиеся, наливая воду из чашки в градуированный цилиндр объемом 100 мл до уровня, достаточного для покрытия образца. Это «начальный уровень воды».
    2. Скажите учащимся, что поверхность воды в трубке может быть не совсем плоской. Вместо этого поверхность может иметь неглубокую U-образную форму, называемую мениском. При измерении читайте линию только в нижней части мениска.

    3. Наклоните градуированный цилиндр и медленно опустите образец в воду. Держите мерный цилиндр вертикально. Зафиксируйте уровень воды. Укажите, что это «последний уровень воды».

    4. Скажите учащимся, что вы хотите узнать, насколько изменился уровень воды. Вычтите начальный уровень воды из конечного уровня воды, чтобы найти объем стержня.
    5. Объем пробы = конечный уровень воды – начальный уровень воды.

    6. Учащиеся могут быть сбиты с толку тем, что единицей измерения объема в градуированном цилиндре являются миллилитры (мл), тогда как на предыдущем уроке учащиеся вычисляли объем в кубических сантиметрах (см 3 ). Объясните учащимся, что 1 мл равен 1 см 3 . Нажмите на овальную кнопку на первом экране анимации с пометкой «1 мл = 1 см 3 ».

    Спросите студентов:

    Когда вы помещаете образец в воду, почему уровень воды поднимается?
    Объем, который занимает стержень, толкает или вытесняет воду. Единственное место, куда может уйти вода, — это вверх. Количество или объем вытесненной воды равен объему пробы.
    Соответствует ли объем пробы конечному уровню воды?
    Нет. Учащиеся должны понимать, что объем стержня не равен уровню воды в мерном цилиндре. Вместо этого объем стержня равен количеству воды, которое поднялось в градуированном цилиндре (объем вытеснения). Чтобы найти количество вытесненной воды, учащиеся должны вычесть начальный уровень воды (60 мл) из конечного уровня воды.
    Какие единицы следует использовать при записи объема пробы?
    Поскольку они будут использовать объем для расчета плотности, учащиеся должны записать объем образца в см 3 .
    Масса
    Группам учащихся не нужно измерять массу стержней. Масса каждого стержня одинакова, 15 грамм, и указана в таблице на листе с заданиями. Им нужно будет измерить объем каждого из пяти различных стержней и рассчитать их плотность. Студенты будут использовать свои значения плотности, чтобы идентифицировать каждый стержень.
    Плотность
    Продемонстрируйте, как рассчитать плотность (D = m/v) путем деления массы на объем. Укажите, что ответ будет в граммах на кубический сантиметр (г/см 3 ).

    Дайте по одному рабочему листу каждому учащемуся.

    Учащиеся записывают свои наблюдения и отвечают на вопросы о задании в листе задания. Разделы «Объясните это с помощью атомов и молекул» и «Возьмите на вооружение» Дальнейшие разделы рабочего листа будут выполняться в классе, в группах или индивидуально, в зависимости от ваших инструкций. Посмотрите на версию листа с заданиями для учителя, чтобы найти вопросы и ответы.

    Перед началом задания дайте учащимся время ответить на вопросы 1–5 в листе с заданием.

  3. Предложите учащимся вычислить плотность пяти различных стержней и использовать характеристическое свойство плотности, чтобы правильно их идентифицировать.

    Примечание. Плотность трех пластиков одинакова, поэтому учащиеся должны быть очень осторожны при измерении их объема методом вытеснения водой. Также трудно измерить объем самого маленького стержня. Дайте учащимся подсказку, что он составляет от 1,5 до 2,0 мл.

    Вопрос для расследования

    Можете ли вы использовать плотность, чтобы идентифицировать все пять стержней?

    Материалы для каждой группы

    • Набор из пяти различных стержней одинаковой массы
    • Градуированный цилиндр, 100 мл
    • Вода в стакане
    • Калькулятор

    Подготовка учителя

    • Несмываемым маркером отметьте пять стержней буквами A, B, C, D и E. Отметьте, какая буква соответствует какому образцу, не сообщая об этом учащимся. Если вы используете два или более набора стержней, обязательно пометьте каждый образец из одного и того же материала одной и той же буквой.
    • После того, как группа найдет объем образца, они должны передать этот образец другой группе, пока все группы не найдут объем всех пяти стержней.
    • Для самого длинного образца, который плавает, учащиеся могут использовать карандаш, чтобы аккуратно протолкнуть образец прямо под поверхность воды, чтобы измерить его полный объем.

    Процедура

    1. Том
      1. Налейте достаточное количество воды из чашки в градуированный цилиндр, чтобы достичь высоты, достаточной для покрытия образца. Прочитайте и запишите объем.
      2. Слегка наклоните градуированный цилиндр и осторожно поместите образец в воду.
      3. Поставьте градуированный цилиндр вертикально на стол и посмотрите на уровень воды. Если образец всплывает, используйте карандаш, чтобы осторожно протолкнуть верхнюю часть образца прямо под поверхность воды. Запишите количество миллилитров для этого конечного уровня воды.
      4. Найдите количество вытесненной воды, вычитая начальный уровень воды из конечного уровня. Этот объем равен объему цилиндра в см 3 .

      5. Запишите этот объем в диаграмму на рабочем листе.
      6. Удалите образец, вылив воду обратно в чашку и вынув образец из градуированного цилиндра.
    2. Плотность
      1. Рассчитайте плотность по формуле D = m/v. Запишите плотность в (г/см 3 ).
      2. Обменивайтесь образцами с другими группами, пока не измерите объем и не рассчитаете плотность всех пяти образцов.
        Таблица 2. Объем, масса и плотность для неизвестных A–H
        Образец Начальный уровень воды (мл) Конечный уровень воды (мл) Объем стержней (см 3 ) Масса (г) Плотность (г/см 3 )
        А 15,0
        Б 15,0
        С 15,0
        Д 15,0
        Е 15,0
    3. Идентифицировать образцы
      1. Сравните рассчитанные значения плотности со значениями в таблице. Затем напишите буквенное обозначение каждого образца в таблице.

    Примечание. Плотность, рассчитанная учащимися, может не совпадать с плотностью, указанной в таблице. Пока учащиеся работают, проверяйте их значения объема, чтобы убедиться, что они используют разницу между конечным и начальным уровнями воды, а не только конечный уровень.

    Таблица 3. Объем, масса и плотность для неизвестных A–H
    Материал Приблизительная плотность (г/см 3 ) Образец (буквы А–Е)
    Латунь 8,8
    Алюминий 2,7
    ПВХ 1,4
    Нейлон 1,2
    Полиэтилен 0,94
  4. Обсудите, подтверждают ли значения плотности учащихся их прогнозы с начала урока.

    Обсудите значения студенческой плотности для каждого из образцов. Обратите внимание, что разные группы могут иметь разные значения плотности, но большинство значений близки к значениям на диаграмме.

    Спросите студентов:

    Каждая группа измерила объем одних и тех же образцов. По каким причинам группы могут иметь разные значения плотности?
    Учащиеся должны понимать, что небольшие неточности в измерении объема могут объяснить различия в значениях плотности. Другая причина в том, что градуированный цилиндр сам по себе не идеален. Поэтому всегда есть некоторая неопределенность в измерении.

    Напомните учащимся, что в начале урока они сделали прогноз относительно плотности малой, средней и длинной выборки. Студенты должны были предсказать, что самый длинный цилиндр имеет самую низкую плотность, самый короткий цилиндр имеет самую высокую плотность, а середина находится где-то посередине.

    Спросите студентов:

    Верен ли был ваш прогноз относительно плотности этих трех образцов?
    Предложите учащимся посмотреть на свою таблицу со значениями массы, объема и плотности для каждого цилиндра. Предложите им найти взаимосвязь между объемом и плотностью. Учащиеся должны понимать, что самый короткий цилиндр имеет наибольшую плотность, а самый длинный цилиндр имеет наименьшую плотность.
    Справедливо ли сказать, что если два образца имеют одинаковую массу, то образец с большим объемом будет иметь меньшую плотность?
    Да.
    Почему?
    Поскольку образцы имеют одинаковую массу, их объемы дадут вам представление об их плотности в соответствии с уравнением D = m/v. Если в знаменателе стоит большее число объема, плотность будет ниже.
    Справедливо ли сказать, что тот, у которого меньший объем, будет иметь более высокую плотность?
    Да.
    Почему?
    Если в знаменателе стоит меньшее число объема, плотность будет выше.
  5. Предложите учащимся посмотреть на размер и массу атомов, чтобы объяснить, почему каждый образец имеет разную плотность.

    Спроецируйте изображение Размер и масса атома.

    Сообщите учащимся, что эта таблица основана на периодической таблице элементов, но включает только первые 20 элементов из примерно 100. Показано представление атома для каждого элемента. Для каждого элемента атомный номер находится выше атома, а атомная масса ниже. Эта диаграмма особенная, потому что она показывает как размер, так и массу атомов по сравнению с другими атомами.

    Примечание. Студенты могут захотеть узнать больше о том, почему атомы имеют разные атомные номера и разные размеры. Эти вопросы будут рассмотрены в следующих главах, но вы можете сказать им, что атомный номер — это число протонов в центре или ядре атома. Каждый элемент имеет определенное количество протонов в атомах, поэтому каждый элемент имеет свой атомный номер. Разницу в размерах объяснить немного сложнее. Атомы имеют положительно заряженные протоны в ядре и отрицательно заряженные электроны, движущиеся вокруг ядра. На самом деле именно пространство, занимаемое электронами, составляет большую часть размера атома. По мере увеличения числа протонов в атоме увеличивается как его масса, так и сила его положительного заряда. Этот дополнительный положительный заряд притягивает электроны ближе к ядру, делая атом меньше. Атомы снова становятся больше в следующем ряду, потому что больше электронов добавляется в пространство (энергетический уровень) дальше от ядра.

    Сообщите учащимся, что они узнают больше о периодической таблице и атомах в главе 4. Пока что все, на чем учащиеся должны сосредоточиться, — это размер и масса атомов.

    Скажите учащимся, что разницу в плотности между маленькими, средними и большими образцами, которые они измерили, можно объяснить на основе атомов и молекул, из которых они сделаны.

    Спроецируйте изображение Полиэтилен (самый длинный стержень).

    Полиэтилен состоит из длинных молекул, состоящих только из атомов углерода и водорода. В диаграмме размера и массы атома масса углерода довольно мала, а масса водорода — самая маленькая из всех атомов. Эти низкие массы помогают объяснить, почему полиэтилен имеет низкую плотность. Другая причина заключается в том, что эти длинные тонкие молекулы неплотно упакованы вместе.

    Спроецируйте изображение Поливинилхлорид (стержень средней длины).

    Поливинилхлорид состоит из атомов углерода, водорода и хлора. Если вы сравните поливинилхлорид с полиэтиленом, вы заметите, что в некоторых местах полиэтилена есть атомы хлора, где есть атомы водорода. На диаграмме хлор имеет большую массу для своего размера. Это помогает сделать поливинилхлорид более плотным, чем полиэтилен. Плотность различных пластиков обычно обусловлена ​​различными атомами, которые могут быть связаны с углеродно-водородными цепями. Если это тяжелые атомы для своего размера, пластик имеет тенденцию быть более плотным; если они легкие для своего размера, пластик имеет тенденцию быть менее плотным.

    Спроецируйте изображение Латунь (самый короткий стержень).

    Латунь представляет собой комбинацию атомов меди и цинка. Медь и цинк появляются в периодической таблице позже, поэтому они не показаны в таблице, но оба они тяжелые для своего размера. Атомы также очень плотно упакованы. По этим причинам латунь более плотная, чем полиэтилен или поливинилхлорид.

  6. Обсудите плотность кальция по сравнению с плотностью серы.

    Предложите учащимся обратиться к изображению кальция и серы на листах с заданиями. Объясните, что атом кальция больше и тяжелее атома серы. Но кусок твердой серы более плотный, чем твердый кусок кальция. Плотность серы около 2 г/см 3 и плотность кальция около 1,5 г/см 3 .

    Спросите студентов:

    Основываясь на том, что вы знаете о размере, массе и расположении атомов, объясните, почему образец серы более плотный, чем образец кальция.
    Несмотря на то, что атом серы имеет меньшую массу, чем атом кальция, гораздо больше атомов серы может быть упаковано вместе в определенном пространстве. Это придает сере больше массы на единицу объема, чем кальцию, что делает ее более плотной.

Объем жидкостей

 

 

 

 

Эксперимент

2

 

 

Объем жидкостей

 

 

 

 

Обзор

 

В лаборатории используется несколько устройств для дозирования отмеренных объемов жидких веществ и растворов. В этом эксперименте вы исследовали мерные цилиндры на 10 и 50 мл, мерную пипетку на 25 мл и мерную бюретку на 50 мл. Вы выдали номинальные объемы воды из каждого из этих устройств, а затем проверили правильность выданных объемов, определив массу выданной воды. Массу можно определить с гораздо большей точностью, чем объем банки, и ее можно использовать для проверки правильности и прецизионности выдаваемого объема.

     

 

Расчеты

 

 

Большинство расчетов в этом эксперименте представляют собой простые вычитания. Например, если вы взвешиваете пустой стакан, а затем взвешиваете тот же стакан с пробой воды в нем, масса воды в стакане равна разнице между двумя массами.

Плотность воды используется для сравнения кажущегося объема воды, выдаваемого из мерного цилиндра, пипетки или бюретки, с истинным объемом, основанным на массе воды. Плотность воды при различных температурах указана в таблице А-3 на стр. 276.

плотность = масса/объем

масса = объем X плотность

объем = масса/плотность

Например, предположим, что вы налили пипеткой образец воды объемом 25 мл, а затем взвесили воду и обнаружили, что ее масса равна 24,9.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *