Как работает ветровая электростанция: типы, принципы работы, преимущества и недостатки

Основы ветроэнергетики. Как работает ветрогенератор?

Энергия ветра является одной из форм солнечной энергии. Ветры появляются из-за неравномерного прогрева атмосферы солнцем, неровностей земной поверхности и вращения Земли. Направление потоков ветра изменяется в зависимости от рельефа земной поверхности, наличия водоемов и растительного покрова.
Ветогенераторы используют это движение воздуха и преобразуют его в механическую энергию, а затем в электричество. В этой статье будет кратко затронут вопрос о том, как работает ветрогенератор, а также вопросы о достоинствах и недостатках ветроэнергетики.

Люди начали использовать энергию ветра несколько столетий назад, когда появились ветряные мельницы, которые качали воду, мололи зерно или выполняли другие функции. Сегодняшний ветрогенератор является весьма продвинутой версией ветряной мельницы. Большинство ветровых турбин имеют три лопасти, закрепленные на вершине стальной башни — мачты. Вестрогенератор высотой в 25 м может снабжать электричеством жилой дом, ветрогенератор высотой в 80 м может обеспечивать электричеством сотни домов.

Содержание

Как работает ветрогенератор?

При прохождении ветра через турбину, лопасти за счет кинетической энергии ветра начинают вращаться. Это приводит во вращение внутренний вал, который соединен с редуктором, увеличивающим скорость вращения и подключенным к генератору, который осуществляет выработку электроэнергии. Чаще всего ветряные турбины состоят из стальной полой мачты, высота которой может достигать 100 м, ротора турбины, лопастей, оси генератора, редуктора, генератора, инвертора и аккумулятора. Часто ветрогенераторы оснащаются оборудованием оценки и автоматического поворота в направлении ветра, а также могут изменять угол или «шаг» лопастей для оптимизации использования энергии.

Типы ветрогенераторов

Современные ветровые турбины делятся на две основные группы;

  • с горизонтальной осью вращения, как в традиционных ветряных мельницах, используемых для откачки воды;
  • с вертикальной осью вращения, это роторные и лопастные конструкции Дарье.

Большинство современных ветрогенераторов имеют горизонтальную ось вращения турбины.

Как работает ветрогенератор. Из чего состоит ветрогенератор

Обычно они состоят из:

  • мачты полой внутри, сделанной из металла или бетона;
  • гондолы, которая крепится наверху мачты и в которой находятся валы, редуктор, генератор, котроллер и тормоз;
  • ротора, в который входят лопасти и ступица;
  • низкоскоростного вала, который приводится в движение ротором;
  • высокоскоростного вала, который подсоединен к генератору;
  • редуктора, которые механически соединяет низкоскоростной и высокоскоростной вал, увеличивая скорость вращения последнего;
  • генератора, который вырабатывает электроэнергию;
  • контроллера, который управляет работой ветрогенератора;
  • флюгера, который определяет направление ветра и ориентирует турбину в необходимом направлении;
  • анемометра, который определяет скорость ветра и передает данные контроллеру;
  • тормоза, для остановки ротора в критических ситуациях.

Преимущества и недостатки ветроэнергетики

Возобновляемый источник энергии

Энергия ветра является общедоступным, возобновляемым ресурсом, поэтому независимо от того, сколько ее используется сегодня, в будущем она по-прежнему будет доступна. Энергия ветра является также источником относительно чистого электричества — ветряные электростанции не выделяют загрязняющих воздух веществ или парниковых газов.

Стоимость

Даже при том, что стоимость энергии ветра резко сократилась за последние 10 лет, ее использование требует более значительных первоначальных инвестиций, чем приобретение генераторов, работающих на ископаемом топливе. Около 80% стоимости составляет техника, с подготовкой площадки и установкой. Тем не менее, если сравнивать использование ветрогенератора и установки, работающей на ископаемом топливе, в течение всего срока эксплуатации, то ветроэнергетическая установка становится гораздо более конкурентоспособной, поскольку для нее не требуется приобретение топлива, а эксплуатационные расходы сведены к минимуму.

Воздействие на окружающую среду

Хотя ветряные электростанции влияют на окружающую среду не так значительно, как электростанции, работающие на ископаемом топливе, они все же создают некоторые проблемы. Их лопасти создают шум, визуально они могут портить ландшафт, о них разбиваются птицы и летучие мыши. Большинство из этих проблем решаются в той или иной мере за счет различных технологий и разумного размещения электростанций.

Другие проблемы, связанные с ветрогенераторами

Основная проблема, связанная с использованием энергии ветра, заключается в том, что ветер дует не всегда, когда требуется электричество, в некоторых местностях ветра дуют очень слабо, так что там не выгодно использовать ветрогенераторы. Ветер нельзя хранить, как бензин (хотя электроэнергию, полученную за счет ветра, можно хранить при помощи аккумуляторных батарей). Местности с сильными ветрами часто бывают не очень удобны для заселения. Наконец, ветроэнергетические установки могут создавать проблемы для других способов эксплуатации земли. Ветряные турбины могут мешать выпасу скота или занимать место под посевы.

Автор: Анастасия Литвинова

(Просмотрели13 673 | Посмотрели сегодня 1 )

как устроены ветровые электростанции, рентабельность и особенности конструкции

Ветроэнергетика как отрасль может базироваться только на использовании крупных и высокопроизводительных ветровых турбин. Установки малой мощности, обеспечивающие лишь отдельные дома или группы потребителей, интересны только как автономные источники энергии. Крупные ветротурбины успешно используются в странах Запада, США, Китае. Для использования таких устройств требуется достаточно сильный и стабильный ветер, что свойственно не всем регионам.

Как устроены мощные промышленные ветрогенераторы?

Существующие ныне мощные ветрогенераторы имеют практически одинаковую конструкцию. За основу взят горизонтальный ротор с крыльчаткой. Большие размеры лопастей создают высокую площадь сопротивления потоку ветра, поэтому обычно устанавливается по три лопасти. Масса таких установок очень велика — одна из величайших установок Enercon E-126 весит 6000 т. При таких параметрах требуется достаточно сильный и ровный ветер.

Для старта вращения используются специальные электродвигатели. Большинство моделей не имеет устройства наведения, обходятся установкой на преобладающем направлении потока. Обычное место использования — степные или пустынные регионы, прибрежные или шельфовые районы с постоянными и ровными ветрами.

Конструкция мощного ветрогенератора состоит из следующих элементов:

  • опорная башня. У образцов меньших размеров это мачта. Башня имеет коническую форму, способствующую большей устойчивости и равномерному распределению нагрузок. Изготавливается на месте путем последовательной заливки бетоном соответствующей опалубки. В основании имеется мощная бетонная площадка, являющая цоколем фундамента, обеспечивающего неподвижность и устойчивость
  • гондола. Это камера, внутри которой расположены генераторный отсек, устройства передачи вращения. К ней же присоединяется ротор, конструктивно являющийся продолжением гондолы и образуюший вместе с ней обтекаемую форму. Внешняя часть ротора состоит из хаба и лопастей. Хаб — это центральный обтекатель, установленный на валу генератора и служащий для присоединения лопастей. Гондола имеет возможность вращения вокруг башни для установки на ветер, для чего используется асинхронный электродвигатель и зубчатая передача, опоясывающая всю верхнюю часть башни. Возможность вращения имеется не у всех моделей, для шельфовых ветряков, работающих на потоках двух противоположных направлений, эта функция необязательна.
  • генератор турбины представляет собой устройство кольцевого типа. Ротор турбины конструктивно объединен с ротором генератора, это снижает потери и уменьшает материалоемкость. Для подобных конструкций принципиально важно в максимальной степени исключить узлы передачи вращения, взамен применяя единые цельные элементы.

Лопасти изготавливаются из специального композитного волокна с включениями стали. В зависимости от размеров они изготавливаются целиком или набираются из отдельных частей. Устройство лопастей предусматривает возможность изменения профиля или угла поворота, позволяя регулировать аэродинамику в соответствии с режимом ветрового потока.

В зависимости от размеров, фирмы-изготовителя и назначения ветряка, могут иметься какие-либо изменения в конструкции, дополнения или иные особенности, присущие только данной модели.

Размеры ветряка

Промышленные ветрогенераторы большой мощности обладают впечатляющими габаритами. Так, уже упоминавшийся Enercon E-126 имеет полную высоту 198 м при размахе лопастей 128 м. Площадь, которую ометают такие лопасти, составляет 12668 м

2.

Размеры других ветряков соответствуют вырабатываемой мощности. Существуют более крупные или мелкие модели, но все они велики и обладают большим весом. При этом, поверхность земли занимает только основание мачты, вся остальная площадь пригодна для использования под сельское хозяйство.

Примечательно, что мощные ветряки нерентабельны по отдельности. Они используются чаще всего в составе больших ветроэлектростанций, занимающих достаточно большие площади. В составе комплексов насчитываются десятки и даже сотни отдельных установок, объединенных в единую систему и выдающие суммарную мощность в несколько мВт. Они создаются в местах с оптимальными ветровыми условиями, способными обеспечить равномерную нагрузку и стабильную производительность оборудования.

Большие размеры означают высокие цены на оборудование. Так, стоимость турбины Enercon E-126 составляет 11 млн евро. Можно примерно подсчитать стоимость целой ветроэлектростанции, эксплуатационные расходы и затраты на доставку и монтаж таких гигантов. Соответственно, себестоимость энергии достаточно высока, а срок службы относительно низок — около 20 лет.

Мощные ветрогенераторы: сравнительная характеристика

Параметры мощных ветряков напрямую зависят от их мощности. Тип конструкции у всех моделей практически одинаков, так как аэродинамика лопастей, оптимальным образом подходящая для установок высокой мощности, должна соответствовать именно такой конфигурации. Поэтому сравнивать можно только пропорции крыльчатки того или иного устройства. Гораздо проще рассматривать мощность установок, поскольку она важнее для любых расчетов и может сказать гораздо больше для потенциального пользователя.

Флагманами в этом направлении являются известные фирмы Siemens, Enercon, Vestas и многие другие. Конкуренция между ними весьма жесткая, так как спрос ограничен, ошибки недопустимы. Отсюда высочайшее качество оборудования, отлаженный механизм работы всех узлов и агрегатов. Примечательно, что спрос на крупные устройства намного ниже, чем на менее производительные. Цена оборудования не позволяет широко распространять его повсеместно, выбор делается в сторону меньших расходов.

Устройство промышленных ветрогенераторов большой мощности: размеры ветряка, сравнительные характеристики и промышленное применениеУстройство промышленных ветрогенераторов большой мощности: размеры ветряка, сравнительные характеристики и промышленное применение

Промышленные ветровые электростанции

Функционирование нескольких сотен крупных ветряков способно создавать большие мощности. Создание ветровых электростанций позволило решить проблемы с электроснабжением регионов, не имеющих возможности строительства ГЭС или АЭС.

Примечательно, что запрет на строительство АЭС в ряде регионов мира и отсутствие других возможностей явились причинами возникновения множества ВЭС, хотя эксплуатационные и экономические параметры ветряков уступают более традиционным вариантам выработки энергии. Кроме того, ветроэнергетика признана экологически чистым направлением, что также сыграло немалую роль в развитии отрасли.

В последнее время наблюдаются две параллельные тенденции:

  • рост числа мощных установок, объединенных в большие станции
  • возрастание интереса к частным источникам, дающим возможность автономного существования без использования сетевых ресурсов

Возникает конкурентная ситуация, когда большие вложения в огромные комплексы перестают покрываться доходами от них, а небольшие установки становятся все более выгодными и удобными. Будущее покажет, какая система станет наиболее распространенной и эффективной.

Рекомендуемые товары

Как это работает. Крупнейшая ветряная электростанция в мире.

London Array является, несомненно, наиболее широко известной в Великобритании ветряной электростанцией в открытом море. Ее масштабы и близкое расположение к Большому Лондону (регион на юго-востоке Англии) вызывает большой интерес у политиков и прессы.

Проект на 1000 МВт является на сегодня крупнейшим в мире, ветряную электростанцию планируется построить в два этапа. London Array, как планируется, обеспечит энергией 750 000 домов — около четверти Большого Лондона — и сократит вредные выбросы CO2 на 1,4 млн. тонн в год. Таким образом, это будет благотворно сказываться на окружающей среде, а также поможет обеспечить надежное электроснабжение юго-восточной Англии.

Вот какие были разговоры: 

По поводу же объема инвестиций концерны предпочитают пока помалкивать. Эксперты отрасли сходятся на том, что он составит примерно 2,5 млрд фунтов стерлингов (2,8 млрд евро). Подготовка проекта длится много лет, причем в последнее время представители E.ON выражали сомнения в его целесообразности, сетуя на ухудшение рамочных условий: в первую очередь резкое падение цен на нефть и газ сводило на нет преимущества связанных с использованием ветровой энергии проектов. Одновременно отмечался и значительный рост стоимости турбин.

Однако потом  британское правительство просигнализировало о своей готовности усилить поддержку офшорных парков ветряков, которым будет теперь предоставляться больше, чем прежде, т.н. зеленых сертификатов (Renewable Obligation Certificates, ROC). Начиная с 2002 года британские производители электроэнергии используют эти ROC для подтверждения того, что из возобновляемых источников энергии они добывают положенное количество электроэнергии.

Нынче граница этой нормы находится в районе почти 10%. До сих пор действовало правило, согласно которому за каждый выработанный мегаватт экологически чистой электроэнергии производителю полагался один сертификат ROC.

В целях поощрения строительства дорогостоящих офшорных ветряков правительство Великобритании уже приняло решение стимулировать производство каждого экологически чистого мегаватта электроэнергии выдачей 1,5 ROC. В бюджете же на 2009—2010 годы кабинет кабинет пошел на  большую щедрость, пообещав рассмотреть вопрос о возможности увеличения в период с 23 апреля 2009 года по 31 марта 2010 года этого норматива до 2 ROC за каждый мегаватт, а в рамках бюджета следующего года он будет установлен в размере 1,75 ROC.

В планах правительства Великобритании развитию возобновляемых энергий отводится значительное место, так что в осуществлении проектов типа London Array оно очень заинтересовано.

В настоящее время в разных странах Европы E.ON делает миллиардные инвестиции для развития производства электроэнергии на базе альтернативных источников энергии.

 

 

Строительство новой береговой подстанции в Клив Хилл началось в июле 2009 года, а в марте 2011 года проведены первые морские строительные работы, когда были установлены первые 177 платформ для проекта. Первая фаза строительства должна быть полностью завершена была к концу 2012 года.  И вот недавно , после четырёх лет строительства одна из крупнейших ветряных ферм на планете — London Array — официально введена в эксплуатацию. Ветроэлектростанция, состоящая из 175 огромных ветряных турбин Siemens, расположилась на протяжении 20 км в прибрежной полосе графств Кент и Эссекс. Там же расположены две подстанции, еще одна находится на берегу.

 

Как все начиналось?

Проект London Array зародился в 2001 году, когда комплексное исследование в устье Темзы подтвердило возможность размещения на данной территории ветряной электростанции. Два года спустя Crown Estate предоставил London Array Ltd в аренду на 50 лет площадь под строительство и прокладку кабеля к берегу.

План морской ветряной электростанции мощностью 1 ГВт был утвержден в 2006 году, а разрешение на береговые работы было получено в 2007 году. Первый этап работы начался в июле 2009 года, когда началось строительство береговой подстанции в Клив Хилл в графстве Кент.

 

 

 

Первая фаза

Цифры и факты:

- Площадь под проект 100км2
- 175 ветровых турбин
- Две морские подстанции
- Почти 450 км морского кабеля
- Одна береговая подстанция
- 630мВт электроэнергии
- Мощности хватит для обеспечения примерно 480 000 домов в год — две трети домов в графстве Кент
- Выброс CO2 уменьшится на 925 000 тонн в год.

В конце 2012 года планировалось завершить первую фазу строительства, проект будет передан команде по эксплуатационному и техническому обслуживанию в 2013 году.

London Array будет генерировать большое количество электроэнергии, и подстанция нужна для того, чтобы обеспечить напряжение в 400 кВ, принятое в национальной высоковольтной сети электропередачи.

 

 

Проект

Проект подстанции был избран по результатам конкурса летом 2006 года. Победивший проект разработан всемирно известной архитектурной фирмой RMJM (www.rmjm.com). Идея проекта заключалась в том, чтобы расположить подстанцию под прямым углом к дороге Saxon Shore Way. В результате, главной архитектурной особенностью подстанции является Северная Стена, которая достигает 10 м высоты и состоит из ряда бетонных панелей и стабилизаторов.

 

Расположение

Подстанция Клив Хилл находится вблизи деревни Грейвени, что составляет около 1 км вглубь от Северного побережья Кента. Строится подстанция рядом с 400 кВ воздушной линией электропередачи Кентербери-Кемсли на северной стороне Клив Хилл, рядом с существующими зданиями на Клив Фарм. Подстанция строится таким образом, чтобы вписаться в склон холма.

 

 

 

Строительство в 20 км от берега

Это является серьезной проблемой для построения любого морского ветропарка и London Array не является исключением. Расстояние от берега, сильные ветра и непредсказуемые морские условия делают эту территорию трудным местом для строительства.

К счастью, будет использоваться новейшая техника и оборудование, которое поможет завершить работу настолько безопасно и быстро, насколько это возможно. Работы в море начались в марте 2011 года, когда был установлен первый из 177 фундаментов.

 

Что же строиться?

Ключевые компоненты морской ветряной электростанции:

- Фундаменты для закрепления ветряных турбин в море
- Ветряные турбины
- Множество кабелей для совместного подключения группы турбин и соединения с морскими подстанциями
- Морские подстанции для повышения напряжения перед отправкой электроэнергии на берег
- Укладка кабеля по дну моря для соединения морских и береговых подстанций.

 

 

 

Управление морским строительством

Морские строительные работы в настоящее время управляются из временной базы строительства в порту Ramsgate. Строительство базы началось летом 2010 года, а строительная бригада переехала в здание в сентябре 2010 года. До 45 сотрудников будет работать во время морского строительства. Ожидается, что база останется до 2013 года, когда первый этап строительства будет завершен, и она может стать основой для второго этапа строительства в ближайшем будущем.

 

Кто же строит London Array?

London Array Limited – консорциум трех ведущих в мире компаний по использованию источников энергии, которые объединяют свой опыт и знания для разработки и строительства самой большой в мире морской ветряной электростанции.

 

Dong Energy — 50% акций проекта

DONG Energy (Дания) – ведущая европейская энергетическая группа. Она обеспечивает, производит, распределяет и торгует энергией и связанными с ней товарами по всей Северной Европе. DONG Energy является лидером рынка морских ветряных технологий, построившим около половины морских ветряных электростанций, работающих сегодня. DONG Energy активно участвует в производстве и пропаганде использования возобновляемых источников энергии в Великобритании. Компания участвует в строительстве трех новых крупных британских морских ветряных электростанций и управляет в настоящее время морскими ветряными электростанциями Gunfleet Sands (172 МВт), Burbo Bank (90 МВт) и Barrows (90 МВт).

 

E.ON — 30% акций проекта

E.ON (Германия) — одна из самых мощных в мире газовых компаний. Она — ведущий поставщик в Великобритании и обеспечивает энергией около 8 миллионов клиентов. E.ON участвует в строительстве и эксплуатации возобновляемых источников энергии с 1991 года, когда они вложили капитал в первую береговую ветряную электростанцию. Теперь они владеют и управляют 22 ветряными электростанциями в Великобритании, включая Scroby Sands на 60 МВт, морскую ветряную электростанцию недалеко от берега Грейт-Ярмута, и 60-турбинную ветряную электростанцию Robin Rigg в Solway Firth. Многие другие проекты находятся в стадии разработки.

 

Masdar — 20% акций проекта

Masdar (ОАЭ) компания по стратегическому развитию и инвестициям в технологии использования возобновляемых источников энергии. Компания выступает в качестве связующего звена между сегодняшней экономикой ископаемого топлива и энергетической экономией будущего – развития нового представления о том, как жить, и работать завтра.

 

 

 

Трансформаторная подстанция CLEVE HILL

Была построена новая береговая трансформаторная подстанция CLEVE HILL, недалеко от деревни Грэвени (Graveney), на северном побережье графства Кент.

 

 

Это было необходимо, так как London Array будет генерировать большое количество электричества, которое необходимо отправлять с моря прямо в национальную высоковольтную сеть с напряжением в 400 кВ.

 

Установка турбин на London Array

 

О турбинах

 

Турбины для первой фазы вырабатывают 3.6 МВт каждая. Они изготовлены компанией Siemens Wind Power и оснащены новым 120 метровым несущим винтом Siemens.Высота оси каждой ветровой турбины составляет 87 метров над уровнем моря.

Турбины имеют по три лопасти и окрашены в серый цвет. Турбины генерируют электричество при скорости ветра в 3 метра на секунду.

Полная мощность достигает от 13 м/с. Из соображений безопасности, турбины прекращают свою работу, если ветер становится сильнее, чем 25 м/с – эквивалент шторма в 9 баллов.

Проект London Array играет ключевую роль в программе правительства Великобритании по выполнению целей по защите окружающей среды и возобновляемой энергии. Они включают в себя:

- снижение выбросов двуокиси углерода на 34% к 2020 году;

- производства 15% всей энергии с помощью возобновляемых источников энергии к 2015 году.

 

 

После завершения проекта, выбросы углекислого газа сократятся на 1,4 млн тонн в год. Первая фаза способна возместить 925 тыс.тонн СО2, которые будут компенсироваться каждый год, помогая решать последствия изменения климата и глобального потепления. London Array будет иметь общую мощность до 1000 МВт и будет генерировать электроэнергию на 750000 домов – что является четвертью всех домохозяйств в Большом Лондоне (регион, объединяющий два графства Большой Лондон и Лондонский Сити), или все дома в Кенте и восточном Сассексе. Мощность первой фазы проекта достаточная для подключения около 480 тыс домов, или две трети всех домов в Кенте.

Установка последней турбины на London Array является кульминационным событием огромного количества усилий и координации всех участвующих в проекте. Только за прошедший год были установлены 84 опоры, 175 ветряных турбин, 178 наборов кабелей и 3 экспортных кабеля. London Array сейчас находится в фазе ввода в эксплуатацию и тестирования оставшихся турбин, прежде чем передать их команде по эксплуатации и техническому обслуживанию в течении 2013 года.

 

 

Бэн Сайкс (Benj Sykes), глава британской компании DONG Energy’s UK Wind business, специализирующейся на ветровой энергетике, сказал: «Установка последней турбины это поворотный пункт для Великобритании и DONG Energy в истории этого передового проекта. London Array вскоре станет крупнейшей работающей морской ветровой электростанцией в мире. Создание морских ветровых электростанций такого же масштаба и крупнее в будущем позволит нам получать преимущества из их размера, что является важным элементом нашей стратегии по снижению стоимости энергии.

Помимо стремления создать крупнейший ветропарк в мире, разработчики London Array также позиционируют свое детище как демонстрационный проект, который показывает механизмы эффективного снижения затрат при создании крупных ветровых электростанций. Конечной целю инвесторов является создание оффшорной ветровой фермы, которая к 2020 году сможет выдавать полезную мощность при цене на уровне около $ 152 за мегаватт-час. Объект принадлежит компаниям Dong Energy, Masdar и EON. Доля Dong Energy в проекте составляет 50%, энергетический гигант E.ON владеет 30% акций, а в собственности компании Masdar из Абу-Даби находятся оставшиеся 20% ценных бумаг.

 

 

 

Рекомендуется к просмотру: 

Как устроена крупнейшая ветряная электростанция в мире
London Array является, несомненно, наиболее широко известной в Великобритании ветряной электростанцией в открытом море. Ее масштабы и близкое расположение к Большому Лондону (регион на юго-востоке Англии) вызывает большой интерес у политиков и прессы.

Проект на 1000 МВт является на сегодня крупнейшим в мире, ветряную электростанцию планируется построить в два этапа. London Array, как планируется, обеспечит энергией 750 000 домов — около четверти Большого Лондона — и сократит вредные выбросы CO2 на 1,4 млн. тонн в год. Таким образом, это будет благотворно сказываться на окружающей среде, а также поможет обеспечить надежное электроснабжение юго-восточной Англии.

Karte von London Array / Map of London Array

Вот какие были разговоры:

По поводу же объема инвестиций концерны предпочитают пока помалкивать. Эксперты отрасли сходятся на том, что он составит примерно 2,5 млрд фунтов стерлингов (2,8 млрд евро). Подготовка проекта длится много лет, причем в последнее время представители E.ON выражали сомнения в его целесообразности, сетуя на ухудшение рамочных условий: в первую очередь резкое падение цен на нефть и газ сводило на нет преимущества связанных с использованием ветровой энергии проектов. Одновременно отмечался и значительный рост стоимости турбин.

London Array - Esbjerg harbor

Однако потом  британское правительство просигнализировало о своей готовности усилить поддержку офшорных парков ветряков, которым будет теперь предоставляться больше, чем прежде, т.н. зеленых сертификатов (Renewable Obligation Certificates, ROC). Начиная с 2002 года британские производители электроэнергии используют эти ROC для подтверждения того, что из возобновляемых источников энергии они добывают положенное количество электроэнергии.

Нынче граница этой нормы находится в районе почти 10%. До сих пор действовало правило, согласно которому за каждый выработанный мегаватт экологически чистой электроэнергии производителю полагался один сертификат ROC.

London Array - Esbjerg harbor

В целях поощрения строительства дорогостоящих офшорных ветряков правительство Великобритании уже приняло решение стимулировать производство каждого экологически чистого мегаватта электроэнергии выдачей 1,5 ROC. В бюджете же на 2009—2010 годы кабинет кабинет пошел на  большую щедрость, пообещав рассмотреть вопрос о возможности увеличения в период с 23 апреля 2009 года по 31 марта 2010 года этого норматива до 2 ROC за каждый мегаватт, а в рамках бюджета следующего года он будет установлен в размере 1,75 ROC.

London Array - Esbjerg harbor

В планах правительства Великобритании развитию возобновляемых энергий отводится значительное место, так что в осуществлении проектов типа London Array оно очень заинтересовано.

В настоящее время в разных странах Европы E.ON делает миллиардные инвестиции для развития производства электроэнергии на базе альтернативных источников энергии.

London Array - Esbjerg harbor

London Array - Esbjerg harbor

Строительство новой береговой подстанции в Клив Хилл началось в июле 2009 года, а в марте 2011 года проведены первые морские строительные работы, когда были установлены первые 177 платформ для проекта. Первая фаза строительства должна быть полностью завершена была к концу 2012 года.  И вот недавно , после четырёх лет строительства одна из крупнейших ветряных ферм на планете — London Array — официально введена в эксплуатацию. Ветроэлектростанция, состоящая из 175 огромных ветряных турбин Siemens, расположилась на протяжении 20 км в прибрежной полосе графств Кент и Эссекс. Там же расположены две подстанции, еще одна находится на берегу.

London Array - Esbjerg harbor

Как все начиналось?

Проект London Array зародился в 2001 году, когда комплексное исследование в устье Темзы подтвердило возможность размещения на данной территории ветряной электростанции. Два года спустя Crown Estate предоставил London Array Ltd в аренду на 50 лет площадь под строительство и прокладку кабеля к берегу.

План морской ветряной электростанции мощностью 1 ГВт был утвержден в 2006 году, а разрешение на береговые работы было получено в 2007 году. Первый этап работы начался в июле 2009 года, когда началось строительство береговой подстанции в Клив Хилл в графстве Кент.

London Array - Esbjerg harbor

Первая фаза

Цифры и факты:

- Площадь под проект 100км2
- 175 ветровых турбин
- Две морские подстанции
- Почти 450 км морского кабеля
- Одна береговая подстанция
- 630мВт электроэнергии
- Мощности хватит для обеспечения примерно 480 000 домов в год — две трети домов в графстве Кент
- Выброс CO2 уменьшится на 925 000 тонн в год.

London Array - Esbjerg harbor

London Array будет генерировать большое количество электроэнергии, и подстанция нужна для того, чтобы обеспечить напряжение в 400 кВ, принятое в национальной высоковольтной сети электропередачи.

London Array - Esbjerg harbor

Проект

Проект подстанции был избран по результатам конкурса летом 2006 года. Победивший проект разработан всемирно известной архитектурной фирмой RMJM (www.rmjm.com). Идея проекта заключалась в том, чтобы расположить подстанцию под прямым углом к дороге Saxon Shore Way. В результате, главной архитектурной особенностью подстанции является Северная Стена, которая достигает 10 м высоты и состоит из ряда бетонных панелей и стабилизаторов.

Расположение

Подстанция Клив Хилл находится вблизи деревни Грейвени, что составляет около 1 км вглубь от Северного побережья Кента. Строится подстанция рядом с 400 кВ воздушной линией электропередачи Кентербери-Кемсли на северной стороне Клив Хилл, рядом с существующими зданиями на Клив Фарм. Подстанция строится таким образом, чтобы вписаться в склон холма.

Installation einer Windturbine / Installing a wind turbine

Строительство в 20 км от берега

Это является серьезной проблемой для построения любого морского ветропарка и London Array не является исключением. Расстояние от берега, сильные ветра и непредсказуемые морские условия делают эту территорию трудным местом для строительства.

Installation einer Windturbine / Installing a wind turbine

К счастью, будет использоваться новейшая техника и оборудование, которое поможет завершить работу настолько безопасно и быстро, насколько это возможно. Работы в море начались в марте 2011 года, когда был установлен первый из 177 фундаментов.

Installation einer Windturbine / Installing a wind turbine

Что же строиться?

Ключевые компоненты морской ветряной электростанции:
- Фундаменты для закрепления ветряных турбин в море
- Ветряные турбины
- Множество кабелей для совместного подключения группы турбин и соединения с морскими подстанциями
- Морские подстанции для повышения напряжения перед отправкой электроэнергии на берег
- Укладка кабеля по дну моря для соединения морских и береговых подстанций.

Installation einer Windturbine / Installing a wind turbine

Управление морским строительством

Морские строительные работы в настоящее время управляются из временной базы строительства в порту Ramsgate. Строительство базы началось летом 2010 года, а строительная бригада переехала в здание в сентябре 2010 года. До 45 сотрудников будет работать во время морского строительства. Ожидается, что база останется до 2013 года, когда первый этап строительства будет завершен, и она может стать основой для второго этапа строительства в ближайшем будущем.

Installation einer Windturbine / Installing a wind turbine

Кто же строит London Array?

London Array Limited – консорциум трех ведущих в мире компаний по использованию источников энергии, которые объединяют свой опыт и знания для разработки и строительства самой большой в мире морской ветряной электростанции.

Installation einer Windturbine / Installing a wind turbine

Dong Energy — 50% акций проекта

DONG Energy (Дания) – ведущая европейская энергетическая группа. Она обеспечивает, производит, распределяет и торгует энергией и связанными с ней товарами по всей Северной Европе. DONG Energy является лидером рынка морских ветряных технологий, построившим около половины морских ветряных электростанций, работающих сегодня. DONG Energy активно участвует в производстве и пропаганде использования возобновляемых источников энергии в Великобритании. Компания участвует в строительстве трех новых крупных британских морских ветряных электростанций и управляет в настоящее время морскими ветряными электростанциями Gunfleet Sands (172 МВт), Burbo Bank (90 МВт) и Barrows (90 МВт).

Installation einer Windturbine / Installing a wind turbine

E.ON — 30% акций проекта

E.ON (Германия) — одна из самых мощных в мире газовых компаний. Она — ведущий поставщик в Великобритании и обеспечивает энергией около 8 миллионов клиентов. E.ON участвует в строительстве и эксплуатации возобновляемых источников энергии с 1991 года, когда они вложили капитал в первую береговую ветряную электростанцию. Теперь они владеют и управляют 22 ветряными электростанциями в Великобритании, включая Scroby Sands на 60 МВт, морскую ветряную электростанцию недалеко от берега Грейт-Ярмута, и 60-турбинную ветряную электростанцию Robin Rigg в Solway Firth. Многие другие проекты находятся в стадии разработки.

Installation einer Windturbine / Installing a wind turbine

Masdar — 20% акций проекта

Masdar (ОАЭ) компания по стратегическому развитию и инвестициям в технологии использования возобновляемых источников энергии. Компания выступает в качестве связующего звена между сегодняшней экономикой ископаемого топлива и энергетической экономией будущего – развития нового представления о том, как жить, и работать завтра.

Installation einer Windturbine / Installing a wind turbine

Трансформаторная подстанция CLEVE HILL

Была построена новая береговая трансформаторная подстанция CLEVE HILL, недалеко от деревни Грэвени (Graveney), на северном побережье графства Кент.

Installation einer Windturbine / Installing a wind turbine

Это было необходимо, так как London Array будет генерировать большое количество электричества, которое необходимо отправлять с моря прямо в национальную высоковольтную сеть с напряжением в 400 кВ.

О турбинах

Турбины для первой фазы вырабатывают 3.6 МВт каждая. Они изготовлены компанией Siemens Wind Power и оснащены новым 120 метровым несущим винтом Siemens.Высота оси каждой ветровой турбины составляет 87 метров над уровнем моря. Турбины имеют по три лопасти и генерируют электричество при скорости ветра в 3 метра на секунду.

Полная мощность достигает от 13 м/с. Из соображений безопасности, турбины прекращают свою работу, если ветер становится сильнее, чем 25 м/с – эквивалент шторма в 9 баллов.

Установка турбин на London Array

Проект London Array играет ключевую роль в программе правительства Великобритании по выполнению целей по защите окружающей среды и возобновляемой энергии. Они включают в себя:

- снижение выбросов двуокиси углерода на 34% к 2020 году;
- производства 15% всей энергии с помощью возобновляемых источников энергии к 2015 году.


Установка турбин на London Array

После завершения проекта, выбросы углекислого газа сократятся на 1,4 млн тонн в год. Первая фаза способна возместить 925 тыс.тонн СО2, которые будут компенсироваться каждый год, помогая решать последствия изменения климата и глобального потепления. London Array будет иметь общую мощность до 1000 МВт и будет генерировать электроэнергию на 750000 домов – что является четвертью всех домохозяйств в Большом Лондоне (регион, объединяющий два графства Большой Лондон и Лондонский Сити), или все дома в Кенте и восточном Сассексе. Мощность первой фазы проекта достаточная для подключения около 480 тыс домов, или две трети всех домов в Кенте.

Установка турбин на London Array

Установка последней турбины на London Array является кульминационным событием огромного количества усилий и координации всех участвующих в проекте. Только за прошедший год были установлены 84 опоры, 175 ветряных турбин, 178 наборов кабелей и 3 экспортных кабеля. London Array сейчас находится в фазе ввода в эксплуатацию и тестирования оставшихся турбин, прежде чем передать их команде по эксплуатации и техническому обслуживанию в течении 2013 года.

Установка турбин на London Array

Бэн Сайкс (Benj Sykes), глава британской компании DONG Energy’s UK Wind business, специализирующейся на ветровой энергетике, сказал: «Установка последней турбины это поворотный пункт для Великобритании и DONG Energy в истории этого передового проекта. London Array вскоре станет крупнейшей работающей морской ветровой электростанцией в мире. Создание морских ветровых электростанций такого же масштаба и крупнее в будущем позволит получать преимущества из их размера, что является важным элементом стратегии по снижению стоимости энергии.

Помимо стремления создать крупнейший ветропарк в мире, разработчики London Array также позиционируют свое детище как демонстрационный проект, который показывает механизмы эффективного снижения затрат при создании крупных ветровых электростанций. Конечной целю инвесторов является создание оффшорной ветровой фермы, которая к 2020 году сможет выдавать полезную мощность при цене на уровне около $ 152 за мегаватт-час. Объект принадлежит компаниям Dong Energy, Masdar и EON. Доля Dong Energy в проекте составляет 50%, энергетический гигант E.ON владеет 30% акций, а в собственности компании Masdar из Абу-Даби находятся оставшиеся 20% ценных бумаг.

Установка турбин на London Array

Взят у masterok в Ветряки в море. Крупнейшая ветряная электростанция в мире.

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected]) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс, где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!


Мегаконструкции. Самые большие ветрогенераторы / Хабр

Siemens SWT-7.0-154

Кто говорил, что ветряки не способны конкурировать по мощности с атомными электростанциями? Посмотрите на самую большую в мире ветроэлектрическую установку Siemens SWT-7.0-154. С площадью ометания 18 600 м² этот гигант в одиночку генерирует максимальную мощность 7 МВт при скорости ветра 13-15 м/с. Несколько сотен таких ветряков — и вот вам атомная электростанция.

SWT-7.0-154 — это флагманская модель компании Siemens. В её названии зашифрованы генерируемая мощность (7 МВт) и диаметр ротора с лопастями (154 м). Она пришла на смену предыдущему флагману SWT-6.0-154, от которого практически не отличается по техническим спецификациям, но оснащён более мощными магнитами. Более сильное магнитное поле позволяет генерировать больше электроэнергии при том же диаметре. Другими словами, в этой ВЭН параметр снимаемой мощности с квадратного метра площади ометания выше примерно на 16,7%.

Ветрогенератор включается в работу на минимальной скорости ветра 3-5 м/с, а генерируемая мощность поступательно растёт до максимальной 7 МВт при скорости ветра 13-15 м/с. При достижении скорости ветра 25 м/с генерация прекращается.

Казалось бы, на таких скоростях ветра лопасти ВЭУ должны вращаться быстро, но это совершенно не так. На самом деле они вращаются неторопливо и степенно, делая всего 5-11 оборотов в минуту. То есть полный оборот три лопасти совершают примерно за 5-12 секунд, в зависимости от скорости ветра.

Более сильное магнитное поле в новой модели означает также и то, что эту турбину труднее раскрутить. Для достижения той же скорости вращения 5-11 оборотов в минуту и максимальной генерируемой мощности (7 МВт вместо 6 МВт) этой турбине требуется повышенная скорость ветра: 13-15 м/с вместо 12-14 м/с. Соответственно, и начальная скорость ветрогенерации у неё выше. Вот почему данная модель-гигант наиболее оптимально подходит для размещения на территориях с относительно сильными ветрами, лучше всего в море.

Внутри турбины нет редуктора (коробки передач) — здесь работает система прямого привода, подключенная к синхронному генератору переменного тока с постоянными магнитами. Поскольку скорость генератора определяет напряжение и частоту тока, то «грязный переменный ток» преобразуется в постоянный ток, а затем преобразуется обратно в переменный ток перед подачей в сеть.

В последние годы в области ветряной энергетики происходит очень быстрый научно-технический прогресс. Буквально каждый год появляются новые модели ВЭУ большей мощности и эффективности. Большие и маленькие, рассчитанные на целые посёлки или отдельные дома, на большую скорость ветра в море или на среднюю скорость ветра над крышей частного дома.

Например, мировой рекорд по максимальной генерируемой мощности принадлежит вовсе не Siemens, а другой турбине ещё одного немецкого производителя Enercon E126, которая выдаёт до 7,58 МВт. На видео показан процесс установки такой турбины.


Высота стойки Enercon E126 — 135 м, диаметр ротора — 126 м, общая высота вместе с лопастями — 198 м. Общий вес фундамента турбины — 2500 тонн, а самого ветрогенератора — 2800 тонн. Только электрогенератор весит 220 тонн, а ротор вместе с лопастями — 364 тонны. Общий вес всей конструкции со всеми деталями — 6000 тонн. Первая установка подобного типа была установлена около немецкого Эмдена в 2007 году, хотя в той модификации максимальная мощность была меньше.

Впрочем, ветрогенераторы-гиганты — довольно дорогое удовольствие. Один такой ветряк на 7 МВт обойдётся в $14 млн вместе с установкой, если заказывать все работы у сертифицированных немецких специалистов. Конечно, если освоить производство в своей стране, благо металла хватает, то стоимость вполне можно снизить в несколько раз. Кто знает, может такой гигантский проект национальной стройки занял бы население страны и помог выбраться из экономического кризиса.


Одна из самых последних строящихся в Восточной Европе атомных станций — Белорусская АЭС — получит два энергоблока с реакторами ВВЭР-1200 мощностью по 1200 МВт. Казалось бы, несколько сотен ветряков Siemens сравнятся с атомной электростанцией. Стоимость строительства примерно одинаковая, зато «топливо» бесплатное. Что интересно, Белорусскую АЭС как раз строят в районе, где по климатическим данным за 1962-2000 годы почти самая высокая среднегодовая скорость ветра в Беларуси. Но в реальности эта «самая большая» среднегодовая скорость ветра — всего лишь около 4 м/c (на высоте 10 м), чего едва хватит для запуска ВЭУ на минимальной мощности.

Перед установкой следует сверяться с годовой картой ветров в районе дислокации с данными средней удельной мощности ветрового потока на высоте 100 м и выше. Хорошо бы составить такие карты для всей территории страны, чтобы найти места наиболее оптимального строительства ВЭУ. Нужно иметь в виду, что скорость ветра сильно зависит от высоты, что хорошо известно жителям высотных домов. В обычных прогнозах погоды по ТВ сообщают скорость ветра на высоте 10 м над землёй, а для ветровой турбины следует измерять скорость на высоте 100-150 м, где ветры гораздо сильнее.

Так что наиболее оптимально такие гиганты подходят для установки в море, в нескольких километрах от побережья, на большой высоте. Например, если установить такие установки вдоль северного побережья России с шагом 200 метров, то максимальная мощность массива составит 690,3 ГВт (побережье Северного Ледовитого океана составляет 19724,1 км). Скорость ветра там должна быть приемлемая, только при заливке фундаментов придётся иметь дело с вечной мерзлотой.

Правда, по стабильности работы ВЭУ никогда не сравнятся с АЭС или ГЭС. Здесь энергетикам приходится постоянно следить за прогнозом погоды, потому что генерируемая мощность напрямую зависит от скорости ветра. Ветер должен быть не слишком сильным и не слишком слабым. Хорошо, если в среднем ВЭУ будут выдавать хотя бы треть от максимальной мощности.

Ветряки в море. Крупнейшая ветряная электростанция в мире.

London Array - das weltgrößte Offshore-Windkraftwerk / London Array- the world

London Array является, несомненно, наиболее широко известной в Великобритании ветряной электростанцией в открытом море. Ее масштабы и близкое расположение к Большому Лондону (регион на юго-востоке Англии) вызывает большой интерес у политиков и прессы.

Проект на 1000 МВт является на сегодня крупнейшим в мире, ветряную электростанцию планируется построить в два этапа. London Array, как планируется, обеспечит энергией 750 000 домов — около четверти Большого Лондона — и сократит вредные выбросы CO2 на 1,4 млн. тонн в год. Таким образом, это будет благотворно сказываться на окружающей среде, а также поможет обеспечить надежное электроснабжение юго-восточной Англии.

Karte von London Array / Map of London Array

 

Вот какие были разговоры: 

По поводу же объема инвестиций концерны предпочитают пока помалкивать. Эксперты отрасли сходятся на том, что он составит примерно 2,5 млрд фунтов стерлингов (2,8 млрд евро). Подготовка проекта длится много лет, причем в последнее время представители E.ON выражали сомнения в его целесообразности, сетуя на ухудшение рамочных условий: в первую очередь резкое падение цен на нефть и газ сводило на нет преимущества связанных с использованием ветровой энергии проектов. Одновременно отмечался и значительный рост стоимости турбин.

Однако потом  британское правительство просигнализировало о своей готовности усилить поддержку офшорных парков ветряков, которым будет теперь предоставляться больше, чем прежде, т.н. зеленых сертификатов (Renewable Obligation Certificates, ROC). Начиная с 2002 года британские производители электроэнергии используют эти ROC для подтверждения того, что из возобновляемых источников энергии они добывают положенное количество электроэнергии.

Нынче граница этой нормы находится в районе почти 10%. До сих пор действовало правило, согласно которому за каждый выработанный мегаватт экологически чистой электроэнергии производителю полагался один сертификат ROC.

В целях поощрения строительства дорогостоящих офшорных ветряков правительство Великобритании уже приняло решение стимулировать производство каждого экологически чистого мегаватта электроэнергии выдачей 1,5 ROC. В бюджете же на 2009—2010 годы кабинет кабинет пошел на  большую щедрость, пообещав рассмотреть вопрос о возможности увеличения в период с 23 апреля 2009 года по 31 марта 2010 года этого норматива до 2 ROC за каждый мегаватт, а в рамках бюджета следующего года он будет установлен в размере 1,75 ROC.

В планах правительства Великобритании развитию возобновляемых энергий отводится значительное место, так что в осуществлении проектов типа London Array оно очень заинтересовано.

В настоящее время в разных странах Европы E.ON делает миллиардные инвестиции для развития производства электроэнергии на базе альтернативных источников энергии.

 

Karte von London Array / Map of London Array

Karte von London Array / Map of London Array

 

Строительство новой береговой подстанции в Клив Хилл началось в июле 2009 года, а в марте 2011 года проведены первые морские строительные работы, когда были установлены первые 177 платформ для проекта. Первая фаза строительства должна быть полностью завершена была к концу 2012 года.  И вот недавно , после четырёх лет строительства одна из крупнейших ветряных ферм на планете — London Array — официально введена в эксплуатацию. Ветроэлектростанция, состоящая из 175 огромных ветряных турбин Siemens, расположилась на протяжении 20 км в прибрежной полосе графств Кент и Эссекс. Там же расположены две подстанции, еще одна находится на берегу.

 

Как все начиналось?

Проект London Array зародился в 2001 году, когда комплексное исследование в устье Темзы подтвердило возможность размещения на данной территории ветряной электростанции. Два года спустя Crown Estate предоставил London Array Ltd в аренду на 50 лет площадь под строительство и прокладку кабеля к берегу.

План морской ветряной электростанции мощностью 1 ГВт был утвержден в 2006 году, а разрешение на береговые работы было получено в 2007 году. Первый этап работы начался в июле 2009 года, когда началось строительство береговой подстанции в Клив Хилл в графстве Кент.

 

Karte von London Array / Map of London Array

 

 

Первая фаза

Цифры и факты:

- Площадь под проект 100км2
- 175 ветровых турбин
- Две морские подстанции
- Почти 450 км морского кабеля
- Одна береговая подстанция
- 630мВт электроэнергии
- Мощности хватит для обеспечения примерно 480 000 домов в год — две трети домов в графстве Кент
- Выброс CO2 уменьшится на 925 000 тонн в год.

В конце 2012 года планировалось завершить первую фазу строительства, проект будет передан команде по эксплуатационному и техническому обслуживанию в 2013 году.

London Array будет генерировать большое количество электроэнергии, и подстанция нужна для того, чтобы обеспечить напряжение в 400 кВ, принятое в национальной высоковольтной сети электропередачи.

 

Karte von London Array / Map of London Array

 

Проект

Проект подстанции был избран по результатам конкурса летом 2006 года. Победивший проект разработан всемирно известной архитектурной фирмой RMJM (www.rmjm.com). Идея проекта заключалась в том, чтобы расположить подстанцию под прямым углом к дороге Saxon Shore Way. В результате, главной архитектурной особенностью подстанции является Северная Стена, которая достигает 10 м высоты и состоит из ряда бетонных панелей и стабилизаторов.

 

Расположение

Подстанция Клив Хилл находится вблизи деревни Грейвени, что составляет около 1 км вглубь от Северного побережья Кента. Строится подстанция рядом с 400 кВ воздушной линией электропередачи Кентербери-Кемсли на северной стороне Клив Хилл, рядом с существующими зданиями на Клив Фарм. Подстанция строится таким образом, чтобы вписаться в склон холма.

 

Installation einer Windturbine / Installing a wind turbine

 

 

Строительство в 20 км от берега

Это является серьезной проблемой для построения любого морского ветропарка и London Array не является исключением. Расстояние от берега, сильные ветра и непредсказуемые морские условия делают эту территорию трудным местом для строительства.

К счастью, будет использоваться новейшая техника и оборудование, которое поможет завершить работу настолько безопасно и быстро, насколько это возможно. Работы в море начались в марте 2011 года, когда был установлен первый из 177 фундаментов.

 

Что же строиться?

Ключевые компоненты морской ветряной электростанции:

- Фундаменты для закрепления ветряных турбин в море
- Ветряные турбины
- Множество кабелей для совместного подключения группы турбин и соединения с морскими подстанциями
- Морские подстанции для повышения напряжения перед отправкой электроэнергии на берег
- Укладка кабеля по дну моря для соединения морских и береговых подстанций.

 

Ein einzigartiges Projekt – die letzte Turbine steht! / A unique project – the last one up!

 

 

Управление морским строительством

Морские строительные работы в настоящее время управляются из временной базы строительства в порту Ramsgate. Строительство базы началось летом 2010 года, а строительная бригада переехала в здание в сентябре 2010 года. До 45 сотрудников будет работать во время морского строительства. Ожидается, что база останется до 2013 года, когда первый этап строительства будет завершен, и она может стать основой для второго этапа строительства в ближайшем будущем.

 

Кто же строит London Array?

London Array Limited – консорциум трех ведущих в мире компаний по использованию источников энергии, которые объединяют свой опыт и знания для разработки и строительства самой большой в мире морской ветряной электростанции.

 

Dong Energy — 50% акций проекта

DONG Energy (Дания) – ведущая европейская энергетическая группа. Она обеспечивает, производит, распределяет и торгует энергией и связанными с ней товарами по всей Северной Европе. DONG Energy является лидером рынка морских ветряных технологий, построившим около половины морских ветряных электростанций, работающих сегодня. DONG Energy активно участвует в производстве и пропаганде использования возобновляемых источников энергии в Великобритании. Компания участвует в строительстве трех новых крупных британских морских ветряных электростанций и управляет в настоящее время морскими ветряными электростанциями Gunfleet Sands (172 МВт), Burbo Bank (90 МВт) и Barrows (90 МВт).

 

E.ON — 30% акций проекта

E.ON (Германия) — одна из самых мощных в мире газовых компаний. Она — ведущий поставщик в Великобритании и обеспечивает энергией около 8 миллионов клиентов. E.ON участвует в строительстве и эксплуатации возобновляемых источников энергии с 1991 года, когда они вложили капитал в первую береговую ветряную электростанцию. Теперь они владеют и управляют 22 ветряными электростанциями в Великобритании, включая Scroby Sands на 60 МВт, морскую ветряную электростанцию недалеко от берега Грейт-Ярмута, и 60-турбинную ветряную электростанцию Robin Rigg в Solway Firth. Многие другие проекты находятся в стадии разработки.

 

Masdar — 20% акций проекта

Masdar (ОАЭ) компания по стратегическому развитию и инвестициям в технологии использования возобновляемых источников энергии. Компания выступает в качестве связующего звена между сегодняшней экономикой ископаемого топлива и энергетической экономией будущего – развития нового представления о том, как жить, и работать завтра.

 

Offshore-Windpark Lillgrund - Serviceschiff auf dem Weg zum Windpark / Lillgrund Offshore Wind Farm - Service ship en route to the wind farm

 

 

Трансформаторная подстанция CLEVE HILL

Была построена новая береговая трансформаторная подстанция CLEVE HILL, недалеко от деревни Грэвени (Graveney), на северном побережье графства Кент.

 

 

Это было необходимо, так как London Array будет генерировать большое количество электричества, которое необходимо отправлять с моря прямо в национальную высоковольтную сеть с напряжением в 400 кВ.

 

 

О турбинах

 

Турбины для первой фазы вырабатывают 3.6 МВт каждая. Они изготовлены компанией Siemens Wind Power и оснащены новым 120 метровым несущим винтом Siemens.Высота оси каждой ветровой турбины составляет 87 метров над уровнем моря.

Турбины имеют по три лопасти и окрашены в серый цвет. Турбины генерируют электричество при скорости ветра в 3 метра на секунду.

Полная мощность достигает от 13 м/с. Из соображений безопасности, турбины прекращают свою работу, если ветер становится сильнее, чем 25 м/с – эквивалент шторма в 9 баллов.

Проект London Array играет ключевую роль в программе правительства Великобритании по выполнению целей по защите окружающей среды и возобновляемой энергии. Они включают в себя:

- снижение выбросов двуокиси углерода на 34% к 2020 году;

- производства 15% всей энергии с помощью возобновляемых источников энергии к 2015 году.

 

Установка турбин на London Array

 

После завершения проекта, выбросы углекислого газа сократятся на 1,4 млн тонн в год. Первая фаза способна возместить 925 тыс.тонн СО2, которые будут компенсироваться каждый год, помогая решать последствия изменения климата и глобального потепления. London Array будет иметь общую мощность до 1000 МВт и будет генерировать электроэнергию на 750000 домов – что является четвертью всех домохозяйств в Большом Лондоне (регион, объединяющий два графства Большой Лондон и Лондонский Сити), или все дома в Кенте и восточном Сассексе. Мощность первой фазы проекта достаточная для подключения около 480 тыс домов, или две трети всех домов в Кенте.

Установка последней турбины на London Array является кульминационным событием огромного количества усилий и координации всех участвующих в проекте. Только за прошедший год были установлены 84 опоры, 175 ветряных турбин, 178 наборов кабелей и 3 экспортных кабеля. London Array сейчас находится в фазе ввода в эксплуатацию и тестирования оставшихся турбин, прежде чем передать их команде по эксплуатации и техническому обслуживанию в течении 2013 года.

 

Установка турбин на London Array

 

Бэн Сайкс (Benj Sykes), глава британской компании DONG Energy’s UK Wind business, специализирующейся на ветровой энергетике, сказал: «Установка последней турбины это поворотный пункт для Великобритании и DONG Energy в истории этого передового проекта. London Array вскоре станет крупнейшей работающей морской ветровой электростанцией в мире. Создание морских ветровых электростанций такого же масштаба и крупнее в будущем позволит нам получать преимущества из их размера, что является важным элементом нашей стратегии по снижению стоимости энергии.

Помимо стремления создать крупнейший ветропарк в мире, разработчики London Array также позиционируют свое детище как демонстрационный проект, который показывает механизмы эффективного снижения затрат при создании крупных ветровых электростанций. Конечной целю инвесторов является создание оффшорной ветровой фермы, которая к 2020 году сможет выдавать полезную мощность при цене на уровне около $ 152 за мегаватт-час. Объект принадлежит компаниям Dong Energy, Masdar и EON. Доля Dong Energy в проекте составляет 50%, энергетический гигант E.ON владеет 30% акций, а в собственности компании Masdar из Абу-Даби находятся оставшиеся 20% ценных бумаг.

Установка турбин на London Array

LONDON ARRAY

LONDON ARRAY

LONDON ARRAY

LONDON ARRAY

LONDON ARRAY

LONDON ARRAY

LONDON ARRAY

LONDON ARRAY

LONDON ARRAY

London Array - Esbjerg harbor

London Array - das weltgrößte Offshore-Windkraftwerk / London Array- the world

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

Maschinenhäuser für London Array / Nacelles for London Array

 

 

 

 

[источники]

источники
http://tech-life.org
www.londonarray.com
http://www.facepla.net/

 

Вот тут совсем кстати будет вам напомнить, что мы  про Корабли на ножках уже разговаривали очень подробно, а так же Энергия ветра уже проходила широкой дискуссией. Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия - http://infoglaz.ru/?p=30118
Ветровая энергия в России: почему у нас так мало ветряков

Как это работает

Ветряки преобразуют ветер в электроэнергию. Работают они по принципу мельницы, только более высокотехнологичной. Потоки воздуха крутят лопасти, и те вращаются в вертикальной плоскости. Таким образом возникает механическая энергия, энергия движения. А подключенный к устройству генератор уже вырабатывает электричество.

Чем выше ветряк, тем больше он производит электроэнергии. Высота столба — от 20 м, а самый высокий в мире ветрогенератор находится в Германии, в Гайльдорфе. Он вырос аж до 178 м.

Строительство ветрогенератора в Гайльдорфе. Фото: mbrenewables

Ветроэнергетику первым делом облюбовали страны, которые заботятся об окружающей среде: Дания, Германия, Испания, Ирландия. Оно и понятно: нет вредных выбросов и опасностей для флоры и фауны. Другое достоинство в том, что ветряки не требуют дополнительного топлива: платить нужно только за их постройку и обслуживание, так что это выходит дешевле, чем другие виды энергии. Хотя конечно, стоимость строительства и обслуживания ветроэлектростанций сильно варьирует в зависимости от многих факторов: место строительства, высота, материалы, дополнительное оборудование. 

Стоит заметить, что ветряки не так невинны: из-за них гибнут птицы и летучие мыши. Около тысячи в год погибают от одного генератора.

Главная проблема ветряков — внезапно — в том, что они работают лишь благодаря ветру. Так что местность для генератора нужно тщательно выбирать. Впрочем, и для этой проблемы уже нашли решение. Ветряки строят не только в полях, но и над гладью морской — в местах, где ветер дует практически непрерывно.

Фото: Florian Pircher с сайта Pixabay

При кажущейся простоте такого решения, ветрогенераторы — сложные и высокотехнологичные механизмы. Здесь нужно продумать все мелочи: сильный ветер может сломать лопасти, нагрузка на опорную конструкцию не должна быть критической, и нужна возможность остановить лопасти на время бури.

Дополнительного оборудования много, например, система тормозов. В России же пока просто не производят необходимого оборудования, а закупать его — слишком дорого. Только массовое производство ветряков поможет такому мероприятию окупиться, и то лишь в долгосрочной перспективе. Однако кое-какие шаги в направлении развития ветровой электроэнергетики Россия все же предпринимала раньше — и продолжает это делать.

Прошлое — далекое и не очень

В 1920-х годах в СССР уже начали разрабатывать предшественников сегодняшних ветряков для отдаленных районов. Работали они по гидравлическому принципу: ветер поднимал воду вверх по столбу, а затем она опускалась и крутила турбину. Так вырабатывался ток. Кстати, тот самый высоченный ветрогенератор в Гайльдорфе работает по тому же принципу.

В 30-х годах изобретатель Анатолий Уфимцев построил на собственные средства миниветроэлектростанцию. Она работала исправно несколько лет и снабжала электричеством его дом вплоть до смерти Уфимцева. В последующие годы в СССР продолжали выпускать ветряки, но с популяризацией топливной промышленности и строительством АЭС все меньше и меньше.

Ветростанция А. Г. Уфимцева — первая и единственная в мире, способная давать вполне выровненную электроэнергию от беспорядочных порывов ветра.

Писал в 1934 году Владимир Ветчинкин

Крупнейший советский учёный-механик в области аэродинамики

Ветростанция А. Г. Уфимцева в Курске. Фото: Википедия

Однако после 2000-х ветряками в России снова стали интересоваться. «Росатом» еще в 2017 году пообещал построить сеть ветряных электростанций по всей стране и таким образом «возродить отрасль». Помочь взялись в голландской компании Lagerwey. Однако специалисты выразили сомнение относительно проекта. Угнаться за постоянно растущим рынком и технологиями вот так сразу, с нуля, крайне тяжело.

Сегодня небольшие ветропарки раскиданы по всей стране. Один, например, есть в поселке Куликово Калининградской области. Существует он аж с 1998 года. Ветряки поселок получил в подарок от компании из Дании, и они работают до сих пор (хотя и не без инцидентов). Однако генерация энергии там небольшая, да и дачники строят дома слишком близко к турбинам, не понимая, что это опасно.

Ветряные электростанции недалеко от посёлка Куликово Калининградской области. Фото: Uritsk / Livejournal

В 2018 году самый крупный отечественный ветропарк открыли в Ульяновской области. Сделала это финская компания Fortum совместно с РОСНАНО. Промышленный парк настолько большой, что уже готов выйти на оптовые поставки энергии. Кроме того, при Ульяновском техническом университете открылась кафедра, где готовят специалистов в области электроэнергетики.

Какие могут быть проблемы?

В России существует сложная инфраструктура, которая обслуживает газовую и атомную отрасли энергетики. В этой области заняты тысячи людей. И просто так взять и сменить все это великолепие — пусть даже на более дешевую и экологически чистую — энергию мы не сможем.

Михаил Гусев, инженер подразделения «Электропривод» компании ABB, объясняет: «Россия не испытывает дефицита в электроэнергии. Большинство наших генерирующих предприятий работает ниже коэффициента использования установленной мощности. В арсенале наших энергетиков достаточную долю занимают АЭС и ГЭС, которые имеют ощутимо низкую удельную себестоимость производства электроэнергии по сравнению с генерацией на углеводородном сырье. Поэтому у нас нет острой потребности в развитии альтернативных источников энергии. Но в скором времени она появится, поэтому нужно вовремя начать развивать отрасль».

Отставание России по количеству ветропарков от США и Европы по-прежнему велико. По словам Владимира Максимова, руководителя департамента развития новых направлений бизнеса ООО «Тошиба Рус», основная причина такого положения вещей — в недостаточно эффективных мерах государственной поддержки сегмента ветровой энергетики. Впрочем, в сентябре прошлого года вышло постановление правительства, повышающее инвестиционную привлекательность строительства объектов, функционирующих на основе возобновляемых источников энергии. Это должно помочь.

«Еще одно существенное препятствие для развития ветроэнергетики в России — высокие требования по уровню местной локализации производства компонентов, который должен достигать 65%, — говорит Владимир Максимов. — Например, уровень локализации крупнейшего отечественного объекта, ветропарка в Ульяновске, составляет всего 28%. Проект спасло только то, что он был утвержден еще в 2015 году».

Промышленный ветропарк в Ульяновской области, построенный финской компанией Fortum. Фото: Twitter @ VostockCapital_

Другая проблема — тонкости нормативной базы. Михаил Гусев говорит: «Закон вынуждает рассматривать ветроустановку как уникальное сооружение из-за ее высоты, налагая ряд нелогичных ограничений. Например, есть требование обустраивать подъездные пути к ветряным электростанциям как автомобильные дороги. Все это ведет к увеличению стоимости ветряков. Но без удовлетворения нормативных предписаний объект не может быть введен в эксплуатацию».

Есть ли перспективы?

Тем не менее со стратегической точки зрения ориентация на импортозамещение должна принести плоды, считает Максимов. Так, в Ульяновске запускается предприятие по изготовлению лопастей для ветроустановок, а в Нижегородской области стартовало производство систем управления и охлаждения.

Российский потенциал ветроэнергетики оценивается экспертами примерно в пять раз выше, чем, например, германский.

Есть и потребность. «В России ветрогенераторные установки могут быть востребованы в регионах с децентрализованным энергоснабжением: в Бурятии, на Чукотке, на Сахалине, на Курильских островах, — говорит Иван Назаров, руководитель Инженерного центра НИЦ 'ТехноПрогресс'. — На этих территориях электроснабжение потребителей не имеет связи с централизованной энергосистемой, а потому есть потребность в автономных источниках энергии. Пока в этих регионах в основном используются дизельные электростанции, конкуренцию которым могут составить альтернативные источники энергии».

Фото: PeterDargatz с сайта Pixabay

«До 2024 года эта отрасль сугубо дотационная, — говорит Михаил Гусев. — Однако и задачи стоят амбициозные: выйти на уровень локализации 65%. Это означает, что начнут работать предприятия по производству компонентов, будет адаптирована нормативная база, и главное — будут построены огромные мощности электроэнергетики. Помножив полученные компетенции на территорию нашей страны, где есть стабильный ветер, мы получаем безграничные перспективы. Главная цель для отрасли — стать конкурентной традиционным видам выработки электроэнергии».

Иван Назаров полагает: существует несколько векторов возможного развития России в области ветроэнергетики. Например, закупка и монтаж «под ключ» готовых зарубежных ветрогенераторных установок. Другой вариант — освоение западных технологий и организация с их помощью более масштабного производства на базе уже имеющегося в стране.

Это тоже интересно:

Что такое ветряная ферма?

Сегодняшнее чудо дня было вдохновлено Мариссой из Бэй Сити, Мичиган. Марисса Уандерс , « Как работают ветряные электростанции? ”Спасибо за интерес, Марисса!

О чем вы думаете, когда слышите слово «ферма»? Животные? Овощи? Трактор? Фермеры? Вы поверите, что есть фермы без этих вещей? Это так! О чем мы говорим? Ветряные фермы!

Ветряные электростанции - это районы, где много больших ветряных турбин были сгруппированы вместе.Они «собирают» энергию ветра. Эти большие турбины похожи на сверхвысокие ветряные мельницы.

Большая ветряная электростанция может иметь сотни ветряных турбин, разбросанных на сотни миль. Земля между турбинами может быть использована для других целей, таких как обычное земледелие. Некоторые ветряные электростанции также расположены вблизи водоемов. Там они пользуются ветрами, которые дуют через озера или океаны.

Знаете ли вы, что энергия ветра на самом деле является еще одной формой солнечной энергии? Форма и вращение Земли работают с неравномерным нагревом атмосферы Солнцем, создавая ветры.

Ветряные электростанции строятся в районах, где регулярно бывает особенно ветрено. Ветры крутят лопасти турбин. Затем турбины превращают энергию ветра в механическую энергию. Затем генераторы превращают механическую энергию в электричество. Это электричество затем используется для питания домов.

Вы можете думать о ветровой турбине как о противоположности вентилятора. Вентилятор использует электричество для создания ветра. Ветровые турбины делают наоборот: они используют ветер для производства электричества! Когда ветер вращает лопасти ветротурбины, лопасти вызывают вращение вала.Вращающийся вал соединяется с генератором, который создает электричество.

Вам интересно, почему ученые смотрели на ветер как на источник энергии? Есть много веских причин. Энергия ветра является бесплатной и возобновляемой. В отличие от большинства электростанций, ветряные электростанции не выделяют загрязняющих веществ и парниковых газов.

Тем не менее, ветровые электростанции могут стоить много денег, чтобы настроить. Однако со временем их стоимость становится конкурентоспособной по сравнению с другими типами генерирующих систем. К сожалению, вы не можете заставить ветер дуть, когда захотите.Это означает, что ветряные электростанции не всегда могут удовлетворить потребности в электроэнергии по требованию.

Со временем ученые считают, что новые технологии сделают ветроэнергетику еще более популярной. Они считают, что люди могут однажды хранить энергию ветра в батареях для использования по требованию. Ветровая энергия уже составляет около 3% электроэнергии Соединенных Штатов. Эксперты считают, что к 2030 году ветроэнергетика будет составлять 20% электроэнергии страны.

Стандарты: CCRA.L.3, CCRA.L.6, CCRA.R.1, CCRA.R.2, CCRA.R.4, CCRA.R.10, CCRA.SL.1, CCRA.W.4, NGSS.ESS3. A

,

ERG - Ветер: как работает ветряная электростанция

Узнайте, как сила ветра превращается в энергию, которая стимулирует вашу деятельность. От природы к домашним хозяйствам.
Ветряная электростанция превращает кинетическую энергию ветра в механическую энергию, которая, в свою очередь, используется для производства электроэнергии. Процесс настолько же увлекателен, насколько он эффективен. Плюс, он устойчивый.

Начните свое путешествие, чтобы узнать, как работает ветряная электростанция!

Рассчитать эффективность ветроэлектростанции
При ветре со скоростью 13 метров в секунду можно производить, скажем, 2000 кВт-ч, количество энергии, которое удовлетворяет требованиям 6452 домохозяйств.Но это не так. В то же время производство позволяет избежать выброса 814 кг CO 2 в атмосферу.

Другими словами, домохозяйства работают, а окружающая среда остается чище.
Посмотрите сами, сколько энергии вырабатывается в зависимости от силы ветра в инфографике ниже, и посмотрите, сколько CO 2 экономится каждый раз.
Вы также найдете некоторые интересные факты о том, как работают ветряные электростанции. Знаете ли вы, например, что за пределами определенного порога скорости ветра ветровые электростанции не могут производить энергию? Фактически, когда ветер слишком сильный, турбины переводятся в безопасное состояние с минимальным сопротивлением ветру для предотвращения повреждения конструкции.

Откройте для себя структуру ветропарка
Электрогенераторы, гондолы, подстанции. Вот некоторые из терминов, с которыми вы столкнетесь при обсуждении энергии ветра. Когда большинство людей думает о ветровой электростанции, первое, что приходит на ум, - это турбина, технологический компонент, который превращает кинетическую энергию ветра в механическую энергию, а затем в электричество.

Однако без сложной системы электропередачи было бы невозможно отправить электроэнергию, выработанную ветряными турбинами (состоящими из лопастей и башни), в наши домашние хозяйства.Архитектура ветряной электростанции с установленной мощностью, которая может достигать десятков мегаватт, включает в себя целую систему электрических соединений, электромеханического оборудования, систем защиты, коммутации и измерения, что абсолютно необходимо для ее деятельности.

Нажмите на слова в инфографике, чтобы узнать о многих компонентах ветропарка и о том, зачем они нужны.

Ветряные электростанции | HowStuffWorks

Как и в большинстве других областей производства энергии, когда дело доходит до сбора энергии от ветра, эффективность приходит в большом количестве. Группы больших турбин, называемые ветряных электростанций или ветряных электростанций, являются наиболее экономически эффективным использованием энергии ветра. Наиболее распространенные ветряные турбины коммунального масштаба имеют мощность от 700 кВт до 1,8 МВт, и они сгруппированы вместе, чтобы получить наибольшее количество электроэнергии из имеющихся ветровых ресурсов.Они, как правило, расположены далеко друг от друга в сельских районах с высокими скоростями ветра, и небольшой след HAWT означает, что сельскохозяйственное использование земли практически не затронуто. Ветряные электростанции имеют мощность от нескольких МВт до сотен МВт. Самая большая ветряная электростанция в мире - ветряная электростанция Рахинли, расположенная у побережья Ирландии. На полной мощности (в настоящее время он работает на частичной мощности), он будет иметь 200 турбин общей мощностью 520 МВт и обойдется почти в 600 миллионов долларов.

За последние два десятилетия стоимость ветроэнергетических установок значительно снизилась из-за технологических и конструкторских достижений в производстве и монтаже турбин. В начале 1980-х годов стоимость энергии ветра составляла около 30 центов за кВтч. В 2006 году ветровая энергия стоит всего лишь 3-5 центов за кВтч, где ветер особенно распространен. Чем выше скорость ветра с течением времени в данной области турбины, тем ниже стоимость электроэнергии, которую производит турбина. В среднем стоимость энергии ветра в Соединенных Штатах составляет от 4 до 10 центов за кВтч.

Многие крупные энергетические компании предлагают программы « зеленых цен », которые позволяют потребителям платить больше за кВтч, чтобы использовать энергию ветра вместо энергии «системной энергии», которая является пулом всей электроэнергии, производимой в этом районе, возобновляемой и не -renewable. Если вы решите приобрести энергию ветра и живете в непосредственной близости от ветровой электростанции, электричество, которое вы используете в своем доме, может фактически генерироваться ветром; более высокая цена, которую вы платите, идет на поддержание стоимости энергии ветра, но электричество, которое вы используете в своем доме, все еще исходит от системной энергии.В штатах, где энергетический рынок был дерегулирован, потребители могут иметь возможность покупать «зеленую электроэнергию» непосредственно у поставщика возобновляемой энергии, и в этом случае электроэнергия, которую они используют в своих домах, определенно поступает от ветра или других возобновляемых источников.

Внедрение небольшой ветротурбинной системы для собственных нужд - это один из способов гарантировать, что используемая вами энергия является чистой и возобновляемой. Установка турбины для дома или бизнеса может стоить от 5000 до 80 000 долларов.Масштабная установка стоит намного дороже. Одна турбина мощностью 1,8 МВт может работать до 1,5 млн. Долл. США, и это не включает расходы на землю, линии электропередачи и другие расходы на инфраструктуру, связанные с системой ветроэнергетики. В целом, стоимость ветроэлектростанций составляет около 1000 долларов за кВт, поэтому ветроэлектростанция, состоящая из семи турбин мощностью 1,8 МВт, работает около 12,6 миллионов долларов. По данным Американской ассоциации ветроэнергетики, «срок окупаемости» для большой ветряной турбины - время, необходимое для выработки достаточного количества электроэнергии, чтобы компенсировать энергопотребление здания и установки турбины - составляет от трех до восьми месяцев.

,
11+ крупнейших ветряных электростанций и ветроэнергетических установок, которые уменьшают углеродный след

Человеческая раса переживает момент, когда мы оглядываемся назад и размышляем о том, что мы сделали с этим миром.

Растущее загрязнение и загрязнение принесли нашему миру больше страданий, чем одного. Настало время перейти на возобновляемые источники энергии. К счастью, страны всего мира пришли к реализации этой общей цели.

Ветер - это один из неограниченных источников энергии, которые мы имеем на земле.Теперь мы построили массивные ветряные электростанции, чтобы использовать энергию ветра, которая в противном случае не использовалась бы.

Вот некоторые из самых больших ветровых электростанций, которые вносят существенный вклад в сокращение выбросов углекислого газа:

Ветряная электростанция Ганьсу, Китай

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint Источник: Popolon / Wikimedia Commons

Уровни загрязнения в Китае резко возросли за последние несколько лет , По данным ВОЗ, более 1 миллиона граждан Китая умерли преждевременно в результате смертельных переносимых по воздуху токсинов. Следовательно, Китай начал инвестировать в зеленые энергии, чтобы обуздать эту ситуацию.

Ветряная электростанция Ганьсу в Китае является самой большой в мире и способна вырабатывать почти 7900 МВт. Чистая выработка электроэнергии является результатом 7000 ветряных турбин, расположенных в рядах в пустыне Гопи. Эта ветряная электростанция также известна как ветроэнергетическая база Цзюцюань.

К сожалению, из-за слабого спроса более 60% производственных мощностей фермы ежегодно не используются. Гигантский Windfarm достаточно способен обеспечить энергией небольшую страну, и ожидается, что к 2020 году его мощность составит 20 000 МВт.

Ветряная электростанция Муппандал, Индия

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint Источник: PlaneMad / Wikimedia Commons

Если вы не знаете, где находится третья по величине ветряная электростанция, она находится в штате Тамилнад, Индия - Ветропарк Маппандал.

На ферме установлено около 3000 турбин, которые вырабатывают 1500 МВт чистой энергии. Согласно отчетам о ветроэнергетике, штат Тамил Наду обладает ветровым потенциалом 3050 МВт.

Ветроэлектростанция помогла снизить зависимость от ископаемого топлива и в конечном итоге приведет к сокращению выбросов парниковых газов.Правительство планирует расширить инициативу в области чистой энергии для обеспечения электроэнергией деревень в Тамилнаде.

Ветряная электростанция Роско, США

Источник: Fredlyfish5 / Wikimedia Commons

Ветряная электростанция Роско находится в Роско, штат Техас. Когда-то это была крупнейшая в мире ветряная электростанция. Ветровая электростанция простирается на 100 000 акров земли, и она может легко обеспечить энергией около 265 000 домов!

Интересно, что Техас производит больше энергии из ветра, чем совместные усилия других 25 штатов США! Ветряная электростанция имеет около 627 ветряных турбин с общей производительностью 781.5 МВт чистой энергии.

Строительство ВЭС Роско проходило в четыре этапа. Первый этап в 2008 году и состоял из 209 МВт турбины 1 МВт. В том же году была завершена фаза 2 9003 и , в которую вошли 55 машин Siemens мощностью 2,3 МВт. К середине 2009 года была завершена фаза 3 и , и было добавлено 166 турбин GE 1,5 МВт. И последний этап добавил 197 Mitsubishi 1 МВт турбины.

Верховая полая ветроэнергетическая установка, США

Техас славится своим ветровым потенциалом.Существуют большие площади в частной собственности, что делает инвестиции в ветроэнергетику привлекательным предложением как для землевладельцев, так и для инвесторов.

Верховая полая ветроэнергетическая установка является седьмой по величине ветроэлектростанцией с мощностью производства 735 МВт чистой энергии. Ферма распределена на площади 100 000 акров в округе Нолан и Тейлоре из Техаса. Проект действует с 2009 года. Завершено в три этапа, ферма состоит из 421 турбины, в том числе 142 GE 1,5 МВт, 130 Siemens 2.3 МВт и 149 GE 1,5 МВт ветровых турбин.

Джайсалмерский ветропарк, Индия

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint Источник: Nagarjun Kandukuru / Wikimedia Commons

Джайсалмерский ветропарк, расположенный в районе Джайсалмер в Раджастхане, является крупнейшим наземным ветропарком в Индии. Ферма использует ветер из Аравийского моря для производства чистой энергии мощностью 1065 МВт.

В проекте используются различные турбины, так как это сочетание старого оборудования, такого как модели 350 кВт, с более новыми S9X, которые способны производить 2.1 МВт мощности.

Лондонская оффшорная ветряная электростанция, Великобритания

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint Источник: synecdoche / Flickr

Лондонская ветряная электростанция отдыхает на побережье Соединенного Королевства. Ферма имеет 175 турбин, которые вырабатывают 630 МВт чистой энергии, что достаточно для питания полмиллиона домов в Великобритании. По вместимости это самый большой в Европе. Одна только ферма помогает сократить выбросы CO2 более чем на 925 000 тонн в год.

У оффшорной ветроэлектростанции есть некоторые льготы по отношению к береговым ветроэлектростанциям.Одним из них является преимущество более высоких скоростей ветра над водой по сравнению с землей. Также нет ограничений по границам. Единственное ограничение - это глубина, на которой лежит морское дно. Вот почему многие страны рассматривают морские ветряные электростанции, а не морские.

Ветряная электростанция Фаулер-Ридж, США

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint Источник: Патрик Финнеган / Wikimedia Commons

Ветряная электростанция Фаулер-Ридж занимает площадь более 50 000 акров в округе Бентон штата Индиана, США.Ветроэлектростанция принадлежит и управляется совместно Dominion Resources и BP Alternative Energy North America (каждая с долей участия 50%).

С 537 ветряными турбинами, ферма производит 750 МВт чистой энергии, которая используется для удовлетворения потребляемой мощности около 200 000 американских домов.

Ветряная электростанция Близнецов, Нидерланды

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint Источник: Korisnik12345 / Wikimedia Commons

Недавно открытая ветряная электростанция Джемини - вторая по мощности морская ветровая электростанция, которая идет после Лондонского массива, построенного в Нидерландах.Ветряная электростанция Gemini способна вырабатывать 600 МВт электроэнергии с использованием 150 турбин Siemens SWT -4.0. Проект начался в 2015 году и был завершен в 2017 году. В том же году он был введен в эксплуатацию.

Проекту было предоставлено в общей сложности 2,8 миллиарда долларов в качестве финансирования, но он был завершен с выделением денег. Турбины вступили в строй в 2016 году и принесли 250 миллионов евро еще до даты ввода в эксплуатацию.

Центр ветроэнергетики Альта, США

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint Источник: Z22 / Wikimedia Commons

Национальная лаборатория возобновляемых источников энергии или NREL Соединенных Штатов Америки выпустили свой приговор экологически чистой энергии.Исследование, проведенное этой организацией, пришло к выводу, что к 2050 году США могут получать 80% электроэнергии из возобновляемых источников энергии.

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint

Энергетический центр ветряной электростанции Альта является усилием в этом направлении. Это крупнейшее ветровое сооружение в Северной Америке, расположенное в горах Техачапи в Калифорнии. Ферма также известна как ветряная электростанция Мохаве и занимает площадь в 3200 акров.

Ветряная электростанция Альта поставляет возобновляемой энергии 1548 МВт в SCE (Южная Калифорния Эдисон) на протяжении более 25 лет, и, согласно оценкам, к 2040 году она достигнет 3000 МВт.Турбины были установлены на высоте от 3000 до 6000 футов над уровнем моря.

Ветровая электростанция Свитвотер, США

The 11+ Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint Источник: Всемирная служба Би-би-си / Flickr

Ветровая электростанция Свитвотер - это 9 -ая ветряная электростанция в мире, расположенная в округе Нолан США. Он имеет 392 ветрогенератора GE, MHI и Siemens, которые вырабатывают около 585,3 МВт электроэнергии, поставляемой Austin Energy, CPS и другим.

Работающая с 2003 года, ферма является совместной собственностью Duke Energy и Infigen Energy и была построена в пять этапов, добавленных до 2007 года.

Ветряная электростанция Buffalo Gap, США

Ветряная электростанция Buffalo Gap является десятой по величине ветряной электростанцией в мире, расположенной в Техасе. Ветроэлектростанция мощностью 524 МВт была построена в три этапа и использовала 155 турбин GE 1,5 МВт с системой windCONTROL и 74 ветрогенератора Siemens. Функция windCONTROL позволяет регулировать напряжение и мощность в режиме реального времени, подавая реактивную мощность в сеть, когда это необходимо для стабилизации слабых сетей и регулирования напряжения системы.

Dogger Bank Ветряные электростанции, Северное море

Установив прежние рекорды, крупнейшая в мире морская ветряная электростанция откроется на Доггер-банке в Северном море и начнет функционировать к 2023 году. 16 000 британских домов в следующем году.

Он построен как совместное предприятие SSE и норвежской компании Equinor. Он уникален тем, что использует турбины мощностью 12 МВт высотой 260 м, в отличие от традиционных турбин мощностью 8 МВт. Это значительно сократит эксплуатационные расходы этих ферм.

Ветряная электростанция Козерог-Ридж, Техас, США

В Техасе есть много примеров правильного использования ветрового потенциала штата. Ветряная электростанция Козерог-Ридж находится в округах Стерлинг и Кокс.

NextEra Energy Resources владеет техасской фермой. Это началось в 2008 году с инвестиций GE Energy Financial Services и JPMorgan Chase, которые заявили, что они инвестируют 225 млн долларов в Козерог-Ридж.

Ферма имеет 342 ветрогенератора GE 1,5 МВт и 65 Siemens 2.Ветровые турбины мощностью 3 МВт, общая мощность которых составляет 662,5 МВт, что позволяет легко обслуживать до 220 000 домашних хозяйств.

Морская ветровая электростанция Walney Extension, Великобритания

Морская ветровая электростанция Walney Extension расположена в Ирландском море, в 19 км от берега острова Уолни, Камбрия.

Он частично принадлежит и управляется Ørsted, с датскими пенсионными фондами PKA и PFA, совместно владеющими 50%. Проект запущен в сентябре 2018 года.

Он имеет 40 ветряных турбин MHI Vestas 8 МВт и 47 ветряных турбин Siemens Gamesa 7 МВт общей мощностью 659 МВт, что достаточно для питания 600 000 домов в Великобритании.Электричество передается с использованием двух 4000-тонных морских подстанций.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *