Индукционный нагреватель из сварочного инвертора схема: Как сделать индукционный нагреватель из сварочного инвертора своими руками

Содержание

Как сделать индукционный нагреватель из сварочного инвертора своими руками

Использование индукционных катушек вместо традиционных ТЭН в отопительном оборудовании позволило значительно увеличить КПД агрегатов при меньшем потреблении электроэнергии. Индукционные нагреватели появились в продаже относительно недавно, к тому же по достаточно высоким ценам. Поэтому народные умельцы не оставили эту тему без внимания и придумали, как сделать индукционный нагреватель из сварочного инвертора.

Преимущества индукционного нагревателя

Индукционные нагреватели с каждым днем набирают популярность у потребителя благодаря следующим достоинствам:

  • высокий показатель КПД;
  • агрегат работает практически бесшумно;
  • индукционные котлы и нагреватели считаются достаточно безопасными в сравнении с газовым оборудованием;
  • нагреватель работает полностью в автоматическом режиме;
  • оборудование не требует постоянного обслуживания;
  • благодаря герметичности аппарат, исключаются протечки;
  • из-за вибраций электромагнитного поля образование накипи становится невозможным.

Также к преимуществам данного типа нагревателя можно отнести простоту его конструкции и доступность материалов для сборки аппарата своими руками.

Схема работы индукционного нагревателя

Нагреватель индукторного типа содержит следующие элементы.

  1. Генератор тока. Благодаря данному модулю переменный ток бытовой электросети преобразуется в высокочастотный.
  2. Индуктор. Изготавливается из медной проволоки, скрученной в виде катушки, для образования магнитного поля.
  3. Нагревательный элемент. Представляет собой металлическую трубу, размещенную внутри индуктора.

Все перечисленные элементы, взаимодействуя между собой, работают по следующему принципу. Выработанный генератором высокочастотный ток поступает на катушку индуктора, изготовленную из медного проводника. Ток высокой частоты преобразуется индуктором в электромагнитное поле. Далее, металлическая труба, находящаяся внутри индуктора, разогревается благодаря воздействию на нее вихревых потоков, возникающих в катушке. Теплоноситель (вода), проходящий через нагреватель, забирает тепловую энергию и переносит ее в отопительную систему. Также теплоноситель выступает в роли охладителя нагревательного элемента, что продляет “жизнь” отопительному котлу.

Ниже предоставлена электрическая схема индукционного нагревателя.

На следующем фото показано, как работает индукционный нагреватель металла.

Важно! Если прикоснуться разогреваемой деталью к двум виткам индуктора, то произойдет межвитковое замыкание, от которого мгновенно выгорят транзисторы.

Сборка и монтаж системы

Подключать индуктор к клеммам сварочного аппарата, предназначенным для подсоединения сварочных кабелей, нельзя. Если это сделать, то агрегат просто выйдет из строя. Чтобы приспособить инвертор под работу с индукционным нагревателем, потребуется достаточно сложная переделка аппарата, требующая, в первую очередь, знаний в радиоэлектронике.

В двух словах, эта переделка выглядит так: катушку, а именно ее первичную обмотку, требуется подсоединить после преобразователя высокой частоты инвертора вместо встроенной индукционной катушки последнего. Кроме этого, потребуется удалить диодный мост и спаять конденсаторный блок.

Как происходит переделка сварочного инвертора в индукционный нагреватель, можно узнать из этого видео.

Индукционная печь для металла

Чтобы сделать индукционный нагреватель из сварочного инвертора, потребуются следующие материалы.

  1. Инверторный сварочный аппарат. Хорошо, если в агрегате будет реализована функция плавной регулировки тока.
  2. Медная трубка диаметром около 8 мм и длиной, достаточной, чтобы сделать 7 витков вокруг заготовки 4-5 см в диаметре. Кроме этого, после витков должны остаться свободные концы трубки длиной около 25 см.

Для сборки печи выполните следующие действия.

  1. Подберите какую-либо деталь диаметром 4-5 см, которая будет служить шаблоном для наматывания катушки из медной трубки. Это может быть деревянная круглая деталь, металлическая или пластиковая труба.
  2. Возьмите медную трубку и заклепайте один ее конец молотком.
  3. Плотно заполните трубку сухим песком и заклепайте второй ее конец. Песок не даст трубке сломаться при скручивании.
  4. Сделайте 7 витков трубки вокруг шаблона, после чего спилите ее концы и высыпьте песок.
  5. Подсоедините получившуюся катушку к переделанному инвертору.

Совет! Если предполагается, что индукционная печь будет работать длительное время на большой мощности, то к трубке рекомендуется подвести водяное охлаждение.

Индукционный нагреватель для воды

Для сборки отопительного котла потребуются следующие конструктивные элементы.

  1. Инвертор. Аппарат выбирается такой мощности, какая нужна для отопительного котла.
  2. Толстостенная труба (пластиковая), можно марки PN Ее длина должна быть 40-50 см. Сквозь нее будет проходить теплоноситель (вода). Внутренний диаметр трубы должен быть не меньше 5 см. В таком случае наружный диаметр будет равняться 7,5 см. Если внутренний диаметр будет меньше, то и производительность котла буде невысокой.
  3. Стальная проволока. Также можно взять пруток из металла диаметром 6-7 мм. Из проволоки или прутка нарезаются небольшие куски (4-5 мм). Эти отрезки будут выполнять роль теплообменника (сердечника) индуктора. Вместо стальных отрезков можно использовать цельнометаллическую трубку меньшего диаметра или стальной шнек.
  4. Палочки или стержни из текстолита, на которые будет наматываться индукционная катушка. Применение текстолита убережет трубу от нагретой катушки, поскольку данный материал устойчив к высоким температурам.
  5. Изолированный кабель сечением 1,5 мм2 и длиной 10-10,5 метров. Изоляция кабеля должна быть волокнистой, эмалевой, стекловолоконной или асбестовой.

Совет! Вместо стальной проволоки допускается использовать металлическую губку из нержавейки. Но перед покупкой их проверяют магнитом: если мочалка притягивается магнитом, то ее можно использовать в качестве нагревателя.

Индукционный котел отопления собирается по следующему алгоритму. Заполните корпус теплообменника изделиями из металла, о которых говорилось выше. На конце трубы, служащей корпусом, припаяйте переходники, подходящие по диаметру к трубам отопительного контура.

При необходимости, к переходникам можно припаять уголки. Также следует припаять муфты-американки. Благодаря им нагреватель будет легко демонтировать, для проведения ремонта или профилактического осмотра.

На следующем этапе на корпус теплообменника необходимо наклеить текстолитовые полоски, на которые будет наматываться катушка. Также следует сделать из того же текстолита пару стоек высотой 12-15 мм. На них будут расположены контакты для подключения нагревателя к переделанному инвертору.

Поверх полосок из текстолита намотайте катушку. Между витками должно быть расстояние не менее 3 мм. Намотка должна состоять из 90 витков проводника. Концы кабеля необходимо закрепить на ранее подготовленных стойках.

Вся конструкция помещается в кожух, который в целях безопасности будет выполнять роль изоляции. Для кожуха подойдет пластиковая труба диаметром большим, чем катушка. В защитном кожухе необходимо сделать 2 отверстия для вывода электрического кабеля. В торцы трубы можно установить заглушки, после чего в них следует проделать отверстия под патрубки. Через последние котел будет подсоединяться к отопительной магистрали.

Важно! Испытывать нагреватель можно лишь после заполнение его водой. Если включить его “на сухую”, то пластиковая труба расплавится, и придется собирать нагреватель заново.

Далее, котел врезается в систему отопления по схеме, приведенной ниже.

Схема подключения состоит из следующих элементов.

  1. Источник высокочастотного тока. В данном случае – это видоизмененный инвертор.
  2. Индукционный нагреватель.
  3. Элементы безопасности. В эту группу могут входить: термометр, предохранительный клапан, манометр и т.д.
  4. Шаровые краны. Используются для слива или заправки системы водой, а также для перекрытия подачи воды на определенном участке контура.
  5. Циркуляционный насос. Благодаря ему вода сможет двигаться по отопительной системе.
  6. Фильтр. Применяется для очистки теплоносителя от механических загрязнений. Благодаря очистке воды продлевается срок службы всего оборудования.
  7. Расширительный бачок мембранного типа. Применяется для компенсации теплового расширения воды.
  8. Радиатор отопления. Для индукционного отопления лучше использовать либо алюминиевые радиаторы, либо биметаллические, поскольку они при небольших габаритах имеют высокую теплоотдачу.
  9. Шланг, через который можно заполнять систему либо сливать из нее теплоноситель.

Как видно из вышеописанного метода, самостоятельно изготовить индукционный нагреватель вполне возможно. Но лучше покупного он не будет. Даже если вы обладаете необходимыми знаниями в электротехнике, следует задуматься, насколько будет безопасной эксплуатация такого аппарата, поскольку он не оборудован ни специальными датчиками, ни блоком контроля. Поэтому рекомендуется отдать предпочтение готовому оборудованию, изготовленному в заводских условиях.

как сделать своими руками, схемы и процесс установки

Индукционный нагреватель из сварочного инвертора представляет собой эффективный прибор с высоким КПД и несложным внутренним устройством. Устройства промышленного производства обойдутся достаточно дорого, поэтому самостоятельная сборка является неплохой альтернативой.

Описание самодельного индукционного нагревателя

Нагревательное оборудование, которое работает по принципу индукции, стремительно набирает популярность. Это обусловлено практически бесшумной работой, эффективным обогревом окружающего пространства и повышенной безопасностью в сравнении с топливными системами.

Индукционные нагреватели из сварочного инвертора отличаются 

высоким КПД и несложным внутренним устройством.

Устройство самоделки

Самодельный прибор состоит из таких частей:

  1. Нагревательного элемента. В его качестве используется трубка из металла или полимерных материалов, которая спрятана в индукторном компоненте и содержит теплоноситель.
  2. Альтернатора (генератора переменного ТВЧ). Устройство требуется для повышения частот бытовой сети. Оно делает их выше стандарта в 50 Гц.
  3. Индуктора. Представляет собой цилиндрическую катушку из проволоки, которая генерирует электромагнитное поле.

Сфера применения

Принцип индукции широко применяется в таких сферах человеческой деятельности:

  1. Металлургия. С помощью технологии производится плавка металлических заготовок.
  2. В бытовой сфере. С помощью нагревателей выполняется готовка пищи, нагрев воды или обогрев частных сооружений.
  3. В отдельных направлениях промышленности. Метод используется в работе индукционных печей быстрого разогрева.

Принцип работы индукционного нагревателя для металла

Под индуктором подразумевается катушка, изготовленная из медной проволоки, которая провоцирует магнитное поле. С помощью генератора переменного тока формируется высокочастотный поток из базового потока бытовой электросети с частотой 50 Гц. Роль нагревателя играет металлический элемент, поглощающий тепло. При правильном соединении таких составляющих получается эффективный прибор, который может использоваться для нагрева жидкого вещества и обогрева помещения.

Принцип работы нагревателя.

Генератор направляет электрический ток с соответствующими параметрами на катушку (индуктор). Когда сквозь деталь проходит поток заряженных частиц, это вызывает формирование магнитного поля.

Индукционные нагреватели работают по принципу образования электропотоков в проводниках. Магнитное поле может менять направление электромагнитных волн. В случае взаимодействия с металлическими изделиями, оно моментально нагревает их без контакта с индуктором. Этому способствуют вихревые токи.

Действительно ли можно сэкономить на индукционном нагреве

Популярность использования оборудования в быту обусловлена неплохой экономией электроэнергии. При установке на кухне плит, работающих по методу индукции, у владельца исчезает необходимость включения вентиляции, т.к. окружающее пространство практически не прогревается. Нагревательная поверхность не требует сложной очистки, поскольку она выполнена из стекла.

Из-за увеличенной скорости нагрева продолжительность работы системы сокращается, что тоже позволяет сэкономить на электричестве.

Преимущества самодельного устройства

Нагреватели имеют несколько важных достоинств. К ним относят следующие пункты:

  1. На поверхности агрегата не появляется накипь, поскольку при образовании вихревых токов происходит вибрация. Подобная особенность исключает дополнительные траты на очистку котлов.
  2. Теплогенератор отличается максимальной герметичностью, даже если он изготовлен своими руками. Вероятность протечек в котлах исключается, поскольку теплоноситель прогревается внутри трубы, а тепловая энергия передается посредством электромагнитного поля. В устройстве системы не предусмотрены разъемные соединения.
  3. Нагревательный прибор не нуждается в ремонте или обслуживании, поскольку он представляет собой трубку из меди. Для сравнения, спираль ТЭНа часто перегорает и требует замены.
  4. Во время работы инверторного оборудования отсутствует избыточный шум. При этом агрегат создает вибрации, но их частота настолько низкая, что они практически не ощущаются.
  5. Сборка и обслуживание системы не сопровождаются большими затратами. Это позволяет без особых сложностей и финансовых вложений соорудить обогревательный прибор в домашних условиях.

Недостатки нагревателя

Помимо положительных качеств, нагреватели индукционного типа имеют и недостатки. При размещении на небольшом расстоянии от оборудования можно получить ожоги, поскольку оно нагревает не только теплоноситель, но и окружающее пространство. В сравнении с газовыми котлами индукционные системы дороже в эксплуатации.

В число недостатков относится риск детонации из-за перегрева теплоносителя.

Проблема исключается путем монтажа датчика давления.

Что потребуется для изготовления своими руками

Для предстоящей сборки нагревателя из инверторного механизма потребуется подготовить:

  1. Корпус будущего агрегата. Его делают из полимерной трубы диаметром 50 мм, которая устойчива к нагреву.
  2. Нагревательный элемент. В качестве этой детали можно использовать проволоку из нержавеющего материала.
  3. Держатель для проволочных отрезков. Это металлическая сетка с небольшим сечением ячеек.
  4. Индукторная составляющая. Подойдет медная проволока.
  5. Система подачи жидкости. Для этих целей используется циркуляционный насос.

Кроме того, потребуется подготовить терморегулятор и элементы подключения к отопительному контуру, к которым относятся шаровые краны и переходники.

Схемы для изготовления нагревателя

Существуют готовые чертежи для сборки нагревательного оборудования. В зависимости от технических параметров и назначения устройства они различаются.

Классическая схема нагревателя функционирует по принципу «двойного полумоста», который оснащен 4 силовыми транзисторами и изолированным затвором. Для управления транзисторами используют микросхему IR2153.

Схема индукционного нагревателя.

Инструкция по изготовлению индукционного нагревателя

Чтобы осуществить переделку сварочного оборудования в индукционную печь, необходимо подготовить расходные детали и инструменты. Также важно подготовить чертежи и придерживаться инструкции по сборке.

Простое изделие на основе сварочного инвертора

Для изготовления простого, но эффективного нагревателя, можно использовать сварочный инвертор. Процесс изготовления достаточно простой:

  1. Для начала нужно взять толстостенную полимерную трубку.
  2. С торцевой части трубы стоит установить разводку и 2 вентиля, а внутрь засыпать куски стальной проволоки небольшого диаметра и размера (5 мм).
  3. Закрепить верхний вентиль.
  4. Выполнить 90 витков медной проволокой для сборки индуктора.

В качестве генератора используется сварочный аппарат, а роль нагревателя играет трубка с проволокой. Аппарат устанавливается в режим переменного тока с повышенной частотой.

Чтобы система работала корректно, останется подключить медную проволоку к плюсовому значению сварки и оценить работоспособность конструкции.

В процессе нагрева происходит излучение магнитного поля и прогревание проволоки вихревыми потоками. Это вызывает закипание жидкости.

Экспериментальная модель нагревателя мощностью 1600 Вт

Для сборки экспериментального оборудования мощностью 1,6 кВт потребуется подготовить металлическую трубу с толстыми стенками. Поскольку катушка без особых сложностей сможет прогреть любой материал, можно усовершенствовать нагреватель.

Корпус можно изготовить из пластиковой трубы, которая обладает большим диаметром, чем элемент системы отопления. Оптимальная длина изделия составляет 1 м, а внутреннее сечение – 50-80 мм.

Чтобы подключить нагреватель к оборудованию, потребуется закрепить переходники сверху и снизу корпуса. Нижняя секция закрывается решеткой, а затем внутрь корпуса помещают наполнитель из небольших металлических частиц.

Длина отрезков регулируется индивидуально без особых ограничений. При этом, чем выше показатель магнитного сопротивления стали, тем быстрее будет осуществляться нагрев.

Для обмотки подходит медный провод с изоляцией сечением 1-1,5 мм. Использование более толстой проволоки неоправданно, поскольку это усложнит плотное расположение витков.

Печь для нагрева металла

Из-за повышенной пожарной безопасности метод индукции применяется в металлургии. Собрать нагреватель для обработки металлических заготовок можно из подручных средств. Для предстоящих работ потребуется подготовить:

  1. 12-вольтный аккумулятор.
  2. Медную обмоточную проволоку.
  3. Пленочные конденсаторы.
  4. Транзисторы и диоды.
  5. Кольца блока питания от персонального компьютера.
Индукционная печь из сварочного инвертора.

Последующая сборка производится по такой инструкции:

  1. На радиаторы охлаждения устанавливаются транзисторы. Во время использования прибор интенсивно нагревается, поэтому лучше подготовить крупные радиаторы.
  2. Изготавливаются дроссели. Для их сборки применяют медную проволоку и кольца блока питания ПК. Важно следить, чтобы межвитковое расстояние оставалось идентичным на каждом отрезке.
  3. Собирается конденсаторная батарея. Емкость элемента питания должна составлять 4,7 мкФ.
  4. Изготавливается обмотка. Диаметр медной проволоки должен составлять 2 мм. Потребуется выполнить 8 витков, чтобы во внутреннем пространстве поместились все обрабатываемые детали.

На последнем этапе подключается аккумулятор. Ток регулируется во время изготовления печи. Для этого достаточно поменять количество витков.

Если планируется частая и интенсивная эксплуатация оборудования, лучше подготовить блок питания повышенной мощности.

Кроме того, следует предусмотреть систему отвода тепла и вентиляции, т.к. во время работы печь сильно нагревается.

Нагреватель для воды

Использование такого агрегата в частном доме позволит организовать бесперебойную подачу ГВС или обогрев помещения. Система расходует много электрической энергии, но обладает простой схемой сборки и отсутствием сложностей в обслуживании. Предстоящая сборка начинается с подготовки:

  1. Сварочного инвертора.
  2. Теплоизолятора (подойдет керамзит).
  3. Проволоки из меди и стали.
  4. Отрезка пластиковой трубы с толстыми стенками.
  5. Трубок разного диаметра.

На первом этапе начинается изготовление котла. Его можно соорудить из 2 трубок разного сечения, которые вставляются друг в друга с выдерживанием зазора 20-25 мм.

Дальше производится приваривание концов колец и подсоединение к общей системе отопления. Во внешнюю стенку нужно вварить выходную и входную трубки.

Затем изготавливается обмотка, которая в точности повторяет форму котла. Всего нужно выполнить 35-40 витков, соблюдая равное межвитковое расстояние.

На последнем этапе собирается защитный корпус, который делается из диэлектрического материала, и подключается инверторный аппарат и теплоноситель.

Правильно собранная конструкция сможет прослужить в течение 20-25 лет без ремонта и замены расходных деталей.

Особенности эксплуатации самоделки

При благополучной сборке индукционного устройства нужно научиться правильно его использовать. Каждая система представляет опасность, т.к. не умеет автоматически регулировать интенсивность нагрева теплоносителя. Проблема решается посредством некоторых доработок, которые сводятся к монтажу и подсоединению дополнительных механизмов.

Индукционная катушка

Рабочая катушка состоит из проволоки диаметром 3.3 мм. Рекомендуется изготавливать ее из медной трубы, в которую можно интегрировать примитивный контур охлаждения. В процессе работы катушка подвергается интенсивного нагреву. Поэтому нужно собирать ее из устойчивых к температурному воздействию материалов.

Индукционная катушка должна быть из материалов, устойчивых к температурному воздействию.

Модуль резонансного конденсатора

Для сборки резонансного конденсатора, который напоминает небольшую батарею, нужно использовать 23 небольших конденсатора. Емкость детали составит 2,3 мкФ. Допускается применение конденсаторов емкостью 100 нФ.

Такие типы не предназначаются для схемы индукционного нагревателя, но они хорошо справляются со своей задачей.

Установка индукционного нагревателя

Чтобы исключить перегрев индукционного нагревателя и деформацию трубы из пластика, нужно предусмотреть термостат и подключить его к системе аварийного отключения.

Специалисты применяют для таких целей терморегуляторы с реле и датчиками. Такие элементы умеют отключать цепь при нагреве теплоносителя до требуемой температуры.

Безопасность устройства

Для повышения безопасности самодельного нагревателя необходимо выполнить такие требования:

  1. Организовать качественную изоляцию. Все проводники и соединения нужно тщательно заизолировать, чтобы исключить риск получения удара током.
  2. Правильно выбрать отопительную систему. Индукционные системы не подходят для совместного использования с оборудованием, которое применяет принцип естественной циркуляции воды. Для этих систем нужен водяной насос.
  3. Выбрать подходящее размещение устройства. Прибор должен находиться на расстоянии от 40 см от стен и предметов интерьера, и на расстоянии от 80 см от потолка или напольного покрытия.
  4. Установить регулировочные клапаны и манометры. Такие средства безопасности защитят оборудование от скачков давления. Кроме того, нужно предусмотреть систему стравливания воздуха.

Полезное видео по созданию нагревателя индукционного типа

В предложенных видео подробно описан принцип работы устройств индукционного типа. Также в ролике можно посмотреть особенности самостоятельной сборки агрегата.

Дополнительные советы по изготовлению

При изготовлении системы необходимо изолировать открытые элементы для повышения безопасности. Рекомендуется предусмотреть автоматическую систему управления системой и подключать прибор к электрической сети с помощью подходящих переходников. Такие действия повысят безопасность нагревателя и продлят срок его службы.

Инвертор для индукционного нагрева: переделка из инвертоного аппарата своими руками,

Индукционный нагрев – это высокотехнологичный процесс обработки электропроводящих материалов, в основе которого лежит воздействие высокотемпературное воздействие переменным электромагнитным полем проводника. Инвертор для индукционного нагрева может быть полезен во многих сферах металлообрабатывающей промышленности.

Сварочные работы, пайка металла, кузнечное дело, закалка, печи ТВЧ, термообработка – далеко не весь список работ, использующих индукционный нагрев. Технология отличается высокой скоростью работы и отличным показателем КПД. В случае необходимости всю технологическую цепочку можно автоматизировать.

Методы индукционного развития начали применяться в промышленности с начала ХХ века, однако толчком к развитию технологии послужила Вторая мировая война, которая вынудила ученых начать поиск дешевых и надежных способов обработки металла.

Принцип работы

Основная задача индуктора – использование тепловой энергии, которая образовывается под действием электрической энергии, индуцируемой переменным магнитным полем. Конструкция простейшего индуктора включает в себя всего три элемента:

  • генератор переменного тока,
  • катушка-индуктор,
  • нагревательный элемент.

Катушка-индуктор, как правило, выполнена в виде медной катушки, внутрь которой помещают обрабатываемую заготовку. Когда через катушку проходит переменный ток, заготовка подвергается мощному температурному воздействию. В данном случае заготовка играет роль вторичной обмотки трансформатора, тогда как индуктор – первичной.

Электромагнитное поле создает в детали вихревые токи, которые имеют направление, обратное электрическому сопротивлению металла. Таким образом, тепловое воздействие на металл оказывается без непосредственного контакта между заготовкой и индуктором.

Поскольку количественная мера теплового действия электрического тока рассчитывается по закону Джоуля-Ленца, эффект индуктивного нагрева получил название «Закон Джоуля».

Преимущества

Как было сказано выше, преимущества технологии индукционного нагрева обеспечили ее стремительное распространение. Общепризнанными достоинствами данного метода являются:

  1. Производительность. Подготовку к запуску аппарата и нагрев детали можно выполнить за короткий промежуток времени. Данное обстоятельство повышает производительность выполняемых работ, по сравнению с прочими методами нагрева, которые требуют длительного времени на достижение рабочей температуры.
  2. Качество. Промышленное применение характеризуется минимальным количеством брака. Эффект достигается благодаря направленному действию тепловой энергии. Для повышения качества готового изделия применяют специальные вакуумные камеры, которые исключают агрессивное воздействие атмосферного воздуха.
  3. Энергетическая эффективность. Высокая скорость работы позволяет экономить электроэнергию – нагрев поверхности происходит практически мгновенно, что отражается на себестоимости продукции.
  4. Автоматизация. Современное оборудование оснащают программно-вычислительными комплексами, которые позволяют добиться точных результатов работы.
  5. Экологичность. Технологический процесс не несет угрозы окружающей среде – отсутствуют токсичные выбросы в атмосферу либо другие вредные факторы.

Сборка и монтаж системы

В первую очередь следует определиться с сферой использования будущего устройства. Требования к простому лабораторному инвертору для индукционного нагрева и прибору для обогрева домашнего помещения, будут отличаться.

Печь для металла

Среди прочих положительных качеств метода следует отметить высокий уровень пожарной безопасности, а также простоту конструкции – сборку индукционного нагревателя своими руками из сварочного инвертора может выполнить специалист средней квалификации, разумеется, при условии наличия рабочей схемы.

Конструкция индукционной печи не отличается особой сложностью.  Для сборки устройства понадобятся:

  • аккумулятор на 12 В,
  • обмоточный медный провод,
  • конденсаторы пленочного типа,
  • диоды,
  • полевые транзисторы,
  • радиаторы,
  • кольца блока питания ПК.

Данный список указывает, что изготовление устройства не потребует значительных финансовых растрат. Алгоритм сборки выглядит следующим образом:

  1. Установка транзисторов на радиаторы охлаждения. В процессе эксплуатации устройство подвергается температурному воздействию, а потому следует использовать радиаторы большого размера.
  2. Изготовление дросселей. Для этого понадобится медная проволока и кольца от блока питания ПК. Следите за межвитковым расстоянием – оно должно быть одинаковым.

Важно. Кольца можно заменить любым изделием, в состав которого входит ферромагнитное железо.

  1. Сборка конденсаторной батареи. Общая емкость батареи, при последовательном соединении, должна составлять 4,7 мкФ.
  2. Изготовление обмотки. Оптимальная толщина медной проволоки – 2 мм. Необходимо создать 8 витков таким образом, чтобы внутреннее пространство могло вместить в себя обрабатываемые элементы. Не забудьте про концы для подключения к источнику питания.
  3. Подключаем аккумулятор.

Регулировку тока проводят на этапе сборки печи – путем изменения количества витков. Для серьезных работ потребуется источник питания большой мощности. Не забывайте про систему вентиляции и отвода тепла, поскольку в процессе эксплуатации печь разогревается достаточно сильно. Точное следование инструкции защитит от возможных переделок или доработок устройства

Нагреватель для воды

Установка такого оборудования в частном доме поможет решить проблему с обогревом помещения или обеспечением горячей водой. Не смотря на высокий расход электроэнергии, подобные аппараты пользуются популярностью, ввиду своей простоты и отсутствием хлопот с согласованием проекта.

Для сборки эффективного нагревателя необходимо приготовить следующие материалы:

  • сварочный инвертор,
  • керамзит или другой теплоизоляционный материал,
  • медная проволока,
  • стальная проволока,
  • толстостенная пластиковая труба,
  • трубки разного диаметра.

В основе действия устройства положен принцип индукционного нагрева теплоносителя.

Последовательность сборки котла следующая:

  1. Изготовления котла. Для этого подбирают две трубки с разным диаметром, которые вставляются друг в друга, с зазором 20-25 мм. Размер трубок подбирается индивидуально, в зависимости от требуемой мощности нагревателя. Увеличение длины ведет к повышению мощности. Затем вырезаются два кольца, с соблюдением величины зазора между трубами. Полученный резервуар имеет тороидальную форму
  2. Привариваем концы колец. Обращайте внимание на герметичность соединения.
  3. Делаем подключение к системе отопления. В наружную стенку вваривают входную и выходную трубы. Обратите внимание, что вход должен располагаться сверху, а выход снизу. Трубы должны идти по касательной к корпусу. Их диаметр должен соответствовать используемой системе отопления.
  4. Изготавливаем обмотку. Она должна повторять форму котла. Необходимо сделать 35-40 витков, с соблюдением равного межвиткового расстояния. Такое количество обеспечит достаточную производительность.
  5. Делаем защитный корпус. Он должен быть выполнен из диэлектрического материала, например, пластика. Диаметр защитного корпуса должен обеспечивать боковой вывод патрубков. Пространство между котлом и защитным корпусом необходимо заполнить теплоизоляционным материалом, во избежание потерь тепла.
  6. Подключаем инверторный аппарат и теплоноситель. Котел готов к эксплуатации.

Данная конструкция отличается автономностью. Она способная проработать 20-25 лет без постороннего вмешательства. Отсутствие подшипников и прочих подвижных элементов обеспечивают надежность устройства.

Несколько слов о безопасности

Индукционный нагреватель из сварочного инвертора, как и любое другое самодельное устройство, может представлять опасность для окружающих. Для обеспечения защиты необходимо соблюдать некоторые правила:

  1. Тщательная изоляция. Все токопроводящие элементы и соединения должны быть заизолированы, во избежание поражения током.
  2. Выбор системы отопления. Индукционный нагреватель запрещено использовать в отопительных системах с естественной циркуляцией воды. Применение допустимо только при наличии водяного насоса.
  3. Грамотное расположение. Рекомендуемое расстояние до деталей интерьера и стен – не менее 40 см, а до пола или потолка – не менее 80 см.
  4. Приборы безопасности. Регулировочный клапан и манометр защитят систему от перепадов давления. Также следует предусмотреть механизм стравливания воздуха из системы.

Заключение

Котлы и нагреватели индукционного типа отличаются высоким КПД, поскольку вся используемая электроэнергия преобразуется в тепло. Перед самостоятельным изготовлением какого-либо устройства настоятельно рекомендуем внимательно изучить схему и проанализировать условия работ. Это позволит избежать ошибок на стадии подготовки.

Электромонтер 6-го разряда Пантелеев Сергей Борисович, опыт работы – 17 лет: «Для обогрева своего дома я выбрал совсем простую схему индукционного обогрева. Сначала выбрал участок трубы и зачистил его. Сделал изоляцию из электротехнической ткани и индукционную катушку из медной проволоки. После изоляции системы подключил инвертор. Единственный недостаток этой схемы – электромагнитное поле, которое неблагоприятно действует на организм. Поэтому аппарат пришлось ставить в котельной, где люди появляются редко».

Загрузка…

Индукционный нагреватель из сварочного инвертора

Нагревательные системы стали более совершенными, благодаря индукционным катушкам, сменившим традиционные ТЭНы. У них существенно возрос КПД, а энергопотребление, наоборот, снизилось. Эти устройства еще не нашли широкого применения, в основном из-за высокой стоимости. Используя подручные материалы, домашние мастера конструируют индукционный нагреватель из сварочного инвертора не только для систем отопления, но и для разогрева металлических заготовок перед их обработкой.

Принцип действия

Теоретические разработки в области индукционных средств нагрева долгое время не могли найти практического применения, так как низкая частота не давала нужного эффекта. Существенные сдвиги появились после того как разрешилась проблема относительно выработки высокочастотных магнитных полей. После этого появилась реальная возможность применения индукционных элементах в нагревательных системах.

Конструкция типового устройства состоит из следующих деталей:

  • Генератор тока. Выполняет преобразование напряжения домашней сети в высокочастотный электрический ток.
  • Индуктор. Представляет собой катушку, изготовленную из медной проволоки, в которой, под действием тока образуется магнитное поле.
  • Нагревательный элемент. Как правило, это отрезок металлической трубы, помещенный внутрь индуктора. Он нагревается сам и передает тепловую энергию в систему отопления.

Все эти компоненты находятся в тесном взаимодействии между собой. Ток высокой частоты, вырабатываемый генератором, попадает на индукционную катушку и превращается в электромагнитное поле. Вихревые потоки, возникающие в катушке, воздействуют на металлическую трубу, помещенную внутри, и разогревают ее. Вода, используемая в качестве теплоносителя, проходит через нагревательный элемент, нагревается и переносит тепловую энергию во всю систему отопления. Одновременно вода охлаждает нагревательный элемент, продлевая срок его эксплуатации.

Устройство самодельного нагревателя

Классическое индукционное устройство рекомендуется рассматривать на примере конструкции водонагревателя отопительной системы. Подобные схемы чаще всего используются на дачах и в загородных домах. Изготовление прибора начинается с индуктора. Для этого медную проволоку нужно намотать в один ряд, придав ей изначально цилиндрическую форму. Каждый виток изолируется от соседнего, исключая контакты между ними.

Количество витков, обеспечивающее нормальную работоспособность, составляет в среднем 80-100. Медные проводники могут иметь разное сечение – от 2,5 до 4 мм2. Сердечником служит сама отопительная труба, но на практике данный вариант не дает нужного эффекта.

Поэтому, чтобы сделать нагрев теплоносителя более интенсивным, рекомендуется воспользоваться пластиковой трубой определенной длины. Ее внутреннее пространство заполняется стальной проволокой Д 5-6 мм, разрезанной на короткие части. В этом случае, за счет индукции начинает нагреваться проволока, обтекаемая водой. Площадь теплообмена существенно увеличивается, и теплоноситель нагревается намного быстрее. Для того чтобы обрезки проволоки не смыло водным потоком, концы участка трубы ограничиваются защитой из стальных сеток.

Соединение индуктора и инвертора может быть выполнена разными способами. Некоторые специалисты изготавливают дополнительный промежуточный трансформатор. Затем к его вторичной обмотке подключается индуктор вместе с конденсатором. В другом варианте на тороидальный трансформатор высокой частоты, имеющийся в инверторе, наматывается медный провод в количестве одного витка. Далее, к нему напрямую подключается индуктор.

Во всех случаях нельзя пользоваться плюсовой и минусовой клеммами инвертора, предназначенными для сварки. На выходе у них выпрямленное напряжение, которое сопровождают пульсации высокой частоты. Под его воздействием рабочее магнитное поле не появится, а индуктор перегреется и сгорит. Инвертор придется переделывать, что само по себе достаточно сложно, поскольку будут нужны знания и навыки работы с радиоэлектронными схемами.

Свойства электромагнитной индукции применяются не только в системах отопления. Данное явление успешно используется в конструировании нагревательных печей, предназначенных для работы со всеми видами металлов.

Чтобы изготовить индукционный нагреватель из сварочного инвертора, необходимо в первую очередь запастись следующими компонентами:

  • Сварочный инвертор. Желательно, чтобы он был оборудован функцией, позволяющей плавно регулировать ток.
  • Медная трубка. Ее диаметр составляет примерно 8 мм, а длина должна быть достаточной для семи витков, наматываемых на шаблон диаметром 40-50 мм. Длина свободных концов трубки после намотки остается примерно по 25 см.

Сборка конструкции осуществляется в следующем порядке:

  • Подбирается шаблон для намотки подходящего размера, диаметром 4-5 см. Лучше всего воспользоваться металлическими или пластиковыми трубами, или круглыми деревянными заготовками.
  • Один из концов медной трубки заклепывается молотком.
  • Далее трубка как можно плотнее заполняется сухим песком, после чего ее нужно заклепать со второго конца. Песок предотвратит возможные изломы трубки во время скручивания.
  • Трубка наматывается на шаблон в количестве 7 витков, затем ее концы отпиливаются, а песок высыпается.
  • Полученную конструкцию необходимо соединить с инвертором, подвергшемся предварительной переделке.
  • Если работа индукционной печи рассчитана на продолжительное время, к трубке индуктора рекомендуется сделать подводку водяного охлаждения.

Особенности эксплуатации

Самодельная сборка нагревателя – это лишь половина дела. Не менее важное значение имеет правильная эксплуатация получившейся конструкции. Изначально, каждый такой прибор представляет определенную опасность, поскольку он не способен самостоятельно контролировать уровень нагрева теплоносителя. В связи с этим, каждому нагревателю требуется определенная доработка, то есть установка и подключение дополнительных контрольных и автоматических устройств.

В первую очередь выход трубы оборудуется стандартным набором устройств, обеспечивающих безопасность – предохранительным клапаном, манометром и приспособлением для отвода воздуха. Следует помнить, что индукционные водонагреватели будут нормально работать лишь при наличии принудительной циркуляции воды. Самотечная схема очень быстро приведет к перегреву элемента и разрушению пластиковой трубы.

Во избежание подобных ситуаций, в нагревателе устанавливается термостат, подсоединенный к устройству аварийного отключения. Опытные электротехники используют для этих целей терморегуляторы с температурными датчиками и реле, отключающие цепь при достижении теплоносителем заданной температуры.

Самодельные конструкции отличаются довольно низкой эффективностью, поскольку вместо свободного прохода, на пути воды имеется препятствие в виде частиц проволоки. Они почти полностью перекрывают трубу, вызывая повышенное гидравлическое сопротивление. При нештатных ситуациях возможны повреждения и разрыв пластика, после чего горячая вода непременно приведет к короткому замыканию. Обычно такие нагреватели используются в небольших помещениях, в качестве дополнительной системы отопления в холодное время года.

Индукционный нагреватель металла. Принцип работы

Технология индукционного нагрева заготовок востребована не только в цехах горячей объёмной штамповки. Компактные индукторы необходимы, в частности, для автосервиса, занимающегося изготовлением и ремонтом стальных деталей из профилированного проката. Приобретать промышленный индуктор дорого. Есть ли альтернатива?

Как работает индукционный нагреватель?

Для реализации процесса индукционного нагрева используется известный физический принцип, когда для деформирования в горячем состоянии заготовку размещают в магнитном поле кольцеобразного индуктора. Питание такой катушки производится электрическим переменным током частоты, резко выше, чем обычная (50 или 60 Гц).

Принцип работы индукционного нагревателя следующий. Создаваемые в электромагнитном поле вихревые токи (у них есть и другое название – токи Фуко) производят нагрев металла. Непосредственное соприкосновение заготовки и нагревательного элемента не обязательно, важно только, чтобы индуктор равномерно охватывал нагреваемую поверхность металла. Используя трансформатор, установка подключается к генератору, который обеспечивает требующиеся значения мощности и частоты.

Индукционным нагревом можно обеспечить сравнительно быстрое повышение температуры поверхностных слоёв. В частности, для нагревания прутковой заготовки сечением 35…40 мм и длиной 140….150 мм потребуется около 20…25 с.

Примерные диапазоны соответствия наилучшей частоты тока и поперечного сечения круглого прутка приведены в таблице.

Диаметр, мм20…4040…6060…8080…100100…120
Частота, кГц100…4040…1010…44…11…0,5

Для полосового металла применять индукционный нагрев менее выгодно, чем для круглого прутка, поскольку расстояние между внутренним диаметром катушки и металлом непостоянно.

Обычно применяется частота от 10 кГц, тогда КПД индукционного нагревателя достигает максимума. Частота регулируется в зависимости от:

  • требуемой производительности нагрева;
  • температуры нагреваемого металла;
  • размеров поперечного сечения.

Конструкции промышленных индукторов снабжаются устройствами для автоматической загрузки-выгрузки нагретых заготовок. Это необходимо потому, чтобы интервал между нагревом и пластическим деформированием металла был минимальным.

Время нагрева стальных заготовок невелико: для сечения 20 мм оно составляет всего 10 с, поэтому потери металла в окалину незначительны.

Индукционный нагреватель своими руками

Известен ряд конструкций индукторов, изготовленных из сварочного инвертора, принцип действия которых может быть использован для наведения в металле вихревых токов Фуко.

Изготовление самодельного индуктора заключается в следующем. Вначале потребуется изготовить прочный корпус, в котором будет находиться узел крепления нагреваемой заготовки. Корпус необходимо подвергнуть закалке, чтобы он не деформировался под воздействием возможных ударов. Ещё лучше, если материал подвергнуть азотированию: в этом случае реализуются два преимущества —  дополнительное увеличение твердости за счет более полного превращения остаточного аустенита в мартенсит, и улучшение скин-эффекта, когда по внешней стороне заготовки будет протекать более мощный ток. Прочность оценивается по пробе на искру.

Следующей стадией является изготовление нагревающей катушки. Её делают из индивидуально изолированных проводов: в этом случае потери мощности будут минимальными. Подойдёт и медная трубка – она имеет  большую площадь поверхности, по которой будут наводиться вихревые токи, при этом собственный нагрев индуктора из-за высокой электропроводности меди практически отсутствует.

После подключения катушки к системе водяного охлаждения и проверки системы прокачки индуктор готов к работе.

Рабочая схема

В состав нагревателя входят следующие составляющие:

  1. Инверторный блок, рассчитанный на напряжение 220…240 В, при токе не менее 10 А.
  2. Трёхпроводная кабельная линия (один провод – заземляющий) с нормально разомкнутым переключателем.
  3. Система водяного охлаждения (крайне желательно использовать очистные фильтры для воды).
  4. Набор катушек, отличающихся внутренними диаметрами и длиной (при ограниченных объёмах работ можно обойтись и одной катушкой).
  5. Нагревающий блок (можно применить модуль на силовых транзисторах, которые выпускаются китайскими фирмами Infineon или  IGBT).
  6. Демпферная цепь с несколькими конденсаторами Semikron.

Генератор высокочастотных колебаний принимается тот же, что и у базового инвертора. Важно, чтобы его эксплуатационные характеристики полностью соответствовали тем, которые указаны в предыдущих разделах.

После сборки блок заземляется, и с помощью соединительных кабелей нагревательная индукционная катушка присоединяется к блоку питания инвертора.

Примерные эксплуатационные возможности самодельного индукционного нагревателя металла:

  • Наибольшая температура нагрева, °С – 800.
  • Минимальная мощность инвертора – 2 кВА.
  • Продолжительность включения ПВ, не менее – 80.
  • Рабочая частота, кГц (регулируемая) — 1,0…5,0.
  • Внутренний диаметр катушки, мм – 50.

Следует отметить, что такой индуктор потребует специально подготовленного рабочего места – бака для отработанной воды, насоса, надёжного заземления.

Схема индукционного нагревателя. Как изготовить простой индукционный нагреватель своими руками

Индукционный нагреватель – это высокая стадия эволюции электроприборов. Благодаря такому устройству можно значительно экономить потребление энергии. Тепловой генератор, используемый в этом приборе, совершенно безвреден, при работе не выделяет копоти. Например, по эффективности преобразования электрической энергии в тепловую отопительный котел (схема индукционного нагревателя приведена ниже) уступает лишь инфракрасному обогревателю. Однако в отличие от ИК-приборов, которые продаются лишь в специализированных магазинах, индукционные нагреватели можно не только купить, но и собрать своими руками.

Такие устройства бывают нескольких уровней сложности и назначения, например, для воды и металла. Их устройства, конечно, отличаются, однако принцип работы идентичный. На фото ниже изображена схема индукционного нагревателя металла, по ней достаточно легко собрать данный прибор.

Итак, в этой статье мы рассмотрим процесс сборки индукционного нагревателя из подручных средств, которые можно найти в «закромах» любого домашнего мастера.

Как работает индукционный нагреватель, сделанный своими руками?

Принцип работы самодельного нагревателя ничем не отличается от заводского прибора. То есть теплоноситель циркулирует в сердечнике, нагреваясь от его стенок или содержимого. Он разогревается благодаря вихревым токам, генерируемым обмоткой.

Важно: полимерные сердечники набивают рубленой проволокой!

В свою очередь, обмотка накручивается на тело сердечника и замыкается на источник тока высокой частоты. Именно такая энергия способна сгенерировать переменное электромагнитное поле – первопричину появления вихревых токов в неподвижном сердечнике (или его наполнителе).

Схема индукционного нагревателя воды, представленная ниже, часто используется в отопительных котлах.

В роли источника высокочастотного переменного тока может выступать обычный сварочный инвертор или более сложная система на основе трансформатора и частотного преобразователя.

Необходимо отметить, что при правильном подходе к выбору источника и формированию обмотки можно создать действительно эффективный прибор, который будет работать не хуже заводского аналога. Кстати, в его комплекте всегда есть инструкция и схема индукционного нагревателя.

Своими руками собираем индукционный прибор: важные детали

Для сбора такого нагревателя понадобятся:

  • инвертор сварочный;
  • генерирующий сварочный ток силой не менее 15 ампер, с высокочастотным типом и с плавной регулировкой.

Именно этот прибор будет источником переменного электрического тока высокой частоты, питающего индуктор.

После этого необходимо взять медную проволоку. Намотать ее пружиной на корпус сердечника. Это устройство будет выполнять роль индуктора. Очень важно контакты проволоки соединить с клеммами инвертора, избегая спаек и скруток. Исходя из этого, отрезок данного материала, используемый для формирования сердечника, должен иметь достаточную длину. Количество витков обычно равно 50, а диаметр проволоки, как правило, равен 3 мм. Схема индукционного нагревателя показывает последовательность соединения отдельных составляющих.

Делаем сердечник

В роли сердечника выступает обычная полимерная труба, изготовленная из сшитого полиэтилена или полипропилена. Эти сорта пластмасс выдерживают максимально высокую температуру. Пропускной диаметр трубы-сердечника должен равняться 50 мм, а толщина стенок не может быть меньше 2,5-3 мм. Тогда эту деталь можно использовать в роли калибра, на который навивают медную проволоку, формируя индуктор.

Приблизительная схема индукционного нагревателя отображена на этой картинке.

Нагревательным элементом такого котла будет наполнитель полимерного сердечника – рубленые отрезки нержавеющей проволоки диаметром 7 мм. Причем длина их не может быть менее 5 см.

Сборка устройства на примере отопительного индукционного котла

Сам процесс сборки всех этих компонентов в единую систему выглядит следующим образом:

  • Вначале берете отрезок полимерной трубы, фиксируете его и наматываете поверх будущего сердечника 50 витков 3-миллиметровой медной проволоки.
  • Далее обрезаете торцы сердечника, оставляя по 7-10 см от края проволоки на отводы.

Важно: Схема индукционного нагревателя своими руками выполняется в несколько этапов, последовательность которых нарушать ни в коем случае нельзя. Во избежание ошибок необходимо в точности следовать инструкции.

  • На следующем этапе монтируете на нижнем отводе уголок. Причем боковое ответвление этого фитинга будет использовано в роли патрубка для обратки разводки системы. Причем на сгоне нужно установить шаровой вентиль, перекрыв который можно демонтировать сердечник без слива теплоносителя.
  • После установки нижнего фитинга заполняете сердечник рубленой проволокой, стараясь уложить ее максимально плотно. Ведь в роли водонагревателя выступает именно она.
  • Далее монтируете на верхнем патрубке тройник. Этот фитинг используют для отвода разогретого теплоносителя в напорный контур разводки. Причем отвод можно реализовать и по верхнему, и по боковому ответвлению, используя свободный патрубок тройника под монтаж предохранительного клапана. И разумеется, подключение тройника к напорной ветви разводки реализуется посредством шарового вентиля.
  • После этого можно смонтировать всю конструкцию в корпусе (металлическом или полимерном шкафу), установив в его нижней части сварочный инвертор. Причем для доступа к панели управления инвертором в корпусе шкафа вырезают особое окно.
  • Перепроверяете, соответствует ли схема индукционного нагревателя источнику.
  • Если все подключено правильно, то в финале нужно прикрепить проволоку на клеммы инвертора и залить воду в сердечник.

Безопасность индукторных нагревателей: советы профессионалов

Изготавливая индукционный нагреватель собственными руками, необходимо побеспокоиться о безопасности устройства. Для этого требуется руководствоваться следующими правилами, повышающими уровень надежности общей системы:

  1. В верхний тройник стоит врезать предохранительный клапан, стравливающий лишнее давление. Иначе при выходе из строя циркуляционного насоса сердечник попросту лопнет под воздействием пара. Как правило, схема простого индукционного нагревателя предусматривает такие моменты.
  2. Инвертор включается в сеть только через УЗО. Это устройство срабатывает в критических ситуациях и поможет избежать короткого замыкания.
  3. Сварочный инвертор нужно заземлить, выводя кабель на особый металлический контур, смонтированный в грунте за стенами сооружения.
  4. Корпус индукционного нагревателя нужно размещать на высоте 80 см над уровнем пола. Причем расстояние до потолка должно быть не менее 70 см, а до других предметов меблировки – более 30 см.
  5. Индукционный нагреватель – это источник очень сильного электромагнитного поля, поэтому такую установку нужно держать подальше от жилых помещений и вольеров с домашними животными.

Подведение итогов

Индукционный нагреватель, изготовленный своими руками, будет работать не хуже заводского прибора. Он не уступает в производительности, эффективности и безопасности, конечно же, если были соблюдены все правила.

Самодельный индукционный нагреватель в системе водяного отопления, схема инвертора напряжения

Идея создания системы электрического отопления жилого помещения у меня возникла вместе с закладкой фундамента для небольшого индивидуального дома.

Используя систему водяного отопления с газовым котлом, мы получаем экономическую выгоду по сравнению с электрическим отоплением, и это всем понятно. Но что делать, если вблизи пока нет газовой магистрали, а пользоваться газовыми баллонами небезопасно?

Вот и появилась идея сконструировать под каждым окном в доме индивидуальный водяной котел (или батарею отопления, как угодно!), вода в котором нагревается электричеством, но без применения ТЭНов и электролизных нагревателей.

Было принято решение в качестве нагревательного элемента для воды использовать вихревой индукционный нагреватель (ВИН). Принцип работы и описание различных вариантов индукционных нагревателей подробно описан в сети Интернет и других источниках информации.

Принцип действия и устройство

В вихревом ультразвуковом нагревателе используется принцип электромагнитной индукции. При прохождении электрического переменного тока высокой частоты в индукционной катушке возникает магнитное поле.

В качестве сердечника катушки используется металлический сердечник из ферромагнитного материала (в простейшем случае — стальная труба), внутри которой находится нагреваемая жидкость (вода). Вихревыми токами Фуко нагревается металлическая труба, по которой протекает вода.

В данном случае, в качестве “оконечного устройства”использована замкнутая система, состоящая из двух или трех отрезков толстостенных стальных труб, в которых циркулирует вода.

Нагревательным элементом (если можно его так назвать!) служит катушка медного провода в изоляции, которая содержит около 60 витков на стальной трубе, диаметром около 50 миллиметров.

На трубу сначала наматывается теплостойкая изоляция (в данном случае, лента ФУМ или стеклоткань), а затем — однослойная катушка.

Меня больше всего интересовал сам источник электроэнергии, от которого будет питаться вихревой нагреватель, т.к. различных конструктивных вариантов “вихревых нагревателей” в Интернете описано большое количество!

Правда, заниматься экспериментами с изготовлением тороидальных и других видов нагревателей не было времени, и за основу было взято описание небольшой автономной самодельной батареи отопления, где в качестве нагревателя использован ТЭН. Вместо ТЭНа был вмонтирован индукционный нагреватель, и вопрос был решен!

Оставалось самое главное: “Чем нагреть воду в трубе?”. “Порывшись в Интернете”, было выбрано несколько принципиальных схем преобразователей напряжения инверторного типа.

Сначала выбор остановили на инверторе Кухтецкого [1], но отсутствие в наличии высоковольтных “мосфетов” в нашем творческом объединении и в моих “личных запасах” приостановило изготовление данного аппарата.

Идея изготовить инвертор Кухтецкого, обладающий очень неплохими техническими характеристиками при его относительно не сложной схеме, будет обязательно осуществлена на занятиях нашего творческого объединения! (Думаем, изготовив его, подарить автомодельной лаборатории, которая очень нуждается в аппарате для плавки металла при изготовлении самодельных деталей для автомоделей!).

Принципиальная схема преобразователя напряжения

В качестве преобразователя был изготовлен инвертор, который работает на низковольтных полевых транзисторах от мощного источника постоянного тока 12 В. Во время работ по регулировке аппарата применялся кислотный аккумулятор от легкового автомобиля.

Первые включения прибора производились от напряжения 6 В (использовались не все“банки” аккумулятора). Задающий генератор на микросхеме TL494 был подключен к маломощному регулируемому источнику питания от 0 до 15 В. Затем для его питания использовали компьютерный блок питания.

На первом этапе необходимо было обеспечить устойчивую генерацию выходного сигнала генератора. Вопрос о том, что при пониженном питании инвертора не обеспечивается оптимальное согласование выходного трансформатора и т.д., рассчитанного на питание от 12 В, не стоял!

О форме выходных импульсов во время предварительных испытаний инвертора мы просто не думали! Важно было получить одинаковую форму и амплитуду на выходах TL494 и транзисторах драйверов.

Большого опыта работы с силовой электроникой ни у меня, ни у моих воспитанников не было, поэтому мы “осторожничали, чтобы не наделать проблем” с выходными транзисторами и трансформаторами. За основу преобразователя была выбрана принципиальная схема инвертора [2], см. рис. 1. В качестве транзисторов драйверов применялись отечественные кремниевые транзисторы КТ816 и другие, аналогичные по параметрам.

Рис. 1. Принципиальная схема инвертора.

Усиленные прямоугольные импульсы формы “меандр” через ограничивающие резисторы поступают на затворы мощных (MOSFET) полевых транзисторов IRF.

Мощный двухтактный выходной каскад на полевых транзисторах усиливает прямоугольные импульсы до необходимого уровня. Нагрузкой выходного каскада является импульсный выходной трансформатор на ферритовом сердечнике.

В каждом плече выходного каскада в нашем случае использовалось не более двух транзисторов. Когда добавляли транзисторы, напряжение (входное) на затворах мосфетов уменьшалось, соответственно выходная мощность оставалась на уровне примерно 200…300 Вт.

Возможностей подбирать идентичные пары транзисторов драйверов, как и выходных полевых транзисторов, в наших условиях (ввиду отсутствия финансовой поддержки и т.д.) не представляется возможным, поэтому мы остановились на “достигнутых результатах!”.

Выходной трансформатор был использован самодельный. Сердечники — от компьютерных блоков питания. Трансформаторы из БП предварительно были хорошо “прокипячены в воде” (чтобы аккуратно разобрать трансформаторы!). Каркасы использованы от тех же трансформаторов.

Для экспериментов изготовили несколько трансформаторов с различным числом витков первичной и вторичной обмоток. Первичная обмотка состояла из двух половинок по 5…10 витков ленты, изготовленной из одножильного медного провода диаметром каждой жилы около 0,5 мм, а вторичная — “до полного заполнения” каркаса одножильным проводом.

В результате получился трансформатор, на выходе которого присутствовало напряжение около 170… 190 В! Под нагрузкой напряжение понижалось до 150.. .160 В.

Этого напряжения и мощности оказалось достаточно, чтобы вихревой индукционный нагреватель выполнял свою основную функцию — нагревал воду в трубе до 80…90 градусов. Ввиду небольшой протяженности нагревателя (системы труб), дополнительный насос для перемещения воды в трубе не понадобился.

После изготовления и настройки инвертора был изготовлен мощный блок питания от сети переменного тока, представляющий обычный, мостовой двухполупериодный выпрямитель с выходным напряжением около 12 В постоянного тока. Определенной проблемой для нас было приобретение мощного, понижающего трансформатора.

Ведутся работы по усовершенствованию инвертора. Рабочий образец инвертора вихревого индукционного нагревателя (см. рис. 2-3) экспонировался на региональной выставке “Дети. Техника. Творчество” в городе Белгород и занял второе место среди экспонатов в своем разделе.

Творческое объединение “Основы современной любительской радиосвязи и радиоконструирования” ЦТТ и ПО Старый Оскол.

Ю. Белобородов, г. Старый Оскол. РМ-11-17.

Принципиальная схема

, работа и применение

Принцип индукционного нагрева используется в производственных процессах с 1920-х годов. Как уже было сказано, необходимость — мать изобретений, во время Второй мировой войны необходимость в быстром процессе упрочнения деталей металлического двигателя привела к быстрому развитию технологии индукционного нагрева. Сегодня мы видим применение этой технологии в наших повседневных потребностях. В последнее время потребность в улучшенном контроле качества и безопасных производственных технологиях снова привлекла внимание к этой технологии.С помощью современных передовых технологий внедряются новые и надежные методы реализации индукционного нагрева.


Что такое индукционный нагрев?

Принцип работы процесса индукционного нагрева представляет собой комбинированный рецепт электромагнитной индукции и джоулева нагрева. Индукционный нагрев — это бесконтактный процесс нагрева электропроводящего металла путем создания в нем вихревых токов с использованием принципа электромагнитной индукции.Поскольку генерируемый вихревой ток течет против удельного сопротивления металла, по принципу джоулева нагрева в металле генерируется тепло.

Индукционный нагрев

Как работает индукционный нагрев?

Знание закона Фарадея очень полезно для понимания работы индукционного нагрева. Согласно закону электромагнитной индукции Фарадея, изменение электрического поля в проводнике приводит к возникновению переменного магнитного поля вокруг него, сила которого зависит от величины приложенного электрического поля.Этот принцип работает и наоборот, когда в проводнике изменяется магнитное поле.

Итак, вышеуказанный принцип используется в процессе индукционного нагрева. Здесь твердотельный источник питания с высокочастотной частотой подается на катушку индуктивности, а нагреваемый материал помещается внутри катушки. Когда через катушку пропускают переменный ток, вокруг нее создается переменное магнитное поле в соответствии с законом Фарадея. Когда материал, помещенный внутри индуктора, попадает в диапазон этого переменного магнитного поля, в материале генерируется вихревой ток.

Теперь соблюдается принцип джоулева нагрева. В соответствии с этим при прохождении тока через материал в нем выделяется тепло. Таким образом, когда в материале генерируется ток из-за индуцированного магнитного поля, протекающий ток выделяет тепло изнутри материала. Этим объясняется процесс бесконтактного индукционного нагрева.

Индуктивный нагрев металла

Схема цепи индукционного нагрева

Установка, используемая для процесса индукционного нагрева, состоит из высокочастотного источника питания для подачи переменного тока в цепь.Медная катушка используется в качестве индуктора, и к ней подается ток. Нагреваемый материал помещается внутрь медного змеевика.


Типовая установка для индукционного нагрева

Изменяя силу подаваемого тока, мы можем контролировать температуру нагрева. Поскольку вихревой ток, возникающий внутри материала, течет противоположно удельному электрическому сопротивлению материала, в этом процессе наблюдается точный и локализованный нагрев.

Помимо вихревых токов, в магнитных частях также выделяется тепло из-за гистерезиса.Электрическое сопротивление, создаваемое магнитным материалом по отношению к изменяющемуся магнитному полю внутри индуктора, вызывает внутреннее трение. Это внутреннее трение создает тепло.

Поскольку процесс индукционного нагрева является процессом бесконтактного нагрева, нагреваемый материал может находиться вдали от источника питания или погружен в жидкость, или в любую газообразную среду, или в вакуум. Для этого типа нагрева не требуются дымовые газы.

Факторы, которые необходимо учитывать при проектировании системы индукционного нагрева

Есть некоторые факторы, которые следует учитывать при проектировании системы индукционного нагрева для любого типа применения.

  • Обычно индукционный нагрев используется для металлов и токопроводящих материалов. Непроводящий материал можно нагревать напрямую.
  • При нанесении на магнитные материалы тепло генерируется как вихревыми токами, так и эффектом гистерезиса магнитных материалов.
  • Маленькие и тонкие материалы нагреваются быстрее по сравнению с большими и толстыми материалами.
  • Чем выше частота переменного тока, тем меньше глубина проплавления.
  • Материалы с более высоким сопротивлением быстро нагреваются.
  • Индуктор, в который помещается нагревательный материал, должен позволять легко вставлять и удалять материал.
  • При расчете мощности источника питания необходимо учитывать удельную теплоемкость нагреваемого материала, массу материала и требуемое превышение температуры.
  • Потери тепла из-за теплопроводности, конвекции и излучения также следует принимать во внимание при выборе мощности источника питания.

Формула для индукционного нагрева

Глубина, на которую проникает вихревой ток в материал, определяется частотой индуктивного тока.Для токоведущих слоев эффективная глубина может быть рассчитана как

D = 5000 √ρ / µf

Здесь d означает глубину (см), относительная магнитная проницаемость материала обозначена как µ, ρ — удельное сопротивление. материала в Ом-см, f указывает частоту переменного тока в Гц.

Конструкция змеевика индукционного нагрева

Катушка, используемая в качестве индуктора, к которому подается питание, бывает различных форм.Индуцированный ток в материале пропорционален количеству витков в катушке. Таким образом, для эффективности и действенности индукционного нагрева важна конструкция катушки.

Обычно индукционные катушки представляют собой медные проводники с водяным охлаждением. В зависимости от наших приложений используются катушки различной формы. Чаще всего используется многооборотная спиральная катушка. Для этой катушки ширина диаграммы нагрева определяется количеством витков в катушке. Однооборотные катушки полезны в тех случаях, когда требуется нагрев узкой полосы заготовки или кончика материала.

Многопозиционный спиральный змеевик используется для нагрева более чем одной заготовки. Блинный змеевик используется, когда требуется нагреть только одну сторону материала. Внутренний змеевик используется для нагрева внутренних отверстий.

Области применения индукционного нагрева

  • Целенаправленный нагрев для поверхностного нагрева, плавления, пайки возможен с помощью процесса индукционного нагрева.
  • Кроме металлов, индукционным нагревом возможен нагрев жидких проводов и газопроводов.
  • Для нагрева кремния в полупроводниковой промышленности используется принцип индукционного нагрева.
  • Этот процесс используется в индукционных печах для нагрева металла до точки его плавления.
  • Поскольку это бесконтактный процесс нагрева, вакуумные печи используют этот процесс для производства специальной стали и сплавов, которые могут окисляться при нагревании в присутствии кислорода.
  • Индукционный нагрев используется для сварки металлов, а иногда и пластмасс, когда они легированы ферромагнитной керамикой.
  • Индукционные плиты, используемые на кухне, работают по принципу индукционного нагрева.
  • Для пайки твердым припоем к валу используется процесс индукционного нагрева.
  • Для герметизации крышек бутылок и фармацевтических препаратов с защитой от несанкционированного доступа используется процесс индукционного нагрева.
  • Машина для моделирования впрыска пластмасс использует индукционный нагрев для повышения энергоэффективности впрыска.

Для обрабатывающей промышленности индукционный нагрев обеспечивает мощный набор стабильности, скорости и контроля.Это аккуратный, быстрый и экологически чистый процесс нагрева. Потери тепла, наблюдаемые при индукционном нагреве, могут быть решены с помощью закона Ленца. Этот закон показал способ продуктивного использования тепловых потерь, возникающих в процессе индукционного нагрева. Какое из применений индукционного нагрева вас поразило?

DHI-15 PKW Инверторный индукционный нагреватель

Описание индукционного нагревателя DHI-15 PKW:

  • Равномерное и стабильное отопление. Объект нагревается равномерно, без локальных горячих точек, вызванных методами пламенного нагрева.Датчики гарантируют, что деталь не будет перегреваться после достижения заданной температуры.
  • Более безопасная и комфортная рабочая среда для оператора. Оператор не подвергается воздействию открытого пламени, горячих газов и риска возгорания и взрыва, как при нагревании пламенем.
  • Снижение затрат на обучение операторов, снижение затрат на заработную плату. Операторы не нуждаются в частом регулярном обучении и сертификации, как в случае с системами на основе автогенного газа и сжиженного нефтяного газа.
  • Низкая стоимость расходных материалов. Отсутствие операционных затрат, связанных с покупкой и арендой газовых баллонов.
  • Детали можно нагревать до 800 ° C и выше.
  • Высокоэффективная система отопления.

Использование индукционного нагревателя DHI-15 PKW:
Система DHI-15 PKW нагревает болт M12 или гайку до температуры выше 800 ° C всего за 15 секунд. Время подготовки и настройки для системы индукционного нагрева намного быстрее по сравнению с системой автономной горелки. Просто подключите DHI-15 PKW к розетке 230 В, установите катушку соответствующего типа на деталь, которую вы хотите нагреть, затем нажмите кнопку ВКЛ / ВЫКЛ, чтобы начать процесс индукции.Процесс нагрева выполняется за секунды, даже для деталей, требующих высокой температуры. Индукционные катушки можно легко заменить на большие или меньшие. То же самое относится и к нагревательной спирали, которая должна быть намотана вокруг детали. Набор катушек различного диаметра можно заказать в качестве опций вместе с индукционным нагревателем.

  • Автомобильная, железнодорожная и судостроительная промышленность, машиностроение, автомастерские, сборочные цеха, сантехники и теплотехники, комнаты для домашних хобби и т. Д.
  • Производство, ремонт, ремонт, обслуживание.
  • Детали, требующие нагрева, такие как болты, стержни и профильная сталь, металлические листы, подшипники, корпуса, ведущие валы, подвески, гайки, трубы, шестерни, пружинные основания, валы, лямбда-зонды, детали и компоненты машин и транспортных средств, выхлопные трубы, шкивы коробки, втулки и др.
  • Нагрев инструментов и деталей перед закалкой, склейкой, пайкой.
  • Размораживание.
  • Те же области применения, что и газовые горелки и газовые горелки.

Технические данные:

  • Напряжение сети U1 / I1max 230 В, 50/60 Гц
  • Потребляемая мощность P1max 1,5 кВА
  • Рабочая частота 25-60 кГц, автомат. наставени
  • PF (коэффициент мощности) 0,99 (PFC)
  • Непрерывный нагрев / коэффициент нагрузки 100% *
  • Катушки постоянной индуктивности Ano
  • Гибкие индукторы Ano
  • Проверка индуктора Ano
  • Защита от короткого замыкания Ano
  • Защита от обрыва цепи Ano
  • Управление вентилятором Ano
  • Вес 4,5 кг
  • Размер (ДxШxВ) 200x140x75 мм

Преимущества индукционного нагревателя DHI-15:

  • Мобильность — весит всего 4 штуки.5 кг при компактных размерах, сопоставимых с небольшим сварочным аппаратом.
  • Мощность 1,5 кВт, высокий коэффициент загрузки.
  • Простота обращения и доступа — соединительный кабель катушки длиной 70 см с небольшой ручкой для переноски.
  • Гибкость и простота эксплуатации — его можно подключить к электросети в любом месте с помощью одного подключения 230 В, простая и быстрая подготовка.
  • Универсальные нагревательные элементы для любого применения — для фасонных, плоских, круглых, позиционированных или стандартных деталей.
  • Современный и доступный способ обогрева цеха.

Аппарат DHI-15 PKW:

  • Надежная транзисторная технология IGBT
  • Защита от короткого замыкания и обрыва
  • Автоматическая настройка на резонансную частоту
  • Частота: 25 кГц — 60 кГц
  • Очень удобный и экономичный
  • Процессорная система управления
  • Сигнализация перегрузки
  • Соединительный кабель 70 см
  • Управляемое вентиляторное охлаждение

квадратных труб HF индукционный сварочный аппарат котировки в реальном времени, цены последней продажи -Okorder.com

Описание продукта:

Краткие сведения

  • Тип: Другой

  • Место происхождения: Хэбэй, Китай (материк)

  • Фирменное наименование: CNBM Group

  • Номер модели: GGP600-0.2-H

  • Напряжение: 1300A

  • Ток: 450V

  • Вес: 2t-3t

  • Применение: сварка трубы квадратного сечения

  • Сертификация: ISO9001

  • Послепродажное обслуживание: инженеры доступны для обслуживания зарубежное оборудование

  • Частота: 150 ~ 200 кГц

  • КПД: более 85%

  • Труба: 200×200 мм ~ 300×300 мм

  • Толщина: 6.0 ~ 12,0 мм

  • Сварка: индукционная сварка или контактная сварка

  • Скорость: индукционная сварка ≥15 м / мин Контактная сварка ≥18 м / мин

  • цвет: согласно требованиям заказчика

  • способ охлаждения: вода вода или воздух вода

  • Обслуживание: простое и недорогое

  • Доска: самодельная

Упаковка и доставка

Детали упаковки: 1.Стандартная экспортная деревянная упаковка. 2. Фумигированные мореходные деревянные ящики 3. Верхние / нижние уголки спинки для подъема 4. Отметьте как требование заказчика 5. Следуйте стандарту упаковки заказчика 6.20GP или контейнер 40GP (для справки)
Сведения о доставке: 20 дней

Технические характеристики

ISO9001
Высокая эффективность и энергосбережение
Китайская известная торговая марка
Полностью цифровая система управления
HMI и система диагностики неисправностей

Сварочный аппарат с индукционным нагревом квадратной трубы

1.Область применения

Сварка стальных труб, сварка железных труб, сварка нержавеющих труб, сварка алюминиевых труб, сварка медных труб, сварка двутавровых балок и сварка специальных труб.

2. Функциональная структура

Твердотельное высокочастотное оборудование, в основном используемое для высокочастотных сварных стальных трубопроводов, это типичная структура переменной частоты AC-DC-AC. Выпрямитель использует 3-фазный мостовой тиристорный выпрямитель с фазовой регулировкой, на стороне постоянного тока используется индуктор, конденсатор для создания LC-фильтра, который соответствует рабочим требованиям инвертора типа напряжения.Инвертор типа напряжения использует параллельную структуру модуляции для увеличения мощности источника питания, каждый модуль инвертора представляет собой однофазную мостовую схему на полевых МОП-транзисторах, соединенную с последовательным резонансным баком посредством согласующего трансформатора ВЧ. С одной стороны, согласующий трансформатор реализует комбинацию мощности и согласование импеданса; с другой стороны, реализует электрическую изоляцию нагрузки и источника питания. Чтобы обеспечить эффективную и быструю защиту от перегрузки по току инвертора типа напряжения, наша компания вводит специальную и стабильную схему защиты от перегрузки по току, которая гарантирует безопасную и стабильную работу инвертора.

Полный комплект твердотельного высокочастотного сварочного аппарата состоит из шкафа выпрямления распределительного устройства, шкафа вывода инвертора, соединительного оптического волокна, циркуляционной системы водяного охлаждения, центральной консоли оператора, устройства механической регулировки, контактной сварочной пластины полюса и контактного штифта (контактная сварка) и и т. д.

3.Структура схемы сварочного аппарата с высокочастотным индукционным нагревом квадратной трубы

4.Оборудование, составляющее

Весь набор твердотельных датчиков H.F. Сварочный аппарат состоит из шкафа выпрямления распределительного устройства, шкафа вывода инвертора, соединительного оптического волокна, циркуляционной системы водяного охлаждения, центральной консоли оператора, устройства механической регулировки, контактной сварочной пластины и контактного штифта (контактная сварка) и т. Д.

Шкаф выпрямительного устройства распределительного устройства

Разработанный с интеграцией шкафа распределительного устройства и выпрямительной части, помимо выполнения функций шкафа КРУ, он также имеет функции выпрямительного управления твердотельного сигнала H.F. Сварщики.

Установлен линейный выключатель, линейный измеритель тока, измеритель напряжения (переключаемый) и лампа индикации линейного напряжения.

Установлен трехфазный полностью управляемый тиристорный выпрямительный мост для регулировки мощности высокочастотного сварочного аппарата.

Установлены реактор плоской волны, конденсатор плоской волны и фильтр для улучшения коэффициента плоской волны.

Шкаф вывода инвертора

Инверторная часть состоит из однофазного инверторного моста MOSFET, подключенного параллельно.Мощность однофазного моста 120кВт; инверторный мост использует метод строительных блоков для реализации наложения мощности. Каждый элемент перемычки выполнен в форме выдвижного ящика, который очень легко установить и отремонтировать.

Согласующий трансформатор адаптирован для комбинации мощности, также он принимает метод вывода посредством вторичного резонанса и несварочного трансформатора, резонансный конденсатор контура резервуара (низкое напряжение) резонирует напрямую с датчиком, а пластина выходного полюса обеспечивает требуемую передачу энергии для сварки труб.

Приняли герметичный корпус оборудования, установлен с кондиционером.

Циркуляционная система охлаждения мягкой воды

Циркуляционная мягкая вода используется в качестве охлаждающей воды с индикатором температуры и уровня воды и защитой.

Центральная консоль управления

Реализует дистанционное управление и регулировку мощности твердотельного высокочастотного сварочного аппарата, оснащенный ЖК-дисплеем, на котором отображается напряжение якоря, индикация напряжения возбуждения, постоянного и постоянного тока, а также индикация постоянного тока H.F. Сварщики.

Устройство механической регулировки

Применяется для установки шкафа вывода инвертора и регулировки положения индуктора. 2D и 3D регулируемые.

A Источник питания индукционного нагрева 25 кВт, 25 кГц для системы MOVPE с использованием резонансного инвертора L-LC

Топология резонансного инвертора L-LC (RI) для приложений индукционного нагрева (IH) берет большинство достоинств традиционной серии и параллельные резонансные схемы при снятии их ограничений.В этой статье пересматривается анализ переменного тока на основной частоте L-LC RI, и предлагается новая рабочая точка с улучшенным коэффициентом усиления по току и почти синфазной работой по сравнению с традиционной рабочей точкой. Также описан приблизительный анализ схемы с источником прямоугольного напряжения, в котором подчеркивается влияние вспомогательной катушки индуктивности на форму волны тока источника. Анализ также приводит к оптимальному выбору вспомогательной индуктивности. Приведены требования к системе парофазной эпитаксии из металлоорганических соединений (MOVPE), в которой графитовый токоприемник должен быть нагрет до 1200 ° C, требующий источника питания IH 25 кВт, 25 кГц, конфигурация разработанной системы IH и результаты экспериментов. .

1. Введение

Индукционный нагрев (IH) [1] обычно используется для термической обработки металлов (закалка, отпуск и отжиг), нагрева перед деформацией (ковка, обжимка, осадка, гибка и прошивка), пайка и пайка, термоусадка, покрытие, плавление, выращивание кристаллов, герметизация крышек, спекание, осаждение из паров углерода, эпитаксиальное осаждение и генерация плазмы. IH — бесконтактный метод. Тепло выделяется только в части, а не в окружающей среде, за исключением излучения.Местоположение нагрева может быть определено в определенной области на металлическом компоненте, что позволяет получить точные и стабильные результаты. Поскольку нагрев происходит в самом объекте, IH считается более эффективным, чем альтернативные методы.

Система IH включает в себя базовый индукционный источник питания, который обеспечивает требуемую выходную мощность при требуемой частоте сети, в комплекте с соответствующими компонентами, узел индукционной катушки, метод обработки материалов и некоторый метод охлаждения. Как правило, полумостовые или полумостовые резонансные инверторы (RI) чаще всего используются в качестве источников питания для IH.Эквивалентная модель катушки IH с обрабатываемой деталью может быть представлена ​​в упрощенной форме эквивалентной индуктивностью () и сопротивлением (), как показано на рисунке 1. Если катушка IH питается напрямую от источника питания, отношение полной мощности к реальной будет большим. Следовательно, катушка IH должным образом компенсируется конденсаторами и дополнительными катушками индуктивности в подходящей конфигурации, так что от источника потребляется минимальная реактивная мощность. Кроме того, чтобы согласовать требования к напряжению-току нагрузки с доступным источником, требуется соответствующая сеть.Согласование обычно достигается с помощью изолирующего трансформатора с подходящим соотношением витков.


Основываясь на соединении компенсирующего конденсатора с катушкой IH, наиболее часто используются следующие две топологии RI. (1) Последовательный резонансный инвертор (SRI): компенсирующий конденсатор подключается последовательно с катушкой IH, и он питается от источника напряжения [2–6]. (2) Параллельный резонансный инвертор (PRI): компенсирующий конденсатор размещен параллельно катушке IH, и он питается от источника тока [7–11].

Анализ этих схем был выполнен очень подробно, и сравнительная оценка также представлена ​​в литературе [12, 13].

Для приложений IH была предложена топология L-LC RI [14–21], которая использует большинство достоинств SRI и PRI, устраняя при этом их ограничения. Он работает с источником входного постоянного напряжения, тем самым устраняя громоздкую индуктивность, сглаживающую входной ток. Он обеспечивает высокий коэффициент усиления по току, что, в свою очередь, снижает номинальный ток вторичной обмотки согласующего трансформатора и фидера к катушке.

Металлоорганическая парофазная эпитаксия (MOVPE) [22] — это строго контролируемый метод осаждения полупроводниковых эпитаксиальных слоев и гетероструктур, необходимых для разработки нескольких оптоэлектронных и электронных устройств. Процесс MOVPE включает в себя парофазную реакцию между металлоорганическим соединением и газообразным гидридом, которые транспортируются к нагретому (около 1200 ° C) приемнику графита, что приводит к росту желаемого материала. IH — один из предпочтительных методов бесконтактного нагрева токоприемника.

Целью статьи является исследование характеристик L-LC RI для приложения, требующего источника питания IH 25 кВт, 25 кГц для нагрева графитового токоприемника до 1200 ° C в системе MOVPE для выращивания нитридных полупроводников, разрабатываемой в нашем институте. . Раздел 2 описывает анализ переменного тока L-LC CN и исследует различные характеристики, когда преобразователь работает на резонансной частоте. Предлагаемая рабочая точка отличается от ранее предложенной рабочей точки, которая обеспечивает повышенный коэффициент усиления по току с меньшей вспомогательной индуктивностью и приводит к работе, близкой к синфазной.В разделе 3 описывается работа компенсирующей сети с высоким L-LC (CN) с источником прямоугольного напряжения, что позволяет выбрать оптимальный вспомогательный индуктор. Требования, описание и конструкция практической системы обсуждаются в разделе 4. Экспериментальные результаты представлены в разделе 5.

2. Анализ L-LC CN

На рисунке 2 показан L-LC RI. Источником входного постоянного тока может быть нерегулируемый источник (полученный с однофазным или трехфазным диодным выпрямителем и фильтром) или может быть источник регулируемого напряжения (полученный с однофазным или трехфазным диодным / тиристорным выпрямителем и фильтром или другим передним выходом). концевой импульсный регулятор).В первом случае регулирование мощности, подаваемой на обрабатываемую деталь, должно выполняться на этапе RI с использованием изменения частоты [23, 24], широтно-импульсной модуляции с фиксированной частотой (PWM) [25–27] или модуляции плотности импульсов (PDM). ) [28, 29]. В последнем случае управление выходной мощностью может осуществляться путем изменения, что обеспечивает легкое управление выходной мощностью в широком диапазоне. Однако два каскадных преобразователя имеют тенденцию к снижению общей эффективности.


Следующий анализ, основанный на приближении основной частоты, исследует важные характеристики топологии L-LC.В эквивалентной схеме L-LC CN, показанной на рисунке 3, предполагается, что источником входного напряжения является источник синусоидального напряжения, действующее значение которого равно действующему значению основной составляющей прямоугольного возбуждения. Для анализа сделаны следующие определения.


Угловая резонансная частота:

Нормализованная рабочая частота: где — угловая рабочая частота, а — рабочая частота или частота переключения.

Характеристическое сопротивление:

Цепь:

Коэффициент индуктивности:

Выражение для нормализованного тока в катушке и нормализованного тока источника (или тока в катушке индуктивности) может быть соответственно получено как

Затем исследуются основные характеристики преобразователя, работающего в предлагаемой рабочей точке,, в результате чего получены следующие наблюдения:

Для ,

Также видно, что ток источника at является индуктивным для всех значений, а фазовый угол является функцией и.Если, ток источника всегда синфазен с напряжением.

На рис. 4 (а) показан график зависимости от для различных значений. Когда преобразователь работает при, считается, что он относительно нечувствителен, особенно при высоких значениях, — типичному рабочему условию в приложении IH.

На рис. 4 (b) показан график зависимости от. Ток источника отстает от приложенного прямоугольного напряжения. Хотя этот запаздывающий ток полезен для переключения при нулевом напряжении (ZVS) полупроводниковых переключателей, можно ожидать, что более высокое значение приведет к более высокому току источника, вызывая большие потери проводимости в переключателях.Из графиков на Рисунке 4 (b) видно, что он мал для работы при, особенно для работы при высоком. Следовательно, ток источника и потери проводимости в переключателях будут меньше в этой рабочей точке.

Текущее усиление CN, определяется выражением который может быть дополнительно упрощен как На рис. 5 показан график зависимости от для и различных значений. Максимальный коэффициент усиления по току (равный) наблюдается для работы в предложенной рабочей точке.


Характеристики и конструкция L-LC RI для приложений IH, работающих в, широко описаны в литературе [15–21]. В этой рабочей точке Для, что меньше теоретического максимального значения, заданного формулой (12), в предлагаемой рабочей точке. Таким образом, как также показано на рисунке 5, предлагаемая рабочая точка L-LC RI приводит к усилению по току. Далее, выражение для в обычной рабочей точке может быть записано как Графики (14) в зависимости от показаны на рисунке 4 (b) для и.Можно видеть, что фазовый угол меньше в предлагаемой рабочей точке, чем в обычной рабочей точке, что приводит к меньшим потерям проводимости в переключателях.

3. Поведение L-LC CN с источником прямоугольного напряжения

Анализ, основанный на приближении основной частоты, представленный в Разделе 2, предполагает, что преобразователь при работе с максимальным коэффициентом усиления по току и небольшим фазовым углом между напряжением источника и током что приводит к низкой нагрузке реактивной мощности и низким потерям проводимости в полупроводниковых устройствах прямоугольного инвертора.Анализ, представленный в разделе 2, предполагает наличие источника синусоидального напряжения на входе. На практике входное напряжение представляет собой прямоугольную волну, генерируемую рабочими переключателями, показанными на Рисунке 2, при 50-процентном рабочем цикле. В этом разделе рассматривается поведение резонансного инвертора L-LC при работе с источником прямоугольного напряжения. Эквивалентная схема для L-LC RI для анализа с источником прямоугольного напряжения показана на рисунке 6 (а). Напряжение источника можно определить как можно разложить на его основную составляющую и гармоники как Из (15) и (16) где — период переключения.Таким образом, эквивалентная схема на Рисунке 6 (a) может быть перерисована как на Рисунке 6 (b), где разложена на и.

Эквивалентный импеданс () резонансного контура, и при определяется выражением Кроме того, для высокорезонансного контура в приложениях IH его можно приблизить к нулю для всех рабочих точек кроме. При этом предположении эквивалентная схема для рисунка 6 (b) может быть отключена для работы на частотах гармоник и на них, как показано на рисунках 6 (c) и 6 (d), соответственно.Предполагая, что эквивалентную схему в можно дополнительно упростить, как показано на рисунке 6 (c). При таком упрощении схема может быть проанализирована на предмет основных частот и гармоник отдельно, чтобы определить ток отдельного источника, а затем быть добавлена ​​для определения результирующего тока источника. Выражение для может быть получено как На рисунке 7 (а) показаны расчетные формы сигналов для работы схемы в условиях низкого уровня. Легко заметить, что, будучи обратно пропорциональным, значительно больше, чем для низких значений.Следовательно, результат также почти синусоидальный. При этом условии прогнозы анализа переменного тока (раздел 2) достаточно точны. Однако в высоких условиях, как показано на рисунке 7 (b), амплитуда намного меньше, чем. Следовательно, он почти такой же, как и в значительной степени несинусоидальный. При этом условии прогнозы раздела 2 имеют тенденцию быть ошибочными. Поскольку анализ раздела 2 не учитывает гармоники, фактические пиковые и среднеквадратичные значения, рассчитанные по (19), значительно больше, чем предсказанные по (9).Это приведет к ухудшению текущего усиления по сравнению с его значением, предсказанным (12). Однако амплитудой и среднеквадратичным значением можно управлять, выбирая надлежащее значение. На рисунке 7 (c) показана рассчитанная форма сигнала для различных значений when. Поскольку среднеквадратичное значение можно уменьшить, увеличив значение, ухудшение текущего усиления можно в некоторой степени скорректировать, выбрав более высокое значение. На рис. 8 показаны графики зависимости коэффициента усиления по току от для различных значений.Для прямого сравнения также показан график текущего усиления, предсказанного (12). На рисунке также показано изменение коэффициента усиления по току в обычной рабочей точке, предсказанное формулой (13) для и. Замечено, что фактическое усиление тока в предлагаемой рабочей точке выше, чем в обычной рабочей точке.


Физический размер катушки индуктивности зависит от ее значения, пикового тока и среднеквадратичного значения тока. Поскольку пиковое и среднеквадратичное значение уменьшается с увеличением, интуитивно понятно, что физический размер будет сначала уменьшаться по мере увеличения, достигать минимума, а затем увеличиваться с дальнейшим увеличением.Чтобы получить значение минимального размера, следующий термин определяется как его нормализованный индекс размера: На рис. 9 показаны графики (20) для различных значений. Видно, что для высокопроизводительных приложений обычно должно быть 5 раз.


4. Описание системы

MOVPE — это строго контролируемый метод осаждения полупроводниковых эпитаксиальных слоев и гетероструктур, необходимых для разработки нескольких оптоэлектронных и электронных устройств.Процесс MOVPE включает в себя парофазную реакцию между металлоорганическим соединением и газообразным гидридом, которые транспортируются к нагретому (около 1200 ° C) приемнику графита, что приводит к росту желаемого материала. Для нагрева графитового токоприемника (диаметром 50 мм и длиной 20 мм) до 1200 ° C в кварцевом реакторе диаметром 80 мм требуется источник питания.

4.1. Рабочая катушка и резонансный конденсатор

Хотя рекомендуемые методы проектирования катушек предполагают, что катушка должна быть как можно ближе к токоприемнику, а длина катушки должна быть больше, чем у токоприемника [1], физические размеры токоприемника и реактора вынуждают внутреннюю часть диаметр бухты 100 мм.Кроме того, поскольку душевая лейка из нержавеющей стали с соплами для подачи газов в реактор прикреплена к одному концу реактора, максимальная длина змеевика также ограничена 50 мм. Катушка состоит из полого медного проводника. Число витков, диаметр проводника и толщина его стенки оптимизированы с учетом различных параметров, таких как сопротивление катушки, потери мощности, электрический КПД, требуемый расход охлаждающей воды и падение давления. Разработанная катушка имеет 4 витка полого медного проводника с внешним диаметром 3/8 дюйма и толщиной стенки SWG 19.Сопротивление катушки оценивается в 11,3 мОм, а индуктивность катушки составляет 2,70 мк H. Рабочая частота 25 кГц была зафиксирована для обеспечения равномерного нагрева токоприемника (толщина скин-слоя графита составляет почти 17 мм при 25 кГц). . Эквивалентное сопротивление заготовки оценивается в 16,6 мОм. Катушка рассчитана на максимальное действующее значение 1000 А.

В качестве резонансного конденсатора использовалась батарея из 6 конденсаторов с кондуктивным охлаждением по 3 мк Ф каждый. Эти конденсаторы установлены на холодной пластине, которая, в свою очередь, охлаждается водой.Однако для получения резонансной частоты 25 кГц используется всего 5 конденсаторов. Конденсаторная батарея находится очень близко к катушке, чтобы сократить путь циркуляции.

4.2. Схема питания

Принципиальная принципиальная схема силовой цепи показана на рисунке 10, который в общих чертах можно разделить на три части: входной трехфазный диодный выпрямитель с фильтром, преобразователь постоянного тока в постоянный и L-LC RI. . В дополнение к этому, фактическая силовая цепь также состоит из прерывателей, фильтра электромагнитных помех и цепи ограничения пускового тока в ступени выпрямителя.Однако для ясности они не показаны на рисунке 10.


Вход для источника питания — 415 В, 50 Гц, трехфазный переменный ток. Значения индуктивности фильтра () и конденсатора () во входной секции выпрямителя составляют 2,2 мГн и 3 мФ соответственно, что дает частоту отсечки 70 Гц.

В разделе 2 видно, что RI L-LC демонстрирует желаемое поведение только тогда, когда он работает на. Следовательно, изменение частоты переключения для управления выходной мощностью не допускается. Следовательно, могут использоваться методы управления с фиксированной частотой, такие как широтно-импульсная модуляция (ШИМ), или методы квантованного управления, такие как модуляция плотности импульсов.Однако операция мягкого переключения переключателей на этапе RI не может быть гарантирована во всем рабочем диапазоне, а методы квантованного управления, такие как PDM, приводят к дискретным выходным уровням, а также имеют ограниченный диапазон управления выходной мощностью. Если, с другой стороны, входное напряжение каскада RI контролируется, можно обеспечить контроль выходной мощности в более широком диапазоне и эксплуатационную гибкость. Недостатки этой схемы, а именно необходимость наличия промежуточного каскада преобразователя постоянного тока и снижение общей эффективности преобразования, принесены в жертву вышеупомянутым преимуществам.

Понижающий преобразователь постоянного тока выбран в качестве промежуточного каскада преобразователя постоянного тока. БТИЗ и диод составляют основную коммутационную ячейку. Пассивная демпферная цепь без потерь (состоящая из демпфирующей катушки индуктивности, конденсаторов, и диодов, и) используется для ограничения коммутационных потерь на этом этапе. Стоит отметить, что помимо тщательного выбора значений компонентов, описанного в [30], для эффективного демпфирования также важно уделять внимание нескольким практическим аспектам [31], таким как прямое восстановление демпфирующих диодов и паразитные индуктивности. действие.Катушка индуктивности, конденсаторы и резистор составляют высокочастотный фильтр нижних частот с демпфированием.

Два полумостовых модуля IGBT SKM100GB123D используются для реализации H-моста в секции инвертора, подающего прямоугольное напряжение на высокочастотный изолирующий трансформатор. Трансформатор с соотношением витков 1: 1 был разработан с использованием 7 пар сердечников EE80 с 7 витками первичной обмотки и 7 витками вторичной обмотки. В то время как первичная обмотка намотана из медной фольги, для вторичной обмотки с водяным охлаждением используется полый медный провод с высокой проводимостью, не содержащий кислорода.Результаты на Рисунке 9 показывают, что дополнительная резонансная катушка индуктивности должна быть примерно в 5 раз больше для высокопроизводительной работы. Поэтому в настоящей системе выбран. Индуктивность рассеяния трансформатора оценивается в 5 мк Гн. Дополнительная индуктивность 8,5 мк Гн реализуется за счет пропускания вторичных витков вокруг вспомогательного сердечника с зазором (2 пары EE80) в соответствии с конфигурацией, предложенной в [32].

Конденсатор был включен последовательно с первичной обмоткой трансформатора (не показан на рисунке 10), чтобы предотвратить насыщение трансформатора в случае несимметричного возбуждения.В таблице 1 приведены значения компонентов и номера деталей полупроводниковых устройств, используемых в системе.

903

Компонент Значение / Номер детали

2,2 м вод. H
30 μ F
150 μ F
2.2
5 μ H
0,03 μ F
0,33 μ F
15 μ F
VUO 82
SKM100GAR123D
— и — SKM100GB123D, два модуля9E 905
4.3. Схема управления

Входное напряжение постоянного тока прямоугольного инвертора регулируется для регулирования температуры токоприемника. Блок-схема всей системы управления также показана на рисунке 10. Планируется, что для программирования и управления температурой токоприемника будут использоваться датчик температуры термопарного типа и модуль ПИД-регулятора процесса. Выход модуля ПИД-регулятора действует как эталон для внутреннего контура управления для управления входным постоянным напряжением, подаваемым на прямоугольный инвертор, путем управления скважностью понижающего преобразователя.Дополнительный контур управления фазой используется для поддержания состояния настройки ступени RI против медленного дрейфа резонансной частоты в течение различных рабочих условий и времени. Этот контур определяет фазу выходного тока инвертора с помощью фазового детектора PD. Выход контроллера управляет генератором, управляемым напряжением (ГУН), который регулирует частоту переключения инвертора таким образом, что выходной ток инвертора немного отстает от напряжения.

5. Результаты

Фотография разработанного блока питания индукционного нагрева, испытываемого в лаборатории на нагрев графитового токоприемника, представлена ​​на рисунке 11.На вставке показан графитовый токоприемник, нагретый до 1200 ° С на воздухе.


Выходное напряжение инвертора, (кривая 1, 200 В / дел.) И осциллограммы тока,, (кривая 2, 25 А / дел.) Показаны на Рисунке 12 (а). Характер формы волны тока соответствует прогнозируемой форме волны, показанной на рисунке 7. Формы сигналов напряжения коллектор-эмиттер (кривая 1, 200 В / дел) и затвор-эмиттер (кривая 2, 10 В / дел) IGBT в H-мостовом инверторе во время переходов включения и выключения показаны на рисунках 12 (b) и 12 (c), соответственно, демонстрируя мягкое переключение.На рисунке 12 (d) показаны формы сигналов (кривая 1, 200 В / дел) и напряжения на рабочей катушке (кривая 2, 200 В / дел), показывающие, что только основная составляющая входного прямоугольного напряжения была передана на рабочая катушка.

6. Заключение

В документе сообщается о различных проблемах при разработке источника питания IH для приложения MOVPE с использованием L-LC RI. Пересмотрен анализ основной частоты переменного тока L-LC RI, и показано, что преобразователь демонстрирует повышенное усиление по току и коэффициент мощности, близкий к единице, при работе на резонансной частоте.Дальнейший анализ схемы с источником прямоугольного напряжения подчеркивает влияние вспомогательной катушки индуктивности на форму волны тока источника, что приводит к оптимальному выбору значения вспомогательной катушки индуктивности. Требования к системе MOVPE, требующей источника питания IH 25 кВт, 25 кГц для нагрева графитового токоприемника до 1200 ° C, конфигурация разработанной системы IH и экспериментальные результаты представлены, тем самым демонстрируя пригодность L-LC RI, работающего на своем резонансная частота для этого приложения.

SPG Индукционный нагреватель

SPG Индукционный нагревательный аппарат

200K — 1.5MHZ SPG-03-10 серия подробнее>

  • SPG500K-03B Высокочастотный индукционный нагревательный аппарат

  • SPG-03B-Ⅲ HF Induction Нагреватель

  • SPG-03AB-Ⅲ Индукционный нагреватель HF

  • SPG-06 с гибкой катушкой длиной 1 м

  • Индукционный нагреватель SPG-06-I HF

200—500KHZ Машина высокочастотного индукционного нагрева Подробнее>

  • SPG400K2-10 высокочастотный индукционный нагреватель

  • SPG400K2-15B высокочастотный индукционный нагреватель

  • SPG400K2-20 высокочастотный индукционный нагреватель

  • SPG400K2-20AB высокочастотный индукционный нагреватель

  • — 30 высокочастотный индукционный нагреватель

80-200 кГц SPG высокочастотный подробнее>

  • SPG-10-I high freq Индукционный нагреватель uency

  • Индукционный нагреватель SPG-10-I (с отводом)

  • Индукционная плавильная машина SPG-10-I

  • Высокочастотный индукционный нагреватель SPG-20A

  • Тип плавления SPG-20B индукционный нагреватель

30-80 кГц высокочастотный индукционный нагреватель SPG50K подробнее>

  • индукционный нагреватель SPG50K-15

  • индукционный нагреватель SPG50K-15B

  • индукционный нагреватель SPG50K-15AB

  • с гибкой катушкой

  • Индукционный нагреватель SPG50K-15AB для плавки

10-40KHZ Высокочастотный серия SPG20K подробнее>

  • SPG20K-15A высокочастотный индукционный нагреватель

  • SPG20K-25AB высокочастотный индукционный нагреватель

  • SPG20K-35AB высокочастотный индукционный нагреватель

  • SPG20K-45AB высокочастотный i Индукционный нагреватель

  • Высокочастотный индукционный нагреватель SPG20K-70AB

500-800KHZ Высокочастотный станокmore>

SPG Индукционный нагревательвнедрение

Серия SPG охватывает частоту от 10 кГц до 1100 кГц и диапазон мощности от 3 до 300 кВт; Существуют сотни моделей машин SPG, в соответствии с различным частотным диапазоном и технической структурой, машины SPG делятся на серию SPG20K, серию SPG50K, серию SPG и серию SPG400K.Благодаря широкому частотному диапазону и диапазону мощности, машины SPG широко используются в различных приложениях для нагрева металлов.


В этих машинах применяется последовательный колебательный контур, через высокочастотный трансформатор выводится низкое напряжение и большая сила тока, которые проходят через индукционную катушку.
Внутри машин серии SPG использовались модули IGBT или MOSFET и наша технология инвертирующего управления третьего поколения, то есть технология мягкого и двойного управления и инвертирования.В этой технологии выходная мощность и частота могут регулироваться и регулироваться отдельно, модуль IGBT и технология управления плавным переключением используются в схеме высокочастотного переключения для управления выходной мощностью. В инвертирующей схеме используются IGBT и схема отслеживания частоты для достижения высокой скорости и точного управления плавным переключением. Внедрение новых технологий не только улучшает качество и надежность машины ,, но также решает технологическую проблему для машины индукционного нагрева большой мощности и позволяет работать со 100% -ным рабочим циклом.
По сравнению с машинами серии SP, машины SPG имеют гораздо более широкий частотный диапазон, более широкий диапазон индукционных катушек и более высокую эффективность нагрева.

1. Каталог SPG:
(1) Серия SPG20K: 10–40 кГц
(2) Серия SPG50K: 30–80 кГц
(3) Серия SPG: 80–200 кГц
(4) Серия SPG400K: 200–500 кГц
(5 ) СПГ-06 и СПГ-10 серии
2. Значения моделей САУ:

[PDF] Модульная система преобразователя IGBT для высокочастотной индукции

Загрузите модульную систему преобразователя IGBT для высокочастотной индукции…

Система модульного преобразователя IGBT для приложений высокочастотного индукционного нагрева *

Hammad Abo Zied; Питер Мутчлер, Гвидо Бахманн, Отдел силовой электроники и управления приводами Дармштадский технологический университет Landgraf Georg Straße 4 D-64289 Дармштадт Телефон: 49 6151 16-2166 Факс: 49 6151 16-2613 * автор сообщения: [адрес электронной почты защищен]

Аннотация: Реализованы преобразователи для индукционного нагрева мощностью до 1,5 МВт с использованием IGBT [3]. Частоты переключения до 150 кГц реализуются с этими инверторами IGBT.Для специальных целей желательно увеличить частоту до 500 кГц. Эти очень высокие частоты переключения могут быть достигнуты с использованием полевых МОП-транзисторов, но это очень дорогостоящий подход из-за большой площади кремния полевых МОП-транзисторов и проблем с внутренним диодом полевого МОП-транзистора [11]. Во многих случаях гальваническая развязка между сетью и нагрузкой является обязательной. Предпочтительно это делается с помощью высокочастотного трансформатора. Такие индукционные нагревательные установки обычно изготавливаются по индивидуальному заказу и производятся только в небольших количествах, что приводит к высоким производственным затратам.P [кВт]

Модуль

Модуль

Модуль Модуль Модуль 100 кГц

100 кГц

100 кГц

Повышение выходной частоты

f 100 кГц [кГц]

Рисунок 1: Система модульного преобразователя T1 off T3 off 10003

)

(2)

(5) 2

1 3

2

1

Рисунок 2: Увеличение выходной частоты. Диод

(

)

(8) 2

1 4

Рисунок 3: инверторы.

f [кГц]

Мощность: 100 кВт, 200 кГц

100 кГц

P [кВт] 100 кВт

Модуль

100 кВт 100 кГц

100 кВт

100 кГц

Модуль

мощность

200

100 кВт 100 кВт 100 кВт

300

3

3

Фаза

сдвинутая

1

2

4

индукция

с индукцией

с импульсным снижением затрат для тепловых станций мы предлагаем модульную преобразовательную систему на базе IGBT с частотой переключения до 500 кГц.Каждый модуль преобразователя IGBT может выдавать мощность 100 кВт при частоте переключения 100 кГц. Модули можно подключать для увеличения номинальной мощности или выходной частоты, см. Рисунок 1. Выходная частота увеличивается с использованием метода генерации смещенного стробирующего импульса, в то время как частота переключения каждого модуля остается постоянной (100 кГц). Существует множество вариантов создания резонансного контура (последовательный или параллельный резонансный) и подключения инверторных модулей (последовательное или параллельное соединение) для увеличения выходной мощности или выходной частоты.На рисунке 2 в качестве примера показаны два последовательно соединенных инверторных модуля (100 кВт, 100 кГц каждый), обеспечивающих выходную мощность 100 кВт, 200 кГц в цепи последовательной резонансной нагрузки. В [11] было показано, что основные потери при выключении IGBT затухают менее чем линейно с током. Из-за этого простое снижение номинального тока намного менее эффективно, чем импульсный импульсный затвор со сдвигом фазы, как показано на рисунке 3. В примере на рисунке 3 два модуля поочередно активно отключают ток (при отключении происходит потеря) и доставляя квадратное выходное напряжение.Неактивный модуль

обеспечивает свободный путь для тока нагрузки. Активная частота переключения 200A каждого модуля составляет 100 кГц, ток верхнего транзистора, тогда как резонансная выходная частота составляет 200 кГц верхнего транзистора. Помимо последовательного соединения модулей тока, возможно параллельное соединение, как описано в [11]. Каждая альтернатива 0A имеет свои преимущества. Снижение тока нагрузки При параллельном подключении модулей потери проводимости транзистора снижаются, поскольку неактивные модули не пропускают ток.400 нс При последовательном соединении модулей требования к синхронизации для одновременного переключения -200A 95.0us 95.2us 95.6us 96.0us 96.4us 96.8us 97.2us 97.5us в различных инверторных модулях IC (Z1) — IC (Z4) I (R5) Время кажется менее требовательным. Необходимы исследования, чтобы найти лучшее из двух решений, представленных на Рисунке 4: Моделирование переходных процессов переключения. Основная проблема — переходные процессы и потери при коммутации. Чтобы получить первое представление о переходных процессах и потерях при коммутации 20 кВт, с помощью Pspice был смоделирован инвертор 5,86 м.Использовалась 15 кВт Spice-модель транзисторного модуля Eupec Energy (мДж) 3,91 м FF200 R 12 KS4 10 кВт. Результаты показаны на рис. Энергия 4 и 5. При моделировании стробирующие сигналы мощностью 1,95 м мощностью 5 кВт были настроены на минимальные потери. На рис. 4 показано, что для >> минимальных потерь перекрывающаяся проводимость 0 0 Вт 95,2 мкс 95,6 мкс 96,0 мкс 96,4 мкс 96,8 мкс 97,2 мкс обоих транзисторов за 1 с (W (Z1)) 3 Вт (Z1) Рис. убытки. Мощность (кВт), Энергия (мДж) Появится временная шкала. Нижний транзистор закрывается во время выключения верхнего транзистора.На рис. 5 показаны смоделированные потери. В настоящее время строится экспериментальная установка (600 В постоянного тока, IAC, пиковый ток около 100 А). Заключительный документ будет включать результаты измерений и сравнивать их с моделированием Pspice. Стабилизатор нагрузки

Пониженный ток транзистора

Ссылки [1] Ин, Дж .: «Резонансные и квазирезонансные инверторы для высокочастотного индукционного нагрева», Диссертация TU Berlin 1995, Verlag Dr. Köster Berlin, ISBN 3-89574-089- 6 [2] Dyckerhoff, S; Райан, М; ДеДонкер, Р.: «Разработка LCL-резонансного инвертора на базе IGBT для высокочастотного индукционного нагрева» IEEE IAS Annual Meeting 1999 pp 2039-2045 [3] Matthes, H.; Юргенс, Р.: «Резонансный преобразователь цепи серии 1,6 МВт 150 кГц, включающий устройства IGBT для сварочных работ» Международный семинар по индукционному нагреву, 1998 г., Падуя, стр. 25–31 [4] Dede, J .; Jordan, J .; Esteve, V .; Ферререс, А .; Эспи, Дж .: «О поведении последовательных и параллельных резонансных инверторов для индукционного нагрева в условиях короткого замыкания» PCIM Europe 1998 Power Conversion pp 301-307 [5] Dede, E.J .; Jordan, J .; Esteve V .; Navarro, A.E .; Ферререс, А .: «Проектирование резонансного инвертора серии IGBT высокой мощности для индукционной ковки» IEEE 1996 AFRICON, 4-я стр. 206-208 [6] Okuno, A.; Kawano, H .; Sun, J .; Курокава, М .; Кожина, А .; Накаока, М .: «Возможная разработка инвертора SIT с программным переключением со схемой управления с отслеживанием частоты с адаптацией к нагрузке для индукционного нагрева» IEEE Transaction on Industry Applications, Vol. 34, нет. 4, июль / август 1998 г., стр. 713-718 [7] Lee, B.K .; Jung, J. W .; Suh, B. S .; Хюн, Д. С .: «Новая топология полумостового инвертора с активной вспомогательной резонансной схемой с использованием биполярных транзисторов с изолированным затвором для индукционного нагрева

» IEEE PESC 1997, стр. 1232-1237 [8] Нагаи, С.; Hiraki, E .; Arai, Y .; Накаока, М .: «Новые топологии резонансных инверторов серии ШИМ с мягким переключением фазы и их практические оценки» Международная конференция IEEE по силовой электронике и приводным системам, 1997 г., стр. 318-322 [9] Деде, Э. Дж .; Jordan, J .; Esteve, V .; González, J. V .; Рамирес, Д.: «Конструктивные соображения для инверторов индукционного нагрева с питанием от тока с IGBT, работающими на частоте 100 кГц», IEEE 8 APEC 1993, стр. 679-685 [10] Dawson, F.P .; Джейн П.: «Сравнение инверторных систем с коммутацией нагрузки для приложений индукционного нагрева и плавления» IEEE Transactions on Power Electronics, vol.6, вып. 3, July 1991, pp. 430-441 [11] Undeland, T .; Kleveland, F .; Лангелид, Дж. «Увеличение выходной мощности от IGBT в мощных инверторах с высокочастотной резонансной нагрузкой» IEEE IAS Annual Meeting 2000 Roma (file 67_03.pdf) [12] Dede, E.J .; Espi J. M .; Esteve, V .; Jordán, J .; Casans, S .: «Тенденции в применении преобразователей для индукционного нагрева» PCIM Europe 1999 Power Conversion pp 155-160

Резюме: Для снижения затрат на индукционные нагревательные установки мы предлагаем модульную систему преобразователей на базе IGBT с резонансными выходными частотами вверх. до 500 кГц.Высокая выходная частота достигается за счет фазосдвигающего стробирования «n» модулей преобразователя. Частота переключения каждого инверторного модуля составляет 1 / n резонансного выхода. Моделирование переходных процессов Pspice будет сравниваться с экспериментальными результатами.

Генераторы и источники энергии для индукционного нагрева

Генераторы eldec составляют основу надежного индукционного нагрева. Сложные выпрямители, прочные инверторные модули IGBT, высокоэффективные компоненты резонансного колебательного контура в сочетании с управляемой микропроцессором высокоскоростной системой управления и регулирования eldec образуют продукт, не имеющий аналогов на рынке с точки зрения диапазона регулировки, эффективности, дозирования энергии и надежность.Многие тысячи генераторов построены и постоянно совершенствуются.

eldec может предоставить идеальный продукт для вашего применения: линейки продуктов PICO, PRODUCT LINE и CUSTOM LINE включают генераторы средней и высокой частоты мощностью от 1,5 до 1500 кВт, а генераторы DF и SDF® мощностью от 50 до 3000 кВт. .

Портфолио генераторов eldec

Сложная индукционная технология, используемая в генераторах eldec, позволяет чрезвычайно эффективно подавать энергию для всех типов систем нагрева и индукционных закалочных машин.Они составляют основу прочных производственных цепочек.

  • Защита устройства с помощью надежной транзисторной технологии IGBT: защита от короткого замыкания и обрыва. Даже случайный контакт с заготовкой не повредит генератор.
  • Высокий КПД более 90% во всех классах мощности.
  • Гибкая передача энергии: генераторы eldec доступны с пакетами шлангов длиной до 15 м.
  • Автоматическая подстройка резонансной частоты и размеров индуктора.
  • Точное дозирование энергии (+/- 2%) для высокой воспроизводимости и, следовательно, отличных технологических возможностей (SPC).
  • Высокая удельная мощность за счет улучшенной конструкции всех компонентов.
  • Большой диапазон частот, мощности и регулировки.
  • Не требует обслуживания.
  • Инвертор в модульном исполнении.
  • Простота эксплуатации и обращения.
  • Интеграция в производственные системы более высокого уровня с использованием различных интерфейсов (аналоговых и шинных).
  • Обширный диапазон выходов с несколькими мощностями: переключаемые несколько выходов 2A, 3A, 4A, 5A, 6A (мощность доступна по принципу «или / или» для каждого выхода).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *