Ветряк для выработки электроэнергии: сколько стоит, как работает, примеры
Ветроэлектростанции (ВЭС), или как их еще называют ветряки – это устройства, преобразующие энергию движения ветра в электричество. Электричество, получаемое при помощи ветряков, является простым и экологичным источником энергии, поэтому в некоторых частях земли построены огромные комплексы, объединяющие множество ветрогенераторов в единую сеть. Такие массивы способны обеспечивать электроэнергией крупные населенные пункты, и даже целые регионы. Но для питания частного дома достаточно одного небольшого ветряка, и получать электричество при его помощи можно практически в любой местности.
Содержание
Классификация ВЭС
Существует множество разновидностей ВЭС, и все их можно классифицировать по различным признакам. Основным отличительным признаком являются конструктивные особенности. По конструкции они подразделяются на роторные и крыльчатые. По способу расположения выделяют следующие виды:
- Наземные;
- Прибрежные;
- Плавающие;
- Офшорные.
А по функциональному назначению ветряные электростанции бывают стационарные и мобильные.
Наиболее популярной конструкцией для промышленного получения электрической энергии являются ветряки крыльчатого типа. Они позволяют вырабатывать больше энергии, но, при этом, роторные конструкции издают меньше шума и не так сильно зависят от направления ветра.
Принцип работы
Все современные ветряки работают по проверенному веками принципу ветряной мельницы. Только в данном случае энергия вращения лопастей передается не на механический привод, а на генератор, при вращении ротора которого вырабатывается электричество. Затем электроэнергия накапливается в блоке аккумуляторных батарей и через инвертор передается к потребителям. Для обеспечения электроснабжения большого количества потребителей требуется объединение ветряков в единую сеть.
Для изготовления ветряка применены следующие элементы:
- Лопасти;
- Ротор турбины;
- Редуктор;
- Контроллер;
- Ось электрического генератора;
- Генератор
- Инвертор;
- Аккумулятор.
Для изготовления пропеллера можно использовать практически любые материалы, обеспечивающие достаточную парусность. Это может быть парусный ветряк из прочной ткани, ветряк из бочки или пластиковых бутылок. При изготовлении миниатюрной установки ветряк можно сделать даже из бумаги.
При изготовлении ветряка своими руками можно использовать ротор из шуруповерта или двигатель от любой бытовой техники. Для изготовления самодельного генератора для ветряка подойдет шаговый двигатель от принтера, а автомобильный генератор можно использовать практически без переделки.
Шаговый двигатель
Электрическая схема генератора на шаговом двигателе
С появлением на российском рынке неодимовых магнитов, популярность приобрела схема изготовления низкооборотистого аксиального генератора для ветряка на этих магнитах.
Подключение ветряка к генератору
При изготовлении своими руками ветряка мощностью до 3 кВт и рабочим напряжением 220В можно воспользоваться идеей разработки российской компании Аэрогрин. В конструкции данного ветряка применен принцип роторной авиационной турбины. В качестве лопастей используются небольшие лопатки из полимерных материалов. Вся конструкция укрыта кожухом из звукопоглощающего материала. Такой ветряк не тратит энергию на поиск ветра, создает минимум шума и не раздражает соседей постоянно вращающимися лопастями.
Сколько стоит ветряк
Для того чтобы купить ВЭС заводского производства в России можно сравнить цены на ветряки для выработки электроэнергии от различных производителей. Лучше всего для этого указать в запросе поисковой системы свой регион, это позволит быстрее найти поставщиков, которые работают ближе к планируемому месту установки ветряка и сэкономить на доставке и установке. Например, при необходимости организовать электроснабжение дачи в Ленинградской области, в поисковой строке можно набрать следующий запрос: «купить ветряк для частного дома цена СПб».
Приобрести можно как комплекс целиком, так и отдельные детали. Если лопасти и ротор можно изготовить самостоятельно, то генератор для ветряка можно купить по сравнительно низким ценам.
Выбор конструкции ветрогенератора
Основной проблемой при выборе конструкции ветряка является выбор между ветряками с горизонтальной и вертикальной осью вращения. Однозначного ответа на вопрос, какой ветряк лучше горизонтальный или вертикальный, не существует.
Классический ветрогенератор имеет горизонтальную ось вращения и механизм поиска ветра, работающий по принципу флюгера. Для его раскручивания необходим ветер, дующий со скоростью 7 – 8 м/с.
Тогда как спиралевидные ветряки с вертикальной осью вращения не так сильно зависят от скорости и направления ветра.
Но самое широкое распространения ВЭС получили на территории Крымского полуострова. В силу своего географического положения Крым имеет возможность использовать энергию ветра с максимальной пользой. Ветряки в Крыму расположены практически везде, где позволяет местность. Здесь расположено несколько крупных ветряных электростанций. На самой крупной из них работают 127 ветрогенераторов.
В прошлом году в Ульяновске был запущен комплекс из 14 ветряков общей мощностью более 30МВт. Строительство ветряной электростанции начато и в республике Адыгея. Планируется, что ветряки, установленные в Адыгее, будут давать мощность в 150МВт.
Также в прошлом году начало свою работу совместное российско-испанское предприятие по выпуску ветряков в Таганроге. Производство организовано на заводе «Красный котельщик».
Ветряки в Европе
Для многих европейских стран наличие ветряков в некоторых регионах уже давно стало привычным делом. Причем устанавливают их не только на суше но и в море.
Лидерами по производству и использованию ветряков являются Франция, Германия и скандинавские страны.
В последнее время в европейских странах построено множество гигантских ветряков. Например, одним из крупнейших ветряков в Германии является огромная башня высотой 120м с ротором, каждая из трех лопастей которого имеет длину 52 м, ширину 6 м и весит 20 т. Это гигантское сооружение построено под Магдебургом в 2002 году и его мощность составляет 4,5 МВт.
На данный момент самым большим в мире ветряком считается ветрогенератор мощностью 7 МВт и высотой 141 м, расположенный рядом с немецким городом Эмден. Но в ближайшее время в Норвегии планируется запуск ветряка высотой 162 м, который сможет обеспечить электроэнергией около 2000 домов.
mbhn.ru
Принцип действия и устройство ветрогенератора (общие понятия)
В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.
Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.Принцип работы
Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.
Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов
Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.
Принципиальная схема ветрогенератора
Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:
- для автономной работы;
- параллельно с резервным аккумулятором;
- вместе с солнечными батареями;
- параллельно с дизельным или бензиновым генератором.
Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.
Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.
Система торможения вращения лопастей
Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.
Конструкция ветрогенератора и узлов
При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.
Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер
Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:
- установка экологически чистая;
- отсутствует потребность её заправки топливом;
- не накапливаются какие-либо отходы;
- устройство работает очень тихо;
- имеет большой срок эксплуатации.
Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.
Увеличение мощности установки
Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.
Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.
Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.
Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.
Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.
Схема увеличения мощности и емкости ветрогенератора
Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.
Выбор ветрогенератора
Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.
Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)
Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.
Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.
Подсчитывается активная и резистивная мощность всех потребителей энергии.
Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.
Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.
При наличии скважины вы будете полностью энергонезависимые от внешних сетей.
Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.
Ветрогенераторы российского производства
В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.
Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.
tcip.ru
Надежный ветряк для отопления и его принцип действия
Обогрев дома — сложная и очень ответственная задача. Расходы на отопление составляют большую часть от всех выплат, и возможность в какой-либо степени снизить их является весьма ценной для владельца дома. Тем более привлекательна возможность организовать отопление в автономном режиме, опираясь только на собственные ресурсы. Такие возможности существуют, хотя для их воплощения необходимо приложить определенные усилия. Рассмотрим вопрос подробнее.
Отопление ветром
Один из способов обогрева дома — радиаторные батареи, распределенные по всему дому и питаемые от источника из сети ЦО или от собственного котла. Нагрев теплоносителя производится в газовых или твердотопливных котлах, иногда используются и электрические нагреватели, но такой способ считается временным или дополнительным, используемым в крайнем случае. Причина такого отношения — дороговизна электроэнергии, которой уходит на подогрев теплоносителя очень много.
При этом, если создать систему, позволяющую вырабатывать собственное электричество, то ситуация в корне меняется. Газ, уголь или иное топливо надо покупать, его невозможно сделать самостоятельно. Электроэнергия — особый вид, ее можно производить самому.
Наиболее распространенными способами являются бензиновые или дизельные генераторы, а в последнее время популярность набирают ветрогенераторы. Они производят энергию, которая используется для нагрева теплоносителя, обеспечивающего обогрев дома. Таким образом, температура в помещениях поддерживается при помощи ветра, что звучит несколько фантастически, но вполне реально.
Принцип действия ветрогенератора
Ветрогенератор — устройство, использующее ветровые потоки для вращения вала, который соединен с генератором электрического тока. Существуют два основных вида ветряков:
- горизонтальный
- вертикальный
Горизонтальные конструкции имеют более высокую эффективность, меньшее сопротивление вращению и большую стабильность в работе. При этом, они требовательны к углу атаки ветра на лопасти, что вынуждает создавать устройство наведения на поток (типа флюгера). Кроме того, горизонтальные ветряки нуждаются в подъеме конструкции над землей, причем, чем выше, тем лучше.
Вертикальные роторы (так называется вращающаяся часть ветрогенератора) не зависят от направления ветра, одинаково реагируя на поток с любой стороны. Они очень нетребовательны в обслуживании, точнее, практически не нуждаются в нем. При этом, вертикальные роторы нуждаются в довольно сильном ветре, многие из них «залипают» на слабых потоках и не хотят начинать вращение.
Вращение ротора передается на генератор напрямую или через мультипликатор (редуктор), увеличивающий число оборотов вала. Генератор при вращении вырабатывает электроток, от которого через выпрямитель заряжаются аккумуляторы. С аккумуляторов напряжение подается на инвертор, перерабатывающий постоянный ток в переменный трех- или однофазный с привычными параметрами (220 В или 380 В, 50 Гц). Такая сложная схема используется потому, что вращение ветряка — процесс нестабильный, зависимый от скорости и силы ветра.
Подавать напряжение с генератора напрямую потребителям нельзя, так как оно скачет то к максимуму, то опускается до нуля. Поэтому используется накопитель в виде аккумуляторных батарей, который передает свой заряд на инвертор, выдающий стабильное и одинаковое напряжение.
Схема отопления дома при помощи ветрогенератора
Схема отопления мало отличается от обычной, используемой при использовании собственного котла. Разница лишь в способе нагрева теплоносителя. Нужна емкость, в которой нагревается теплоноситель (вода), соединенная с отопительной системой дома. Самый простой способ — использование температурного подъема воды (гравитационный метод). Горячая вода поднимается вверх, проходит по радиаторам, отдает тепловую энергию и, остывая, возвращается в емкость для повторного нагрева.
Такой метод не требует наличия сложных устройств, но естественная циркуляция — процесс неустойчивый, при некоторых изменениях температур он может прекратиться. Для обеспечения равномерности циркуляции используются насосы, устанавливающие в системе определенное циркуляционное давление и скорость движения теплоносителя. Это делает систему более требовательной к нагреву, точнее, к стабильности температуры теплоносителя.
Подача электроэнергии для отопления должна быть максимально непрерывной. Это еще одна причина использования аккумуляторов и инверторов, позволяющих во время спадания ветра обеспечивать подачу тока на нагреватели. Таким образом, схема проста: ветрогенератор — нагреватели воды — система отопления дома.
Для обеспечения стабильности и непрерывности отопления надо иметь резервный источник нагрева — твердотопливный котел, бензогенератор и т.п.
Как рассчитать теплопотери дома
Теплопотери дома — это величина, тождественная необходимому количеству энергии, затраченной на нагрев. Иными словами, для того, чтобы узнать мощность источника тепла, надо определить теплопотери. Они рассчитываются по формуле:
Q = S ∙ dT / R
- Где Q — величина теплопотерь
- S — площадь ограждающих конструкций дома (имеются в виду все конструкции, включая стены, полы, потолки, окна и двери)
- dT — разница температуры внутри помещения и снаружи. Например, если внутри +20°, а снаружи — -20°, то dT будет составлять 40°.
- R — тепловое сопротивление конструкции, определяется по таблицам СНиП или определяется самостоятельно.
Для расчета теплопотерь надо вычислить по отдельности их значение для стен, потолка и пола, окон и т.д. Сумма полученных значений покажет общие теплопотери дома, определяющие мощность нагревателя. Это означает, что водонагреватели, осуществляющие подготовку теплоносителя, должны иметь суммарную мощность, равную значению теплопотерь.
На практике мощность нагревателей принимается с некоторым запасом, необходимым на случай сильных морозов. Кроме того, со временем нагреватели начинают терять свои качества, поэтому надо заранее предвидеть эту ситуацию и устанавливать более мощные устройства. Потребуется также блок управления, позволяющий регулировать температуру нагрева, чтобы имелась возможность изменять режим отопления соответственно с температурой наружного воздуха.
Подбор мощности ветряка
КПД нагревателей воды — ТЭНов — равен 100%. Это облегчает подбор мощности ветряка, который должен обеспечивать напряжение и силу тока, достаточные для питания ТЭНов и соответствующие их мощности. Поэтому, рассчитывая теплопотери дома, мы, по сути, одновременно рассчитываем мощности ТЭНов и ветрогенератора. При расчетах обязательно на каждой позиции делать запас мощности, который поможет корректировать ошибки, допущенные при расчетах или спад параметров, произошедший оттого, что попалось некачественное оборудование.
Следует также учитывать, что размеры и объемы дома могут однажды увеличиться, что потребует одновременной замены нагревателей или всей системы. Эту проблему можно в какой-то степени решить заранее, увеличив мощность системы и эксплуатируя ее в режиме, несколько сниженном по сравнению с номиналом.
Кроме того, надо помнить о необходимости полного соответствия всех узлов системы — аккумуляторов, инвертора, контроллера и т.д. Все они должны подходить друг к другу по своим характеристикам, поскольку мощность системы равна мощности самого слабого элемента. Единственный прибор, неподходящий к остальным узлам, создает ситуацию, когда качественное оборудование не в состоянии выдавать номинальные показатели. Поэтому подбором только лишь генератора дело не окончится, надо с одинаковой тщательностью составить весь комплект приборов и устройств.
Рекомендуемые товары
energo.house
описание, конструкция, принцип работы и изготовление своими руками
Подключение к магистральной сети электроснабжения до сих пор доступно не всем. Есть немалое число населенных пунктов, до которых линии электропередач не дошли. Да и подключенные поселки и деревни, вследствие общей изношенности линий, испытывают частые перебои с электроснабжением. Кроме того, дачные поселки, выстроенные недавно, зачастую не имеют возможности подключиться к линии, расположенной в солидном отдалении.
Решение вопроса с электроснабжением традиционно возлагается на бензиновые или дизельные электростанции, нуждающиеся в снабжении топливом, капризные и требующие постоянного наблюдения устройства. При этом, есть альтернативные источники, не нуждающиеся в топливе. Одним из них является ветрогенератор.
Что из себя представляет ветрогенератор?
Ветрогенератор — это устройство, использующее энергию ветра для выработки электрического тока. Воздушные потоки, свободно перемещающиеся в атмосфере, имеют гигантскую энергию, причем, совершенно бесплатную. Ветроэнергетика — это попытка извлечь ее и обратить на пользу.
Ветрогенератор представляет собой набор устройств, принимающих, обрабатывающих и подготавливающих для использования энергию. Потоки ветра взаимодействуют с ротором ветряка, заставляя его вращаться. Ротор посредством повышающей передачи (или напрямую) соединяется с генератором, который заряжает аккумуляторные батареи. Заряд через инвертор перерабатывается в стандартный вид (220 В, 50 Гц) и подается на приборы потребления.
На первый взгляд, комплекс устроен довольно сложно. Существуют и более простые конструкции, например, ветряки, питающие насосы. Тем не менее, для сложных приборов требуется полный комплект оборудования, способный обеспечить стабильное и качественное электроснабжение.
Зачем он нужен?
Отличительное свойство электроэнергии состоит в том, что ее можно производить в любых количествах, если позволяет оборудование. Ветрогенератор как раз и относится к таким устройствам — он производит электроэнергию. Таким образом, ветряк представляет собой электростанцию, способную обеспечивать как крупные участки с большим количеством потребителей, так и отдельные дома или приборы.
Возможности устройства зависят от размеров крыльчатки и мощности генератора. Эти два параметра являются определяющими и зависят друг от друга. Чем мощнее ротор, тем большей мощности генератор он сможет вращать, вырабатывая большое количество энергии.
При этом, ветряк может быть создан самостоятельно и обеспечивать потребности отдельной группы приборов — например, освещения, водоснабжения, вентиляции и т.д. Такая избирательность удобна для сокращения расходов на электроэнергию, обеспечения бесперебойной подачи питания на старых изношенных линиях.
Конструкция и принцип работы
Конструктивно ветрогенераторы сочетают механическую, электромеханическую и электрическую части. К механической относится ветряк, непосредственно принимающий энергию ветра и преобразующий ее во вращательное движение. Оно передается на электромеханическое устройство — генератор, преобразующий кинетическую энергию вращения в электрический ток. После этого действуют чисто электронные устройства:
- выпрямитель. Генератор вырабатывает переменный ток, который не годится для заряда аккумуляторных батарей. Для дальнейшего использования его надо выпрямить, для чего используется выпрямительное устройство
- контроллер заряда. Обеспечивает своевременное переключение аккумуляторных батарей с режима зарядки на режим питания потребителей, чтобы избежать выхода АКБ из строя
- аккумулятор (АКБ). Накапливает заряд, необходимый для поддержания напряжения в сети при ослаблении ветра
- инвертор. Преобразует постоянный ток аккумулятора в обычные 220В 50 Гц переменного тока, необходимых для питания стандартных потребителей.
Все перечисленные электронные устройства являются типичным комплектом оборудования, используемым с любым типом ветряка. Изменение конструкции крыльчатки не влияет на состав комплекта, если только не происходит значительного увеличения скорости вращения, требующего изменения параметров генератора.
Виды ветрогенераторов
Используются два основных вида ветряков, имеющих принципиальные различия:
- горизонтальные
- вертикальные
В обоих случаях речь идет об оси вращения ротора. Конструкция различных моделей горизонтальных устройств мало отличается друг от друга, представляя собой подобие бытового вентилятора или пропеллера. Вертикальные устройства обладают намного большим разнообразием типов конструкции, внешне значительно отличаясь друг от друга. Рассмотрим их подробнее:
Горизонтальные ветряки
Горизонтальные конструкции имеют большую эффективность, так как поток ветра они воспринимают только рабочей стороной лопастей. Наибольшее распространение получили трехлопастные крыльчатки, но для небольших конструкций число лопастей может быть увеличено.
Именно горизонтальные конструкции используются для изготовления больших промышленных образцов, имеющих огромный размах лопастей (больше 100 м), которые в объединенном виде образуют довольно производительные электростанции. Государства западной Европы, такие как Дания, Германия, скандинавские страны активно используют ветряки для обеспечения населения энергией.
Устройства имеют один недостаток — они нуждаются в наведении на ветер. Для небольших ветрогенераторов проблема решается установкой хвоста наподобие самолетного, который автоматически располагает конструкцию по ветру. Большие модели имеют специальное устройство наведения, контролирующее положение крыльчатки относительно потока.
Вертикальные конструкции
Ветрогенераторы вертикального типа имеют меньшую эффективность, вследствие чего используются для обеспечения энергией лишь отдельных потребителей — частный дом, коттедж, группу приборов и т.д. Для самостоятельного изготовления такие устройства подходят больше всего, так как обладают широким выбором вариантов конструкции, не нуждаются в подъеме на очень высокую мачту (хотя это им и не противопоказано).
Вертикальные роторы могут быть собраны из любых подручных материалов, в качестве образца можно использовать любой тип из множества известных:
- роторы Савониуса или Дарье
- более современный ротор Третьякова
- ортогональные конструкции
- геликоидные устройства и т.д.
Описывать все типы подробно незачем, так как их количество постоянно увеличивается. Практически все новые разработки базируются на вертикальной оси вращения и предназначены для использования в частных домах или усадьбах. Большинство разработок предлагает собственный вариант решения основной проблемы вертикальных устройств — низкого КПД. Некоторые варианты имеют довольно высокие показатели, но обладают сложным устройством корпуса (например, конструкция Третьякова).
Расчет и выбор
Расчет мощности ветряка сводится к подсчету суммарной мощности потребления осветительными, вспомогательными и бытовыми приборами. Полученное значение увеличивается на 15-20% (запас мощности необходим при возникновении непредвиденных ситуаций), и на основании этих данных рассчитывается или выбирается готовый генератор.
От его параметров ведется построение всего остального комплекта — механические требования ложатся в основу проектирования ветряка, а эксплуатационные параметры — мощность, напряжение, сила тока — используются при создании системы накопления и обработки полученного тока.
Выбирая приборы, следует также обеспечивать небольшой (15-20%) запас мощности, который обеспечит устойчивость комплекса при возникновении форс-мажорных ситуаций.
Изготовление ветряка своими руками
Основные работы, которые предстоит сделать, это — изготовление и установка вращающегося ротора. Прежде всего следует выбрать тип конструкции и ее размеры. Определиться в этом поможет знание требуемой мощности устройства и производственные возможности.
Большинство узлов (если не все целиком) придется изготовить самостоятельно, поэтому на выбор повлияет, какие познания имеются у создателя конструкции, с какими приборами и устройствами он знаком наилучшим образом. Обычно сначала делается пробный ветряк, с помощью которого проверяется работоспособность и уточняются параметры сооружения, после чего приступают к изготовлению рабочего ветрогенератора.
Рекомендуемые товары
energo.house