Технология стяжки — Водяные теплые полы Multibeton
Устройство водяного теплого пола подразумевает, что такая система применяется в жилых или нежилых зданиях общего типа с нормальной структурой стройматериалов и теплопотерями, соответствующим строительным нормам, а также статической нагрузкой вплоть до 2,0 кН/м². При необходимости большей нагрузки на поверхность может использоваться стяжка большей толщины.
Очертим основные характеристики и параметры устройства теплого водяного пола. В общем случае конструкция бесшовной системы водяных теплых полов MULTIBETON (MB) имеет следующий вид:
- Труба системы «МВ — евро» Ø 12 или Ø 17
- Стальная зажимная шина МВ для труб Ø 12 или Ø 17
- Цементно-песчаная стяжка
- Гидроизоляция — полиэтиленовая пленка толщиной 0.2 мм
- Теплоизоляционная плита (например, ЭППС)
- Краевая изоляционная лента, толщиной не менее 8 мм
- Напольное покрытие
- Настенная штукатурка
- Конструкция перекрытия
Устройство бетонной стяжки
Для того, чтобы бетонная стяжка выдерживала эксплуатационные нагрузки, ее толщина над трубой должна быть не менее 45 мм для труб всех диаметров. Если же высота всей конструкции является критичным параметром, то стяжку рекомендуется армировать металлической сеткой с толщиной проволоки от 3 мм и размером ячейки 100 x 100 мм, что позволит несколько уменьшить ее высоту, сохранив при этом прочностные свойства. Этим же целям могут служить и специальные добавки к бетону, придающие ему дополнительную эластичность (пластификаторы). Применяя их, можно делать более густой раствор, который легче укладывается и в результате поверхность пола получается более гладкой. Добавление в стяжку пластификатора уменьшает поверхностное натяжение воды, которая используется для приготовления раствора и способствует увеличению объемной массы покрытия, чем достигается увеличение его теплопроводности и при этом одновременно повышается предел прочности на сжатие. Расход пластификатора обычно составляет 6% от объемной массы чистого цемента, входящего в состав смеси. Специальный пластификатор MB (PVP эмульсия) позволяет уменьшить толщину стяжки над трубой до 30 мм, правда, при этом придется понизить температуру теплоносителя — чтобы не перегревать пол. С другой стороны, увеличение теплопроводности стяжки ведет к уменьшению вероятности возникновения «температурной зебры».
В соответствии с требованиями равномерного распределения температуры на поверхности пола, рекомендуется, чтобы толщина стяжки была не меньше, чем 65 мм и чтобы стяжка отвечала требованиям строительных норм (СНиП 3.04.01-87 «Изоляционные и отделочные покрытия»). Следует отметить, что линейное удлинение нашей трубы составляет 0.3%, а не 1%, как у других производителей, что позволяет делать меньше толщину стяжки и длиннее контур, а также уменьшать толщину демпферной ленты. Толщина конструкции (диаметр трубы + стяжка) для трубы MB Ø 12 составляет не менее 60 мм для трубы MB Ø 17 не менее 65 мм. Приблизительный вес составляет 120-150 кг/м².
Заливка стяжки производится при комнатной температуре, при этом система находится под расчетным рабочим давлением. Для устройства стяжки обычно применяют цементно-песчаный раствор или пескобетон М-300. Оптимальный состав бетона для стяжки должен быть следующим: песок фракции 0,8 мм, цемент из расчета 200-250 кг/м³ бетона, содержание цемента в бетоне 1:4-1:5 или 25% цемента во всей массе бетона, вода. Бетон должен быть не слишком жидкий, поскольку чрезмерное содержание воды ведет к потере прочности стяжки и может быть причиной образования усадочных трещин. На глаз раствор должен иметь консистенцию густого теста – не быть комковатым, рассыпчатым, слегка расплываться на ровной поверхности, но не растекаться.
Приготовленный раствор должен использоваться в течении 1–1,5 часа. Если часть раствора не использована за день, то оставлять его на ночь, накрыв плёнкой и добавив воды (как порой поступают некоторые строители) – нельзя. Заливка стяжки в каждом помещении (или на каждой плоскости) должна производиться за один раз. Нельзя залить половину комнаты сегодня, а половину – завтра. Такое допускается только в разных помещениях, или на перепадах уровня стяжки. В этом случае между плоскостями стяжки, залитыми в разное время или имеющими разный уровень, лучше оставлять демпферный шов шириной 1-2 см.
При заливке стяжки, рекомендуется часто «прокалывать» свежеуложеный, жидкий раствор тонким металлическим стержнем. Это делается для того, чтобы избежать появления воздушных пустот в толще стяжки. Иногда при заливке раствора в толще цементного теста образуются воздушные «линзы», а тяжесть и вязкость раствора препятствует их самостоятельному выходу на поверхность. Прокол позволяет решить эту проблему.
Технология водяного теплого пола – уход за стяжкой после заливки
Ненадлежащий уход за стяжкой после заливки – основная причина брака, допускаемого строителями при устройстве стяжки. Технология водяного теплого пола подразумевает необходимость обеспечения влажности в течении 7–10 дней. (СНиП 3.04.01-87 п. 4.8). Дело в том, что цемент набирает 90% прочности в течении 24-28 дней после приготовления раствора. Для химических процессов, которые протекают при этом в растворе, требуется вода – раствор должен застывать, а не высыхать. Естественное высыхание стяжки приводит к тому, что раствор не успевает застынуть. Сохнуть стяжке «разрешается» только после того как необходимая прочность будет достигнута — в противном случае она обязательно растрескается.
Чтобы предотвратить преждевременное высыхание стяжки водяного теплого пола, для начала, нужно 2-3 раза в день умеренно смачивать её водой. Через два-три дня, после заливки стяжки нужно извлечь маяки, обработать оставшиеся от них углубления грунтом и затереть их свежим раствором. Затем стяжку нужно ещё раз обильно смочить и накрыть полиэтиленовой плёнкой на 2 недели. Если это по каким-то причинам нежелательно, то следует продолжать равномерно смачивать стяжку 2-3 раза в день. Торопиться здесь ни в коем случае нельзя! Результат «ускорения» технологического процесса может оказаться весьма плачевным, – стяжку придётся полностью переделывать.
Ключи: СтяжкаЭксплуатация
Заливка теплого пола
При обустройстве теплого пола наливной пол кроме защитной функции выполняет еще и роль проводника тепла, и поэтому правильный выбор наливных полов – залог эффективности системы напольного отопления и ее экономичности.
Виды теплых половНаиболее популярный -электрический теплый пол. В свою очередь разделяется на: кабельные (в виде нагревательных секций, матов) и пленочные (нагревательным элементом в них является термопленка). Электрические теплые полы наиболее просты в монтаже и имеют ряд преимуществ перед традиционным- водяным теплым полом. Водяной теплый пока сохраняет свою популярность, но используется в основном при устройстве теплых полов в частных домовладениях в силу того, что в соответствии с Жилищным кодексом не может самостоятельно устанавливаться в квартирах с центральным отоплением (это является вмешательством в схемы инженерных коммуникаций).
Очень важная характеристика, на которую стоит обратить внимание при подборе материалов как для основы, так и для финишного покрытия – устойчивость к высоким температурам и к резким перепадам температур. Ошибка в подборе может проявиться со временем не только в виде косметического ущерба (растрескивание верхнего слоя пола), но и в виде снижения работоспособности системы теплого пола, вплоть до полного выхода из строя.
Подготовка основания для теплого пола
Подготовка основания для теплого пола заключается в выявлении и устранении больших перепадов базового основания (допустимыми считаются перепады высот до 2 см.) и неровностей. Выравнивание чаще всего проводят с помощью так называемых грубых ровнителей. Компания Бундекс для таких работ производит универсальную смесь «Бундекс Старт», которая применима для разных типов базовых оснований, готовая смесь обладает высокой пластичностью, легко наносится и быстро набирает прочность, а хождение по готовой поверхности разрешено уже через 12 часов после нанесения, что значительно экономит время черновой отделки.
После выравнивания основания монтируется демпферная лента по периметру помещения. Демпферная лента служит для компенсации расстояния между стеной и наливным полом при его нагревании, это позволит избежать его растрескивание при расширении. Также рекомендуется для больших площадей применять деформационные швы между участками пола.
Перед монтажом нагревательных элементов на основание дополнительно укладывается гидроизоляционный слой независимо от типа системы, т.к. он обеспечивает от проникновения влаги из базового основания. Важно при подборе смеси для устройства гидроизоляционного слоя учитывать, что материал должен выдерживать высокие температуры, поэтому не всякая смесь подходит для теплых полов.
На гидроизоляционный слой уже укладывают термоизоляционный слой, чаще выполненный в виде фольгированной поролоновой подложки. И после этого начинают монтаж собственно системы.
Заливка теплого пола
После монтажа и тестирования нагревательной системы теплый пол заливают финишным слоем, как правило самовыравнивающимися (самонивелирующимися) растворами, которые позволяют получать ровную бесшовную поверхность. При выборе смеси для заливки следует учитывать дальнейшую эксплуатацию – если это помещение с повышенной влажностью, то необходимо применять смеси на цементной основе, для прочих помещений можно применять смеси на гипсовой основе.
Заливка финишного слоя, как правило, ведется в несколько слоев, последний слой при этом обязательно должен прокатываться игольчатым валиком для устранения пузырьков воздуха, которые при «всплытии» могут стать причиной дефектов и неровностей.
Толщина наливного пола
Один из наиболее частых вопросов возникающих на стадии расчетов теплого пола – какой толщиной должна быть стяжка под системой и над системой. Толщина слоя стяжки (основания) под теплый пол выбирается с учетом двух факторов:
— базовое основание для заливки (стяжку на грунт делать надо не менее 10 см, стяжку на плиты перекрытия – по ситуации, до полного устранения неровностей)
— материал (если для заливки основания используется цементно-песчаная смесь, то ее толщина должна быть не менее 3 см, если используются самовыравнивающиеся смеси, то надо следовать рекомендациям производителя смеси).
Толщина слоя над системой электрического теплого пола
Толщина слоя над системой электрического теплого пола регламентируется производителями систем, чаще всего рекомендуется заливать верхний слой толщиной как минимум 4-5 см в случае цементного раствора и не менее 2 см при использовании самонивелирующихся смесей.
Толщина слоя над системой водяного теплого пола
Заливка стяжки теплого водяного пола имеет несколько ограничений размеров: — минимальное расстояние от верхнего края трубы до уровня стяжки – 30 мм — максимальное расстояние от верхнего края трубы до уровня стяжки – 70 мм В общем случае на толщину верхнего слоя также влияют толщина кабеля или трубок. Суммарная высота стяжки может составлять 6-8 см.
От толщины верхнего слоя стяжки зависит инерционность системы теплого пола: толстая стяжка медленнее нагревается и медленнее остывает. Важно помнить, что при заливке верхнего слой необходимо его армировать — это позволит снизить вероятность возникновения трещин и деформаций при высыхании пола.
Технология заливки верхнего слоя теплого пола
Технология заливки верхнего слоя теплого пола такая же, как и при устройстве обычного пола: выставляются маяки, заливается стяжка в несколько слоев (обычно каждый слой не более 2-3 см, время между заливкой слое обычно около суток), окончательное высыхание (тут следует пользоваться рекомендациями производителя смеси для финишного покрытия).
Эксплуатация самой системы теплого пола возможна не ранее, чем через 28 суток после заливки пола, тогда же можно (согласно СНиП) укладывать напольное покрытие (плитка, ламинат и т.п.).
Глубина НКТ имеет значение! — Журнал HPAC
Любой, кто устанавливал водяное отопление пола, вероятно, видел, как его или ее аккуратно расположенные контуры трубопроводов утопают в бетоне. Иногда труба и арматурная сетка, к которой она прикреплена, поднимаются в толщу плиты при укладке бетона. В других случаях каменщики топчут трубы и сетки, как будто их и нет.
ГЛУБИНА ТРУБКИ ИМЕЕТ ЗНАЧЕНИЕ?
В отличие от перемещения датчика или очистки трубы, нет возможности изменить глубину трубы после того, как стяжка скользит по бетону. Производительность плиты в течение десятилетий будущего срока службы теперь зафиксирована. Необратимость ситуации должна заставить нас задуматься над тем, правильно ли мы устанавливаем трубы. Если глубина трубки не оказывает большого влияния на производительность, зачем об этом беспокоиться? Однако, если глубина трубы действительно существенно влияет на производительность, зачем об этом не знать? Зачем жертвовать производительностью ради детали, которая почти не увеличивает стоимость установки?
Существует несколько причин, по которым глубина трубы влияет на характеристики нагреваемой плиты:
• Чем глубже труба, тем больше тепловое сопротивление между ней и поверхностью пола. Чем выше термическое сопротивление на пути теплового потока, тем выше должна быть температура воды для достижения и поддержания заданной скорости теплопередачи.
• Чем ближе труба расположена к нижней части плиты, тем больше должны быть потери тепла снизу.
• Когда трубка заканчивается у основания плиты, большая часть тепловой массы плиты находится над горизонтальной плоскостью, в которой добавляется тепло. Это увеличивает время, необходимое для прогрева поверхности пола до нормальной рабочей температуры после запроса на отопление. Это также удлиняет время охлаждения после того, как система управления прерывает подачу тепла.
Полностью «заряженная» плита может удерживать тепло в течение нескольких часов, которое будет поступать в помещение до тех пор, пока температура воздуха и/или температура внутренней поверхности ниже, чем поверхность пола. Это может быть реальной проблемой в зданиях со значительным внутренним теплообменом от солнечного света или других источников.
Принимая во внимание эти факты, кажется очевидным, что размещение трубок выше в плите улучшит их характеристики. Сложнее ответить на следующие вопросы:
1. Насколько производительность зависит от глубины НКТ?
2. Стоит ли изменение производительности необходимого контроля на стройплощадке, чтобы убедиться, что оно происходит?
ПРОЧИСТКА ЧИСЕЛ
Для ответов на эти вопросы нужны достоверные цифры. Один из способов получить их — использовать специализированное программное обеспечение, известное как анализ методом конечных элементов (FEA). Это программное обеспечение позволяет математически моделировать и моделировать физическую ситуацию. Расчеты, которые программное обеспечение FEA может выполнить за пару секунд, намного превосходят то, что любой человек мог бы попытаться решить с помощью ручных методов.
Одна из построенных мной моделей МКЭ показана на рис. 1 . Он состоит из четырехдюймовой бетонной плиты, установленной на изоляцию из экструдированного полистирола толщиной один дюйм (R-5 ºF•hr•ft 2 /Btu), и покрытой дубовым полом 3 / 8 дюймов. Предполагается, что последний идеально приклеен к верхней части плиты. Предполагается, что трубки расположены на расстоянии 12 дюймов друг от друга.
Несколько версий этой модели использовались для имитации труб на разной глубине в плите. Каждый раз, когда модель запускалась, она определяла температуру в сотнях точек в пределах небольшой области плиты, включая точки, расположенные на расстоянии
1/2 дюйма вдоль поверхности пола.
На рис. 2 показаны изотермы (например, линия постоянной температуры внутри плиты и окружающих материалов), созданные программным обеспечением FEA.
Когда модель FEA была запущена для нескольких глубин труб, наблюдались следующие тенденции по мере того, как труба помещалась глубже в плиту:
1. Температура поверхности пола непосредственно над трубой снижается из-за большего значения R между трубами. и поверхность.
2. Уменьшается разница между температурой поверхности пола непосредственно над трубой и на полпути между соседними трубами. Это желательный эффект, поскольку он делает температуру поверхности пола более «однородной».
3. Площадь под кривой профиля температуры поверхности изменяется с глубиной трубы. Это означает, что выход тепла вверх от пола изменяется по мере изменения глубины труб.
Используя данные о температуре из нескольких симуляций, я оценил тепловыделение системы для температуры воды 100F и 130F. В каждом случае тепловая мощность увеличивается, когда трубка опускается через верхнюю часть плиты, и уменьшается по мере того, как трубка углубляется. Это означает, что существует оптимальная глубина трубы, при которой плита обеспечивает максимальную теплоотдачу. Моделирование, которое я провел, предполагает, что это около ¼ толщины плиты вниз от поверхности плиты. Однако эта глубина может варьироваться в зависимости от сопротивления пола и других факторов.
Я также использовал результаты МКЭ для определения средней температуры воды, необходимой для обеспечения тепловой мощности 15 и 30 БТЕ/ч/фут 2 . Результаты показаны на Рис. 3.
Эти результаты подразумевают, что средняя температура воды в контуре должна увеличиться примерно на 7F, чтобы обеспечить выходную мощность 15 БТЕ/ч/фут 2 , если трубка расположена внизу плиты. Средняя температура воды в контуре должна быть примерно на 14°F выше, чтобы обеспечить выходную мощность 30 БТЕ/ч/фут 2 с трубкой внизу плиты.
Может ли источник тепла системы обеспечить более высокую температуру воды, необходимую для более глубоких труб? Если этот источник тепла представляет собой обычный котел, это изменение температуры воды, вероятно, окажет очень небольшое (но тем не менее нежелательное) влияние на эффективность котла. Однако, если бы источником тепла был конденсационный котел, массив солнечных коллекторов или тепловой насос, это изменение требуемой температуры воды имело бы более выраженное негативное влияние на эффективность, а также на способность сбора тепла солнечными коллекторами или тепловым насосом. Более высокая температура воды в трубах также означает снижение производительности за счет смесительных устройств, более высокие потери тепла в трубах и более высокие потери под плитой, что нежелательно.
МОДЕЛИРОВАНИЕ ГОЛОВЫХ ПЛИТ
Я также хотел посмотреть, как глубина труб влияет на тепловыделение для непокрытых бетонных плит. Модель FEA была легко изменена, чтобы превратить дубовый настил 3 / 8 дюймов в бетон толщиной 3 / 8 дюймов, и моделирование было повторено. Результаты восходящего тепловыделения при температуре воды 100F показаны на рис. 4 .
Результаты снова показывают, что тепловая мощность снижается по мере того, как трубка располагается ниже в плите. Наивысший результат моделирования, который я запускал, достигается, когда центр трубы находится примерно на ¾ дюйма ниже поверхности плиты (около 25,1 БТЕ/ч/фут·9).0031 2 при температуре воды 100F). Опускание трубы таким образом, чтобы ее центр находился на два дюйма ниже поверхности плиты (например, трубка центрируется на плите толщиной четыре дюйма), снижает выходную мощность до 23,8 БТЕ/ч/фут 2 . Эти изменения относительно невелики. Однако посмотрите, что предсказывает моделирование, когда труба расположена в нижней части плиты. Здесь выход составляет всего 17,8 БТЕ/ч/фут 2 . Это на 25% меньше теплоотдачи вверх по сравнению с тем, когда трубка расположена по центру толщины плиты. Единственный способ компенсировать это — повысить температуру воды на несколько градусов по Фаренгейту.
Я также изучил потерю тепла вниз в зависимости от глубины трубы. Когда температура воды регулируется (как показано на Рисунок 3 ), чтобы трубы, расположенные в нижней части плиты, производили такое же тепловыделение вверх, как и трубки, расположенные по центру плиты, потери тепла вниз увеличиваются примерно на 10 процентов.
ДРУГИЕ СООБРАЖЕНИЯ
Существуют другие факторы, помимо тепловых характеристик, которые влияют на глубину трубы внутри плиты. Один из них — защита трубы возле распиленных швов. Глубина таких пропилов обычно составляет 20% толщины плиты. Я предпочитаю оставить трубку
в нижней части плиты в таких местах, чтобы дать лезвию широкое место, когда оно проходит. Типичная деталь показана на рис. 5 .
Еще одним соображением является проникновение крепежных элементов, используемых для крепления оборудования к плите. В большинстве случаев не имеет смысла оставлять всю трубу внизу плиты только для того, чтобы вместить то, что может стать будущей скамейкой или подъемной стойкой. Выясните, где такое оборудование будет размещено, и держите трубки на расстоянии нескольких дюймов от места, где 9Крепеж 0039 скорее всего пойдет. Выделите и отметьте эти области на чертеже компоновки труб. Обязательно оставьте копию этого плана владельцу здания.
ЧТО ЭТО ЗНАЧИТ?
Гарантированно ли анализ конечных элементов предсказывает реальность со 100-процентной точностью? Нет. Существуют сотни возможных вариаций таких факторов, как температура почвы, сопротивление пола, расстояние между трубами и т. д., что затрудняет получение обобщенных выводов на основе нескольких симуляций.
Тем не менее, для некоторых ограниченных симуляций, которые я провел, предсказанная восходящая тепловая мощность довольно хорошо согласовывалась с другими инструментами определения размеров, используемыми для проектирования системы. Прогнозируемое повышение температуры воды, необходимое для трубок в нижней части (а не в центре) плиты, является правдоподобным и значительным. 10-процентное увеличение потерь тепла вниз, вызванное более высокими температурами воды в трубах с донышком, также кажется разумным.
Имейте в виду, что эти результаты также основаны на стационарных условиях. Они не предсказывают последствия более длительного времени отклика, связанного с более глубокими НКТ. В зданиях со значительными и часто непредсказуемыми внутренними притоками тепла это более длительное время реакции, несомненно, приведет к более сильным колебаниям температуры и ухудшению комфорта.
Принимая во внимание все эти компромиссы, возможно, пришло время всем нам найти более эффективные способы обеспечения того, чтобы трубы и армирующая сетка заканчивались ближе к середине высоты плиты (кроме любых распиленных контрольных швов).
Для таких продуктов, как пенопластовые панели с выступами или пластиковые скобы, которые крепят PEX непосредственно к изоляции под плитой, производители должны предоставить точные данные о тепловых характеристиках, учитывающие такое расположение трубок.
Обязательно изложите свои требования в планах и спецификациях. Также стоит обсудить эти требования с «ответственным» лицом, курирующим конкретную бригаду. Убедитесь, что они знают, что глубина трубопровода влияет на производительность системы. Сделайте это за несколько дней до заливки, а не в то время, когда первый грузовик с бетоном отъезжает назад, чтобы не было оправдания неподготовленности.
Джон Зигенталер, дипломированный инженер, выпускник Политехнического института Ренсселера и лицензированный профессиональный инженер. Он имеет более чем 34-летний опыт проектирования современных систем водяного отопления. Он также является почетным адъюнкт-профессором инженерных технологий в муниципальном колледже Mohawk Valley в Ютике, штат Нью-Йорк.
Объявление
Установка над полом/спальней/подвесной плитой | | Теплый пол своими руками
Излучающая труба, установленная поверх существующего пола, называется «подвесной плитой». Особенно при новом строительстве этот метод может иметь большой смысл, потому что тепловые характеристики готового пола соперничают с укладкой «плиты на уровне грунта»… и лучше этого просто не бывает. В отличие от скрепления скобами в методе перекрытий, подвесная плита включает песок, цемент или гипс для накопления и рассеивания тепловой энергии. Недостатком является дополнительный вес на полу, возможная потеря драгоценного пространства над головой и (особенно в ситуациях модернизации) трудности с переходом в другие комнаты и регулировкой дверных порогов. Тем не менее, если вы решите, что метод подвесной плиты лучше всего подходит для вашей ситуации, вот несколько способов установки:
Заливка нового полаЕсли вам удобно работать с бетоном, вы можете просто разложить свою излучающую трубку, соединить различные петли с удобно расположенным коллектором, залить его тонким слоем бетона или гипса, выполнить стяжку. Выровняйте его и через несколько часов верните на готовый пол.
При установке PEX в подвесную плиту вам нужно будет прикрепить PEX к чему-либо, будь то степлером к пенопластовой изоляции «ПОД» плитой (если применимо) или «молнией» к арматуре «ВНУТРИ» плиты. . Мы рекомендуем как минимум 1,5 дюйма покрытия поверх PEX,… «ЕСЛИ» бетон «ЯВЛЯЕТСЯ» готовым полом, так как это (рекомендуемая толщина) помогает минимизировать трещины и уменьшает эффект «температурных полос». Если бетон НЕ является чистым полом, и вы устанавливаете дополнительный материал для пола поверх только что залитой (более тонкой) плиты, (например, дерева, плитки, ковра и т. необходимо (и не так критично), учитывая тот факт, что структурная целостность является частью исходной (существующей) плиты, и (на данный момент) вы просто создаете тепловую массу с более тонким слоем бетона (из которого) будет покрыт готовой плитой. пол. Общее эмпирическое правило заключается в том, что от 3/4″ до 1″ является идеальным покрытием для гипсовых покрытий.
При заливке подвесной плиты поверх существующего бетонного пола устанавливается слой жесткой изоляции, а труба может быть прикреплена к старой плите с помощью трубных хомутов путем силового забивания непосредственно в бетон с помощью набора домкратов. Или таким же образом к бетону можно прикрепить проволочную сетку, а к сетке можно прикрепить трубу.
Трудность этого метода заключается в том, чтобы получить чистый ровный пол. У большинства самодельщиков, вероятно, нет опыта или уровня комфорта для выполнения конкретной работы с использованием этого метода. Если вы исключение, это может быть самый простой подход для вас.
Используйте шпалы 2 на 47/8″ PEX, 16″ по центру, используя шпалы, чтобы поднять пол на 1 1/2″. Шпалы можно использовать для ровной стяжки пола при заливке бетона, сухой смеси или гипса. Если вместо бетона используется песок, к шпалам можно прибить фанеру или паркет.
При использовании этого метода полы 2X4 укладываются ровно поперек существующего пола на расстоянии 16 дюймов от центра, образуя «спальные отсеки». Также можно использовать 2X3, они столь же эффективны и обычно намного дешевле по стоимости. В зависимости от того, какой размер трубы используется, между каждым набором шпал устанавливается один или два ряда радиационных труб. Трубки крепятся к фанерному полу с помощью хомутов для электропроводки или медных хомутов. Все остальные спящие отодвинуты от стены в обоих концах комнаты, чтобы дать трубе проход.
- Пример шпалы с песком или бетоном
- Хитрый подход к уникальному плану этажа
- Еще одно умное приложение, созданное специально для него
Если отапливаемая площадь представляет собой небольшую зону, состоящую только из одного контура труб, то начальная (подающая) сторона лучистого контура соединяется с изолированной медной линией подачи от источника тепла. Конечная (возвратная) сторона излучающего контура соединяется с изолированной медной обратной линией. Простая зона с одной петлей, подобная этой, возможна только тогда, когда для заполнения зоны требуется менее 400 футов труб PEX диаметром 7/8 дюйма.
Для большинства зон требуется несколько ровных петель (или контуров) трубок. Причина проста. Если для определенного количества квадратных метров требуется более 400 футов труб, скажем, 1200 футов, и вы пытаетесь непрерывно пропускать воду через такое количество труб, вы в конечном итоге будете циркулировать прохладной водой по большей части вашего пола. Получится неотапливаемое помещение.
Правильный метод включает в себя создание собственного заголовка… одного для стороны предложения и одного для возврата. Это не сложнее, чем прокладка бытовых водопроводов, и обеспечивает равномерный, сбалансированный поток нагретой жидкости через теплый пол.
Таким образом, используя приведенный выше пример 1200-футовой трубы в этой вымышленной зоне, вы можете видеть, что длина петли может быть либо (3) 400-футовыми контурами, либо (4) 300-футовыми контурами. Какой метод вы используете, зависит от вашей конкретной ситуации.
В общем, как проще. В этом примере мы будем использовать (4) 300-футовые цепи.Хорошо, вы установили все трубы между спальными отсеками. У вас есть четыре контура, поэтому у ваших контуров будет четыре начала и четыре конца. Ваш заголовок подачи просто соединит все начала вместе, а концы соединится с обратным заголовком. Если все ваши контуры имеют одинаковую длину (в пределах 10%), вода не найдет «пути наименьшего сопротивления», и жидкость будет течь равномерно по всем контурам. Балансировочные клапаны не требуются. И даже несмотря на то, что вы пропускаете нагретую жидкость через трубку общей длиной 1200 футов, ей никогда не приходится проходить более 300 футов, прежде чем она вернется к источнику тепла.
Следует отметить, что с подвесной плитой обращаются точно так же, как с плитой на уклоне, когда речь идет об использовании муфт. Другими словами, не используют их. Всегда прокладывайте трубы сплошной длины в местах, которые в конечном итоге будут практически недоступны.
Фактическое размещение подающего и возвратного коллекторов зависит от установщика. Часто оба коллектора располагаются под полом. Четырехдюймовая щель шириной около 1 дюйма может быть вырезана в черновом полу, чтобы позволить трубе сделать длинный удобный изгиб к полости балки внизу. Сами коллекторы, которые часто проходят перпендикулярно балкам, крепятся к нижней части балок с помощью трубчатых ремней. Трубка PEX, изгибаясь сверху, может входить в медную напорную трубу 3/4″ с помощью одного из стандартных латунных переходников. Позже четырехдюймовый разрез в фанере можно заполнить монтажной пеной, чтобы герметизировать трубку.
Используя таким образом длинный, раздвинутый коллекторный коллектор, установщик может создать очень чистую и очень гибкую схему контура, особенно если используются шпалы. Гораздо менее желательной альтернативой был бы небольшой, расположенный в центре коллектор, в котором каждый контур трубок выходит и возвращается из одного места в комнате. В больших зонах с множеством цепей это место в комнате может быть на противоположном конце дома, что вынуждает установщика выяснять, как провести громоздкий кластер подающих и обратных линий обратно к коллектору. Таким образом, в этом смысле подвесная плита со шпалами похожа на установку лаг пола, когда речь идет о прокладке подающего и обратного коллекторов. Другими словами, коллекторы лучше подводить к трубке, а не трубку к одному маленькому коллектору.
Другой способ – провести коллекторы по периметру помещения и соединить трубы с помощью латунных переходников.
После того, как все соединения выполнены, тонкий слой термомассы распределяется по трубам между шпалами. Если окончательный пол должен быть из твердой древесины, эта тепловая масса может быть простым сухим песком. В бухты до верха шпал насыпают сухой песок и к шпалам прибивают древесину. Если последний пол должен быть покрыт ковром или плиткой, масса между шпалами должна затвердеть. Можно использовать бетон, песок, гипсовый бетон или сухую смесь из (4) частей песка (1) частей портландцемента. Этот последний метод включает в себя бетономешалку и достаточное количество воды, чтобы придать смеси консистенцию «песчаного замка». Это не мокрая жижа. Портландцемент придаст песку слегка зеленоватый оттенок, и смесь затвердеет, как камень. После полного высыхания вы можете покрыть его ковром, плиткой, Pergo или чем-то еще. Альтернативный метод включает в себя рассыпание песка, а затем прибивание фанеры к шпалам. Затем на фанеру можно положить плитку, ковер и т. д.
Песок в качестве термальной массы
Сухой песок является отличной термальной массой. В этом случае в шпалы насыпается слой песка, затем к шпалам крепится OSB (ориентированно-стружечная плита) или фанера. Окончательный пол может быть покрыт ковром, плиткой, Pergo или любым другим материалом, требующим твердой поверхности.
Если существующий пол бетонный, шпалы приклеиваются к полу с помощью жидких гвоздей, а трубы можно прикрепить к полу скотчем. Если лента покажется слабоватой, то к краям шпал 2 на 4 можно прикрепить проволочную сетку, протянуть ее по дну шпал и прикрепить к сетке трубу. Также можно использовать комплект поршня и ремни для трубок.
В случае существующей неизолированной бетонной плиты под проволочной сеткой можно установить жесткий пенопласт, чтобы предотвратить потери тепла вниз. Существующая ранее изолированная плита может быть использована для хранения тепла.
Еще один способ укладки нового теплого пола поверх существующего пола — использовать приложение для шпал. Это альтернатива предварительно вырезанным/формованным панелям типа «доска» за небольшую часть стоимости … нажмите на эту ссылку для более подробной информации!! По предыдущей ссылке показаны восемь фотографий, иллюстрирующих метод, разработанный одним из наших технических специалистов для создания элегантного и очень эффективного макета для одного из наших местных клиентов.
Последний вариант подвесной плиты применяется, когда вес песка или бетона угрожает превысить допустимую нагрузку на пол. В этом случае алюминиевые теплорассеивающие пластины используются вместо термальной массы из песка/бетона. Они удерживают трубы на полу и помогают равномерно распределять тепло по всей зоне. Но процент тепловых характеристик пола теряется из-за меньшего количества тепловой массы в системе. Если подвесная плита устанавливается поверх существующего фанерного черного пола, изолируйте полость балки под черным полом. Это направляет тепловую энергию в предполагаемое жилое пространство и предотвращает стекание тепла вниз.
Ниже представлены установки, иллюстрирующие альтернативы предварительно формованным панелям Board за небольшую часть стоимости
- Яркий пример применения 3/4″ OSB/фанерной шпалы и теплового оребрения
- Альтернатива дорогостоящей конструкции типа «доска»
На пол укладываются параллельные доски для создания канала для трубы PEX, затем к доскам крепятся теплорассеивающие пластины. Обратите внимание, что светоотражающий материал был прикреплен ко всему основанию пола. Этот чистый алюминиевый материал будет отражать 97% тепловой энергии до чистового пола.
Шпальная система с использованием теплорассеивающих плит вместо песка или бетона. Теперь поверх шпал можно установить доски или фанеру.
При использовании вдвое большего количества труб, чем обычноПри укладке теплого пола в местах с высокими потерями тепла, таких как дома с плохой изоляцией или современные жилища с большим количеством стекла и высокими потолками, часто необходимо удвоить на вашей трубке. В случае 7/8″ PEX, обычно устанавливаемого на расстоянии 16″ от центра, трубка должна располагаться на расстоянии 8″ от центра. Правильный способ сделать это — запустить PEX, как обычно, с радиусом 16 дюймов по центру на прямых и удобным радиусом 24 дюйма на поворотах. Затем, когда вы покрыли всю зону, просто повторите процесс с самого начала. Таким образом, вы получите два ряда трубок, приблизительно параллельных друг другу, на расстоянии около 8 дюймов друг от друга, но вам не придется пытаться сделать невероятно тугой изгиб, чтобы сделать это.