Рассчитать точку росы при утеплении стен калькулятор: Точка росы — калькулятор онлайн

Содержание

SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

JavaScript отключен

К сожалению Ваш браузер не поддерживает JavaScript, или JavaScript отключен в настройках браузера.
Без JavaScript и без поддержки браузером HTML5 работа ресурса невозможна. Если Вы имеете намерение воспользоваться нашим ресурсом, включите поддержку JavaScript или обновите свой браузер.

Теплотехнический калькулятор ограждающих конструкций

Расчет утепления и точки росы для строящих свой дом

СНиП 23-02-2003

СП 23-101-2004

ГОСТ Р 54851—2011

СТО 00044807-001-2006

Старая версия калькулятора

Тепловая защита

Защита от переувлажнения

Ссылка на расчет. Отчет по результатам расчета.

Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.


При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.

Расчет основан на российской нормативной базе:

  • СНиП 23-02-2003 «Тепловая защита зданий»
  • СП 23-101-2004 «Проектирование тепловой защиты зданий»
  • ГОСТ Р 54851—2011 «Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче»
  • СТО 00044807-001-2006 «Теплозащитные свойства ограждающих конструкций зданий»

Добавьте ссылку на расчет в закладки:
Ссылка на расчет

Или скопируйте ее в буфер обмена:

Москва (Московская область, Россия)

Страна

РоссияАзербайджанАрменияБеларусьГрузияКазахстанКыргызстанМолдоваТуркменистанУзбекистанУкраинаТаджикистан

Регион

Республика АдыгеяРеспублика АлтайАлтайский крайАмурская областьАрхангельская областьАстраханская областьРеспублика БашкортостанБелгородская областьБрянская областьРеспублика БурятияВладимирская областьВолгоградская областьВологодская областьВоронежская областьРеспублика ДагестанЕврейская автономная областьЗабайкальский крайИвановская областьРеспублика ИнгушетияИркутская областьКабардино-Балкарская РеспубликаКалининградская областьРеспублика КалмыкияКалужская областьКамчатский крайКарачаево-Черкесская РеспубликаРеспублика КарелияКемеровская областьКировская областьРеспублика КомиКостромская областьКраснодарский крайКрасноярский крайРеспублика КрымКурганская областьКурская областьЛенинградская областьЛипецкая областьМагаданская областьРеспублика Марий ЭлРеспублика МордовияМосковская областьМурманская областьНенецкий АО (Архангельская область)Нижегородская областьНовгородская областьНовосибирская областьОмская областьОренбургская областьОрловская областьПензенская областьПермский крайПриморский крайПсковская областьРостовская областьРязанская областьСамарская областьСаратовская областьСахалинская областьСвердловская областьРеспублика Северная Осетия — АланияСмоленская областьСтавропольский крайТамбовская областьРеспублика ТатарстанТверская областьТомская областьТульская областьРеспублика ТываТюменская областьУдмуртская РеспубликаУльяновская областьХабаровский крайРеспублика ХакасияХанты-Мансийский автономный округ — ЮграЧелябинская областьЧеченская РеспубликаЧувашская Республика — ЧувашияЧукотский АО (Магаданская область)Республика Саха (Якутия)Ямало-Ненецкий автономный округЯрославская область

Населенный пункт

ДмитровКашираМожайскМоскваНаро-ФоминскНовомосковский АОТроицкий АОЧерусти

Основные климатические параметры
Температура холодной пятидневки с обеспеченностью 0.
92
-26 ˚С
Продолжительность отопительного периода 204 суток
Средняя температура воздуха отопительного периода -2.2 ˚С
Относительная влажность воздуха наиболее холодного месяца 84 %
Условия эксплуатации помещения
Количество градусо-суток отопительного периода (ГСОП) 4528.8 °С•сут

Средние месячные и годовые значения температуры и парциального давления водяного пара
Месяц Т, ˚С E, гПа Месяц Т, ˚С E, гПа
Январь -7. 8 3.3 Июль
19.1
15.7
Февраль -6.9 3.3 Август 17.1 14.6
Март -1.3 4.3 Сентябрь 11.3 10.9
Апрель 6.5 6. 6
Октябрь
5.2 7.5
Май 13.3 10 Ноябрь -0.8 5.2
Июнь 17 13.3 Декабрь -5.2 3.9
Год 5.6 8.2

Жилое помещение (Стена)

Помещение Жилое помещениеКухняВаннаяНенормированноеТехническое помещение

Тип конструкции СтенаПерекрытие над проездомПерекрытие над холодным подвалом, сообщающимся с наружным воздухомПерекрытие над не отапливаемым подвалом со световыми проемами в стенахПерекрытие над не отапливаемым подвалом без световых проемов в стенахЧердачное перекрытиеПокрытие (утепленная кровля)

Влажность в помещении* ϕ %
Коэффициент зависимости положения наружной поверхности по отношению к наружному воздуху n
Коэффициент теплоотдачи внутренней поверхности α(int)
Коэффициент теплоотдачи наружной поверхности α(ext)
Нормируемый температурный перепад Δt(n) °С
* — параметр используется при расчете раздела «Защита от переувлажнения ограждающих конструкций» (см. закладку «Влагонакопление»).

Слои конструкции

Конструкция
Тип Материалы Толщина, мм λ μ (Rп) Управление
Внутри
Снаружи Наружный воздухВентилируемый зазор (фасад или кровля)Кровельное покрытие с вентилируемым зазором

Внутри: 20°С (55%) Снаружи: -10°С (85%)

Климатические параметры внутри помещения

Температура

Влажность

Климатические параметры снаружи помещения

Выбранные

Самый холодный месяц

Температура

Влажность

  • Тепловая защита
  • Влагонакопление
  • Тепловые потери

Сопротивление теплопередаче: (м²•˚С)/Вт

Слои конструкции (изнутри наружу)
Тип Толщина Материал λ R Тmax Тmin
Термическое сопротивление Rа
Термическое сопротивление Rб
Термическое сопротивление ограждающей конструкции
Сопротивление теплопередаче ограждающей конструкции [R]
Требуемое сопротивление теплопередаче
Санитарно-гигиенические требования [Rс]
Нормируемое значение поэлементных требований [Rэ]
Базовое значение поэлементных требований [Rт]

Расчет защиты от переувлажнения методом безразмерных величин

Нахождение плоскости максимального увлажнения.

Координата плоскости максимального увлажнения X 0 мм
Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажнения Rп(в) 0 (м²•ч•Па)/мг
Сопротивление паропроницанию от плоскости максимального увлажнения до внешней поверхности конструкции Rп(н) 0 (м²•ч•Па)/мг
Условие недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации Rп.тр(1) 0 (м²•ч•Па)/мг
Условие ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха Rп. тр(2) 0 (м²•ч•Па)/мг

Образование конденсата в проветриваемом чердачном перекрытии или вентилируемом зазоре кровли

Сопротивление паропроницанию конструкции Rп 0 (м²•ч•Па)/мг
Требуемое сопротивление паропроницанию Rп.тр 0 (м²•ч•Па)/мг

Послойный расчет защиты от переувлажнения

Слои конструкции (изнутри наружу)
ТолщинаМатериал μ Rп X Rп(в) Rп. тр(1) Rп.тр(2)

Тепловые потери через квадратный метр ограждающей конструкции

Потери тепла через 1 м² за один час при сопротивлении теплопередаче (Вт•ч)
Сопротивление теплопередаче R ±R, % Q ±Q, Вт•ч
Санитарно-гигиенические требования [Rс] 0 0 0 0
Нормируемое значение поэлементных требований [Rэ] 0 0 0 0
Базовое значение поэлементных требований [Rт] 0 0 0 0
Сопротивление теплопередаче ограждающей конструкции [R] 0 0 0 0
R + 10% 0 0 0 0
R + 25% 0 0 0 0
R + 50% 0 0 0 0
R + 100% 0 0 0 0

Потери тепла через 1 м² за отопительный сезон

кВт•ч

Потери тепла через 1 м² за 1 час при температуре самой холодной пятидневки

Вт•ч

Актуализация данных климатологии (СП 131. 13330.2020)
Внесены изменения в БД климатических параметров для России в соответствии с вступившим в действие СП 131.13330.2020 …
Актуализация климатических параметров для Казахстана
Внесены изменения в БД климатических параметров для Казахстана в соответствии с действующими нормативными документами …
Актуализация в соответствии с норматиными документами
Актуализированы изменения в СП 50.13330.2012 и СП 131.13330.2018 …
Добавлены проекты
Добавлены возможности хранения ссылок на расчеты и расчета тепловых потерь здания…
Добавлен калькулятор тепловой защиты полов по грунту
Калькулятор позволяет рассчитать уровень тепловой защиты и тепловые потери полов по грунту…
Открыта группа «В контакте»
В социальной сети «В контакте» открыта группа, посвященная проекту СмартКалк. ..
Для исследователей и экспериментаторов
Для экспериментаторов, исследователей и вообще всех, кому спокойно не сидится на месте, добавлен тип помещения: «Ненормированное» …
Расчет каркасных конструкций
Как рассчитать каркасную конструкцию?
Какие варианты каркасов можно использовать в калькуляторе?

Основной материал

Материал каркаса или швов

Материал:

Плотность ρ:

кг/м³

Удельная теплоемкость (c):

кДж/(кг•°С)

Коэффициент теплопроводности для условий А λ(А):

Вт/(м•°С)

Коэффициент теплопроводности для условий Б λ(Б):

Вт/(м•°С)

Коэффициент паропроницаемости μ:

мг/(м•ч•Па)

Предельно допустимое приращение расчетного массового отношения влаги в материале ограждающей конструкции Δwcp:

%

Сопротивление паропроницанию Rп:

(м²•ч•Па)/мг

Вставить после:

Расчет точки росы в стене, определение точки росы в строительстве

Во время проектирования тепловой изоляции жилых зданий специалистами всегда производится расчет точки росы с целью определения ее положения в наружной стене. Это позволяет понять, в каком месте есть большая вероятность выделения значительного количества конденсата, и таким образом выяснить, насколько выбранный материал ограждения соответствует условиям эксплуатации.

Мы не станем выкладывать здесь расчет точки росы по формулам, который принято делать в строительстве, так как он довольно сложен и громоздок. Кстати, этим пользуются многие недобросовестные продавцы стройматериалов, рассказывая нам о выделении влаги внутри тех или иных утеплителей. Цель данной статьи – помочь обычному домовладельцу самому определить точку росы в стене и использовать это на практике.

Что такое точка росы

Надо понимать, что воздух всегда содержит в себе водяной пар, количество которого зависит от многих условий. Внутри помещений пар выделяется от человека и от разных повседневных процессов его жизнедеятельности – стирки, уборки, приготовления пищи и так далее.


Снаружи содержание влаги в воздухе зависит от погодных условий, это понятно. Причем насыщение воздушной смеси парами имеет свой предел, при достижении которого начинается конденсация влаги и появляется туман.

Принято считать, что в этот момент воздух вобрал в себя максимально возможное количество пара и его относительная влажность (обозначается буквой ω) составляет 100%. Дальнейшее насыщение как раз и приводит к появлению тумана – мелких капелек воды, находящихся во взвешенном состоянии. Тем не менее всем доводилось наблюдать выпадение конденсата на различных поверхностях и без всякого тумана.

Так бывает, когда не полностью насыщенный парами воздух (влажность менее 100%) соприкасается с поверхностью, чья температура на несколько градусов ниже его собственной. Фокус в том, что воздушная смесь при различной температуре может вместить разное количество пара. Чем температура выше, тем больше влаги она может впитать. Поэтому, когда смесь с относительной влажностью 80% контактирует с более холодным предметом, то она резко охлаждается, предел ее насыщения снижается, а относительная влажность достигает 100%.


В этот момент и начинается выпадение конденсата на поверхности, возникает так называемая точка росы. Именно это явление можно наблюдать летом на траве. Утром земля и трава еще холодные, а солнце быстро прогревает воздух, влажность его около земли быстро достигает 100% и выпадает роса. Примечательно, что процесс конденсации сопровождается выделением тепловой энергии, что была затрачена ранее на парообразование. Оттого роса быстро сходит.

Получается, что температура точки росы – величина переменная и зависит от относительной влажности и температуры воздуха в определенный момент. На практике эти величины определяются с помощью различных измерителей, — термометров и психрометров. То есть, проведя измерение температуры и влажности воздуха, можно предположить, при какой температуре поверхности возникнет точка росы по таблицам, о чем речь пойдет далее.

Для справки. Чтобы определить влажность наружного воздуха, сейчас вовсе не обязательно проводить какие-то измерения, достаточно взглянуть на метеопрогноз в интернете. Там указывается и относительная влажность.

Определение точки росы

На данный момент нет смысла задумываться над тем, как рассчитать точку росы, поскольку это давно уже сделано специалистами, а результаты сведены в таблицу. В ней указываются значения температур поверхностей, ниже которых из воздуха с различной влажностью начинает выделяться конденсат.


Как видите, фиолетовым цветом здесь выделена нормативная температура в помещении в зимнее время года – 20 °С, а зеленым обозначен сектор, что охватывает диапазон нормированной влажности – от 50 до 60%. При этом точка росы колеблется от 9.3 до 12 °С. То есть, при соблюдении всех норм конденсация влаги внутри дома невозможна, поскольку в нем нет поверхностей с такой температурой.


Другое дело – наружная стена. Изнутри ее омывает воздух, нагретый до +20 °С, а снаружи – минус 20 °С, а то и больше. Значит, в толще стены температура постепенно растет от минус 20 °С до + 20 °С и в каком-то месте она обязательно будет равна 12 °С, что при влажности 60% даст точку росы. Но для этого еще нужно, чтобы водяной пар добрался до этого места сквозь материал ограждения. И тут возникает еще один фактор, влияющий на определение точки росы – паропроницаемость материала, которая всегда учитывается при строительстве.


Теперь можно перечислить все факторы, влияющие на образование влаги внутри наружных стен в процессе эксплуатации:

  • температура воздуха;
  • относительная влажность воздуха;
  • температура в толще стены;
  • паропроницаемость материала ограждения.

Примечание. Для измерения этих показателей в толще эксплуатируемых стен не существует никаких датчиков или анализаторов, их можно получить только расчетным путем.

Паропроницаемость – это характеристика, показывающая, какое количество водяного пара может пропустить через себя тот или иной материал за определенный промежуток времени. К проницаемым относятся все конструктивные материалы с открытыми порами – бетон, кирпич, дерево и так далее. В народе бытует выражение, что дома, возведенные из них, «дышат». Примерами пористого утеплителя служат минеральная вата и керамзит.

Из всего вышесказанного можно сделать вывод, что в обычных и утепленных стенах всегда есть условия для возникновения точки росы. Вот в этом месте и появляется много небылиц и страшилок, связанных с огромным количеством воды, прямо-таки вытекающим из стен при конденсации, и растущей на них массой плесени. В действительности все не так страшно, ведь эта точка не занимает стационарную позицию в ограждении. С течением времени условия с обеих сторон конструкции постоянно меняются, отчего и точка росы в стене перемещается. В строительстве это называется зоной возможной конденсации.


Так как ограждение проницаемо, то оно способно самостоятельно избавляться от выделяющейся влаги, при этом важную роль играет вентиляция с обеих сторон. Неспроста наружное утепление стен минеральной ватой делается вентилируемым, ведь точка росы в этом случае находится в утеплителе. Если все сделано правильно, то выделяющаяся внутри ваты влага через поры покидает ее и уносится потоком вентиляционного воздуха.

Вот почему так важно устроить хорошую вентиляцию в жилых помещениях, она удаляет не только вредные вещества, но и лишнюю влагу. Стена мокнет лишь в одном случае: когда конденсация происходит постоянно и в течение длительного времени, а влаге деться некуда. В нормальных условиях материал просто не успевает напитаться водой.


Современные полимерные утеплители практически не пропускают пар, поэтому при утеплении стен их лучше располагать снаружи. Тогда необходимая для конденсации температура будет внутри пенопласта или пенополистирола, но пары к этому месту не доберутся, а потому и увлажнения не возникнет. И наоборот, утеплять полимером изнутри не стоит, так как точка росы останется в стене, а влага станет выделяться на стыке двух материалов.

Пример такой конденсации – окно с одним стеклом в зимнее время, оно не пропускает пары, отчего на внутренней поверхности образуется вода.

Внутреннее утепление осуществимо при таких условиях:

  • стена достаточно сухая и относительно теплая;
  • утеплитель должен быть паропроницаемым, дабы выделяющаяся влага могла покинуть конструкцию;
  • в доме должна хорошо действовать вентиляция.

Заключение

BIMLIB – Расчет утепления и точки росы для строящих свой дом. СНИП.

JavaScript отключен

К сожалению Ваш браузер не поддерживает JavaScript, или JavaScript отключен в настройках браузера.
Без JavaScript и без поддержки браузером HTML5 работа ресурса невозможна. Если Вы имеете намерение воспользоваться нашим ресурсом, включите поддержку JavaScript или обновите свой браузер.

Расчёт утепления и точки росы онлайн

СНиП 23-02-2003

СП 23-101-2004

ГОСТ Р 54851—2011

СТО 00044807-001-2006

Строительство дома – сложный процесс, при котором нужно учитывать множество факторов, начиная с этапа проектирования.

Чтобы правильно и в нужном количестве подобрать утеплитель для предотвращения случаев промерзания, перегрева и конденсата в проектируемом здании, необходимо выполнить расчёт утепления и точки росы (теплотехнический расчёт). При расчёте важно учитывать следующие особенности ограждающих конструкций:
• Теплозащитные свойства
• Сопротивление теплопередаче
• Паропроницаемость

Легко сделать точный теплотехнический расчёт вы можете в нашем онлайн калькуляторе. В режиме реального времени вы посчитаете оптимальную толщину утеплителя и ограждающих конструкций для вашего региона. Наш калькулятор разработан специалистами в соответствии с теплотехническими нормами и опирается на нормативную базу РФ:
• СНиП 23-02-2003
• СП 23-101-2004
• ГОСТ Р 54851—2011
• СТО 00044807-001-2006

Тепловая защита

Защита от переувлажнения

Ссылка на расчёт (отчёт по результатам расчета)

Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.

При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.

Расчет основан на российской нормативной базе:

  • СНиП 23-02-2003 «Тепловая защита зданий»
  • СП 23-101-2004 «Проектирование тепловой защиты зданий»
  • ГОСТ Р 54851—2011 «Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче»
  • СТО 00044807-001-2006 «Теплозащитные свойства ограждающих конструкций зданий»

Добавьте ссылку на расчет в закладки:
Ссылка на расчет

Или скопируйте ее в буфер обмена:

Москва (Московская область, Россия)

Страна

РоссияАзербайджанАрменияБеларусьГрузияКазахстанКыргызстанМолдоваТуркменистанУзбекистанУкраинаТаджикистан

Регион

Республика АдыгеяАлтайский крайРеспублика АлтайАмурская областьАрхангельская областьАстраханская областьРеспублика БашкортостанБелгородская областьБрянская областьРеспублика БурятияВладимирская областьВолгоградская областьВологодская областьВоронежская областьРеспублика ДагестанИвановская областьИркутская областьКабардино-Балкарская РеспубликаКалининградская областьРеспублика КалмыкияКалужская областьКамчатский крайКарачаево-Черкесская РеспубликаРеспублика КарелияКемеровская областьКировская областьРеспублика КомиКостромская областьКраснодарский крайКрасноярский крайКурганская областьКурская областьЛипецкая областьЛенинградская областьМагаданская областьРеспублика Марий ЭлРеспублика МордовияМосковская областьМурманская областьНижегородская областьНовгородская областьНовосибирская областьОмская областьОренбургская областьОрловская областьПензенская областьПермский крайПриморский крайПсковская областьРостовская областьРязанская областьСамарская областьСвердловская областьСаратовская областьСахалинская областьРеспублика Северная Осетия — АланияСмоленская областьСтавропольский крайТамбовская областьРеспублика ТатарстанТверская областьТомская областьРеспублика ТываТульская областьТюменская областьУдмуртская РеспубликаУльяновская областьХабаровский крайРеспублика ХакасияЧелябинская областьЧеченская РеспубликаЗабайкальский крайЧувашская Республика — ЧувашияЧукотский АО (Магаданская область)Республика Саха (Якутия)Ненецкий АО (Архангельская область)Ярославская областьРеспублика Крым

Населенный пункт

ДмитровКашираМоскваНовомосковский АОТроицкий АО

Основные климатические параметры
Температура холодной пятидневки с обеспеченностью 0. 92 -25 ˚С
Продолжительность отопительного периода 205 суток
Средняя температура воздуха отопительного периода -2.2 ˚С
Относительная влажность воздуха наиболее холодного месяца 83 %
Условия эксплуатации помещения
Количество градусо-суток отопительного периода (ГСОП) 4551 °С•сут

Средние месячные и годовые значения температуры и парциального давления водяного пара
Месяц Т, ˚С E, гПа Месяц Т, ˚С E, гПа
Январь -7. 8 2.8 Июль 18.7 14.7
Февраль -7.1 2.9 Август 16.8 14
Март -1.3 3.9 Сентябрь 11. 1 10.4
Апрель 6.4 6.2 Октябрь 5.2 7
Май 13 9.1 Ноябрь -1.1 5
Июнь 16. 9 12.4 Декабрь -5.6 3.6
Год 5.4 7.7

Жилое помещение (Стена)

Помещение Жилое помещениеКухняВаннаяНенормированноеТехническое помещение

Тип конструкции СтенаПерекрытие над проездомЧердачное перекрытие или утепленная кровляПерекрытие над холодным подвалом, сообщающимся с наружным воздухомПерекрытие над не отапливаемым подвалом со световыми проемами в стенахПерекрытие над не отапливаемым подвалом без световых проемов в стенах

Влажность в помещении* ϕ %
Коэффициент зависимости положения наружной поверхности по отношению к наружному воздуху n
Коэффициент теплоотдачи внутренней поверхности α(int)
Коэффициент теплоотдачи наружной поверхности α(ext)
Нормируемый температурный перепад Δt(n) °С
* — параметр используется при расчете раздела «Защита от переувлажнения ограждающих конструкций» (см. закладку «Влагонакопление»).

Слои конструкции

Конструкция
Тип Материалы Толщина, мм λ μ (Rп) Управление
Внутри
Снаружи Наружный воздухВентилируемый зазор (фасад или кровля)Кровельное покрытие с вентилируемым зазором

Внутри: 18°С (55%) Снаружи: -10°С (85%)

Климатические параметры внутри помещения

Температура

Влажность

Климатические параметры снаружи помещения

Выбранные

Самый холодный месяц

Температура

Влажность

  • Тепловая защита
  • Влагонакопление
  • Тепловые потери

Сопротивление теплопередаче: (м²•˚С)/Вт

Слои конструкции (изнутри наружу)
Тип Толщина Материал λ R Тmax Тmin
Термическое сопротивление Rа
Термическое сопротивление Rб
Термическое сопротивление ограждающей конструкции
Сопротивление теплопередаче ограждающей конструкции [R]
Требуемое сопротивление теплопередаче
Санитарно-гигиенические требования [Rс]
Нормируемое значение поэлементных требований [Rэ]
Базовое значение поэлементных требований [Rт]

Расчет защиты от переувлажнения методом безразмерных величин

Нахождение плоскости максимального увлажнения.

Координата плоскости максимального увлажнения X 0 мм
Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажнения Rп(в) 0 (м²•ч•Па)/мг
Сопротивление паропроницанию от плоскости максимального увлажнения до внешней поверхности конструкции Rп(н) 0 (м²•ч•Па)/мг
Условие недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации Rп. тр(1) 0 (м²•ч•Па)/мг
Условие ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха Rп.тр(2) 0 (м²•ч•Па)/мг

Образование конденсата в проветриваемом чердачном перекрытии или вентилируемом зазоре кровли

Сопротивление паропроницанию конструкции Rп 0 (м²•ч•Па)/мг
Требуемое сопротивление паропроницанию Rп. тр 0 (м²•ч•Па)/мг

Послойный расчет защиты от переувлажнения

Слои конструкции (изнутри наружу)
ТолщинаМатериал μ Rп X Rп(в) Rп. тр(1) Rп.тр(2)

Тепловые потери через квадратный метр ограждающей конструкции

Потери тепла через 1 м² за один час при сопротивлении теплопередаче (Вт•ч)
Сопротивление теплопередаче R ±R, % Q ±Q, Вт•ч
Санитарно-гигиенические требования [Rс] 0 0 0 0
Нормируемое значение поэлементных требований [Rэ] 0 0 0 0
Базовое значение поэлементных требований [Rт] 0 0 0 0
Сопротивление теплопередаче ограждающей конструкции [R] 0 0 0 0
R + 10% 0 0 0 0
R + 25% 0 0 0 0
R + 50% 0 0 0 0
R + 100% 0 0 0 0

Потери тепла через 1 м² за отопительный сезон

кВт•ч

Потери тепла через 1 м² за 1 час при температуре самой холодной пятидневки

Вт•ч

Основной материал

Материал каркаса или швов

Материал:

Плотность ρ:

кг/м³

Удельная теплоемкость (c):

кДж/(кг•°С)

Коэффициент теплопроводности для условий А λ(А):

Вт/(м•°С)

Коэффициент теплопроводности для условий Б λ(Б):

Вт/(м•°С)

Коэффициент паропроницаемости μ:

мг/(м•ч•Па)

Предельно допустимое приращение расчетного массового отношения влаги в материале ограждающей конструкции Δwcp:

%

Сопротивление паропроницанию Rп:

(м²•ч•Па)/мг

Вставить после:

Теплотехнический расчет онлайн — калькулятор точки росы в стенах, рассчитать теплопотери дома

Теплотехнический расчет онлайн — калькулятор точки росы в стенах, рассчитать теплопотери дома | ISOVER Перейти к основному содержанию

СП 50. 13330.2012 «Тепловая защита зданий»

проект в файл»> проект из файла»>

Материал:

Установить алюминиевую фольгу

λA = Вт/(м °С)
λB = Вт/(м °С)
Плотность кг/м3
Кратность мм
Паропроницание мг / (м·ч·Па)
Δw %

Модель расчёта:Однородный слойНеоднородный слойКаркасПерекрёстный каркасКладкаПустотная плитаПрофилированный лист

Коэффициент однородности r:

Выберите материал

Шаг каркаса, s мм
Ширина элемента каркаса, a мм
λkА каркаса Вт/(м °С)
λkБ каркаса Вт/(м °С)

Выберите материал

Шаг каркаса, s мм
Ширина элемента каркаса, a мм
λkА каркаса Вт/(м °С)
λkБ каркаса Вт/(м °С)

Выберите материал

Длина блока, a мм
Высота блока, b мм
Толщина швов, c мм
λkА шва Вт/(м °С)
λkБ шва Вт/(м °С)

Армирование шва кладки

Сетка кладочная Вр I
λсвА арматуры Вт/(м °С)
λсвБ арматуры Вт/(м °С)
Площадь сечения, Sсвср мм2
Площадь сечений связей (арматуры), приходящихся на 1 погонный метр сечения шва. Включает только те связи, которые перпендикулярны плоскости стены.

Диаметр выреза, d мм
Расстояние между вырезами, s мм
Толщина плиты, δ мм

Размер, a мм
Размер, h мм
Толщина листа, δ мм

Быстрый поиск:

Пожалуйста, выберите материал.

Ваш файл успешно загружен.

Что нужно вычислить?

δ = ?

Расчёт требуемой толщины теплоизоляции
(требуемое сопротивление теплопередаче определяется по СП 131.13330)

R = ввести
δ = ?

Расчёт требуемой толщины теплоизоляции
по заданному сопротивлению теплопередаче
(например, согласно территориальным строительным нормам — ТСН)

проверка
δ

Проверка толщины теплоизоляции
на соответствие нормативным требованиям
(производится согласно СП 131.13330 и СП 50.13330)

Для какой части здания производится расчёт?

Покрытие

Стена

Перекрытие

Плоская кровля (железобетон)

Плоская кровля (профлист)

Скатная кровля

Каркасная

Штукатурный фасад

Многослойная

Навесной вентилируемый фасад

Над проездом

Чердачное

Над холодным подвалом, сообщающимся с наружным воздухом

Над неотапливаемым подвалом со световыми проёмами в стенах

Над неотапливаемым подвалом без световых проёмах в стенах, расположенное выше уровня земли

Над неотапливаемым подвалом без световых проёмах в стенах, расположенное ниже уровня земли

Над холодными подпольями без ограждающих стенок

Над холодными подпольями c ограждающими стенками

Где находится здание?

Расчётная температура наружного воздуха (text):

(обеспеченностью 0,92, СП 131. 13330.2020 т.3.1)

Расчётная средняя температура отопительного периода (tht):

(со среднесуточной t ≤ 8 °C, СП 131.13330.2020 т.3.1)

Продолжительность отопительного периода (zht):

(со среднесуточной t ≤ 8 °C, СП 131.13330.2020 т.3.1)

Зона влажности:

нормальная

Каково функциональное назначение здания и помещения?

 

Температура пребывания (tint):

(по ГОСТ 30494-2011)

Относительная влажность воздуха, не более (ф):

(по ГОСТ 30494-2011, СП 131.13330.2020 т.3.1)

Коэффициент однородности конструкции (r):

(по ГОСТ Р 54851-2011)

Коэффициент зависимости положения ограждающей конструкции (n):

(по СП 50. 13330.2012 ф.5.3)

Наличие в конструкции рёбер с соотношением высоты
ребра к шагу h/a ≥ 0.3

ДаНет

Коэффициент a:

(СП 50.13330.2012, т.3)

Коэффициент b:

(СП 50.13330.2012, т.3)

Коэффициент теплоотдачи внутренней поверхности (αint):

(по СП 50.13330.2012, т.4)

Нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции:

(по СП 50.13330.2012, т.5)

Коэффициент теплоотдачи наружной поверхности (αext):

(по СП 50.13330.2012, т.6)

Влажностный режим помещения:

(СП 50. 13330.2012 т.1)

Условия эксплуатации ограждающих конструкций:

(СП 50.13330.2012 т.2)

Структура теплоизолирующей конструкции

Недавно вы изменили тип конструкции. Хотите ли вы загрузить типовой пример для него?

Добавить слой

  Чтобы поменять местами слои, просто потяните слой вверх или вниз.
 Чтобы редактировать слой, нажмите на кнопку с изображением карандаша.

{{if funcLabel}} ${funcLabel.toUpperCase()} {{/if}}

Результаты расчёта


 

${name}

${post}

 

 

ООО «Сен-Гобен Строительная Продукция Рус»
Моб. : ${phone}
E-mail: ${email}
www.saint-gobain.ru

 

    

{{/each}}

{{each $data.distributor}} {{/each}}

${name}

  Адрес: ${$data.name}, ${address}

  Телефон: ${phone}

{{if website}}   Вебсайт: {{if website.startsWith(‘http’)}} {{else}} {{/if}}${website} {{/if}}

{{if $data.calc.SigmaUT По результатам расчёта, необходимости в утеплителе нет.

{{else}} {{each $data. isoverProds}}

${layer.label}    δут = ${sigma} мм


{{/each}} {{/if}}

Конструкция удовлетворяет требованию по тепловой защите.

{{else}}

Конструкция не удовлетворяет требованию по тепловой защите.

{{/if}} {{if $data.calc[«Tint_calc»] >= $data.calc[«Tint_est»] && $data.calc[«DTnorm»] >= $data.calc[«DeltaT»]}}

Конструкция удовлетворяет санитарно-гигиеническому требованию.

{{else}}

Конструкция не удовлетворяет санитарно-гигиеническому требованию.

{{/if}}

${calc.hydro.verdict}.

{{else}}

Расчёт не удалось произвести.

{{/if}}

${calc[«Text»]} °С

{{if $data.showTht_Zht}}

tht Расчетная средняя температура отопительного периода:

(со среднесуточной t ≤ 8 °C, СП 131.13330.2020 т.3.1)

${calc[«Tht»]} °С zht Продолжительность отопительного периода:

(со среднесуточной t ≤ 8 °C, СП 131.13330.2020 т.3.1)

${calc[«Zht»]} сут

{{/if}}

Зона влажности: ${HumZone}

Назначение здания и помещения

Здание: ${buildingType},
{{if $data. extraBuildingName}} Название объекта: ${extraBuildingName}
{{/if}} {{if $data.buildingSubType}} Помещение: ${buildingSubType} {{if $data.buildingSubTypeInfo}}
${buildingSubTypeInfo} {{/if}} {{/if}}

{{if $data.displayAB}} {{/if}}
Коэффициент a:

(СП 50.13330.2012, т.3)

${calc[«a»]}
Коэффициент b:

(СП 50.13330.2012, т.3)

${calc[«b»]}
αint — Коэффициент теплоотдачи внутренней поверхности:

(по СП 50. 13330.2012, т.4)

${calc[«AlphaInt»]}
Нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции:

(по СП 50.13330.2012, т.5)

${calc[«DTnorm»]} °C
αext — Коэффициент теплоотдачи наружной поверхности:

(по СП 50.13330.2012, т.6)

${calc[«AlphaExt»]}
tint — Температура пребывания:

(по ГОСТ 30494-2011)

${calc[«Tint»]} °C
ф — Относительная влажность воздуха:

(по ГОСТ 30494-2011, СП 131. 13330.2020 т.3.1)

не более ${calc[«Hum»]} %
Влажностный режим помещения:

(СП 50.13330.2012 т.1)

${HumMode}
Условия эксплуатации ограждающих конструкций:

(СП 50.13330.2012 т.2)

${calc[«HumCondition»]}
Коэффициент однородности конструкции r:
${calc[«r»]}
Коэффициент зависимости положения ограждающей конструкции n:

СП 50. 13330.2012 ф.5.3)

${calc[«n»]}

Структура конструкции

{{each $data.structure}} {{/each}} {{if $data.hasVentAir}}
Слой Толщина, мм Примечание
${layerIndex} {{if layer.funcLabel}}

${layer.funcLabel.toUpperCase()}


{{/if}} ${layer.label}
{{if layer.isolator}} ${calc.SigmaUT} {{else}} {{if layer. type !== 5}} ${layer.sigma} {{/if}} {{/if}}
{{if layer.disabled}} cлой не участвует в расчёте {{else}} {{if layer.lambda}} λ = ${layer.lambda} Вт/(м °С) {{/if}} {{if layer.vapor}}
μ = ${layer.vapor} мг / м·ч·Па
{{/if}}
{{/if}}
Примечание: слои конструкции, расположенные между воздушной прослойкой, вентилируемой наружным воздухом, и наружной поверхностью ограждающей конструкции, не учитываются в теплотехническом расчёте. 2*°C}/{«Вт»}`

Расчёт ориентировочного термического сопротивления утеплителя

Расчёт ориентировочной толщины слоя утеплителя из условия:

Санитарно-гигиеническое требование

Расчётный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции:

Температуру внутренней поверхности — Tв, °С, ограждающей конструкции (без теплопроводного включения), следует определять по формуле:

График распределения температур в сечении конструкции

Температуру tx, °С, ограждающей конструкции в плоскости, соответствующей границе слоя x, следует определять по формуле:

`t_x(x) = t_(i nt) — {(t_(i nt) — t_(ext))*R_x(x)}/R_(пр)`

`R_x(x) = 1/α_(i nt) + sum_{i=1}^{x} (R_i)`

где: x — номер слоя, x=0 — это внутреннее пространство, Ri — сопротивление теплопередачи слоя с номером i, в направлении от внутреннего пространства.

Определение плоскости максимального увлажнения (конденсации)

Точка росы в строительстве. Расчет точки росы и ее вред для стены дома.

Одно из важнейших понятий в строительстве – точка росы. На этапе утепления стен это позволяет правильно подобрать вид и толщину теплоизоляционного материала, сформировать оптимальный микроклимат внутри строения. Определить точку росы можно несколькими способами. Однако нужно также знать, что делать с полученным результатом.

Что такое точка росы

Точка росы — это определенный предел температуры воздуха, ниже которой пар содержащаяся в воздухе, становится насыщенным и преобразуется в жидкость.

Точка росы – это то место, где холодный воздух встречается с теплым, и то место где при их взаимодействии образуется жидкость в виде конденсата. На примере строительных сооружений, точка росы проявляется в виде конденсата на окнах. Всегда, при резком похолодании на улице, мы наблюдаем, как на ранее сухих оконных стеклах образуются запотевание и капли воды. Это самое ближайшее и безвредное проявление точки росы.

конденсат на окне

В природе точка росы проявляется в виде капель утренней росы на листьях растений и иных объектах. Образуется в результате взаимодействия холодного ночного воздуха и прогреваемого солнечными лучами теплого утреннего воздуха.

проявление конденсата точки росы в природе

В случае с отапливаемыми помещениями точка росы создается искусственно в любое время суток, при условиях температуры ниже нуля на улице.

Совсем другое дело, если образование такого конденсата точки росы будет обнаружено на внутренней части стены дома. Даже не очень опытный строитель обеспокоится образованием лишней жидкости, в ранее сухом помещении. Так как последствия таких скоплений влажности могут быть самыми неблагоприятными. Но внутренняя стена дома не единственное разрушительное место, где может себя проявить не правильный расчет точки росы или его отсутствие.

Неправильный расчет и расположение точки росы для дома – это разрушительный враг номер один в строительстве. Который, изнутри, медленно, но уверенно разрушает любое крепкое строение.

Возможные последствия

Неправильная укладка теплоизоляции может привести к неприятным последствиям. Материал наносят только на фасад, поскольку дополнительное утепление изнутри считается нецелесообразным по следующим причинам:

  1. Уменьшается жилплощадь.
  2. Замерзает стена, так как тепло от помещения не доходит до перекрытия. В результате этого конденсат проникает внутрь теплоизоляции. Стена находится во влажном состоянии и подвергается коррозии.

Некачественная укладка приводит к разрушению стены. Если поверхность под изоляцию будет неровной и старой, ее придется наносить заново, предварительно сделав ремонт. Если утеплитель снаружи дополнительно не покрыть, то за один сезон он размокнет, придет в негодность и начнет отходить от стен. Тепловой слой обязательно нужно защищать от внешней среды.

Видео: Убираем точку росы из стены

Где должна находится точка росы

Идеальным местом возникновения точки росы в стене является утеплитель, расположенный со внешней стороны стены. Толщина утеплителя на стене должна быть такая, что бы в самое холодное время конденсат не смещался в саму стену или если смещался, то не на длительное время.

точка росы в утеплителе

О разрушительных последствиях нахождения точки росы в теле несущей стены, смотрите ниже в статье.

Стены, основой которых является пористые материалы, такие как пено и газоблоки, ракушечник и подобного рода материалы, требуют большего слоя утеплителя, поскольку они хорошо впитывают и сохраняют влагу. То есть, даже недлительное ( несколько дней), пребывание в пористой стене точки росы может разрушительным образом сказаться на внутренней целостности. Потому, так называемые теплые материалы для кладки стен, могут быть эффективны только в определенных регионах, с не самой морозной зимой.

Если же, согласно расчетам, точка росы будет периодически перемещаться в саму стену дома или велика вероятность такого сдвига, то этот факт следует учесть при выборе материала для кладки стен. Для таких случаев хорошо подходят стеновые материалы с высокой плотностью и которые, выдерживают большое количество циклов заморозки и оттаивания, без повреждения. С большим коэффициентом морозостойкости. К таким морозостойким материалам относятся кирпич, керамзитобетон.

показатели морозостойкости самых распространенных стеновых материалов

Теплоизоляционный материал

Для защиты зданий от тепловых потерь, высокой влажности и сдвига точки его утепляют теплоизоляционными материалами. Зимой утеплитель позволяет снизить затраты на отопление, а летом сохраняет прохладу внутри помещения. Каждое изделие имеет свои области применения и свойства. В строительстве используются экологичные и удобные для монтажа материалы. Под определенные условия подбирается изоляция нужного вида.


При правильном утеплении снаружи точка росы будет располагаться внутри утеплителя

По форме материалы разделяются на:

  • рулонные;
  • листовые;
  • сыпучие;
  • единичные.

По структуре:

  • волокно;
  • ячейки;
  • зернистые.

Сырье бывает органическим, неорганическим и смешанным.

Основные характеристики изоляционных материалов:

  • теплопроводность;
  • влагопоглощение;
  • пористость;
  • влажность;
  • плотность;
  • паропроницаемость;
  • удельная теплоемкость;
  • прочность и др.

Пеноплекс

Пеноплекс еще называют пенополистиролом. В отличие от пенного полистирола материал имеет большую плотность, меньше подвергается механическим повреждениям. Он почти не проводит пар из-за низкого коэффициента паропроницаемости. Однако относится к IV группе горючести (быстро воспламеняется).


Пеноплекс рекомендуется для наружного утепления стен

Для утепления стен, террас, лоджий, балконов выпускают пеноплекс категории «комфорт». Коэффициент теплопроводности у него в 9 раз меньше, чем у минеральной ваты. Материал требует мало времени на нагрев помещения после охлаждения благодаря низкой теплоемкости. Температурный диапазон эксплуатации составляет -70…+70℃. Пеноплекс этого вида обладает не лучшей звукоизоляцией, имеет самую маленькую плотность и меньший предел прочности по сравнению с другими материалами.

Пеноплекс для стен подойдет только в случае установки в помещении эффективной системы вентиляции для поддержания комфортной влажности.

Пласт пенополистирола шириной 2 см сохраняет тепло почти так же, как 40 см минеральной ваты или 37 см кладки кирпича.

Пенопласт

Пенопласт − это материал, отличающийся легкостью и плавучестью. Он устойчив к возгоранию, но под воздействием огня начинает плавиться. Материал прост в обработке, не подвергается заражению грибками и плесенью.

Пенопласт получается из вспененного полимерного сырья: полистирола, полиэтилена, поливинилхлорида или полиуретана. Он состоит из маленьких одинаковых шариков, которые скрепляются между собой. Для изоляции используют жесткий пенопласт, имеющий высокую плотность. Панели легко соединить с помощью каучукового или эпоксидного клея.

Для пенопласта не важен температурный диапазон, но материал подвержен механическим повреждениям.

В качестве теплоизоляции используют плиты толщиной 5 и 10 см. Но, несмотря на структуру, материал звукопроницаемый.


Пенопласт — это один из самых распространённых материалов для теплоизоляции дома

Минеральная вата

Теплоизоляционный материал состоит из спрессованных волокон. В качестве сырья применяют стекло, базальт и шлак. Исходный материал плавят и вытягивают в волокна. Их длина составляет 2-60 мм. Воздушные поры матов заполняют примерно 95% всего объема. Изделие легко производится и имеет небольшую стоимость.

Минеральная вата имеет много качеств, подходящих для утепления дома.

Благодаря своей пористости вата пропускает воздух и пар, сохраняя воздушный обмен. При этом она не горит и устойчива к влаге, обладает хорошей звукоизоляцией. Но материал имеет 2 недостатка:

  • в составе содержит фенол;
  • отлетающие кусочки ваты, попадая на кожу человека, вызывают зуд.

Расчет точки росы онлайн калькулятор

В интернете существует много онлайн программ – калькуляторов, с помощью которых можно рассчитать примерное расположение точки росы в стене. Программа высчитывает точку росы, основываясь на ряде показателей, которые необходимо ввести вручную. Это сведения о материале, из которых планируется возвести стену, количество слоев стены и их толщина, температура воздуха внутри и температура воздуха снаружи здания, влажность воздуха. Онлайн калькулятор удобен в расчетах. Вместе с цифровыми расчетами можно увидеть диаграммы и графики перемещения точки росы в зависимости от изменения температуры воздуха. Однако результаты подсчета у многих калькуляторов отличаются и насколько точны расчеты неизвестно.


онлайн калькулятор для определения точки росы

Физика конденсации пара

Вода присутствует в окружающей обстановке нашего жилища в двух агрегатных состояниях:

  • жидком – это вода для приготовления пищи и санитарно-бытовых нужд;
  • газообразном – пар над кипящей водой или в качестве одной из фракций выдыхаемого воздуха.

Кроме таких очевидных мест следы влаги обязательно имеются в материалах элементов строительной конструкции здания: бетонных или кирпичных стенах, перекрытиях, основании пола. Идеально сухих стройматериалов в природе не существует. При устойчивой теплой погоде пар, присутствующий в воздухе, и влага в стенах жилища находятся в тепловом равновесии.

При этом парциальное давление пара в воздухе со стороны улицы (внешняя сторона стенки) и внутри дома (внутренняя сторона стенки) одинаковое. Значит, никакого движения водяного пара через стенку не происходит. В морозную погоду влажность холодного воздуха низкая, парциальное давление пара в таком воздухе пониженное. В соответствии с законами теплофизики пар повышенного давления (жилое помещение) начинает диффундировать сквозь стеновой материал на холодную улицу, где давление ниже.

При прохождении через точку росы в стене пар переходит в жидкое агрегатное состояние, образуя конденсатную влагу.

Появление влаги в структуре стены сопровождается рядом негативных факторов:

  • Теплопроводность отсыревшей стены возрастает в несколько раз. Это будет означать, что теплообмен между обогреваемой комнатой и улицей интенсифицируется, в доме всегда будет холодно.
  • В холодное время года происходит периодическое замерзание конденсатной влаги в стене с последующим оттаиванием. Цикличность замерзаний разрушающе действует на структуру строительного материала, снижая срок безаварийной эксплуатации здания.

На рисунке ниже схематично отображено преобразование парообразной влаги в жидкое состояние (использован голубой цвет), когда ТР попадает внутрь стенки жилища.


Конденсирование влаги при нахождении ТР внутри стенки жилища

Расчет точки росы с помощью прибора

Точку росы можно определить также в реальном времени, с помощью специального телевизора. Это электронный прибор с монитором, на котором отобразятся сведения о влажности внутри помещения, отобразится температура воздуха и точка росы. Такие приборы актуальны для измерения точки росы для уже возведенной и законченной строительной конструкции. В проектировании толщины стены и здания это прибор не поможет.


тепловизор для точки росы

Мнение специалистов

Специалисты считают, что лучший вариант теплоизоляции − это минеральная вата. При грамотном монтаже материал не нанесет вреда и долго прослужит. Главное не допустить высокой влажности. Для этого вату дополнительно покрывают пленкой, которая ограничивает доступ влаги.

Еще один вариант − установка с двух сторон изоляции дышащих материалов, которые будут выпускать жидкость наружу. Пенопласт или пенополистирол советуют укладывать в сочетании с материалами, не пропускающими водяного пара и предотвращающими конденсацию влаги.

Вред точки росы для стен дома

Мы разобрались, что точка росы может располагаться в трех разных участках стены:

  1. в наружном утеплителе стены
  2. в стене, ближе к наружной части
  3. в стене, ближе внутренней части

В каждом из перечисленных мест, точка росы будет проявлять себя по-разному. Если в одном месте она будет безвредна, то внутри дома или в стене будет оказывать определенные разрушительные последствия на целостность стены. Ниже, разберем поведение точки росы в каждом из перечисленных мест.

Точка росы в наружном утеплителе

Это самое безвредное для дома нахождение точки росы. В этом случае:

  • Конденсат при возникновении точки росы образуется, непосредственно, в самом утеплителе.
  • Утеплитель не гигроскопичен, потому влага не задерживается в конструктиве стены и испаряется при изменении температуры воздуха.
  • За счет пароизоляционных свойств утеплителя, влажность, которая образуется при испарении конденсата, выходит на улицу и не взаимодействует со стеной дома.
  • Стены дома сухие в течении всего года, как с наружной так и со внутренней стороны
  • Стены сохраняют свою прочность и целостность многие десятилетия


утеплитель снаружи

Точка росы в стене дома, ближе к наружной стороне

  • Поведение стены во многом зависит от материала, из которого она выложена. Лучше переносят точку росы, стены из плотных и тяжелых строительных материалов, таких как кирпич, керамзитобетон, камень, дерево. Поскольку они менее подвержены разрушению и имеют больший коэффициент морозостойкости.
  • Стены домов возведенных из пористых материалов, хорошо впитывающих влагу и пропускающих пар. Таких как, пеноблоки, газоблоки и подобного рода материалы, действие точки росы должно быть минимально коротким.


разрушение стены под воздействием влажности

  • При возникновении конденсата внутри стены, материал стены насыщается жидкостью. При последующем понижении температуры воздуха ниже нуля, накопленная жидкость замерзает и увеличивается в объемах. Увеличения объема жидкости разрушает любой стеновой материал изнутри. Это приводит к образованию как мелких, так и крупных трещин в структуре стены. Стены крошатся и окончательно теряют свою прочность.
  • В случае если стена, в которой точка росы внутри и утеплена снаружи, то утеплитель не будет препятствовать выходу накопившей влаги наружу. Поэтому, вся жидкость будет скапливаться на поверхности, между утеплителем и стеной. Это влечет образование плесени и грибка, со всеми вытекающим последствиями, вредными как для здания, так и для здоровья человека.
  • Если стена дома не утеплена снаружи, то жидкость будет выходить с повышением температуры воздуха, но это не убережет стену от внутреннего разрушения после замерзания воды. Подобные испарения жидкости, из влажной стены, мы можем наблюдать в виде налета белого цвета на кирпичных стенах.

выделение влажности из кирпичной стены в виде налета белого цвета

Точка росы в стене дома, ближе к внутренней поверхности

Возникает, когда пар проходит середину толщины стены и конденсат начинает образовываться уже ближе к поверхности стены, которая находится внутри дома.

Последствия точки росы для внутренней отделки дома:

  • Насыщенная влажностью кладка начинает выделять на внутренней стене, в доме жидкость в виде капель воды.
  • Мокрая поверхность стены разрушает внутреннюю отделку помещения: шпаклевку, обои другие отделочные материалы.
  • На стенах и в углах образуется плесень и грибок, от которых уже будет очень трудно избавиться
  • В доме появляется неприятный ветхий запах разложения, который вреден для здоровья.
  • Понижается общая температура тепла в доме.


плесень на стене внутри дома
Самые разрушительные и вредные последствия для дома это когда точка росы находится ближе к внутренней поверхности стены.

Точка росы – важный параметр, который следует учитывать при проектировании и возведении стен, крыш и строительства всего дома. Ее не соблюдение может привести к необратимым и критическим последствиям для всего здания.

Сферы применения

Существует немало сфер, которые учитывают эту температуру. Одна из областей − авиация. При эксплуатации самолета на некоторых его деталях может выпадать конденсат, который замораживается. Это приводит к заледенению двигателя, металлических конструкций летающего аппарата и его поломке.

В лесном хозяйстве работники по охране природы от возгорания пользуются точкой росы, чтобы вычислить класс пожарной опасности.

Специалисты высчитывают степень вероятности воспламенения лесов и разрабатывают защитные меры.

Чаще всего определение точки необходимо в строительстве и сельском хозяйстве.

Видео: Точка росы — утепляем дом с умом

Строительство

В строительстве эта величина определяется при утеплении фасадов зданий и частных построек. Если не учитывать показатель или рассчитать его неправильно, из-за оседающей влаги будет портиться материал отделки стен либо появится патогенная флора и плесень.

Сельское хозяйство

В сельском хозяйстве специалисты определяют вероятность повреждения посадок из-за погодных условий, зная точку и атмосферную влажность.

При культивировании новых растений селекционеры стараются создавать сорта, которые конденсируют влагу на вегетативных частях. Такие посадки смогут существовать при малом выпадении осадков.

Основные теплопотери

Для начала совет: утепляя дом не стоит строго придерживаться норм, прописанных в СНиП 23–02–2003 «Тепловая защита зданий»! Они намного мягче европейских стандартов утепления и рассчитаны на дешёвые энергоносители. Ужесточайте российский норматив, утепляйте дом качественно, современными материалами.

Но даже в этом случае теплопотери возможны. Чтобы убедиться в этом достаточно взять напрокат тепловизор и провести обследование.

Теперь давайте разбираться с возможными причинами потери тепла:

Металлическая дверь. Обширный мостик, целый мост холода, который не позволит эффективно обогревать не только прихожую, но и весь дом. Слишком тонкая и неутеплённая входная дверь из металла может стать проблемой. Что делать в таком случае мы уже рассказывали. Эффективнее всего с потерями тепла через входную дверь помогут справиться тамбур или установка второй двери;

Второй причиной потерь тепла становятся окна. У двухкамерного современного стеклопакета сопротивление передаче тепла всего 0,57 (м²×°C)/Вт. Это в два раза меньше, чем у качественно утеплённой пенополистиролом стены. Бороться с этим можно путём установки стёкол с подогревом, использования термоплёнки, монтажа скандинавского окна, где стеклопакет дополняет одинарное остекление в отдельной раме. Даже тёплые, плотные шторы помогут сократить теплопотери через окна;

Также причиной того, что тепло покидает дом, могут стать дефекты, допущенные во время монтажа окон и дверей. Например, монтажная пена, которой были задуты стыки двери или окна со стеной, долгое время оставалась ничем не прикрытой. Она начинает буквально рассыпаться под солнечными лучами, появляются щели. Или изначально пену залили некачественно, остались пропуски. Если такие теплопотери были выявлены, придётся заниматься решением проблем, переделывать работу. Сразу заказывайте тёплый монтаж окон и двери с использованием трёхслойного монтажного шва;

Четвёртой причиной теплопотерь могут стать мостики холода, которые возникают на нижних венцах сруба и обвязке, на стыке цоколя, наружных стен и перекрытий первого этажа

Это проблемные места, утеплению которых нужно уделять особое внимание. Справиться с потерями тепла помогут герметизация щелей, утепление цоколя пенополистиролом, конопатка брёвен сруба;. Пятая причина касается каркасных домов

Пятая причина касается каркасных домов

У них теплопотери могут возникнуть в результате того, что утеплитель под сайдингом просто сполз, так как был неправильно, ненадёжно закреплён. Кроме того, между стенами могли появиться грызуны, которые свили гнездо в минеральной вате или прогрызли пенополистирол. Выход один — перебирать обшивку и менять утеплитель. Чтобы не разбирать всю стену, вновь советуем воспользоваться тепловизором для определения проблемного места;

Шестой причиной теплопотерь часто становятся проблемы с утеплением кровли. Именно здесь сложнее всего не пропустить ни одного участка, много труднодоступных уголков. Нужно поработать под коньком, везде, чтобы утеплитель был уложен тщательно, без пропусков. Как вы помните, тёплый воздух поднимается вверх, поэтому через подкровельное пространство вы можете потерять больше всего тепла. Что делать? Искать проблемные места, при необходимости менять утеплитель, который подмок, задувать и заделывать щели, избавляясь от мостиков холода.

Это основные причины, по которым ваш дом может терять тепло. Бороться с ними можно и нужно, чтобы не греть улицу, а обеспечивать комфорт всем домочадцам с минимальными затратами на отопление.опубликовано econet.ru

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

Temper-3D

Английский термин Точки Росы — Dew point.

Если поверхность холоднее или равна точке росы, то конденсат на неё выпадет

Чем ниже влажность, тем точка росы ниже фактической температуры. Чем выше влажность, тем точка росы выше и ближе к фактической температуре. Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

Например, в ванной комнате, если включен душ (влажность близка к 100%), всегда зеркало «запотевает», и наоборот, если влажность равна нулю, то конденсат никогда не выпадет (в герметичном оконном стеклопакете влажность близка к 0%, там используется специальный адсорбент, который поглощает влагу, поэтому при любом охлаждении, он изнутри никогда не «запотеет»).

Если стеклопакет запотел изнутри, значит он не герметичен и адсорбент уже не может поглотить всю влагу.

Таблица для определения точки росы

Как видно из таблицы, точка росы зависит от температуры и влажности.

В левой колонке указана температура, сверху — влажность.

Например, при температуре 20 °C и влажности 55% (санитарные нормы для жилых помещений) точка росы равна 10,69 °C. Если в квартире температура, например в углу ниже 10,69 °C, то угол «запотеет». Влажность 55% , это достаточно сухое помещение (реально в жилом помещении, особенно на кухне влажность составляет 60%-70%, и более т.е. стена «потечет» (обои отклеятся) при более высокой температуре).

Температуры точки росы, для различных значений температур и относительной влажности воздуха в помещении:

% влажность / температура °C40%45%50%55%60%65%70%75%80%85%90%95%
-5-15,3-14,04-12,9-11,84-10,83-9,96-9,11-8,31-7,62-6,89-6,24-5,6
-4-14,4-13,1-11,93-10,84-9,89-8,99-8,11-7,34-6,62-5,89-5,24-4,6
-3-13,42-12,16-10,98-9,91-8,95-7,99-7,16-6,37-5,62-4,9-4,24-3,6
-2-12,58-11,22-10,04-8,98-7,95-7,04-6,21-5,4-4,62-3,9-3,34-2,6
-1-11,61-10,28-9,1-7,98-7,0-6,09-5,21-4,43-3,66-2,94-2,34-1,6
-10,65-9,34-8,16-7,05-6,06-5,14-4,26-3,46-2,7-1,96-1,34-0,62
1-9,85-8,52-7,32-6,22-5,21-4,26-3,4-2,58-1,82-1,08-0,410,31
2-9,07-7,72-6,52-5,39-4,38-3,44-2,56-1,74-0,97-0,240,521,29
3-8,22-6,88-5,66-4,53-3,52-2,57-1,69-0,88-0,080,741,522,29
4-7,45-6,07-4,84-3,74-2,7-1,75-0,87-0,010,871,722,53,26
5-6,66-5,26-4,03-2,91-1,87-0,92-0,010,941,832,683,494,26
6-5,81-4,45-3,22-2,08-1,04-0,080,941,892,83,684,485,25
7-5,01-3,64-2,39-1,25-0,210,871,92,853,774,665,476,25
8-4,21-2,83-1,56-0,42-0,721,822,863,854,775,646,467,24
9-3,41-2,02-0,780,461,662,773,824,815,746,627,458,24
10-2,62-1,220,081,392,63,724,785,777,717,68,449,23
11-1,83-0,420,981,323,544,685,746,747,688,589,4310,23
12-1,040,441,93,254,485,636,77,718,659,5610,4211,22
13-0,251,352,824,185,426,587,668,689,6210,5411,4112,21
140,632,263,765,116,367,538,629,6410,5911,5212,413,21
151,513,174,686,047,38,489,5810,611,5912,513,3814,21
162,414,085,66,978,249,4310,5411,5712,5613,4814,3615,2
173,314,996,527,99,1810,3711,512,5413,5314,4615,3616,19
184,25,97,448,8310,1211,3212,4613,5114,515,4416,3417,19
195,096,818,369,7611,0612,2713,4214,4815,4716,4217,3218,19
206,07,729,2810,6912,013,2214,3815,4416,4417,418,3219,18
216,98,6210,211,6212,9414,1715,3316,417,4118,3819,320,18
227,699,5211,1212,5613,8815,1216,2817,3718,3819,3620,321,6
238,6810,4312,0313,4814,8216,0717,2318,3419,3820,3421,2822,15
249,5711,3412,9414,4115,7617,0218,1919,320,3521,3222,2623,15
2510,4612,7513,8615,3416,717,9719,1520,2621,3222,323,2424,14
2611,3513,1514,7816,2717,6418,9520,1121,2222,2923,2824,2225,14
2712,2414,0515,717,1918,5719,8721,0622,1823,2624,2625,2226,13
2813,1314,9516,6118,1119,520,8122,0123,1424,2325,2426,227,12
2914,0215,8617,5219,0420,4421,7522,9624,1125,226,2227,228,12
3014,9216,7718,4419,9721,3822,6923,9225,0826,1727,228,1829,11
3115,8217,6819,3620,922,3223,6424,8826,0427,1428,0829,1630,1
3216,7118,5820,2721,8323,2624,5925,8327,028,1129,1630,1631,19
3317,619,4821,1822,7624,225,5426,7827,9729,0830,1431,1432,19
3418,4920,3822,123,6825,1426,4927,7428,9430,0531,1232,1233,08
3519,3821,2823,0224,626,0827,6428,729,9131,0232,133,1234,08
% влажность / температура °C40%45%50%55%60%65%70%75%80%85%90%95%

Оригинальный документ: СП 23-101-2004, Группа Ж24, ОКС 91. 120.01, Дата введения 2004-06-01, ПРИЛОЖЕНИЕ Р (справочное)

Способы утепления изнутри

Выбирая материал для утепления, необходимо учитывать следующие характеристики:

  • влагостойкость;
  • экологическая безопасность;
  • пожаробезопасность.

Толщина теплоизоляционного слоя должна быть достаточной для того, чтобы удержать точку росы в утеплителе. Теплорасчет точки росы в РФ осуществляется в соответствии с установленными требованиями.

Поэтапность действий при клеевом способе утепления:

  1. Начинать нужно с удаления старого слоя отделки.
  2. Затем необходимо выровнять поверхность стены.
  3. Следующим этапом является грунтовка. Она необходима для лучшего сцепления стены и отделочного материала.
  4. Повторное выравнивание стены. Оштукатуривание.
  5. Приклеивание теплоизоляционного материала. Для этого понадобится клей, применяемый для работы с керамической плиткой. Сначала наносится по периметру плиты, а затем по центру. Весь слой равномерно распределяется при помощи зубчатого шпателя. Лист прикладывается к стене, а излишки клея удаляются. Начинать оклеивание нужно с угла снизу вверх.
  6. Сушка. После окончания процесса приклеивания стене нужно дать высохнуть в течение трех суток.
  7. Закрепление утеплителя. Когда все готово, необходимо закрепить материал при помощи дюбелей.

Советы по регулированию точки росы при установке металлопластиковых окон

На формирование точки влияет три основных фактора:

  • атмосферное давление;
  • температура;
  • влажность.

Чем прохладнее в помещении, тем меньше влаги понадобится для ее перехода в жидкое состояние.

Чтобы избежать образования конденсата на окнах, в самом помещении должно быть тепло и сравнительно сухо. При этом само окно должно устанавливаться в так называемой «теплой зоне».

Для обеспечения комфортных условий следует учесть советы профессионалов:

При плохой работе вентиляции повышается влажность воздуха

Поэтому необходимо своевременно прочищать каналы воздуховодов и проветривать помещение. Для предотвращения попадания холодного воздуха внутрь помещения рекомендуется утеплить стены и откосы. На первых и последних этажах важно позаботиться о теплоизоляции потолков и пола. Эти меры помогут устранить повышенную влажность. Дешевые некачественные варианты окон могут доставить дополнительные проблемы из-за особенностей профиля.

Предупредительные меры помогут и сэкономить, и обеспечить полный комфорт.

Определяем необходимую толщину утеплителя. Калькулятор теплоизоляции онлайн Онлайн калькулятор утепления стен

В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» — теплые стены обойдутся дороже застройщику.

Для чего нужен калькулятор теплопроводности стен

В каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы. Мы подобрали наиболее удобные и понятные сервисы для расчета необходимой толщины теплоизоляционного материала.

Теплотехнический калькулятор. Расчет точки росы в стене

Калькулятор онлайн от smartcalc.ru позволит рассчитать оптимальную толщину утеплителя для стен дома и жилых помещений. Вы сможете рассчитать толщину теплоизоляции и рассчитать точку росы при утеплении дома различными материалами. Калькулятор smartcalc.ru позволяет наглядно увидеть место выпадения конденсата в стене. Это самый удобный теплотехнический калькулятор расчет утепления и точки росы.

Калькулятор толщины утеплителя для стен, потолка, пола

С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен, кровли, потолка дома и других строительных конструкций в соответствии с регионом вашего проживания, материала и толщины стен, а также других важных параметров при теплоизоляции. Подбирая разные теплоизоляционные материалы на калькуляторе, вы сможете найти оптимальную толщину утеплителя для стен своего дома.

Калькулятор KNAUF. Расчет толщины теплоизоляции

Данный калькулятор позволяет произвести расчет толщины теплоизоляции стен в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий». Бесплатный онлайн калькулятор расчета теплоизоляции KNAUF, сервис имеет удобный и понятный интерфейс.

Калькулятор Rockwool расчёта толщины теплоизоляции стен

Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек минваты очень просто.

Как убрать точку росы из стены при утеплении

7 сентября, 2016
Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.

Безусловно, расчет утеплителя для стен в собственном доме, это очень серьёзная работа, особенно, если это не было сделано изначально и в доме холодно. И вот здесь вам придётся столкнуться с рядом вопросов.

Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.

Утепление стен

Внутри или снаружи

Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!

Особенности внутреннего и наружного утепления:

  • представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
  • какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
  • то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;

  • в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
  • следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция;
  • при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.

Расчет – дело серьезное!

№п/п Стеновой материал Коэффициент теплопроводности Необходимая толщина (мм)
1 Пенополистироп ПСБ-С-25 0,042 124
2 Минеральная вата 0,046 124
3 Клееный деревянный брус или цельный массив ели и сосны поперёк волокон 0,18 530
4 Кладка керамоблоков на теплоизоляционный клей 0,17 575*
5 Кладка газо- и пеноблоков 400кг/м3 0,18 610*
6 Кладка полистирольных блоков на клей 500кг/м3 0,18 643*
7 Кладка газо- и пеноблоков 600кг/м3 0,29 981*
8 Кладка на клей керамзитобетона 800кг/м3 0,31 1049*
9 Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 0,52 1530
10 Кладка из рядового кирпича на ЦПР 0,76 2243
11 Кладка из силикатного кирпича на ЦПР 0,87 2560
12 ЖБИ 2500кг/м3 2,04 6002

Теплотехнический расчет различных материалов

Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.

Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.

Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .

В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k .

Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.

По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.

Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.

Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.

Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.

Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).

На фото — локальная защита пенопластом

Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя

Теплотехнический калькулятор точки росы онлайн

С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.

Калькулятор расчета толщины утеплителя стены

С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.

Калькулятор KNAUF расчета толщины утеплителя

Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.

Калькулятор Rockwool для расчета теплоизоляции

Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.

Калькулятор теплопроводности для расчета толщины стен

Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.

В настоящее время в сети имеется немало бесплатных онлайн калькулятор и сервисов, позволяющих выполнить достаточно точные расчеты строительных конструкций.

В данном обзоре вы найдете подборку расчетных программ, используя которые вы сможете быстро выполнить расчеты по теплоизоляции, огнезащиты, звукоизоляции, технической изоляции, кровли, каменным конструкциям и сэндвич-панелям.

Содержание:

5. Калькулятор для расчета каменных конструкций

1. Калькуляторы для расчета теплоизоляции, звукоизоляции, огнезащиты

Расчет толщины теплоизоляции является одним из важнейших факторов, необходимым при проектировании строительных объектов. Одним из главных параметров здесь считают теплосопротивление, которое высчитывается, исходя из климатической зоны того или иного региона, а так же вида ограждающих конструкций. Также необходимо учесть и другие важные детали, сделать это вам поможет специальная программа расчета теплоизоляции.

1.1. Онлайн-калькулятор теплоизоляции http://tutteplo.ru/138/ рассчитывает толщину слоя утеплителя для зданий и сооружений согласно требованиям СНИП 23-02-2003. Тепловая защита зданий. В создании калькулятора для расчета толщины теплоизоляции принимали участие сотрудники ОАО Институт «УралНИИАС». В качестве исходных данных требуется указать тип здания (жилое, общественное или производственное), район строительства, выбрать ограждающие конструкции, подлежащие термоизоляции, их характеристики. В качестве применяемого утеплителя доступен широкий выбор популярных марок, таких как Rockwool, Paroc, Isover, Термоплекс и множество других.

На основании теплотехнического расчета программа определяет толщину изоляции. При необходимости администрация сайта предоставляет бесплатные онлайн-консультации для проектировщиков и специалистов, а также на e-mail по запросу могут быть высланы детальные расчетные материалы.

1.2. Теплотехнический калькулятор http://www.smartcalc.ru/

Детальный теплотехнический расчет ограждающих конструкций онлайн можно выполнить в этой программе. Для начала работы сервис просит ввести данные о типе конструкций, районе строительства и температурном режиме помещения. Далее, калькулятор обрабатывает информацию и выдает решение о соответствии ограждающих конструкций требованиям нормативной документации.

В возможности программы входит построение схем тепловой защиты, влагонакопления и теплопотерь. Для удобства в меню есть примеры готовых решений, ознакомившись с которыми, выполнить расчет самостоятельно не составит труда.

1.4 Калькуляторы Технониколь

С помощью онлайн сервиса Технониколь http://www.tn.ru/about/o_tehnonikol/servisy/programmy_rascheta/ можно рассчитать:

  • толщину звукоизоляции;
  • расход материалов для огнезащиты металлоконструкций;
  • тип и количество материалов для плоской кровли;
  • техническую изоляцию трубопроводов.

Для примера рассмотрим калькулятор, который позволит выполнить расчет плоской кровли http://www.tn.ru/calc/flat/ . В начале расчета предлагается выбрать тип покрытия Технониколь (Классик, Смарт, Соло и т.д.) С подробным описанием всех видов можно ознакомиться на этом же сайте в соответствующем разделе.

Следующим этапом вводятся параметры кровельного пирога, географическое местоположение объекта и геометрические размеры конструкций крыши. Результаты расчета плоской кровли онлайн программа предоставляет в формате Adobe Acrobat или Microsoft Excel. Отчетный документ оформляется на фирменном бланке компании и содержит два вида показателей: по укрупненной и детализированной формам. Полученные спецификации могут использоваться непосредственно для закупки материала.

Еще Технониколь предлагает воспользоваться калькулятором расчета звукоизоляции http://www.tn.ru/calc/noise_insulation/ , в котором доступно два режима — для застройщика и проектировщика. Программа расчета звукоизоляциидает возможность выбора конструкции (стена, перекрытие), типа помещения, источника шума и других параметров. Далее, пользователь может выбрать одну из нескольких изоляционных систем, подходящих под его вводные данные.

Расчет огнезащиты металлоконструкцийтакже можно осуществить при помощи интернет-программы http://www.tn.ru/calc/fire_protection/ . Он позволяет выбрать геометрию конструкции (двутавр, швеллер, уголок, прямоугольная или круглая труба), ее параметры по ГОСТу или размеры для сварной конструкции, а потом указать способ обогрева и степень огнестойкости. После этого, система выполнит расчет толщины огнезащиты и предоставит результаты — необходимую толщину и объем плит, а также расходных материалов.

1.5 Теплотехнический калькулятор Paroc

Известный финский производитель теплоизоляционных материалов Paroc на своем российском сайте предлагает выполнить расчет всех видов утеплителей http://calculator. paroc.ru/ в соответствии с требованиями СП 50.13330.2015 «Тепловая защита зданий».

Для этого необходимо указать конструкцию стены, покрытия или перекрытия здания, уточнить температурные режимы и географию расположения объекта. В результате программа выполнит расчет сопротивления строительных конструкций теплопередаче и определит минимально допустимую толщину утеплителя. Отчет о проделанной работе можно распечатать или сохранить в файле формата PDF.

1.6. Теплоизоляция Baswool

Отечественная компания ООО «Агидель», выпускающая популярные теплоизоляционные материалы Baswool предлагает для своей продукции бесплатный калькулятор http://www.baswool.ru/calc.html . Интерфейс ресурса очень простой, а расчет предлагается выполнить в несколько шагов, поэтапно указав город строительства, категорию здания, утепляемую конструкцию. В результате программа предоставит на выбор несколько вариантов систем утепления Baswool с указанием толщины материала.

1. 7. Расчетные программы Основит

Один из лидеров отечественных производителей отделочных материалов ТМ «Основит» предлагает на своем сайте бесплатно рассчитать объемы работ и стоимость их выполнения. С помощью калькулятора Основит http://osnovit.ru/system-calc/calc.php можно определить параметры фасадной теплоизоляции. Введя стандартный набор исходных данных, пользователь получает итоговую спецификацию предлагаемого набора материалов для устройства теплого фасада.

Дополнительно сервис Основит позволяет определить расход любого материала из своей производственной линейки . Преимуществом такого расчета является то, что результаты выдаются с привязкой к фасовочным единицам товара. Например, выбрав в меню категорий продукции «Смеси для пола» стяжку Стартлайн FC41 Н, указав толщину ее нанесения и общую площадь поверхности, пользователь узнает, сколько мешков сухой смеси ему потребуется.

2. Расчет технической изоляции

2.1. Калькулятор расчета технической изоляции от Isotec

Isotec–торговая марка известной международной компании«Сен Гобен», под которой выпускается линейка технической изоляции. Эти материалы применяются для противопожарной обработки строительных конструкций, термической изоляции трубопроводов отопления и кондиционирования, а также промышленных емкостных сооружений.

Сайт компании предлагает выполнить расчет тепловых характеристик системы при помощи бесплатной онлайн-программы http://calculator.isotecti.ru/ . Калькулятор работает в соответствии с регламентом СП 61.13330.2012 (тепловая изоляция для оборудования и трубопроводов). Расчет выполняется на основании заданных критериев: температура поверхности трубопровода, транспортируемого потока, разница температурных характеристик по длине и так далее. Требуемые условия задаются пользователем в меню сайта.

После этого необходимо выбрать один из предлагаемых вариантов устройства теплоизоляции Isotec (например, цилиндры для трубопроводов). Программа автоматически определит толщину материала.

2. 2. Таким же образом можно произвести и расчет теплоизоляции трубопроводов с помощью уже знакомого сервиса Paroc http://calculator. paroc.ru/new/ . Все расчеты выполняются в соответствии с СП 61.13330.2012 Тепловая изоляция оборудования и трубопроводов (актуализированная редакция СНиП 41-03-2003). С его помощью можно подобрать оптимальные характеристики и тип технической изоляции. Система включает в себя различные методы расчета — по плотности теплового потока, его температуре, для предотвращения замерзания жидкости и т. д. Чтобы произвести расчет толщины теплоизоляции трубопроводов, нужно выбрать метод, ввести необходимые данные (диаметр, материал, толщина трубопровода и т.д.), после чего программа сразу же выдаст готовый результат. При этом, учитываются различные важные факторы — температура содержимого трубопровода, окружающей среды, величина механической нагрузки на трубопровод и другие. В результате, калькулятор расчета теплоизоляции трубопроводов определит толщину и объем утеплителя.

3. Расчет кровли

Расчет материалов кровли онлайн можно выполнить на специализированном ресурсе металлочерепицы http://www. metalloprof.ru/calc/ . Для этого необходимо выбрать форму крыши, указать ее основные размеры и определить тип кровельного материала. Программа выдаст расход металлочерепицы, количество коньков, карнизов и крепежных элементов. В результате будет высчитана стоимость материала в соответствии с актуальным прайс-листом поставщика.

4. Калькулятор для расчета сэндвич- панелей

Если вам необходимо рассчитать сэндвич панели, требуемые для строительства определенного здания, то сделать это также можно онлайн, при помощи бесплатных калькуляторов. Вполне удобным и эффективным считается сервис Теплант, который предлагает пользователю функцию онлайн-калькулятора для примерного расчета размеров сэндвич панелей http://teplant.ru/calculate/ и других параметров (количество панелей и прочих элементов, расходных материалов). Это универсальный сервис, при помощи которого вы легко сможете рассчитать как стеновые сэндвич панели , так и кровельные сэндвич панели . Для расчета необходимо указать тип кровли здания, его габариты, выбрать цвет панелей и их вид (стеновые, кровельные).

Программа определит количество материала, крепежных и фасонных элементов, а также рассчитает их стоимость.

5. Калькулятор расчета каменных конструкций

5.1. Расчет газобетона

Что же касается такого популярного направления, как расчет газобетона онлайн, то для этой операции вы найдете немало подходящих сервисов в сети Интернет. К примеру, это онлайн-калькулятор газобетона http://stroy-calc.ru/raschet-gazoblokov , при помощи которого можно легко рассчитать количество газобетонных или газосиликатных блоков, необходимых для строительства объекта. При этом, учитываются все необходимые параметры — длина, ширина, плотность, высота и т. д, позволяя быстро вычислить расчет газобетона на дом. Аналогичный сервис можно найти и на многих других сайтах производителей стройматериалов. Например, калькулятор расчета газобетона от компании Bonolit предоставит вам целый перечень результатов — количество блоков в единицах и м3 и даже количество мешков клея.

­­­

Компания Bonolit, специализирующаяся на производстве автоклавного аэрированного бетона (газобетон) для удобства клиентов предоставляет бесплатный сервис по определению объема работ при кладке стен дома. Расчетная программа доступна по адресу : http://www.bonolit.ru/raschet-gazobetona/

В качестве исходных данных калькулятор запрашивает габариты дома, длину внутренних несущих стен, этажность, тип перекрытий, размеры и количество проемов. Результат вычислений предоставляется в виде спецификации материалов и их сметной стоимости. При этом имеется возможность тут же отправить заказ на закупку газобетона.

5.2. Расчет для стен из кирпича

Онлайн-сервис Stroy Calc http://stroy-calc.ru/raschet-kirpicha/ осуществляет расчет стройматериалов для кладки стен дома. Параметры могут определяться для стен из кирпича, строительных блоков, бруса и бревен. Например, при возведении кирпичной постройки в качестве исходных данных необходимо задать периметр, высоту и толщину стен, количество и размеры проемов, а также стоимость единицы материала. Программа определит расход кирпича в штуках и кубах, его стоимость, а также необходимый объем раствора. При этом будет указан вес стен для расчета фундамента. Сервис также позволяет подобрать тип и количество утеплителя. Для этого при определении параметров стен необходимо установить галочку в соответствующем месте.

5.3 Калькулятор теплых блоков Wienerberger

Всемирно известный бренд Wienerberger, лидер по производству теплой керамики, предлагает на своем сайте определить расход строительных блоков Porotherm http://www.wienerberger.ru/инструментарий/расчёт-расхода-блоков . Для расчета необходимо ввести размеры стен дома, указать габариты проемов, их количество.

Программа подберет возможные варианты кладки и выдаст расходы блоков различных параметров. Результат такого расчетабудет носить ориентировочный характер, но для составления предварительной сметы строительства этих данных будет вполне достаточно. Для уточнения объемов работ ресурс предлагает связаться со специалистом компании.

Итак, в данной статье мы рассмотрели наиболее удобные и популярные онлайн-сервисы, предназначенные для расчета строительных материалов. Стоит отметить, что каждый из них является бесплатным, а также имеет удобный современный интерфейс. Все эти ресурсы разработаны в виде подробных калькуляторов, размещенных прямо на страницах сайтов. Таким образом, вы сможете легко и быстро произвести требуемые вам вычисления.

Деревянные дома, наверняка, никогда не потеряют своей актуальности и не уйдут с пика популярности. Теплая, приятная, полезная для здоровья человека структура качественной древесины не идет ни в какое сравнение ни с камнем, ни со строительными растворами, ни тем более, с какими бы то ни было полимерами. Тем не менее термоизоляционных качеств дерева, хотя и достаточно высоких, все же бывает недостаточно, чтобы обеспечить в доме максимально комфортабельный микроклимат, и приходится прибегать к дополнительному утеплению стен.

Утепление деревянных стен – дело весьма деликатное, так как необходимо обеспечить достаточность слоя термоизоляции, но при этом не допустить чрезмерности. Кроме того, многое зависит и от типа внешней и внутренней отделки стен, если она предусматривается. Одним словом, без проведения теплотехнических вычислений – не обойтись. А в этом вопросе добрую службу должен сослужить калькулятор расчета утепления стен деревянного дома.

Калькулятор конденсации — Инструкция по строительству

  • КОНТРОЛЬ ПОТЕНЦИАЛА КОНДЕНСАТА НА СТЕНАХ – СТЕНЫ БЕЗОПАСНЕЕ (РАСШИРИТЕ ДЛЯ ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ)

    По мере того, как энергетические нормы становятся все более строгими, утепление наружных стен становится реальностью для большего числа строителей. Тогда возникает вопрос: когда имеет смысл добавить наружную изоляцию, а когда ее можно пропустить?

    Этот пример для стены 2×4 в климатической зоне 4*

    • Восприятие: Когда вы изолируете стену, это снижает затраты на отопление и охлаждение здания. Это также (надеюсь) сделает здание более комфортным.
    • Реальность: Многие стены имеют слишком слабую теплоизоляцию и слишком много утечек воздуха. Это означает, что теплый влажный наружный воздух может попасть внутрь, достичь прохладной поверхности и сконденсироваться. Результат: поверхность (обычно стена) намокает, и начинает расти плесень и грибок.
    • Данные: На приведенном ниже примере графика показано, когда внутри полости стены может образоваться конденсат при отсутствии или недостаточной внешней изоляции. Темно-синяя линия представляет собой среднюю суточную температуру воздуха в климатической зоне 5, а светло-синяя линия представляет собой температуру внутренней поверхности наружной обшивки стен (тыльная сторона обшивки). Безопасными условиями, определяемыми как отсутствие опасности образования конденсата, являются периоды, когда голубая линия находится над розовой зоной. Как мы видим, с ноября по март возможен конденсат. Почти треть года в полости стены может скапливаться влага, конденсироваться и скапливаться жидкая вода в полости стены.

    Климатическая зона 5B – Денвер Колорадо
    Полость R-20 Изоляция без внешней изоляции

     

    При контакте теплого влажного воздуха с холодными поверхностями происходит конденсация — часто с очень серьезными последствиями. Утечки воздуха изнутри могут переносить влагу, которая конденсируется на конструкционной обшивке, вызывая повышенное содержание влаги и, возможно, даже накопление жидкой воды, что может привести к гниению и порче. Этой проблемы можно избежать, добавив наружную изоляцию, чтобы поддерживать температуру обшивки стен выше точки росы (температура, при которой вода конденсируется при определенной относительной влажности).

    Например, когда внутренняя часть здания нагревается до 70 градусов по Фаренгейту, а относительная влажность воздуха внутри составляет 30% в день, когда наружная температура составляет 30 градусов по Фаренгейту, точка росы (точка, когда пары влаги конденсируются в жидкости) составляет 37,2 градуса. Таким образом, если этот влажный воздух попадает на поверхность с температурой ниже 37,2 градусов, влага конденсируется в жидкую воду. В приведенном выше примере мы видим, что поверхность конденсации (внутри обшивки) имеет температуру 33,5 градуса по Фаренгейту

    Этот теплый влажный воздух проходит через отверстия, трещины или щели в стенах, например, вокруг электрических коробок, под основанием гипсокартон у плиты, пересечения межкомнатных перегородок и т. д. – перепадами давления воздуха, создаваемыми ветром, дымовым эффектом или механическим оборудованием. Влажный воздух проходит через щели, через проницаемые изоляционные материалы, через отверстия и несоответствия во внешнем воздушном барьере, иногда конденсируясь на обратной стороне обшивки и увеличивая влажность древесины выше безопасного уровня. В некоторых случаях в полости скапливается жидкая вода.

    Второй образец графика ниже иллюстрирует те же условия, что и предыдущий слайд, но с добавлением к стене внешней изоляции R-5. Температура внутри по-прежнему 70 градусов по Фаренгейту, относительная влажность 30%, точка росы 37,2 градуса по Фаренгейту, а снаружи по-прежнему 30 градусов:

    Климатическая зона 5B – Денвер, штат Колорадо
    Полость R-20 Изоляция с наружной изоляцией R-5

    Обратите внимание, что внешняя изоляция повысила температуру обшивки до 40,28 F, что выше точки росы 37,2 градуса. Это означает, что водяной пар не будет конденсироваться внутри полости стены; он остается подвешенным в воздухе.

    • Решение: увеличьте значение R ваших стен, добавив слой непрерывной внешней изоляции. Насколько необходима внешняя изоляция, зависит от климатической зоны, в которой вы живете, но в Международном кодексе энергосбережения 2012, 2015 и 2018 годов есть рекомендации, которым стоит следовать, особенно если ваша юрисдикция уже приняла его!
    • Важное примечание: Если в вашей климатической зоне достигается контроль за конденсацией, в Международных правилах для жилых помещений предусмотрены положения об изменении типа пароизоляции, требуемой на теплой, внутренней стороне стены, или во многих случаях полностью исключить это применение замедлитель пара.
    • Источник: Ci Labs, Джастин Уилсон

    *Климатические зоны имеют значение при выборе типа стен и стратегии изоляции. Пожалуйста, не принимайте это как дорожную карту для всех домов.

Чтобы получить результат для вашего местоположения, выберите следующее:

  1. Выберите страну
  2. Выберите состояние (если применимо)
  3. Выберите город
  4. Выберите единицу измерения
  5. Теплоизоляция входной полости, значение R
  6. Введите значение изоляции внешней стены

Обратите внимание, что все климатические зоны и местоположения имеют разные требования к изоляции. Пожалуйста, проверьте ваши местные строительные нормы и правила, чтобы убедиться, что ваши «общие эффективные тепловые значения стен» удовлетворены.

Калькулятор точки конденсации/росы | Circular Project

В Новой Зеландии снова наступило то время года — у нас на окнах конденсат. Здесь мы дадим вам краткое объяснение различных условий влажности, относительной влажности, конденсации и точки росы. Мы следуем этому, предоставляя краткие примеры того, что может произойти, когда мы ошибаемся. Затем мы предложим вам калькулятор для расчета точки росы. Наконец, мы дадим несколько советов о том, как обеспечить здоровье вас и вашего здания.

 

Влажность

Влага или водяной пар – это наличие воды в воздухе. В зависимости от погоды в воздухе содержится разное количество воды. В наших домах мы увеличиваем это количество, дыша, готовя или принимая душ.

 

Относительная влажность

Относительная влажность описывает количество воды относительно того, что может удержать частица воздуха. Представьте, например, чашку как частицу воздуха. Если мы наполним чашку наполовину водой, то у нас будет относительная влажность 50%. Самый здоровый воздух в помещении имеет относительную влажность от 40% до 60%. Другими словами, чашка заполнена водой на 40-60%.

 

Конденсат

Когда воздух становится холоднее, он уменьшается в размерах. Наша чашка (с относительной влажностью 50%) может уменьшиться вдвое. Но содержание воды осталось прежним и теперь составляет 100%, поэтому вода переливается через край, так как чашка больше не может удерживать жидкость. Причина того, что конденсат обычно наиболее заметен на наших окнах, заключается в том, что окна являются самыми холодными местами в доме — местом, где наш воздух больше не может содержать воду, так как он сжался.

 

Точка росы

Точка росы описывает температуру, при которой чашка больше не может удерживать воду. Как только ваша поверхность охладит воздух до этой температуры, воздух будет выделять воду в виде конденсата; на вашем окне или оконной раме чаще всего. Точка росы зависит от температуры воздуха и относительной влажности при этой температуре. Конечная цель состоит в том, чтобы наши поверхности в помещении и на стенах находились выше точки росы, чтобы избежать образования конденсата.

 

 

 

Что происходит при появлении конденсата?

 

Конденсат может образовываться не только на окнах, но и при прохождении воздуха через стены наружу. Конденсация и высокая относительная влажность имеют следующие недостатки:

  • Наш подоконник мог сгнить, если за ним не ухаживать должным образом.

  • День за днем ​​вытирать конденсат с окон отнимает много времени.

  • Отопление здания с высокой относительной влажностью может быть на 30% дороже.

  • Во влажных строительных материалах может образовываться токсичная плесень, потенциально вызывающая астму и другие респираторные заболевания.

  • Конденсат

    , образующийся в каркасе нашего здания (внутри стены), может попасть в ловушку и сгнить в нашем деревянном каркасе или вызвать появление плесени в изоляции.

  • Большинство изоляционных материалов не справляются с конденсацией или влагой и резко теряют свою эффективность, иногда более 30%.

Как избежать образования конденсата на окнах и конструкции здания?

Существуют способы уменьшить образование конденсата в наших домах.

По сути, мы должны понизить нашу точку росы, температуру, при которой вода в нашей чашке начинает переливаться через край. Мы можем сделать это, уменьшив относительную влажность или прогрев само здание, хотя часто в холодных сырых домах требуется и то, и другое. Исследования BRANZ ясно показали, что в наших домах холодно не потому, что они влажные, а влажные, потому что они холодные. При нагреве испытательных помещений как минимум до 18 градусов по Цельсию в этом исследовании менее чем в 1% случаев была проблема с высокой относительной влажностью. Это означает, что надлежащее отопление помещений устранено 99% проблем с влажностью в домах (1).

 

В зависимости от климата, материалов и жилых помещений для достижения наилучших результатов требуются разные продукты. Свяжитесь с нами для бесплатной консультации — мы поможем вам найти то, что лучше всего подходит для вас в соответствии с научными данными, а не маркетинговым сообщением.

1. Уменьшите относительную влажность

Снижение относительной влажности воздуха в помещении до здорового уровня (от 40% до 60%) является важным шагом. Это снижает наши счета за отопление, поддерживает здоровье нас и здания и снижает точку росы. Мы можем понизить относительную влажность несколькими способами:

  • Используйте больше натуральных строительных материалов и отделки, которые поглощают влагу: они впитывают ее в периоды высокой влажности и снова выделяют влагу днем, когда относительная влажность в помещении снижается. Примерами таких продуктов являются изоляция из овечьей шерсти или древесного волокна, ковры из овечьей шерсти, мебель из цельного дерева или штукатурка на глиняной основе. Различные исследования показали, что дома с большим количеством влагопоглощающих материалов могут сэкономить до 25-30% ваших затрат на электроэнергию.

  • Получите больше растений, минимизирующих влажность воздуха. Использование таких растений, как бостонский папоротник, английский плющ или мирная лилия, поможет снизить количество влаги в воздухе.

  • Установите систему вентиляции. Система вентиляции заменит спертый воздух с высокой относительной влажностью свежим воздухом и снизит относительную влажность. Убедитесь, что для этого выбрана система вентиляции с теплообменником. Хотя в Новой Зеландии очень распространена система вентиляции, которая вытягивает воздух из полости крыши, эти системы не соответствуют нормам стандарта вентиляции Новой Зеландии для качества воздуха в помещении.

Уточним, поставить 1 растение в спальню не получится, кроме того, это не отменяет необходимости регулярно открывать окна или использовать систему вентиляции. Использование буферных материалов просто снижает потребность в вентиляции, что особенно удобно в ночное время, если у вас нет системы вентиляции.

 

2. Прогрев здания

Другим способом, который часто используется в сочетании со снижением относительной влажности, является прогрев поверхностей здания. В двойном остеклении, например, холодная температура блокируется на внешнем стекле, сохраняя внутреннее стекло более теплым и часто превышающим точку росы (хотя бывают случаи, когда конденсация все еще происходит из-за очень высокой относительной влажности или на алюминиевой оконной раме). ). Другим способом уменьшения образования конденсата на окнах являются наружные жалюзи, препятствующие лучистому охлаждению неба и поддерживающие более высокую температуру окон.

 

Утепление ограждающих конструкций — это способ уменьшить или устранить образование конденсата на стенах. Однако важно, чтобы у водяного пара была возможность покинуть здание и он не застревал и не поглощался структурой, вызывая структурные проблемы и проблемы со здоровьем. Для этого подходят многие натуральные строительные материалы, такие как стеновые панели из оксида магния, натуральные краски и изоляция.

 

Изоляция наших стен сохранит тепло внутри стен; это особенно важно для стального каркаса, поскольку сталь становится намного холоднее, чем, например, древесина. Вы также должны рассмотреть возможность использования более эффективных источников тепла, которые нагревают поверхности, высушивая их и отражая тепло в воздух. Они часто сэкономят вам на эксплуатационных расходах, а также создадут повышенный комфорт в наших домах. См. здесь для получения дополнительной информации.

 

Заключение

Очень важно поддерживать относительную влажность в наших домах на уровне 40%-60%. Это сохранит наше здоровье, позволит избежать нежелательных вещей, таких как более высокие счета за отопление, потенциальные структурные повреждения и последствия для здоровья, такие как астма.

Когда частица воздуха не может удерживать содержащуюся в ней воду, происходит конденсация. Эта точка называется точкой росы. Чтобы снизить точку росы в зданиях, необходимо снизить относительную влажность до здорового уровня и прогреть наше здание. Чтобы достичь этого, мы должны стараться использовать натуральные строительные материалы и отделку, когда это возможно, и подумать о добавлении в наш дом системы вентиляции, двойного остекления, лучшего лучистого отопления и лучшей изоляции.

Источники:

(1) Отчет об исследовании BRANZ SR389; ‘Может ли сырой дом быть слишком холодным/недогретым?’; Автор: Эндрю Поллард, 2018 г.

Иллюстрация точки росы: эффективный способ определения ее значения — Страница 5 из 5

18 июля 2017 г.

Шаг 6: Нанесите значения температурного градиента для каждого материала на сборочный чертеж крыши
При выполнении этого шага важно помнить, что каждое значение температуры, определенное на предыдущем шаге, должно располагаться на верхней поверхности слоя материала ( Рисунок 7).

Шаг 7: Нарисуйте линию от внутренней температуры до следующего значения и продолжайте соединять нанесенные значения температуры, пока линия не достигнет расчетной температуры наружного воздуха Этот шаг показан на рисунке 8.

Шаг 8: Определите росу температура точки
Это можно определить с помощью психрометрической диаграммы ASHRAE, показанной на рис. 9. Температура точки росы находится на пересечении столбца расчетной температуры по сухому термометру и строки RH. В этом примере температура точки росы составляет 49F (, т.е. 9,44 С).

В этом рабочем примере 75 F (, т. е. 22,88 C) — это температура по сухому термометру (внутренняя), а 40 F (, т. е. 4 C) специально указана как относительная влажность, поэтому линейная интерполяция не требуется. Возвращаясь к графическому изображению узла крыши, значение температуры точки росы теперь можно нанести на график и расположить на линии градиента температуры (рис. 10)

происходят на дне пароизолятора. Однако, если точка росы падает ниже изоляции, требуется дополнительная изоляция.

Вопросы для рассмотрения
Когда требуется дополнительная изоляция, выбирается новое количество материала и снова выполняются шаги, чтобы определить, находится ли температура точки росы в пределах изоляции. Кроме того, если температура точки росы находится в верхней части (около верхней трети изоляции), количество изоляции может быть уменьшено, если точка росы остается в пределах нормы и количество соответствует требованиям строительных норм и правил. (Опять же, нужно будет пройти все этапы с новым количеством изоляции, чтобы обеспечить приемлемые результаты температуры точки росы.)

Фактические значения относительной влажности и температуры точки росы постоянно изменяются в типичных условиях здания по мере изменения температуры окружающей среды и/или давления водяного пара в воздухе.

Проектировщик систем ОВКВ обычно определяет проектные значения для определения размеров оборудования для теплоизоляции ограждающих конструкций и контроля водяного пара. Эти расчетные значения чаще всего основаны на ожидаемых максимальных экстремальных условиях.

В связи с этим важно располагать все изоляционные плиты, пароизолирующую подложку и обшивку высокой плотности в шахматном порядке минимум на 150 мм (6 дюймов) во всех направлениях во время установки, чтобы исключить тепловые мосты.

Заключение
Почему необходимо разрабатывать иллюстрацию точки росы в графических деталях? Создание графической иллюстрации, рассмотренной в этой статье, полезно для дизайнера несколькими способами. Например:

  1. Это может помочь определить, необходим ли замедлитель испарения на этапе проектирования надпалубной системы утепленной крыши.
  2. Это дает проектировщику визуальную перспективу того, где находится температура точки росы в пределах визуального макета сборки системы крыши.
  3. После того, как графическая иллюстрация будет завершена, можно использовать информацию, чтобы определить, требует ли проект добавления или уменьшения количества изоляции, предлагаемой для использования над пароизолятором. Этот аспект не только позволяет проектировщику определить правильное положение точки росы внутри узла крыши, но и визуально дает возможность определить, падает ли температура точки росы ниже теплой стороны пароизолятора, тем самым избегая вероятность катастрофических потерь.
  4. Это также дает проектировщику возможность оценить, требует ли предлагаемый проект установки слишком большого количества изоляции над замедлителем пара. Эта оценка может привести к значительной экономии средств.

 

  Дальнейшее обсуждение…
 После того, как эта статья была опубликована в выпуске The Construction Specifier за июль 2017 года, , у читателя возникли сомнения относительно расчета. Чтобы прочитать письмо и увидеть ответ автора, нажмите здесь.

Энтони Катона, CDT, является президентом Alliance Roof Consultants Inc. и предоставляет профессиональные услуги в качестве консультанта по ограждающим конструкциям и коммерческим крышам с 1999 года. Имея почти 30-летний опыт строительства, он обладает обширным опытом. консультирование по ограждающим конструкциям и коммерческим крышам, а также генеральный подряд. Катона был членом редакционного совета The Construction Specifier . До него можно добраться
по адресу [email protected]

 

Страницы: 1 2 3 4 5

07 21 13 Плитный утеплитель 07 26 00 Пароизоляция 07 51 00 Набивной битум Кровельный навесной кровельный Настил Точка росы Раздел 07 Полиизоцианурат90 Пар05 Влажность национальная

Анализ температуры и влажности оболочки здания

Анализ температуры и влажности оболочки здания

Практический пример: использование THERM и WUFI-ORNL/IBP для прогнозирования образования конденсата и содержание влаги в стеновых конструкциях

Филип Луо, архитектор, LEED AP
4 января 2010 г.

1.0 Введение

После судебного разбирательства по делу о токсичной плесени Балларда против пожарной страховой биржи В 2001 году Архитекторы и владельцы зданий были все больше обеспокоены об ответственности, вызванной наличием плесени на здоровье жильцов и качество воздуха в помещении. Дело Балларда показывает, что присяжные были готовы присудить многомиллионные судебные иски против страховых компаний за ответственности, связанной с загрязнением плесенью. 1 Часто Архитекторы участвуют в качестве ответчиков в судебных процессах о загрязнении плесенью. начинают сомневаться в том, что «старые эмпирические правила» проектирования для контроля влажности в оболочке здания» может способствовать накопление влаги в некоторых зданиях 2 .

К счастью, существует ряд программ, которые могут помочь Архитекторы оценивают эффективность своего дизайна оболочки. эта статья исследует две бесплатные программы анализа конвертов: THERM и WUFI. THERM — бесплатная программа, разработанная Национальной лабораторией Лоуренса в Беркли. для анализа двумерной теплопередачи через строительные изделия. ВУФИ-ОРНЛ/ИБП, совместная разработка Окриджской национальной лаборатории и Институт Фраунгофера — это гигротермическая модель, предсказывающая перенос влаги. в системах ограждающих конструкций в течение определенного периода времени.

2.0 Дождевой экран в сравнении со стеной из металлических панелей

Вентилируемый дождевой экран — это система облицовки, которую архитекторы и производители приложили усилия для улучшения влагозащиты. традиционных систем облицовки металлическими панелями. В этом исследовании будет использоваться THERM и WUFI для сравнения производительности системы Rainscreen с традиционная система металлических панелей.

РИСУНОК 1. ТРАДИЦИОННАЯ МЕТАЛЛИЧЕСКАЯ ПАНЕЛЬ РАЗДЕЛ

Традиционная система металлических панелей механически крепится к металлу шпилька. Между металлической панелью и ограждением здания находится слой из воздухопроницаемого гидроизоляционного материала, такого как строительная бумага (асфальт пропитанная бумага) или строительная пленка. Полость стойки утеплена войлочный утеплитель (минеральное волокно). Между металлическими шипами и салоном гипсокартон является пароизоляцией. Пароизоляция сохраняет тепло, влагу попадание воздуха в полость стены.

РИСУНОК 2. СЕКЦИЯ ВЕНТИЛЯЦИОННОГО ЗАЩИТНОГО ЭКРАНА

Вентилируемый защитный экран отделяет наружную металлическую панель от ограждение здания с вентилируемым воздушным пространством и слоем жесткого утеплителя. Вместо того, чтобы пропускать воздух через гидроизоляционный слой, гидроизоляция Слой также является воздушным барьером. Полость шпильки неизолирована и не защищен пароизоляцией. Таким образом, воздух из внутренних помещений может высушить полость шпильки.

3.0 Термический анализ холодного климата (THERM)

В этом исследовании используется программное обеспечение LBNL THERM 3 для сравнения тепловых характеристик сборки металлической панели и сборки вентилируемого дождевика в холодную, городской климат, такой как Сент-Луис, штат Миссури. 99% зимнее расчетное состояние данные из международного аэропорта Сент-Луис Ламберт показывают температуру воздуха 6 °F (-14,5 °C) и точка росы -6,5 °F (-21,4 °C). Температура в помещении установлена ​​на 68 °F (20 °C) с относительным значением 50 %. Влажность (ОВ).

РИСУНОК 3. ДИАГРАММА ТЕПЛОПЕРЕДАЧИ МЕТАЛЛИЧЕСКОЙ ПАНЕЛИ THERM


секция металлической панели. Цветовая диаграмма показывает, что наиболее драматические разница температур возникает в ватной изоляции, где температура падает с 58 °F до 10,3 °F с боковой поверхности помещения на внешняя поверхность. Любой влажный воздух, просачивающийся через отверстие в Пароизоляция, вероятно, будет конденсироваться при попадании на холодную внешнюю поверхность. Термический анализ показывает, что существует большой риск накопления влаги. в стенной полости традиционной сборки металлических панелей.

РИСУНОК 4. ДИАГРАММА ТЕПЛОПЕРЕДАЧИ THERM RAINSCREEN

Рис. 4 представляет собой цветную инфракрасную диаграмму THERM модели теплопередачи сборки вентилируемого дождевика. Основное изменение температуры происходит в жесткой изоляции снаружи ограждения здания. Тепло от помещение способно прогреть полость шипа выше точки росы. Термальный модель переноса предполагает, что существует низкий риск образования конденсата.

ТАБЛИЦА 1. АНАЛИЗ ТОЧКИ РОСЫ

  МЕТАЛЛИЧЕСКАЯ ПАНЕЛЬ ЗАЩИТА ОТ ДОЖДЯ
Наружная температура 6 °F 6 °F
Температура в помещении 68 °F 68 °F
Относительная влажность в помещении 50% 50%
Точка росы в помещении 48 °F 48 °F
Температура поверхности в помещении 62,8 °F 54,1 °F
РИСК КОНДЕНСАЦИИ НИЗКИЙ НИЗКИЙ
Температура воздуха в полости 38 °F 47 °F
Точка росы полости 20 °F 29 °F
Температура поверхности полости 10,3 °F 40,6 °F
РИСК КОНДЕНСАЦИИ ВЫСОКАЯ! НИЗКИЙ

Анализ точки росы в таблице 1 иллюстрирует, как анализ теплопередачи можно использовать для определения риска влажности. THERM предсказывает температуру через различные компоненты сборки; однако он не моделирует содержание влаги. Пользователь должен использовать другие ресурсы, чтобы предсказать риск образования конденсата. Я использовал онлайн-калькулятор точки росы 4 . найти точку росы в полости стены.

4.0 Анализ влажности в холодном климате (WUFI)

WUFI-ORNL/IBP 5 может рассчитать тепловое и перенос влаги внутри сборки в течение определенного периода времени. Эта учеба сравнивает сборку Metal Panel and Rainscreen в Сент-Луисе, штат Миссури, с С 22 сентября 2008 г. по 1 февраля 2009 г. (зима). Интерфейс WUFI включает анимированную диаграмму, которая отслеживает изменения в следующих данных за период времени: температура (КРАСНЫЙ), относительная влажность (ЗЕЛЕНЫЙ) и вода содержимое (СИНИЙ). Пользователь может видеть, достигает ли относительная влажность 100%, и конденсат начинает собираться в виде содержания воды в компонентах здания.

РИСУНОК 5. РАСЧЕТ ПЕРЕДАЧИ ВЛАГИ МЕТАЛЛИЧЕСКОЙ ПАНЕЛИ WUFI

На Рисунке 5 показана относительная влажность (ЗЕЛЕНЫЙ) в стойке металлической панели полость достигает 100% (происходит конденсация) в течение периода выполнения расчета. Кроме того, содержание воды (СИНИЙ) резко возрастает в фанерной подложке. подтверждает наличие воды в полости шипа. Результаты расчета анимированы, чтобы пользователь мог видеть конденсат в начале полости стены в декабре и заканчивается в феврале.

РИСУНОК 6. РАСЧЕТ ПЕРЕДАЧИ ВЛАГИ ДОЖДЕВОЙ СТЕНЕ WUFI

Относительная влажность на Рисунке 6 Расчет дождевой завесы остается в пределах нормальный диапазон (20%-80%) в течение всего периода выполнения. нет существенного увеличение содержания воды в сборке. Результаты расчетов позволяют низкий риск скопления влаги в сборке вентилируемого дождевика.

5.0 Заключение

WUFI решает проблему образования конденсата и влаги более непосредственно чем ТЕРМ. Он предсказывает, когда произойдет конденсация и сколько влаги будет в сборе в течение определенного периода времени. Основной недостаток WUFI-ORNL/IBP является ограниченная библиотека строительных материалов и отсутствие вариантов в толщина строительного материала. Например, изоляция бывает толщиной из 0,089м и .140м. Пользователь не может нарастить изоляцию толщиной 1 дюйм (0,025 м). приращения. Бесплатная версия не позволяет пользователю редактировать или добавлять библиотека материалов.

THERM менее сложный, чем WUFI, но более гибкий. Пользователь может нарисовать рассматриваемую сборку и смоделировать ее в THERM. Кроме того, THERM может использовать для расчета теплопередачи в окнах.

В целом, этот автор смог достичь тех же результатов, используя THERM и ВУФИ. Они оба предсказали низкий риск образования конденсата в вентилируемом дождевом экране. и высокий риск образования конденсата в традиционной металлической панели. Если пользователь не имеет никакого реального жизненного опыта, чтобы проверить результаты либо программу, не помешает использовать одну программу для проверки результатов другого.

6.0 Примечания

1 Энн Диринг, (2001), За больничным корпусом синдром: судебные процессы по плесени входят в основной поток, AllBusiness, http://www.allbusiness.com/finance/insurance-risk-management/992659-1.html

2 Рон Никсон, (2005 г.), Является ли ваша оболочка здания дизайн вызывает проблемы с плесенью?, AllBusiness, http://www.allbusiness.com/technology/computer-software/587784-1.html

3 http://windows.lbl.gov/software/therm/therm. HTML

4 http://www.dpcalc.org/

5 http://www.ornl.gov/sci/btc/apps/moisture/index.html

Статьи :

  • ЭНЕРГИЯ: проектирование зданий с нулевым потреблением энергии с EnergyPlus
  • ДНЕВНОЙ СВЕТ: Интегрировать Дневной свет в экологичных зданиях
  • ОБОЛОЧКА ЗДАНИЯ: тепловая и Анализ влажности

Проектные исследования :

  • Отель и конференц-центр, Напа, Калифорния
  • Ветеринарная больница, Сан-Рамон, Калифорния
  • Торговое здание, Сан-Бруно, Калифорния
  • Офисное здание, Сан-Бруно, Калифорния
  • Развлекательный центр, Литтлтон, Колорадо

Проекты :

  • Центр отчетности о испытательном сроке
  • Ремонт исторического здания класса
  • Художественный музей: Школа дизайна и дизайна Сэма Фокса Изобразительное искусство
  • Высокие технологии: 3Com Singapore Asia-Pacific Штаб-квартира
  • Реклама: офисы McCann Erickson
  • Коммуникации: Accenture Communications Центр
  • Интернет: Штаб-квартира E*Trade Теннант Улучшение

 

методы определения и их значение в строительстве

На физическое состояние воды, содержащейся в утеплителях, гигроскопичных строительных материалах и воздухе, влияет температура окружающей среды. По законам теплотехники точка росы – это определенное значение температуры, при котором парообразная вода превращается в конденсат, то есть в росу.

Все о том, как определить точку росы, чтобы учесть ее при разработке строительного проекта, вы узнаете из нашей статьи. Мы расскажем, как рассчитывается точка перехода пара в конденсат и как это влияет на эксплуатацию дома. Дадим советы по вариантам локализации этого явления.

Содержание статьи:

  • Связь точки росы и конструкции
  • Варианты расчета точки росы
    • Способ №1 — использование формул
    • Способ №2 — использование готовой таблицы
    • Способ №3 — средства измерений
    • Способ №4 — расчеты на онлайн-калькуляторе
  • Локализация точки росы
  • Последствия неверных расчетов
  • Выводы и полезное видео по теме

Связь точки росы и конструкции

Численное значение точки росы находится в прямой зависимости от таких показателей: относительная влажность и температура на улице, и в самой комнате. Например, если за окном t=8 ˚С, а в доме t=22 ˚С и относительная влажность 45%, то на наружной стене будет образовываться конденсат.

Существуют дополнительные факторы, формирующие точку росы, а именно: особенности климата региона, степень утепления всех ограждающих поверхностей, качество и тип системы отопления, период проживания — может быть постоянным (дом, квартира) или временные, например, дача или гараж, вентиляция.

Строителям очень важно знать число точки росы, чтобы рассчитать точную локализацию конденсата на стенах, а также определить необходимую толщину утеплителя. Ведь благодаря этим знаниям можно минимизировать потери тепла в холодное время года.

Положение точки росы может блуждать по толщине стены. Это зависит от толщины и вида материалов самой стены и утеплителя, от показателей температуры и влажности в помещении и на улице.

Каждый материал, используемый для строительства и отделки стен, кроме металла, имеет свою степень паропроницаемости. Этот показатель с точки зрения физики показывает количество пара, которое любой материал может пропустить за определенное время.

Паропроницаемость является одним из решающих факторов, влияющих на выбор материалов для утепления, также этот параметр важен для анализа состояния наружных стен

В периоды низких температур пар из помещения под давлением будет стремиться выходят наружу через все слои наружных стен. Чем ниже коэффициент паропроницаемости утеплителя, тем меньший слой следует укладывать. Его коэффициент должен увеличиваться изнутри наружу, как и теплопроводность.

Если все расчеты провести без ошибок, то расположение точки росы будет ближе к внешней поверхности. Именно там пар превратится в конденсат и только увлажнит стену. Таким образом, зимой будет накапливаться пар, а летом необходимо создать условия для испарения скопившейся влаги.

Главное условие качественного утепления – создание условий для испарения скопившейся влаги. Для этого проводятся специальные расчеты и подбираются отделочные материалы

Менее подходящим будет положение точки росы в несущей стене дома. Это случается, если неправильно подобран тип и толщина утеплителя.

В худшем случае это расположение конденсата на внутренней стороне стены. Такая ситуация возможна, если стена вообще не утеплена или утепление находится внутри помещения. В последнем случае под слоем утеплителя может образоваться плесень, а влажный утеплитель вообще не будет удерживать тепло.

Варианты расчета точки росы

Методика и правила расчета точки росы регламентированы на законодательном уровне такими документами, как СНиП 23-02 Тепловая защита зданий и СП 23-101-2004 Проектирование тепловой защиты зданий.

В СНиП в п.6.2 прописаны три нормируемые величины теплозащиты, а именно:

  1. Сопротивление теплопередаче стен и утеплителя.
  2. Значения температуры в помещении и на поверхности наружной стены.
  3. Индикатор ориентировочного расхода тепла на отопление, включая вентиляцию.

Нормы считаются выполненными, если выполняются требования 1 и 2 или 2 и 3.

Чтобы максимально точно определить точку росы, некоторые специалисты обращаются в региональную метеорологическую службу за информацией о точной температуре и розе ветров в определенной местности.

Но такие расчеты может провести каждый. Существует несколько способов определения точки росы.

Способ №1 — использование формул

Для этих расчетов было создано несколько формул. Например, формула для вывода точки росы при t от 0 ˚С до +60 ˚С. Его погрешность составляет ± 0,4 ˚С. Для проведения расчетов вам понадобится температура в помещении на высоте 50-60 см от пола и влажность. Затем просто заполните данные и получите результат.

Это одна из самых популярных формул, в которой T — температура в градусах Цельсия, Rh — относительная влажность в %, Ln — натуральный логарифм

Способ №2 — использование готовой таблицы

Специалисты разработали таблицу для мгновенных вычислений. Обратите внимание, что в таблице приведены приблизительные данные. Он показывает температуру и влажность, а на их пересечении вы найдете точку росы.

Узнать число точки росы можно благодаря данным из таблицы, представленной в СП 23-101-2004. Нужно выбрать значение на пересечении температуры и влажности

Способ №3 — средства измерений

Сейчас существует несколько видов специальной аппаратуры для таких измерений. Например, некоторые помимо основных характеристик могут отображать как локализацию точки росы, так и комнатную термограмму. Их используют профессиональные строители и теплотехники.

Тепловизор — это профессиональный прибор, с помощью которого можно создать тепловое изображение помещения. Некоторые модели имеют функцию расчета точки росы.

Портативный термогигрометр поможет узнать не только температуру и влажность в помещении, но и рассчитать точку росы.

Психрометр поможет измерить два основных показателя в помещении: влажность и температуру воздуха. Прибор состоит из влажного и сухого термометров в одном блоке.

С помощью мобильного теплового гигрометра легко узнать влажность и температуру на всех участках стены, крыши в любом помещении

Способ №4 — расчеты на онлайн-калькуляторе

Сервисов, предоставляющих такие калькуляторы. Более того, этот способ считается одним из самых ненадежных, так как в результате можно получить цифры с потолка или с большой погрешностью.

Если вы не уверены в результате, то доверьтесь профессионалам и обратитесь в специализированную компанию. Они проведут анализ стен и предложат оптимальный вариант.

Локализация точки росы

Расположение точки росы зависит от того, с какой стороны расположена изоляция. Так, в стене без утепления она будет смещаться по толщине стены в зависимости от изменения температуры и влажности воздуха. При минимальной разнице температур он будет располагаться в толще стены между центром и наружной поверхностью.

После этого внутренняя часть стены останется сухой. При ее расположении между внутренней поверхностью и центром стены последняя промокает внутри во время похолодания или во время мороза.

Стена может быть утеплена снаружи или снаружи, а может и не быть утеплена вообще. От этого будет зависеть расположение точки росы

В стене с расположением точки росы будет оптимальным. Ведь в этом случае он будет располагаться внутри утеплителя, а значит, внутренняя поверхность стены будет сухой. Это лучший вариант.

Но, если толщина утеплителя была выбрана неправильно, возможно смещение точки росы, что чревато появлением грибка, плесени, быстрым разрушением стен.

В стене с образованием конденсата в стене ближе к жилому помещению температура стены под теплоизоляционным слоем снижается, создавая оптимальные условия для роста плесени.

Локализация может быть такой:

  • между центром стены и утеплителем, а при морозе или резком понижении температуры на их границе;
  • на внутренней поверхности стены, которая под утеплителем будет влажной в течение всего зимнего периода;
  • внутри утеплителя, который, как и стена под ним, будет влажным в течение всего холодного периода.

Как видите, расположение точки росы оказывает существенное влияние на комфорт и здоровье человека.

Последствия неверных расчетов

При выборе материалов для утепления помните, что одним из эффективных способов защиты наружных стен от влаги является правильное расположение слоев утеплителя.

Качественная теплоизоляция поможет значительно снизить теплопотери и сохранить комфорт в доме, а также продлить срок службы стен

Плотный слой, который не будет пропускать пар, должен располагаться с внутренней стороны несущая стена, а снаружи должен быть пористый, влагопроницаемый слой.

Также необходимо создать условия для вентиляции в месте конденсации. В этом случае конденсат будет испаряться беспрепятственно.

Правильно утепленная наружная стена поможет снизить потери тепла в отопительный период с 45 до 95% и создать комфорт в доме

Если утеплитель был выбран неправильно, то влага в нем будет накапливаться постепенно и количество тепловых сопротивление стенки уменьшится. Поэтому во второй, максимум на пятый отопительный сезон, затраты на отопление увеличатся, если это частный дом, то в квартире зимой будет просто намного холоднее.

Профессиональное утепление – долгий и дорогостоящий процесс. Сегодня существует множество материалов для утепления. Не пытайтесь на них экономить, так как дешевые материалы придут в негодность и начнут разрушаться уже через несколько отопительных сезонов.

Есть несколько последствий неправильных расчетов, но некоторые из них могут негативно сказаться на качестве жизни. Главным последствием будут постоянно влажные стены, в результате грибок, плесень, микробы на стенах, что влечет за собой появление многих хронических заболеваний.

Постоянно влажные стены становятся очагом роста грибка и плесени, так как их споры разлетаются по воздуху и могут вызывать болезни

Так как влажное помещение трудно обогреть, уровень комфорта падает. А повышенная влажность внутри таких стен может спровоцировать респираторные заболевания.

Еще одним неприятным последствием неверных расчетов является разрушение отделочных материалов — крошится плитка, крошится кирпич на внешней стене, а внутренняя поверхность на стенах начинает вздуваться.

Сухой конденсат, это основная причина вздутия и отслоения отделочных материалов на наружной стене.

Для исправления ситуации необходимо обратиться к специалистам для анализа состояния стен и утепления. При правильных расчетах можно исправить все ошибки и создать в своем доме комфортные и теплые условия.

С правилами и формулами теплотехнического расчета для грамотного проектирования дома познакомим , с которым настоятельно рекомендуем ознакомиться.

Выводы и полезное видео по теме

О том, как определить точку росы и что она собой представляет, вы можете узнать из следующего видео:

Способы утепления стен и правильный выбор материалов будут рассмотрены в следующее видео: