Теплотехнический расчёт онлайн | Калькулятор точки росы
Страна
Неверный ввод
Область
Неверный ввод
Населенный пункт
Неверный ввод
Тип помещений
Неверный ввод
Тип конструкции
Неверный ввод
Влажность внутри, %
Неверный ввод
Температура внутри, °С
Неверный ввод
Климатические параметры
Климатические параметры
Кол-во градусо-суток отопительного периода (ГСОП), °С·сут
Неверный ввод
Температура холодной пятидневки с обеспеченностью 0.92
Неверный ввод
Продолжительность отопительного периода, суток
Неверный ввод
Средняя температура воздуха отопительного периода, °С
Неверный ввод
Относительная влажность воздуха наиболее холодного месяца, %
Неверный ввод
Коэффициент a
Неверный ввод
Коэффициент b
Неверный ввод
Коэффициент теплоотдачи наружной поверхности α(ext)
Неверный ввод
Коэффициент теплоотдачи внутренней поверхности α(int)
Неверный ввод
Нормируемый температурный перепад Δt(n), °С
Неверный ввод
Влажностный режим помещения
Неверный ввод
Условия эксплуатации помещения
Неверный ввод
Среднемесячные и годовые значения температуры и давления водяного пара
Месяц
t, °C
Январь
Неверный ввод
Февраль
Неверный ввод
Март
Неверный ввод
Апрель
Неверный ввод
Май
Неверный ввод
Июнь
Неверный ввод
Июль
Неверный ввод
Август
Неверный ввод
Сентябрь
Неверный ввод
Октябрь
Неверный ввод
Ноябрь
Неверный ввод
Декабрь
Неверный ввод
Год
Неверный ввод
Месяц
E, (гПа)
Январь
Неверный ввод
Февраль
Неверный ввод
Март
Неверный ввод
Апрель
Неверный ввод
Май
Неверный ввод
Июнь
Неверный ввод
Июль
Неверный ввод
Август
Неверный ввод
Сентябрь
Неверный ввод
Октябрь
Неверный ввод
Ноябрь
Неверный ввод
Декабрь
Неверный ввод
Год
Неверный ввод
Эффективность утепления
0%
Эффективность от переувлажнения
0%
Нужно выбрать необходимые слои для Вашей конструкции, начиная от внутренней стороны к внешней. Также, с помощью кнопок вы можете менять слои местами, исключать из расчёта путем отключения или вообще удалять.
Результат расчёта
Базовое значение поэлементных требований [R4]
Неверный ввод
Ro-усл
Неверный ввод
Сопротивление теплопередаче ограждающей конструкции [R1]
Неверный ввод
Санитарно-гигиенические требования [R2]
Неверный ввод
Нормируемое значение поэлементных требований [R3]
Неверный ввод
Толщина
Неверный ввод
+Теплопроводность, Вт/(м·°С) — А
Неверный ввод
+Теплопроводность, Вт/(м·°С) — Б
Неверный ввод
+Паропроницаемость, мг/(м·ч·Па) — А, Б
Неверный ввод
Неверный ввод
Rо. п.
Неверный ввод
tн.отр
Неверный ввод
Е
Неверный ввод
ев
Неверный ввод
eн.отрНеверный ввод
x(м.у.)
Неверный ввод
Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажнения [Rп]
Неверный ввод
Rп.н
Неверный ввод
Сумма R
Неверный ввод
Недопустимость влагонакопления в ограждающей конструкции за год эксплуатации [Rп1]
Неверный ввод
Ограничение влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха [Rп2]
Неверный ввод
Z0
Неверный ввод
t0
Неверный ввод
E0
Неверный ввод
Pw1, кг/м³
Неверный ввод
Pw2, кг/м³
Неверный ввод
Δwav1
Неверный ввод
Δwav2
Неверный ввод
η
Неверный ввод
Rn-T
Неверный ввод
888
Неверный ввод
Потери тепла через 1 м² за 1 час при температуре самой холодной пятидневки кВт/ч:
Неверный ввод
Потери тепла через 1 м² за отопительный сезон кВт/ч:
Неверный ввод
Скачать отчет
На чём основан расчёт
Калькулятор построен на базе актуальной документации Российской Федерации, в которую входят различные СП, СНиПы, ГОСТы, СТО.
Данная документация вполне применима для частных строений и не только, для всех стран СНГ, т.к во многих странах до сих пор действуют частично измененные правила СССР. Если у Вас стоит задача проектирования не частных строений, то Вам нужно обратится для дополнительной консультации или перепроверки расчётов в компании, у которых есть на это определенные полномочия.СП 131.13330.2020 Строительная климатология СНиП 23-01-99* от 24 декабря 2020
СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (с Изменением N 1) от 30 июня 2012
СП 23-101-2004 Проектирование тепловой защиты зданий от 26 марта 2004СНиП 23-02-2003 Тепловая защита зданий от 26 июня 2003
СНиП 23-01-99* Строительная климатология (с Изменением N 1) от 11 июня 1999
ГОСТ Р 54851-2011 Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче от 15 декабря 2011
СТО 00044807-001-2006 Теплозащитные свойства ограждающих конструкций зданий от 21 февраля 2006
youtube.com/embed/3lB0oLwQmGI?controls=0″ title=»YouTube video player» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>Тепло в доме – важнейший элемент комфорта. Задача любого помещения создавать и поддерживать определенные температурные режимы. Понятно, что все эти технические условия должны закладываться и учитываться инженерами ещё на этапе проектирования сооружения. Однако, нередко мы имеем дело с уже построенным зданием — в этой ситуации наш калькулятор поможет провести расчет теплопотерь реально существующего дома или наружной стены квартиры для проверки на соответствие нормам и возможным последующем утеплением.
Теплотехнический онлайн калькулятор – его задачи и возможности
Если говорить в целом, то наш онлайн калькулятор предназначен для реализации двух основных задач: расчет слоя утеплителя на стадии проекта, и проверка теплопотерь уже существующих ограждающих конструкции на их соответствие нормативным требованиям. Все остальные расчеты являются лишь уточнениями для решения двух вышеозначенных запросов.
Несомненно, важна финансовая составляющая – использование результатов калькуляции позволит Вам подобрать в необходимом количестве оптимальный материал для утепления постройки, т.е. не надо будет переплачивать, заказывая лишние объемы изоляции, иначе окупаемость их будет нецелесообразна.
Теплотехнический расчет – методика и обоснование
Теплотехнический расчет ограждающих конструкций учитывает массив законодательной базы РФ, строительных норм и правил, государственных стандартов, которые вполне применимы и для других стран СНГ (как это было в СССР). Вам нужно лишь выбрать Ваш город
Далее для расчета Вам нужно ввести слои ограждающий конструкции с помощью кнопки «Добавить слой». В появившимся окне выбираем нужные материалы в папках, или же можно найти их через поиск.
Тепловая защита здания, просчитанная с помощью нашего теплотехнического онлайн-калькулятора, имеет высокую степень достоверности.
Расчет точки росы
Точка росы – это момент перехода влаги из газообразного состояния в жидкое. Почему необходимо учитывать этот параметр в теплотехнических расчетах ограждающих конструкций? Дело в том, что конденсат активно образуется именно в стенах, в тех плоскостях, где происходит соприкосновение холодного уличного воздуха с теплыми массами внутри помещения. Если влага начнет образовываться непосредственно на внутренних поверхностях, то очень скоро они потеряют свою целостность, эстетику а самое главное увеличится теплопроводность материалов.
Желательным (оптимальным) местом появления конденсата является наружная изоляция стен. С помощью нашей программы вы сможете рассчитать точку росы так, чтобы она выпадала конкретно на утеплителе.
Расчет тепловых потерь дома
Данный расчет позволит узнать теплопотери ограждающих конструкций за один час и за отопительный сезон с одного квадратного метра поверхности. Как и для всех остальных показателей — уточним базовые данные, которые требуются ввести при расчетах.
- Географическое расположение квартиры, дома или перспективного строительного проекта – это необходимо для определения климатической зоны и связанных с ней характеристик (температурный режим, влажность и т.д.). Вам нужно выбрать Ваш город из огромного списка стран СНГ.
- Строительно-эксплуатационные параметры помещений и их предназначение – это важнейшие данные, помогающие максимально точно провести расчет толщины утеплителя для стен именно для данного типа помещения.
- Указать слои конструкции – кирпич, пеноблок, наружная и внутренняя штукатурка, утеплитель и т.д. Калькулятор предлагает удобную опцию –возможность менять, добавлять или удалять слой, а также проводить расчеты по каждому из вариантов.
- Теплотехнический расчет онлайн имеет отличную визуализацию результатов. Для наглядности, часть информации представлена в виде графиков, таблиц, сносок. Например, данный опцион позволяет варьировать температуру и влажность в разных помещениях в сторону повышения или понижения, что дает возможность провести сравнительный анализ и выбрать оптимальный расчет теплопотерь дома.
Стремитесь к 100% эфективности утепления и защиты от переувлажнения — это самые оптимальные цифры основанные на нормативных документах.
Смотрите также:
- Расчёт вентиляции
- Расчёт радиаторов отопления
- СНиП 23-01-99* Строительная климатология
- СП 50.13330.2012 Тепловая защита зданий
Добавить комментарий
Расчет точки росы в стене, определение точки росы в строительстве
Во время проектирования тепловой изоляции жилых зданий специалистами всегда производится расчет точки росы с целью определения ее положения в наружной стене. Это позволяет понять, в каком месте есть большая вероятность выделения значительного количества конденсата, и таким образом выяснить, насколько выбранный материал ограждения соответствует условиям эксплуатации.
Мы не станем выкладывать здесь расчет точки росы по формулам, который принято делать в строительстве, так как он довольно сложен и громоздок. Кстати, этим пользуются многие недобросовестные продавцы стройматериалов, рассказывая нам о выделении влаги внутри тех или иных утеплителей. Цель данной статьи – помочь обычному домовладельцу самому определить точку росы в стене и использовать это на практике.
Что такое точка росы
Надо понимать, что воздух всегда содержит в себе водяной пар, количество которого зависит от многих условий. Внутри помещений пар выделяется от человека и от разных повседневных процессов его жизнедеятельности – стирки, уборки, приготовления пищи и так далее.
Снаружи содержание влаги в воздухе зависит от погодных условий, это понятно. Причем насыщение воздушной смеси парами имеет свой предел, при достижении которого начинается конденсация влаги и появляется туман.
Принято считать, что в этот момент воздух вобрал в себя максимально возможное количество пара и его относительная влажность (обозначается буквой ω) составляет 100%. Дальнейшее насыщение как раз и приводит к появлению тумана – мелких капелек воды, находящихся во взвешенном состоянии. Тем не менее всем доводилось наблюдать выпадение конденсата на различных поверхностях и без всякого тумана.
Так бывает, когда не полностью насыщенный парами воздух (влажность менее 100%) соприкасается с поверхностью, чья температура на несколько градусов ниже его собственной. Фокус в том, что воздушная смесь при различной температуре может вместить разное количество пара. Чем температура выше, тем больше влаги она может впитать. Поэтому, когда смесь с относительной влажностью 80% контактирует с более холодным предметом, то она резко охлаждается, предел ее насыщения снижается, а относительная влажность достигает 100%.
В этот момент и начинается выпадение конденсата на поверхности, возникает так называемая точка росы. Именно это явление можно наблюдать летом на траве. Утром земля и трава еще холодные, а солнце быстро прогревает воздух, влажность его около земли быстро достигает 100% и выпадает роса. Примечательно, что процесс конденсации сопровождается выделением тепловой энергии, что была затрачена ранее на парообразование. Оттого роса быстро сходит.
Получается, что температура точки росы – величина переменная и зависит от относительной влажности и температуры воздуха в определенный момент. На практике эти величины определяются с помощью различных измерителей, — термометров и психрометров. То есть, проведя измерение температуры и влажности воздуха, можно предположить, при какой температуре поверхности возникнет точка росы по таблицам, о чем речь пойдет далее.
Для справки. Чтобы определить влажность наружного воздуха, сейчас вовсе не обязательно проводить какие-то измерения, достаточно взглянуть на метеопрогноз в интернете. Там указывается и относительная влажность.
Определение точки росы
На данный момент нет смысла задумываться над тем, как рассчитать точку росы, поскольку это давно уже сделано специалистами, а результаты сведены в таблицу. В ней указываются значения температур поверхностей, ниже которых из воздуха с различной влажностью начинает выделяться конденсат.
Как видите, фиолетовым цветом здесь выделена нормативная температура в помещении в зимнее время года – 20 °С, а зеленым обозначен сектор, что охватывает диапазон нормированной влажности – от 50 до 60%. При этом точка росы колеблется от 9.3 до 12 °С. То есть, при соблюдении всех норм конденсация влаги внутри дома невозможна, поскольку в нем нет поверхностей с такой температурой.
Другое дело – наружная стена. Изнутри ее омывает воздух, нагретый до +20 °С, а снаружи – минус 20 °С, а то и больше. Значит, в толще стены температура постепенно растет от минус 20 °С до + 20 °С и в каком-то месте она обязательно будет равна 12 °С, что при влажности 60% даст точку росы. Но для этого еще нужно, чтобы водяной пар добрался до этого места сквозь материал ограждения. И тут возникает еще один фактор, влияющий на определение точки росы – паропроницаемость материала, которая всегда учитывается при строительстве.
Теперь можно перечислить все факторы, влияющие на образование влаги внутри наружных стен в процессе эксплуатации:
- температура воздуха;
- относительная влажность воздуха;
- температура в толще стены;
- паропроницаемость материала ограждения.
Примечание. Для измерения этих показателей в толще эксплуатируемых стен не существует никаких датчиков или анализаторов, их можно получить только расчетным путем.
Паропроницаемость – это характеристика, показывающая, какое количество водяного пара может пропустить через себя тот или иной материал за определенный промежуток времени. К проницаемым относятся все конструктивные материалы с открытыми порами – бетон, кирпич, дерево и так далее. В народе бытует выражение, что дома, возведенные из них, «дышат». Примерами пористого утеплителя служат минеральная вата и керамзит.
Из всего вышесказанного можно сделать вывод, что в обычных и утепленных стенах всегда есть условия для возникновения точки росы. Вот в этом месте и появляется много небылиц и страшилок, связанных с огромным количеством воды, прямо-таки вытекающим из стен при конденсации, и растущей на них массой плесени. В действительности все не так страшно, ведь эта точка не занимает стационарную позицию в ограждении. С течением времени условия с обеих сторон конструкции постоянно меняются, отчего и точка росы в стене перемещается. В строительстве это называется зоной возможной конденсации.
Так как ограждение проницаемо, то оно способно самостоятельно избавляться от выделяющейся влаги, при этом важную роль играет вентиляция с обеих сторон. Неспроста наружное утепление стен минеральной ватой делается вентилируемым, ведь точка росы в этом случае находится в утеплителе. Если все сделано правильно, то выделяющаяся внутри ваты влага через поры покидает ее и уносится потоком вентиляционного воздуха.
Вот почему так важно устроить хорошую вентиляцию в жилых помещениях, она удаляет не только вредные вещества, но и лишнюю влагу. Стена мокнет лишь в одном случае: когда конденсация происходит постоянно и в течение длительного времени, а влаге деться некуда. В нормальных условиях материал просто не успевает напитаться водой.
Современные полимерные утеплители практически не пропускают пар, поэтому при утеплении стен их лучше располагать снаружи. Тогда необходимая для конденсации температура будет внутри пенопласта или пенополистирола, но пары к этому месту не доберутся, а потому и увлажнения не возникнет. И наоборот, утеплять полимером изнутри не стоит, так как точка росы останется в стене, а влага станет выделяться на стыке двух материалов.
Пример такой конденсации – окно с одним стеклом в зимнее время, оно не пропускает пары, отчего на внутренней поверхности образуется вода.
Внутреннее утепление осуществимо при таких условиях:
- стена достаточно сухая и относительно теплая;
- утеплитель должен быть паропроницаемым, дабы выделяющаяся влага могла покинуть конструкцию;
- в доме должна хорошо действовать вентиляция.
Заключение
Действительно ли необходимы расчеты точки росы?
Ладно — сдаюсь. ASHRAE Fundamentals — отличный справочный материал, но вам, возможно, не захочется разбираться во всех найденных там уравнениях точки росы.Изображение предоставлено: ASHRAE Fundamentals
Больше размышлений энергетического ботаника
Большинство строителей понимают, что при контакте теплого влажного воздуха с холодной поверхностью может образовываться конденсат. Конденсация — это плохо, и строители хотят ее избежать. Однако есть решение: по мнению ученых-строителей, мы можем предотвратить проблемы с конденсацией в стенах, определив температурный профиль стены и выполнив расчет точки росы. Для этого расчета может потребоваться использование психрометрической таблицы.
Некоторые смельчаки, стремящиеся к самообразованию, могут обратиться к копии ASHRAE Fundamentals , чтобы узнать больше об уравнениях точки росы (см. Рисунок 1). Именно это я и сделал — ненадолго, прежде чем решил закрыть книгу и поставить ее обратно на полку.
Чтобы пробраться сквозь эту чащу, я попытаюсь ответить на несколько вопросов:
- Что такое расчет точки росы и как его выполнить?
- Дает ли такой расчет полезную информацию?
- Существуют ли более простые способы проектирования стен, которые хорошо работают?
Строители иногда говорят о «температурном профиле» или «температурном градиенте» стены. Идея состоит в том, чтобы оценить температуру различных компонентов стены, предполагая определенные внутренние и наружные условия.
Например, рассмотрим стену дома в холодный зимний день. Если в помещении 72°F, а на улице 0°F, температура сайдинга будет близка к 0°F, а температура гипсокартона будет близка к 72°F. Другие компоненты стены будут находиться в диапазоне температур между этими двумя крайними значениями.
Если мы начертим стену в поперечном сечении, мы сможем рассчитать теоретическую температуру в любой точке стены. Однако, поскольку эти температурные профили обычно не учитывают утечку воздуха, они обычно неточны. Более того, они представляют собой теоретическую одномерную модель; поскольку реальный мир имеет три измерения, эта модель имеет ограниченную ценность.
Что такое расчет точки росы?Строители или проектировщики выполняют расчет точки росы, чтобы определить, является ли…
Подпишитесь на бесплатную пробную версию и получите мгновенный доступ к этой статье, а также к полной библиотеке премиальных статей GBA и детали конструкции.
Начать бесплатную пробную версию
Уже зарегистрированы? Войти
Избранные блоги
Размышления энергетического ботаника Посмотреть больше
Рассмотрение вопроса об использовании энергии в жилых помещениях
Руководство по продукту Посмотреть больше
- г.
- г.
Калькулятор точки конденсации/росы | Circular Project
В Новой Зеландии снова наступило то время года, когда на наших окнах появляется конденсат. Здесь мы дадим вам краткое объяснение различных условий влажности, относительной влажности, конденсации и точки росы. Мы следуем этому, предоставляя краткие примеры того, что может произойти, когда мы ошибаемся. Затем мы предложим вам калькулятор для расчета точки росы. Наконец, мы дадим несколько советов о том, как обеспечить здоровье вас и вашего здания.
Влага
Влага или водяной пар – это наличие воды в воздухе. В зависимости от погоды в воздухе содержится разное количество воды. В наших домах мы увеличиваем это количество, дыша, готовя или принимая душ.
Относительная влажность
Относительная влажность описывает количество воды относительно того, что может удержать частица воздуха. Представьте, например, чашку как частицу воздуха. Если мы наполним чашку наполовину водой, то у нас будет относительная влажность 50%. Самый здоровый воздух в помещении имеет относительную влажность от 40% до 60%. Другими словами, чашка заполнена водой на 40-60%.
Конденсат
Когда воздух становится холоднее, он уменьшается в размерах. Наша чашка (с относительной влажностью 50%) может уменьшиться вдвое. Но содержание воды осталось прежним и теперь составляет 100%, поэтому вода переливается через край, так как чашка больше не может удерживать жидкость. Причина того, что конденсат обычно наиболее заметен на наших окнах, заключается в том, что окна являются самыми холодными местами в доме — местом, где наш воздух больше не может содержать воду, так как он сжался.
Точка росы
Точка росы описывает температуру, при которой чашка больше не может удерживать воду. Как только ваша поверхность охладит воздух до этой температуры, воздух будет выделять воду в виде конденсата; на вашем окне или оконной раме чаще всего. Точка росы зависит от температуры воздуха и относительной влажности при этой температуре. Конечная цель состоит в том, чтобы наши поверхности в помещении и на стенах находились выше точки росы, чтобы избежать образования конденсата.
Что происходит при появлении конденсата?
Конденсат может образовываться не только на окнах, но и при прохождении воздуха через стены наружу. Конденсация и высокая относительная влажность имеют следующие недостатки:
Наш подоконник мог сгнить, если за ним не ухаживать должным образом.
День за днем вытирать конденсат с окон отнимает много времени.
Отопление здания с высокой относительной влажностью может быть на 30% дороже.
Во влажных строительных материалах может образовываться токсичная плесень, потенциально вызывающая астму и другие респираторные заболевания.
Конденсат, образующийся в каркасе нашего здания (внутри стены), может попасть в ловушку и сгнить в нашем деревянном каркасе или вызвать появление плесени в изоляции.
Большинство изоляционных материалов не справляются с конденсацией или влагой и резко теряют свою эффективность, иногда более 30%.
Как избежать образования конденсата на окнах и конструкции здания?
Существуют способы уменьшить образование конденсата в наших домах.
По сути, мы должны понизить нашу точку росы, температуру, при которой вода в нашей чашке начинает переливаться через край. Мы можем сделать это, уменьшив относительную влажность или прогрев само здание, хотя часто в холодных сырых домах требуется и то, и другое. Исследования BRANZ ясно показали, что в наших домах холодно не потому, что они влажные, а влажные, потому что они холодные. При нагреве испытательных помещений как минимум до 18 градусов по Цельсию в этом исследовании менее чем в 1% случаев была проблема с высокой относительной влажностью. Это означает, что надлежащее отопление помещений устранено 99% проблем с влажностью в домах (1).
В зависимости от климата, материалов и жилых помещений для достижения наилучших результатов требуются различные продукты. Свяжитесь с нами для бесплатной консультации — мы поможем вам найти то, что лучше всего подходит для вас в соответствии с научными данными, а не маркетинговым сообщением.
1. Уменьшите относительную влажность
Снижение относительной влажности воздуха в помещении до здорового уровня (от 40% до 60%) является важным шагом. Это снижает наши счета за отопление, поддерживает здоровье нас и здания и снижает точку росы. Мы можем понизить относительную влажность несколькими способами:
- №
Используйте больше натуральных строительных материалов и отделки, которые поглощают влагу: они впитывают ее в периоды высокой влажности и снова отдают влагу в дневное время, когда относительная влажность в помещении снижается. Примерами таких продуктов являются изоляция из овечьей шерсти или древесного волокна, ковры из овечьей шерсти, мебель из цельного дерева или штукатурка на глиняной основе. Различные исследования показали, что дома с большим количеством влагопоглощающих материалов могут сэкономить до 25-30% ваших затрат на электроэнергию.
Получите больше растений, минимизирующих влажность воздуха. Использование таких растений, как бостонский папоротник, английский плющ или мирная лилия, поможет снизить количество влаги в воздухе.
Установите систему вентиляции. Система вентиляции заменит спертый воздух с высокой относительной влажностью свежим воздухом и снизит относительную влажность. Убедитесь, что для этого выбрана система вентиляции с теплообменником. Хотя в Новой Зеландии очень распространена система вентиляции, которая вытягивает воздух из полости крыши, эти системы не соответствуют нормам стандарта вентиляции Новой Зеландии для качества воздуха в помещении.
Сразу оговоримся, поставить 1 растение в спальню не получится, кроме того, это не отменяет необходимости регулярно открывать окна или использовать систему вентиляции. Использование буферных материалов просто снижает потребность в вентиляции, что особенно удобно в ночное время, если у вас нет системы вентиляции.
2. Прогрев здания
Другим способом, который часто используется в сочетании с понижением относительной влажности, является прогрев поверхностей здания. В двойном остеклении, например, холодная температура блокируется на внешнем стекле, сохраняя внутреннее стекло более теплым и часто превышающим точку росы (хотя бывают случаи, когда конденсация все еще происходит из-за очень высокой относительной влажности или на алюминиевой оконной раме). ). Другим способом уменьшения образования конденсата на окнах являются наружные жалюзи, препятствующие лучистому охлаждению неба и поддерживающие более высокую температуру окон.
Утепление ограждающих конструкций — это способ уменьшить или устранить образование конденсата на стенах. Однако важно, чтобы у водяного пара была возможность покинуть здание и он не застревал и не поглощался структурой, вызывая структурные проблемы и проблемы со здоровьем. Для этого подходят многие натуральные строительные материалы, такие как стеновые панели из оксида магния, натуральные краски и изоляция.
Изоляция наших стен сохранит тепло внутри стен; это особенно важно для стального каркаса, поскольку сталь становится намного холоднее, чем, например, древесина. Вы также должны рассмотреть возможность использования более эффективных источников тепла, которые нагревают поверхности, высушивая их и отражая тепло в воздух. Они часто сэкономят вам на эксплуатационных расходах, а также создадут повышенный комфорт в наших домах. См. здесь для получения дополнительной информации.
Заключение
Очень важно поддерживать относительную влажность в наших домах на уровне 40%-60%. Это сохранит наше здоровье, позволит избежать нежелательных вещей, таких как более высокие счета за отопление, потенциальные структурные повреждения и последствия для здоровья, такие как астма.
Когда частица воздуха не может удержать содержащуюся в ней воду, происходит конденсация.