Установка автоматического воздухоотводчика в системе отопления: Автоматический воздухоотводчик: принцип работы, установка, маркировка

Содержание

Воздух в системе отопления и устройства для его отвода.

Сегодня мы разберем вопрос о том, как появляется воздух в системе отопления и об устройствах для его удаления.

В системе отопления загородных домов и коттеджей воздух в системе отопления постоянно скапливается так же, как и в системах многоэтажных домов. Попадает воздух в трубопроводы через резьбовые соединения на запорной арматуре и других разборных соединениях в системе. 

Образовавшийся воздух необходимо постоянно удалять, если не делать этого, то образуется воздушная пробка, которая блокирует работу системы отопления.

 Для отвода воздуха из системы существует три вида воздухоотводящих устройств - воздухоотводчиков: 

  1. Кран «Маевского», который устанавливают на радиаторе.
  2. Автоматический воздухоотводчик, который устанавливают в верхних точках небольшой системы отопления.
  3. Воздухосборник, который устанавливают в верхних точках жилых и общественных зданий.

После запуска системы необходимо выпустить воздух из системы отопления в целом. Выпускают при помощи воздухосборника в зданиях и автоматического воздухоотводчика. Устанавливают воздухоотводчик в циркуляционных системах (насосных) в верхних точках системы на последнем стояке по ходу движения теплоносителя, если система однотрубная тупиковая. 

Если система коллекторного типа, где трубы прокладываются по полу, а в качестве основного узла устанавливаются коллекторные гребенки, воздухоотводчики ставятся на верхний коллектор. Название, автоматический воздухоотводчик, говорит само за себя: воздух из него выпускается автоматически. 

После установки воздухоотводчика в систему, приоткрывают воздуховыпускную резьбовую крышку, после чего воздух начинает выходить из системы автоматически, как только там появляется. Особенно в момент запуска системы.

После того, как основная часть воздуха из системы вышла из автоматического воздухоотводчика, но некоторые радиаторы остаются холодными, воздух стравлювают из крана «Маевского».

Кран «Маевского» устанавливается в радиаторе для выпуска воздуха непосредственно из радиатора. Вкручивается кран в верхнюю часть радиатора или пробку с отверстием, если это секционный радиатор. Выпускают воздух из крана следующим образом: в кран вставляют плоскую отвертку, поворачивают, после чего из спускного крана начинает выходить воздух. После того, как весь воздух сошел, отвертку поворачивают в противоположную сторону, чтобы закрыть кран.  

Вот такие устройства решают вопросы с отводом воздуха из системы отопления.

 

  • Воздух в системе отопления, что нужно делать для его удаления.

Установить воздухоотводчик в системе отопления нужно правильно

Это крайне важное требование для любого жилого дома или офиса. Добиться стабильного тепла поможет понимание ситуации — где нужно установить воздухоотводчик.

Правильно установить воздухоотводчик необходимо для любой системы отопления

Периодическое нарушение нормальной работы отопительных систем приводит к неоправданным тепловым потерям. Это случается при неизбежном образовании воздушных пробок. Чтобы их избежать устанавливаются специальные устройства – воздухоотводчики.

Что значит правильно установить воздухоотводчик

Даже при их наличии не всегда отопление работает нормально. Значит приборы установлены неверно. То есть, не в тех местах, где им положено быть. Это зависит от конструкции системы отопления. Решение о расположении воздухоотводчиков принимается индивидуально для каждой из них.

Основные принципы размещения

Они разработаны в соответствии с элементарными законами природы. Главное то, что воздух в воде всегда стремится подняться вверх. Поэтому, образовавшиеся при нагреве воды пузырьки, всегда будут двигаться к самой верхней точке трубопровода. Отсюда вывод – ищите воздушную пробку именно в этих частях системы отопления.

Основные места скопления пузырьков воздуха в системе отопления

Если она там предполагается, то установить воздухоотводчик нужно именно в такой точке. Если таких мест несколько, то и сброс ненужного воздуха делается в каждом из них.

Но это еще не все. Дело в том, что путь пузырьков к верхним частям системы отопления не всегда прост. Сложные и слишком «закрученные» обороты труб являются серьезным препятствием. Это способствует образованию скоплений воздуха именно в местах поворотов. Чем их больше, тем большая вероятность возникновения проблемы.

Отсюда вывод — проектируйте и стройте отопление максимально простое. Но иногда некоторые строительные элементы дома все равно нужно как-то обходить трубой. Появляется лишний сложный поворот. Вот именно здесь сразу и нужно будет установить воздухоотводчик.

Радиаторы отопления

О них нужно сказать сразу конкретно. Устройство отопительных батарей само по себе представляет лабиринт для теплоносителя. Образовавшимся здесь пузырькам воздуха сложно его преодолеть на пути к высшей точке системы отопления.

На каждый радиатор отопления следует установить воздухоотводчик (кран Маевского)

Поэтому действуйте без лишних премудростей и жадности. На каждый радиатор отопления сразу нужно установить воздухоотводчик.

Другие случаи

Сюда следует отнести, те, что связаны с индивидуальными решениями по устройству систем отопления. Например, теплые полы, использование полотенцесушителей сложной конфигурации, тупиковые участки, особенно П-образной формы, байпасы.

Какие бывают воздухоотводчики

Устройства, с помощью которых может быть удален ненужный воздух имеют разные конструкции. Выбор каждой из них зависит от вида системы отопления и возможности размещения прибора.

Для отопления с открытым контуром применяется расширительный бачок. Это элементарное устройство, устанавливаемое в самой верхней части. Скапливающийся воздух постепенно достигает его полости и оттуда удаляется в атмосферу.

Место размещения расширительного бачка

Для закрытых систем отопления уместно установить воздухоотводчик автоматического срабатывания. Он удобен тем, что, во-первых, не требует для исполнения своей функции участия человека. Во-вторых, принцип работы позволяет установить его в местах, сложных для доступа.

Как правильно установить автоматический воздухоотводчик на закрытой системе отопления

Здесь следует сказать, что таких мест, вообще-то, не должно быть. Хорошая система отопления имеет доступ к любой точке. На случай ремонта будет меньше проблем. Однако в жизни бывает по-разному, поэтому автоматический прибор в таком случае необходим.

Использование крана Маевского для сброса воздуха из радиатора отопления

Для радиаторов отопления применяются краны Маевского. Удобные устройства, которые в современном исполнении выглядят вполне эстетично и не портят вид квартиры. Управляются вручную, но сам процесс не сложен.

Зачем еще нужно знать, где установить воздухоотводчик

Правильно определить место расположения этого устройства, является для специалиста высоким профессионализмом. Но, в этом вопросе можно разобраться и самому. Внимательно изучив ситуацию по работе системы отопления, ищите проблемные места. Во всяком случае при необходимости вы будете говорить со специалистом на одном языке.

Читайте также: Шаровые краны для воды итальянской компании FADO

Автор: Сергей Морозов

Внимание! Эта статья защищается законом об авторском праве в цифровую эпоху (DMCA). Запрещается любое копирование без моего разрешения.

Автоматический воздухоотводчик для радиаторов: особенности и монтаж

Система, обеспечивающая возможность обогрева зданий (производство, жилье), отличается достаточной сложностью.

Поэтому требуется получение соответствующих знаний по ее эксплуатации, что была возможность решать проблемы, связанные с обеспечением комфортного микроклимата внутри помещений.

Особенно часто подобные рода проблемы возникают в период перед стартом сезона отопления. В частности, появляется потребность узнать, как спустить воздух, находящийся в батареи. Именно это мы и обсудим ниже.

Как удалить воздух из системы охлаждения: причины завоздушивания

Вне зависимости от того, какой тип отопительной системы эксплуатируется (автономная, централизованная), воздух может накапливаться в любой из них.

Преимущественно потребность в развоздушивании системы отопления возникает летом, так как в этот период производится сливание воды, и при форс-мажорных ситуациях, обусловленных ремонтом и авариями.

В некоторых случаях воздух в системе — это результат химической реакции, инициатором которой выступает водород из воды. Как бы там ни было, но причин, влияющих на завоздушивание системы отопления, существует много:

  • заполнение системы водой не так, как это должно быть, включая нарушение последовательности соответствующих процессов, что приводит к возникновению воздушных пробок;
  • развитие коррозионных процессов на внутренних поверхностях элементов, являющихся частью отопительной системы;
  • функционирование системы отопления без оснащения воздухоотводчиками;
  • проблемы с запорной арматурой в плане ее надежности;
  • неправильно проведенный монтаж элементов системы;
  • заполнение системы носителем тепла в виде свежей воды, содержащей воздух, что приводит к образованию воздушных пробок, появление которых вызывается нагревом.

Важно: протечка труб, когда визуально не определяются какие-либо повреждения, или булькающие звуки — зачастую это результат присутствия в системе воздуха.

Металлические элементы, находящиеся внутри рассматриваемого вида системы, подвергаются коррозии из-за тех же воздушных пробок, что существенно снижает срок возможной эксплуатации оборудования.

Чтобы исключить вероятность упомянутых событий, следует предусмотреть наличие в системе воздухоотводчиков, посредством которых достигается своевременное и правильное стравливание воздуха.

Классификация воздухоотводчиков

Устройства, обеспечивающий отвод воздуха, подразделяются на следующие основные виды:

При этом воздухоотводчики имеют различные конструктивные особенности: прямые, угловые, радиаторные, игольчатые и шаровые. Обоснование применения того или иного воздухоотводчика — это прерогатива специалиста.

Особенности автоматических воздухоотводчиков

Суть работы данных устройств объясняется их названием — регулирование уровня воздуха в автоматическом режиме, то есть без необходимости участия в этом процессе человека.

Основными материалами изготовления для воздухоотводчиков служат: бронза и нержавеющая сталь. Их конструкцией предусмотрено наличие корпуса и присоединительного размера на полдюйма.

Возможно оснащение отсекающим клапаном, гарантирующим оперативную замену детали, когда возникает потребность в ремонте.

Функционирование воздухоотводчика, монтируемого на отсекающий клапан, заключается в открытии доступа к системе отопления путем оказываемого давления на флажок из пластмассы.

Демонтаж детали приводит к перемещению флажка вверх, исключая вероятность того, что носитель тепла попадет во внешнюю среду.

Монтаж воздухоотводчиков

Установка воздухоотводчиков должна производиться в проблемных местах, характеризуемых регулярным скоплением воздуха и трудностью удаления воздушных пробок ручным способом: верхние точки коллекторов и контуров отопления, а также котлов.

При монтаже воздухоотводчиков стараются их установить в вертикальном положении. Хотя в некоторых ситуациях, когда отсутствует реальная возможность вертикального монтажа, допускается установка воздухоотводчиков, имеющих горизонтальный выпуск.

Если предполагается организация стравливания воздуха на старых радиаторах, являющихся элементами централизованной системы, то следует избегать установки отводчиков воздуха, функционирующих в автоматическом режиме.

В данном случае удаление завоздушенностей способно принять частый характер из-за длительного срока эксплуатации подобных элементов, а также их загрязненности и такого нюанса, как отключение отопления.

Система централизованного типа подвержена гидравлическим ударам, обусловливая этим обязательность установки автоматических воздухоотводчиков специального типа, которые способны выдерживать высокие температуры теплоносителя (от 150 градусов). Такие детали должны иметь маркировку ОМЕС и МС-140.

Система отопления будет работать стабильно при контроле работоспособности всех ее элементов, включая воздухоотводчики. При этом возможно увеличение срока эксплуатации системы, если производить удаление воздуха с соблюдением установленных по этому поводу правил.

Как работает автоматический воздухоотводчик ДУ15 для радиаторов посмотрите на видео:

1/8 ", NPT, 125 фунтов на кв. Дюйм, автоматический, с отводом воздуха

/ {{vm.product.unitOfMeasureDescription || vm.product.unitOfMeasureDisplay}}

{{section.sectionName}}:

{{option.description}}

{{section.sectionName}} Выберите {{section.sectionName}}

.

{{styleTrait.nameDisplay}} {{styleTrait.unselectedValue? "": "Выбрать"}} {{styleTrait.unselectedValue? styleTrait.unselectedValue: styleTrait.nameDisplay}}

  • Атрибуты
  • Документы
  • {{спецификация.nameDisplay}}
  • Атрибуты
  • Документы
Марка
{{attributeValue.valueDisplay}} {{$ last? '': ','}}
Марка
{{attributeValue.valueDisplay}} {{$ last? '': ','}}

доля

Электронное письмо было успешно отправлено.Электронное письмо не было отправлено, проверьте данные формы.

×

% PDF-1.4 % 191 0 объект > эндобдж xref 191 115 0000000016 00000 н. 0000003214 00000 н. 0000003373 00000 н. 0000004823 00000 н. 0000005251 00000 н. 0000005888 00000 н. 0000005951 00000 п. 0000006115 00000 н. 0000006227 00000 н. 0000006341 00000 п. 0000006425 00000 н. 0000006785 00000 н. 0000007274 00000 н. 0000007364 00000 н. 0000007896 00000 п. 0000008537 00000 н. 0000036287 00000 п. 0000063966 00000 п. 0000092735 00000 п. 0000119021 00000 н. 0000137161 00000 н. 0000149348 00000 п. 0000161615 00000 н. 0000173918 00000 н. 0000176662 00000 н. 0000181335 00000 н. 0000181566 00000 н. 0000181649 00000 н. 0000181704 00000 н. 0000181727 00000 н. 0000181805 00000 н. 0000181880 00000 н. 0000181955 00000 н. 0000182072 00000 н. 0000182221 00000 н. 0000182595 00000 н. 0000182661 00000 н. 0000182777 00000 н. 0000182800 00000 н. 0000182878 00000 н. 0000183249 00000 н. 0000183315 00000 н. 0000183431 00000 н. 0000183454 00000 н. 0000183532 00000 н. 0000183906 00000 н. 0000183972 00000 н. 0000184088 00000 н. 0000184111 00000 п. 0000184189 00000 н. 0000184562 00000 н. 0000184628 00000 н. 0000184744 00000 н. 0000184767 00000 н. 0000184845 00000 н. 0000185217 00000 н. 0000185283 00000 н. 0000185399 00000 н. 0000221041 00000 н. 0000221080 00000 н. 0000221165 00000 н. 0000221245 00000 н. 0000221362 00000 н. 0000221508 00000 н. 0000221625 00000 н. 0000221771 00000 н. 0000221856 00000 н. 0000221941 00000 н. 0000222026 00000 н. 0000222164 00000 н. 0000222310 00000 н. 0000222385 00000 н. 0000222482 00000 н. 0000222628 00000 н. 0000222713 00000 н. 0000222810 00000 н. 0000222956 00000 н. 0000223036 00000 н. 0000223153 00000 н. 0000223299 00000 н. 0000223388 00000 н. 0000223485 00000 н. 0000223639 00000 н. 0000223724 00000 н. 0000223804 00000 н. 0000223921 00000 н. 0000224067 00000 н. 0000224151 00000 п. Ā

Автоматический воздухоотводчик | Детали системы теплого пола

Полы с подогревом

Система подогрева пола Speedfit была разработана для быстрой и простой установки с компонентами, разработанными и изготовленными в соответствии с ISO9001 и DIN4726.

В системе Speedfit горячая вода перекачивается из бойлера в насосный агрегат, где она смешивается примерно до 50 ° C, а затем распределяется через коллектор в отопительные контуры, выполненные с использованием барьерной трубы Speedfit.

В бетонных полах труба укладывается на изоляцию, а затем покрывается стяжкой, на которую можно уложить практически любое напольное покрытие.

Для деревянных полов раскладные плиты укладываются между балками и настилом пола или на нижней стороне пола.Труба Speedfit вставляется в пазы на пластинах.

Площадь пола обычно нагревается до температуры от 25 ° C до 28 ° C, обеспечивая равномерное распределение тепла при температуре лишь немного выше комнатной.

Широкий спектр электрических компонентов означает, что система UFH может иметь столько или меньше возможностей управления, сколько требуется.

Как работает теплый пол?

«Полы с подогревом» не новость, его принципы восходят к римским временам. В Европе это предпочтительная система, и в некоторых странах на нее приходится 70% новых отопительных систем.

Радиаторная система передает энергию в комнату в основном за счет конвекции. Эта конвекция приводит к тому, что пол становится самой прохладной частью комнаты и оставляет массу теплого воздуха на уровне потолка.

Он также собирает мелкую пыль с пола и разносит ее по воздуху и по мебели.

Это может означать, что большая часть энергии, которая была вложена в комнату, тратится впустую, а не в той области, в которой вы хотите.

Система UFH нагревается в основном за счет излучения.Это наиболее естественный и комфортный вид обогрева, как и солнце.

Лучистая энергия, излучаемая полом, частично отражается каждой поверхностью и частично поглощается. Когда он поглощается, эта поверхность становится вторичным излучателем.

Через некоторое время все поверхности становятся вторичными излучателями. Сама мебель излучает энергию, и комната становится равномерно и равномерно прогревается. Энергия проникает в каждый уголок комнаты - ни холодных пятен, ни горячих потолков, ни холодных ног.

По сравнению с другими формами отопления, общая эффективность системы нагрева UFH показана ниже.

Тепло концентрируется там, где оно больше всего необходимо для комфорта человека и энергоэффективности.

Особенности и преимущества теплого пола

Система теплого пола Speedfit предлагает потребителю множество преимуществ. К ним относятся:

Установка

Он прост в установке, требует минимальных усилий при установке и незначительного обслуживания.

Комфорт

Система использует лучистое тепло, наиболее удобный вид обогрева, обеспечивающий равномерное распределение тепла по всему помещению.

Космос

Система ненавязчива и экономит пространство, что означает, что каждый квадратный метр площади пола и стены может быть полностью использован, что дает свободу при оформлении интерьера.

Шум

По сравнению с радиаторными системами, система UFH работает практически бесшумно.

Здоровье

Уменьшает количество пыли и уменьшает количество клещей домашней пыли.Уменьшение количества горячих поверхностей и острых краев снижает риск ожогов или травм.

Экономика
Системы напольного отопления

предназначены для работы при более низких температурах, чем радиаторные системы, что делает их особенно подходящими для конденсационных котлов, что приводит к снижению потребления энергии и меньшим потерям тепла из конструкции здания.

Контроль

Системой легко управлять, а небольшая разница температур между полом и воздухом означает, что система практически саморегулируется.

Окружающая среда

«Полы с подогревом» подходят для использования с наиболее энергоэффективными и экологически чистыми системами отопления, включая конденсационные котлы, солнечные батареи и тепловые насосы.

Проектирование теплого пола

Принципы укладки сплошного пола

Система подогрева пола Speedfit предназначена для установки в твердый пол с стяжкой.

Поскольку стяжка находится в непосредственном контакте с трубами отопления, обеспечивается отличная теплопередача, равномерное распределение тепла и меньшие колебания температуры.

Типичная установка будет состоять из:

  • Напольное покрытие (ковролин, керамическая плитка и т. Д.)
  • Стяжка
  • Труба Speedfit, прикрепленная скобами к изоляции
  • Изоляция кромок
  • Высококачественная изоляция пола 50 мм
  • Бетонный пол

Изоляция пола является неотъемлемой частью любой установки UFH в сплошном полу.

Speedfit рекомендует получить рекомендации экспертов, чтобы убедиться, что используемые продукты подходят для полов с подогревом и соответствуют действующим нормам.

Для получения помощи, пожалуйста, обратитесь к разделу этого сайта со ссылкой на техническую консультационную службу Speedfit.

Рекомендации по проектированию

Проектирование и расчеты UFH-системы в твердом полу должны проводиться в соответствии с BS EN 1264, а детали, представленные на этом сайте, основаны на этом стандарте.

Существует ряд важных вопросов, касающихся системы теплого пола Speedfit, которые следует рассмотреть перед началом проекта:

  • Источники тепла
  • Расположение коллектора
  • Тепловая мощность и температура пола
  • Стяжка
  • Отделка полов и покрытия
  • Периметр
  • Органы управления

Они описаны ниже.

Источники тепла

Из-за более низких температур потока, используемых в UFH, обычно 47–62 ° C, можно рассмотреть множество источников тепла, отличных от стандартного настенного котла. К ним относятся солнечная энергия, тепловые насосы или геотермальные системы, и компания Speedfit рекомендует обращаться за конкретными советами к соответствующим производителям. Дополнительные насосы могут повлиять на некоторые котлы - перед установкой проверьте совместимость у производителя котла.

Расположение коллектора

Монтаж и балансировка системы теплого пола проще, если коллектор расположен недалеко от центра здания.Это будет означать, что шлейфы как можно более равны.

Тепловая мощность и температура пола

Из-за множества различных методов конструкции пола трудно обеспечить точную тепловую мощность.

Согласно действующим стандартам максимальная мощность для любой системы УВГ, уложенной в твердый пол, составляет приблизительно 11 Вт / м² / K, где K - разница между температурой поверхности пола и желаемой комнатной температурой. При этом учитываются медицинские ограничения человека и чувствительность жителей здания к теплу.

Фактически, с системой обогрева пола Speedfit мощность около 100 Вт / м² может быть достигнута при температуре поверхности пола 29 ° C и температуре воздуха 20 ° C. В некоторых случаях можно допустить более высокую температуру поверхности пола, например, в ванных комнатах (33 ° C), редко используемых комнатах или периметральных зонах (35 ° C).

Стяжки

Стяжка является важной и неотъемлемой частью системы UFH и используется для передачи энергии от труб к отапливаемой зоне.Эта тепловая масса, как ее еще называют, будет реагировать на потребность в тепле в зависимости от ее глубины и состава.

Обычно толщина большинства традиционных песчано-цементных стяжек, наносимых вручную, составляет 65–75 мм. Однако при консультировании по конкретному проекту потребуется информация о типе и глубине стяжки, если она известна.

Доступны более современные стяжки с насосом, которые обладают преимуществами с точки зрения скорости нанесения и времени отверждения. Также возможно, что глубина стяжки может быть уменьшена, и это улучшит работу системы теплого пола.

Speedfit рекомендует получить рекомендации специалиста от поставщика стяжки, чтобы убедиться, что правильные продукты указаны и используются для вашей системы центрального отопления пола.

Для получения помощи, пожалуйста, обратитесь к разделу этого сайта со ссылкой на техническую консультационную службу Speedfit.

Отделка полов и покрытия

Система подогрева полов Speedfit подходит практически для любой отделки пола, включая керамическую плитку, ковролин, винил и ламинат.

Поскольку напольное покрытие, по сути, является частью системы отопления, тепловое сопротивление или изоляционная способность отделки пола будут влиять на мощность пола. Чем выше сопротивление, тем ниже эффект нагрева и тем больше время разогрева.

Наиболее подходящие покрытия - это покрытия с низким термическим сопротивлением, обычно обозначаемым как R-значение или TOG.

Рекомендуемое максимальное значение R составляет 0,15 м²K / Вт (1,5 TOG), а в таблице ниже приведены некоторые типичные значения.

Покрытие типа

Ковровое покрытие

Винил

Паркет

Керамическая плитка

Камень

R Стоимость м² К / Вт

0,15

0,022

0,05

0,017

0,011

TOG Стоимость

1.5

0,2 ​​

0,5

0,17

0,11

Керамическая плитка для пола
Керамическая плитка

хорошо работает с UFH, поскольку она обеспечивает минимальное сопротивление теплопередаче. Чтобы избежать растрескивания плитки, следует использовать гибкий клей и краевые швы, чтобы принять расширение. Убедитесь, что клей подходит для использования с UFH.

Ковры

Ковровое покрытие и подложка имеют более высокий уровень сопротивления теплопередаче.

Избегайте использования войлока, пробок и толстой резиновой прокладки, поскольку их изоляционные свойства снижают тепловую мощность системы.

Если предполагается использовать клей для ковров, убедитесь, что он подходит для температур до 40 ° C.

Пластиковая / виниловая плитка

Полы на пластиковой основе также хорошо работают с UFH, так как обычно имеют минимальное сопротивление теплопередаче. Важно, чтобы используемое покрытие и клей были пригодны для использования при температуре до 40 ° C. Это снижает риск размягчения и потери адгезии.

Древесина / деревянные полы

Деревянные напольные покрытия хорошо сочетаются с UFH. Однако, поскольку это натуральный материал, важно следовать рекомендациям производителя пола относительно установки и первого запуска.

Деревянные полы, как правило, должны иметь влажность более 10%, и при укладке на ровный пол стяжка должна быть полностью затвердела перед укладкой покрытия. После отверждения систему следует проработать примерно 2 недели с материалами в зоне перед установкой.Это снижает влажность в помещении и позволяет материалу акклиматизироваться.

Мы советуем получить конкретную информацию от предлагаемого поставщика или производителя покрытия, чтобы оценить пригодность покрытия для полов с подогревом.

Периметр

При определенных обстоятельствах можно достичь более высокой температуры пола и, следовательно, более высокой мощности, чем обычно допустимая.

Это может быть неиспользуемое жилое пространство или место, постоянно обставленное мебелью.Это достигается за счет уменьшения расстояния между трубами примерно до 100 мм по периметру комнаты (примерно до ширины 1 метр).

Например, расстояние между трубами по периметру может быть использовано там, где на внешней стене комнаты много окон, что может привести к более высоким локальным потерям тепла.

Элементы управления

Как и во всех системах отопления, для достижения комфортных условий, поддержания экономичной работы и соответствия строительным нормам и британским стандартам требуются соответствующие средства управления.

Системы теплого пола могут использоваться как единственная система отопления или быть связаны с другими приборами, такими как радиаторы.

Существует множество способов управления системой теплого пола, и можно использовать практически любой котел, включая комбинированный и конденсационный. Для конкретных котлов следует обращаться за советом к изготовителю по установке.

Хотя UFH имеет много преимуществ по сравнению с традиционными системами, они не так отзывчивы. Поскольку они наиболее эффективны при постоянной работе, рекомендуется использовать элементы управления, которые могут «снизить» температуру в помещении на 4–5 ° C в периоды низкой нагрузки, например в ночное время, вместо того, чтобы полностью отключать систему. .

Обычно комнатные термостаты используются для управления исполнительными клапанами на коллекторе Speedfit, которые, в свою очередь, регулируют поток воды в каждом контуре.

Элементы управления можно разделить на 3 основные категории:

1. Регуляторы температуры потока

Если не используется конденсационный котел с низкотемпературным регулированием, для большинства систем теплого пола температура воды из котла, обычно 82 ° C, снижается до требуемой температуры с помощью смесительного клапана.

Более продвинутые контроллеры, называемые погодозависимыми компенсаторами, используют внешний датчик и программатор для регулировки расхода и температуры для компенсации внешних условий.

Важно иметь устройство для управления котлом и насосом, чтобы температура подачи не превышала безопасные пределы. Насосный блок Speedfit оснащен встроенным ограничительным термостатом.

2. Комфортное управление

Комнатные термостаты используются для управления температурой воздуха в помещении или зоне и подключаются к центру управления, чтобы можно было открывать или закрывать отдельные контуры труб и включать или выключать насос / котел по мере необходимости.Комнатами можно управлять индивидуально или зонами из 2-х и более комнат.

Существует широкий выбор комнатных термостатов, подходящих для систем теплого пола. К ним относятся электромеханические, цифровые и программируемые. Модели могут иметь проводное соединение или управляться по радиочастоте.

Все типы элементов управления подходят для подключения к Центру управления Speedfit.

Программируемые комнатные термостаты

обеспечивают полный контроль над системой UFH. Каждую зону или комнату можно настроить в соответствии с собственными требованиями, и можно принять во внимание индивидуальные модели занятости.Эти типы статистики также предлагают возможность использовать режим «возврата» для максимальной эффективности.

Поскольку большинство систем управления работают с питанием 240 В, для управления во влажных помещениях, таких как душ или ванная, мы рекомендуем использовать дистанционный датчик или ведомый датчик из другой комнаты.

3. Блок управления котлом и насосом

Строительные нормы Великобритании требуют наличия связи между системами управления и котлом, чтобы котел не работал, когда система не потребляет тепло.Контроллер Speedfit имеет возможность для этого подключения.

Чтобы обсудить варианты для отдельных проектов, обратитесь в службу технической поддержки Speedfit по телефону 01895 425333.

Руководство по проектированию


Проектирование системы теплого пола Speedfit представляет собой простой процесс, состоящий из 6 основных этапов:

  • Расчет теплопотерь и потребности в тепле
  • Проверить потребность в дополнительном тепле
  • Определить температуру потока воды и расстояние между трубопроводами
  • Определить местоположение коллектора
  • Рассчитать необходимое количество контуров
  • План расположения труб
Расчет теплопотерь

Для определения количества тепла, необходимого для каждой комнаты или зоны, необходимо выполнить расчет теплопотерь.

Если заказчик не знаком с расчетом, у Института инженеров по обслуживанию зданий (CIBSE) и Ассоциации подрядчиков по отоплению и вентиляции (HVCA) есть документы по этому вопросу.

В некоторых проектах может быть возможно, чтобы инженер Speedfit мог помочь в этом процессе. Пожалуйста, свяжитесь со Службой технической поддержки по телефону 01895 425333 для получения дополнительной информации.

В системе «теплый пол» теплопотери через первый этаж обычно не учитываются, так как пол будет теплее, чем комнатная температура.

Практически возможны некоторые теплопотери через пол, поэтому при расчете нагрузки котла к общей сумме добавляется запас в 10%.

Фактическая тепловая мощность, необходимая для помещения, рассчитывается путем деления потребности в тепле, полученной из расчетов теплопотерь, на общую площадь пола.

В таких местах, как кухня или стационарная арматура, трубопроводы обычно не требуются и должны быть исключены из расчета.

Это генерирует показатель потребности в тепле в ваттах на м², который затем можно использовать в таблицах производительности системы Speedfit при выборе расстояния между трубами и температуры подачи.

Пример:

Согласно чертежам, тепловые потери для комнаты были рассчитаны на уровне 1200 Вт, а площадь пола измерена на уровне 20 м². Таким образом, требуемая производительность системы УВГ составляет:

Потери тепла (Вт) / площадь пола (м²) = требуемая мощность (Вт / м²)

1200 Вт / 20 м² = 60 Вт / м²

Следует отметить, что если расчетная тепловая потеря превышает 100 Вт / м², может потребоваться дополнительное отопление для достижения уровня комфорта.

Это может быть, например, в помещении с высоким уровнем остекления, таком как зимний сад.

Температура потока воды и расстояние между трубками

Насосный агрегат JG, подключенный к коллектору, имеет встроенный пропорциональный смесительный клапан для регулирования температуры воды из первичного источника.

Обычно устанавливается в диапазоне 47–62 ° C в зависимости от требований системы, и температура подачи остается одинаковой для каждого контура.

Рассчитав выше требуемую теплопотери, выберите соответствующую таблицу мощности Speedfit в зависимости от используемого напольного покрытия.

Выберите температуру подачи и расстояние между трубами, исходя из желаемой температуры в помещении и максимальной температуры пола 26 ° - 29 ° C.

Пример: - Сверху минимальное требование к производительности 60 Вт / м² требуется от системы UFH.

Используя Таблицу 1 - Текстильные напольные покрытия, можно определить следующее.

При расходе 55 ° C, комнатной температуре 20 ° C и расстоянии между трубами 200 мм выходная мощность системы составляет 80 Вт / м² при температуре пола 27 ° C, что находится в допустимых пределах производительности.(Нормально, чтобы расстояние между центрами труб в жилых комнатах не превышало 200 мм, и температура пола не должна превышать 29 ° C.)

Если указаны покрытия, не упомянутые в таблицах, возможно, потребуется провести специальные расчеты. Детали сопротивления для конкретных напольных покрытий следует получить у производителя до установки системы UFH.

В некоторых проектах может быть возможно, чтобы инженер Speedfit мог помочь в этом процессе.Пожалуйста, свяжитесь со Службой технической поддержки по телефону 01895 425333 для получения дополнительной информации.

Положение коллектора и длина контура

Уникальный коллектор Speedfit доступен в конфигурации с 4, 8 или 12 портами, а труба Speedfit UFH поставляется в бухтах длиной 120 и 150 метров, чтобы обеспечить соединения потока и возврата к коллектору.

Выбор конфигурации коллектора будет зависеть от количества требуемых контуров и температурных зон.Например, вы можете захотеть установить другую температуру на кухне и в гостиной.

Количество контуров в каждой зоне будет зависеть от размера зоны и центров труб, выбранных из таблиц выходных данных Speedfit.

Чтобы избежать чрезмерных падений давления в трубопроводе, максимальная длина петли ограничена 100 метрами, а необходимое количество труб можно рассчитать по таблице ниже:

Требования к трубам UFH Speedfit

Расстояние (мм)

Макс.площадь м / м²

Макс.контур м

100

8.5

100

200

5

100

Пример: Если помещение площадью 18 кв.м необходимо отапливать на расстоянии 200 мм от центра трубы, длина, если требуется, будет примерно 90 м. Однако, если расстояние до коллектора составляет 11 м, что требует дополнительных 22 м, тогда потребуются 2 петли (например, 90 м + 22 м = 112 м).

Определив количество петель и, следовательно, конфигурацию коллектора, можно спланировать расположение труб.Длина контура контура должна включать хвосты для подключения к коллектору.

Схема расположения труб
Компоновка трубопроводов UFH

основана на двух основных соображениях, которые необходимо эффективно сбалансировать.

Труба должна быть проложена таким образом, чтобы обеспечить равномерное распределение тепла и относительно равномерную температуру поверхности по всей площади.

Трубы следует прокладывать непрерывно, соединения не должны выполняться в зоне разравнивания.

Компоновка должна учитывать повышенную теплоотдачу от более холодных внешних поверхностей.

Петли труб могут быть разложены по разным схемам в зависимости от характера конкретного проекта, с учетом внешних стен и окон, где будут возникать наибольшие теплопотери.

Оптимальная схема расположения труб обычно достигается путем смешивания подающей и обратной труб так, чтобы труба с самой высокой температурой подачи примыкала к трубе с самой низкой температурой обратной линии. Это обычно называют компоновкой с обратным возвратом или встречной спиралью.

Какая бы схема ни использовалась, трубы не должны пересекаться в полу и должны идти к соответствующему отверстию на коллекторе.Поэтому перед установкой рекомендуется подготовить схему расположения труб.

Некоторые шаблоны компоновки упоминаются по имени:

  • Одиночный змеевик
  • Двойной змеевик
  • Тройной змеевик
  • Противоточная спираль

На практике схемы расположения труб можно комбинировать или смешивать, чтобы удовлетворить потребности в тепле.

Примеры этих шаблонов можно увидеть ниже:

Змеиные узоры

Змеиный узор позволяет самой горячей воде ограничивать внешний периметр (области с наибольшими потерями тепла).Температура воды выше всего у самых холодных стен и будет снижаться по мере того, как она течет по трубе к центру комнаты.

Противоток

Противоточные схемы отличаются от змеевиков тем, что подающая и обратная трубы расположены рядом друг с другом, создавая между ними среднюю температуру.

Зоны подключения

В областях, близких к коллектору, таких как холл, несколько труб могут находиться в непосредственной близости друг от друга, поскольку потоки и возврат в контуре встречаются.

Это будет способствовать увеличению потребности помещения в тепле. Обычно эти трубы либо изолируют, либо используют трубы для обогрева соответствующей области.

Поэтому продумайте и спроектируйте эти зоны после того, как станут известны все другие помещения, контуры и коллекторы.

Потеря давления и режим работы насоса

При соблюдении ограничений по длине и площади контура общая потеря давления в системе находится в пределах возможностей насоса, поставляемого с коллектором Speedfit.

Speedfit Технические характеристики
  • Барьерная труба Speedfit B-PEX, изготовленная в соответствии с BS7291, с диффузионным слоем кислорода, отвечающим требованиям DIN 4725 по проницаемости для кислорода.
  • Размеры трубы 15 мм x 120 м Барьерная труба Speedfit B-PEX.
  • Труба рассчитана на давление 3 бар при 92 ° C.
  • Регулируемый диапазон смесительного клапана 47–62 ° C.
Выходные таблицы

Следующие 4 таблицы предназначены для помощи в спецификации системы UFH и показывают различные наборы данных в зависимости от отделки пола в соответствии с определением BSEN 1264.

Данные приведены только для ознакомления и основаны на конкретных данных.

Если вам нужна дополнительная информация или необходимо обсудить конкретный проект, обратитесь в службу технической поддержки Speedfit по телефону 01895 425333.

Стол 1 Текстильное напольное покрытие

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

77

25

86

26

102

27

200

64

24

72

24

85

26

20

100

70

26

80

27

95

29

200

59

25

67

26

80

27

22

100

64

28

74

29

89

30

200

54

27

61

28

74

29

Банкноты

При перепаде температур между подающей и обратной магистралью на 8 ° C
Толщина стяжки 45 мм над концом трубы
Типичное тепловое сопротивление = 0.15
Таблица 2 Плитка / твердая древесина

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

92

26

104

27

123

29

200

75

25

84

26

100

27

20

100

85

28

86

28

115

30

200

69

26

76

27

93

28

22

100

77

29

89

30

108

32

200

63

28

72

28

87

30

Банкноты

При перепаде температур между подающей и обратной магистралью на 8 ° C
Толщина стяжки 45 мм над концом трубы
Типичное тепловое сопротивление = 0.10
Стол 3 Деревянная планка / Толстый линолеум

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

117

28

131

30

154

32

200

91

28

102

27

121

29

20

100

107

30

121

31

145

33

200

84

28

95

29

113

30

22

100

98

31

112

32

135

34

200

78

29

88

30

106

32

Банкноты

При перепаде температур между подающей и обратной магистралью на 8 ° C
Толщина стяжки 45 мм над концом трубы
Типичное тепловое сопротивление = 0.05
Таблица 4 Бетон без покрытия

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

159

32

178

34

211

37

200

118

29

133

30

157

32

20

100

146

33

165

35

198

38

200

109

30

123

31

147

33

22

100

133

34

152

36

184

39

200

99

31

113

32

137

34

Банкноты

При перепаде температур между подающей и обратной магистралью на 8 ° C
Толщина стяжки 45 мм над концом трубы
Типичное тепловое сопротивление = 0.00

Температуры, указанные красным цветом, превышают максимально допустимые температуры пола. В нежилых районах или на участках по периметру могут быть разрешены температуры выше 29 ° C.

Система теплых полов

Рекомендации по установке

Перед установкой необходимо учесть несколько требований:

  • Все монтажные работы должны соответствовать всем действующим строительным нормам, британским стандартам и требованиям местных властей.
  • Все электрические работы должны выполняться квалифицированным специалистом в соответствии с правилами IEE.
  • В соответствии с применимыми практическими правилами должна быть установлена ​​влагонепроницаемая мембрана.
  • Место для установки должно быть сухим и герметичным.
  • Потребуются средства на вывоз мусора, воду, электроэнергию и освещение.
  • Плита должна быть уложена горизонтально с соблюдением допусков Британских стандартов.
Коллектор Speedfit

Коллектор и насосный агрегат Speedfit поставляются предварительно собранными и индивидуально упакованными.Они поставляются вместе с инструкциями по установке, электромонтажу и вводу в эксплуатацию.

Балансировка

Чтобы обеспечить примерно равный поток воды в каждый контур, клапаны на коллекторе должны быть отрегулированы и сбалансированы в соответствии с инструкциями, прилагаемыми к блоку коллектора.

Крепежные детали

Убедитесь, что пол на стройплощадке чистый, без мусора и неровностей.

При необходимости покрыть весь пол полиэтиленом в качестве пароизоляции и уложить краевую изоляцию на все внешние и внутренние стены.

Изоляция может быть рулонной или жесткой.

Укладывайте изоляционные панели пола, начиная вплотную к стене и продолжая укладывать кирпичную кладку. Если на изоляции нанесены линии сетки, которые должны быть сверху, это облегчит прокладку контуров труб.

Плотно соедините панели встык и склейте все стыки. При необходимости аккуратно разрежьте изоляционные панели, чтобы они подходили к колоннам, водостокам и т. Д.

Прикрепите коллектор Speedfit к стене в выбранном месте.Убедитесь, что коллектор установлен ровно и достаточно высоко, чтобы принять трубу.

Отрежьте кабелепровод короткой длины (мин. 500 мм) и наденьте на конец трубы. Это защитит трубу там, где она входит в стяжку. Повторите это для возвратной трубы. Трубе также может потребоваться наложение рукавов через строительные швы в полу и там, где она проходит через дверные проемы и т. Д.

Убедитесь, что на трубе нет задиров. Отрежьте квадратную трубу труборезами Speedfit и удалите заусенцы и острые кромки.
Используйте трубную вставку Superseal. Шток вставки обеспечивает большую жесткость длины трубы в фитинге, уменьшая вероятность утечки при приложении боковой нагрузки.

Полностью вставьте трубу в корпус - мимо цанги и главного уплотнительного кольца до упора трубы.

Уплотнительное кольцо на трубной вставке Superseal обеспечивает вторичное уплотнение в отверстии соединения.

Проверьте соединение, потянув за трубу.

Соединения не должны выполняться в зоне разравнивания.

От коллектора начните укладку трубы в заранее разработанной конфигурации. Труба крепится к изоляции путем прикрепления трубы скобами к изоляции с помощью скобозабивного пистолета. Поместите пистолет на трубу и сильно надавите, чтобы скоба вошла в него. Прежде чем переходить к следующей скобе, дайте ручке отойти назад.

Скобы следует устанавливать с интервалом 400 мм и фиксировать так, чтобы минимальный радиус изгиба не превышал 175 мм.

Крепежные детали

Важно отметить, что при установке трубы в дверных проемах, сквозных отверстиях в конструкции или в местах, где требуются компенсаторы в стяжке, труба всегда должна иметь втулку с участком кабелепровода для обеспечения возможности движения.

После того, как первая петля будет проложена, проложите трубу обратно к коллектору и подключите, как и раньше, к соответствующему обратному патрубку.

После установки всех контуров завершите установку блока управления и следуйте инструкциям по заполнению и испытанию под давлением.

Если требуется дополнительная безопасность, цанговый зажим можно установить на каждое трубное соединение коллектора.

Наполнение и испытание под давлением

Для заполнения системы можно выполнить следующую процедуру:

  • Убедитесь, что все клапаны на коллекторе и насосном агрегате закрыты.
  • Подсоедините шланг от сети к нижнему заливному отверстию. Присоедините шланг к верхнему заливному отверстию и поместите другой конец в ведро, наполовину заполненное водой.
  • Откройте клапаны верхнего и нижнего порта заливки.
  • Включите сетевое питание и заполните контур за контуром системы, открыв клапаны отдельных контуров. Следите за тем, чтобы из шланга ведра больше не выходили пузырьки воздуха.
  • Закройте клапан контура и повторите для всех остальных контуров, закрыв отверстия для заполнения, когда закончите.
  • Теперь систему можно испытать водой под давлением перед укладкой стяжки, чтобы убедиться, что все стыки водонепроницаемы и не было повреждений трубы во время установки.Для этого вам понадобится оборудование для гидравлического испытания под давлением.

Система должна находиться под давлением 2 БАР в течение 10 минут, а затем 10 БАР в течение 10 минут.

По истечении этого времени необходимо визуально проверить трубопроводы и фитинги на предмет утечки.

После завершения система должна оставаться под давлением на протяжении всего процесса стяжки и отверждения. BS EN 1264 Часть 4 рекомендует минимум 6 бар.

Стяжка

Стяжку следует укладывать как можно скорее после прокладки трубопроводов и завершения испытания давлением.

Система должна оставаться под давлением на протяжении всего процесса стяжки и отверждения.

Стяжку необходимо укладывать таким образом, чтобы она плотно прилегала к трубам без воздушных карманов.

Если используется стандартная цементно-песчаная стяжка, которая обычно имеет толщину 65–75 мм, ее следует установить и дать высохнуть естественным путем в соответствии с стяжкой, инструкциями производителя и требованиями Британского стандарта.

Доступны специальные стяжки малой толщины, и следует связаться с производителем стяжки для получения информации об их использовании с UFH.

Время высыхания, указанное изготовителями, может отличаться. Однако ни при каких обстоятельствах нельзя использовать систему УФГ для ускорения этого процесса.

Первый запуск

В соответствии с BS EN 1264 процедура запуска после установки должна быть следующей:

  • Стяжке необходимо дать высохнуть в соответствии с инструкциями производителя и британскими стандартами.
  • Установите температуру комнатного термостата на требуемый уровень.
  • Первоначальный нагрев должен начинаться с температуры проточной воды не выше 25 ° C.Это должно сохраняться не менее 3 дней. Это может быть достигнуто за счет использования смесительного клапана и термостата перегрева в сочетании. Полные инструкции поставляются с каждым насосным агрегатом.
  • Через 3 дня термостат можно увеличивать на 5–10 ° C в день до тех пор, пока не будет достигнута температура 47 ° C, при которой смесительный клапан будет управлять и автоматически регулировать температуру воды в подающей линии при расчетной температуре.
  • На этом этапе термостат перегрева должен быть установлен на 10–15 ° C выше расчетной температуры воды в подающей линии и затем использоваться в качестве предохранительного устройства.Рабочая температура должна поддерживаться как минимум еще 4 дня.
  • При использовании натуральных материалов, таких как деревянный пол, эту температуру следует поддерживать до тех пор, пока влажность стяжки не снизится до уровня, указанного поставщиком напольного покрытия.
  • Система должна проработать минимум 2 недели перед укладкой любых покрытий.

Ни при каких обстоятельствах нельзя использовать теплый пол для ускорения времени высыхания стяжки сверх указанного графика.

Ввод в эксплуатацию

После начального периода запуска система должна быть введена в эксплуатацию со всеми уложенными напольными покрытиями, чтобы обеспечить правильную балансировку системы.

Убедитесь, что вся система центрального отопления, включая радиаторы, если они есть, работает до требуемой рабочей температуры.

Затем каждый контур можно медленно регулировать с помощью клапанов на коллекторе, чтобы обеспечить равномерный поток и нагрев.

Проверьте детали установки, поставляемые с коллектором.

Общие примечания по электричеству

Электрический блок управления Speedfit UFH, который включает в себя контроллер коллектора (с или без периодов задержки возврата), комнатные термостаты и приводы, представляет собой постоянно действующую систему, работающую независимо и непрерывно 24 часа (автономная система).

Он не будет управлять главным котлом и системным насосом, поэтому, если главный котел и системный насос не включены, тепло не будет поступать в систему UFH.

Для индивидуального управления нагретой водой в системе UFH, двухходовой зональный клапан, установленный на подающем трубопроводе системы UFH, должен быть подключен к резервному каналу на существующем программаторе часов.Если на часах нет устройства, то двухходовой зонный клапан необходимо подключить к дополнительным часам / программе. Оба эти требования соответствуют Части L Строительных норм.

Если в существующей системе уже есть трехходовой зонный клапан (среднее положение, план Y), то его необходимо заменить на 2 двухходовых зональных клапана (план S). При этом для существующей системы может потребоваться байпас трубопровода.

Если система UFH установлена ​​с собственным выделенным источником тепла, она все равно требует двухходового зонного клапана и таймера / программы, которая может быть частью котла или удаленной.Эти часы будут управлять зонным клапаном, который, в свою очередь, включит источник тепла (котел) и системный насос, если он установлен. Электрическая система UFH по-прежнему будет работать независимо и постоянно 24 часа.

Для получения дополнительной информации обратитесь к электрику, сертифицированному IEE.

Контрольный список для установки

1. Устройство этажа

Система подогрева полов Speedfit предназначена только для стяжных полов.

2. Потребность в тепле

Система производит максимум 100 Вт / м² при температуре воздуха 20 ° C и температуре пола 29 ° C.Система обычно подходит для новых приложений сборки. При тепловых потерях более 100 Вт / м² может потребоваться дополнительное отопление.

3. Положение коллектора

Насосный блок и коллектор Speedfit должны располагаться по центру, чтобы минимизировать отходы труб и максимально увеличить площадь пола с подогревом.

4. Требования к трубам

Нарисуйте схему расположения труб и рассчитайте общее необходимое количество труб. Включите хвосты труб. Запомните те участки, где трубы можно расположить ближе друг к другу.

5. Не соединяйте трубы в выглаженном полу.

6. Расчет котла

Потребность в тепле определяет типоразмер котла обычным образом. Важно убедиться, что котел имеет достаточную мощность для всей отапливаемой площади.

7. Определение размеров подающей и обратной труб

Размеры первичного и обратного потока должны быть нормальными. При подключении водопровода к существующей системе важно убедиться, что существующих трубопроводов подачи и возврата, а также насоса достаточно.

8. Отделка полов

Уточните у производителя, подходит ли выбранное напольное покрытие для полов с подогревом.

Техническая консультативная служба

JG Speedfit предоставляет полную техническую консультационную услугу. Для получения дополнительной информации позвоните в службу технической поддержки по телефону 01895 425333 .

Все продукты JG Speedfit можно приобрести в сети магазинов, и вам могут быть предоставлены консультации как по проектированию, так и по установке системы.JG Speedfit также ведет список предпочтительных подрядчиков и установщиков.

Для получения конкретных рекомендаций по изоляционным материалам обращайтесь в Celotex Limited по телефону 01473 820888 или по электронной почте [email protected]

Для получения конкретных рекомендаций по стяжкам обращайтесь в Optiroc Limited по телефону 01928 515656 .

Используйте автоматические вентиляционные отверстия на радиаторах.

Повышение энергоэффективности систем отопления за счет использования автоматических вентиляционных отверстий.

Чтобы повысить эффективность и работу радиаторов и обогревателей, необходимо иметь в наличии вентиляционные клапаны.В основном они могут быть двух типов:
- Ручные вентиляционные клапаны: присутствуют на большинстве старых радиаторов, они требуют вмешательства человека для откручивания клапана.
- Автоматические воздушные клапаны: компонент полностью автоматизирован и не требует вмешательства внешнего оператора.
Настоящая проблема ручных - это неэффективность из-за задержек с открытием клапана. Фактически, эта операция выполняется только тогда, когда система становится шумной или не гарантирует правильный тепловой поток.Однако это представляет собой лишь кульминацию более или менее длительного периода неисправности и неоптимального выхода энергии.
С автоматическими клапанами выпуска воздуха эта проблема устраняется, потому что, как только устройство обнаруживает неисправность, оно работает в противоположном направлении, стремясь устранить ее почти мгновенно. Этот механизм обеспечивает оптимальную работу как с точки зрения шума, так и с точки зрения энергии.

Как работает автоматический воздушный клапан?

Основных компонентов для работы автоматического клапана выпуска воздуха по существу два:
- Поплавок: необходим для автоматического считывания уровня воды и, когда он опускается ниже заданного уровня, перемещает заслонку, обеспечивая выход лишнего воздуха;
- Заслонка: необходимо открывать и закрывать форточку.Впоследствии закрытие происходит автоматически.
Следует обратить внимание на тот факт, что, несмотря на то, что клапан работает в автоматическом режиме, системы по-прежнему требуют вмешательства человека для обслуживания, контроля и заполнения любой жидкости через соответствующий кран.

Автоматические воздуховыпускные клапаны от Gnali Bocia

В дополнение к двум основным компонентам, упомянутым выше, есть ряд других функциональных частей, обеспечивающих эффективный и длительный выпуск воздуха с течением времени.
- Стакан: изготовлен из латуни CW617N, обладает отличной коррозионной стойкостью и хорошими механическими свойствами;
- Крышка: изготовлена ​​из Hostaform, разновидности полиоксиметилена (ПОМ), материала, который хорошо сопротивляется как при различных температурах, так и трении и износу;
- Поплавок и движущиеся части: изготовлены из полипропилена, очень распространенного термопластичного полукристаллического полимера, обладающего замечательной химической стойкостью;
- Уплотняющая прокладка: из «антипригарного» эластомерного материала;
- Пружины: из нержавеющей стали.
Кроме того, для улучшения отделки может потребоваться никелированная обработка поверхности, которая гарантирует отличные свойства сопротивления агрессивным средам и жидкостям, таким как вода, транспортируемая в системе. Максимальные гарантированные температуры составляют около 100 ° C, а максимальное давление - 10 бар.


27.07.2020 Смотрите также
27.11.2019 Вентиляционные клапаны даже для котлов Автоматические воздуховыпускные клапаны для удаления газов, которые накапливаются в системах и могут их заблокировать

27.07.2017 Радиаторы и воздуховыпускные клапаны, идеальная пара Автоматические воздуховыпускные клапаны для радиаторов устраняют воздух без ручного вмешательства

27.01.2018 Воздуховыпускной клапан, управляемый поплавком С поплавковой системой выпускной воздушный клапан устраняет скопления газа в системах

27.06.2017 Вам не нужен оператор, все вам нужны вентиляционные клапаны. Использование вентиляционных клапанов для предотвращения накопления воздуха и газа в вашей системе важно для оптимальной производительности системы.

27/08/2016 Использование вентиляционных клапанов в системах солнечных панелей. и компактная версия для непосредственного монтажа на радиаторах.

Содержимое этого материала не подлежит периодической печати и не используется в качестве редакционного продукта.

Автоматический воздухоотводчик и запорный вентиль для солнечных систем отопления

Автоматически воздух вентиляция и отключен - выключен клапан для солнечных систем отопления серия 250 Функция 01133/07 GB Заменяет 01133 / 06 ГБ Автоматические воздушные вентиляторы используются в замкнутых контурах солнечного отопления . системы , позволяющие автоматически выпускать воздух , содержащийся в жидкости, с помощью клапана , который приводится в действие поплавком, контактирующим с жидкостью в системе.Напротив, закрытые - закрытые клапаны обычно используются в сочетании с автоматическим воздушным вентиляционным отверстием. клапаны , чтобы их можно было отключить после заполнения контура солнечного нагрева <сильного > системы . Эта конкретная серия продуктов была специально разработана для работы при высоких температурах с гликолевой средой.Ассортимент продукции Технические характеристики клапана серии 250 Материалы: - корпус: латунь EN 12165 CW617N, хромированный - крышка: латунь EN 12165 CW617N, хромированная - управляющий шпиндель: сплав UNI EN 12164 CW602N - поплавок <прочный > и конвейер: полимер с высоким сопротивлением - уплотнения: эластомер с высоким сопротивлением Среда: вода, растворы гликоля Макс. процентное содержание гликоля: 50% Диапазон рабочих температур: -30–180 ° C Макс. рабочее давление: 10 бар Макс. давление нагнетания: 5 бар Присоединения: 3/8 ”M серт.№ 0003 ISO 9001 Код CALEFFI 250031 Автоматическое воздушное вентиляционное для солнечного <сильного > системы размер 3/8 дюйма M Код R29284 Запорный клапан для автоматического воздуха < strong> вентиляция размеры 3/8 дюйма M x 3/8 дюйма F Размеры Размеры Код 250031 A 3/8 дюйма BDB 97 C Tmax = 180 ° C / 360 ° F Pmax = 10 бар / 150 psi AC Ø 55 D 11 Масса (кг) 0,32 Технические характеристики клапана код R29284 Материалы: - корпус: латунь EN 12165 CW 617N, хромированный - шар: латунь EN 12164 CW 614N, хромированный - уплотнения: высокие сопротивление эластомеру Среда: вода, растворы гликоля Макс.процентное содержание гликоля: 50% Диапазон рабочих температур: -30–200 ° C Макс. рабочее давление: 10 бар Присоединения: 3/8 ”F x 3/8” M Код R29284 B A 3/8 ”C B 46 A A D C 8,5 D 35 Вес (кг) 0,90

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *