Принцип работы гидрострелки в системе отопления: Гидрострелка принцип работы и предназначение

Содержание

принцип работы, назначение и расчеты

Автор aquatic На чтение 5 мин. Просмотров 8.4k. Обновлено

В системе отопления часто применяется гидрострелка. Принцип работы, назначение и расчеты данного приспособления помогут понять, для чего оно используется. Гидрострелка представляет собой температурный и гидравлический буфер, который обеспечивает правильную корреляцию потока теплоносителя и температурного режима. С помощью устройства производится гидравлическое разделение контуров отопления.

С помощью гидрострелки можно создать безопасную отопительную систему

Для чего нужна гидрострелка: принцип работы, назначение и расчеты

Многие системы теплоснабжения в частных домовладениях отличаются разбалансировкой. Гидрострелка позволяет разделить контур отопительного агрегата и вторичный контур отопительной системы. Это позволяет повысить качество и надежность системы.

Особенности работы устройства

Выбирая гидрострелку, нужно внимательно изучить принцип работы, назначение и расчеты, а также узнать достоинства прибора:

  • разделитель необходим для гарантии выполнения технических характеристик;
  • устройство поддерживает температурный и гидравлический баланс;
  • параллельное подсоединение обеспечивает минимальные потери тепловой энергии, производительности и давления;
  • защищает котел от теплового удара, а также выравнивает циркуляцию в контурах;
  • позволяет сэкономить топливо и электроэнергию;
  • сохраняется постоянный объем воды;
  • снижает гидравлическое сопротивление.

Функционирование прибора с четырех ходовым смесителем

Особенности работы гидрострелки позволяют нормализовать гидродинамические процессы в системе.

Полезная информация! Своевременное устранение примесей позволяет продлить срок службы счетчиков, отопительных приборов и вентилей.

Устройство гидрострелки отопления

Прежде, чем купить гидрострелку для отопления нужно разобраться в устройстве конструкции.

Внутреннее устройство современного оборудования

Гидроразделитель представляет собой вертикальный сосуд из труб большого диаметра со специальными заглушками по торцам. Размеры конструкции зависят от протяженности и объема контуров, а также от мощности. При этом металлический корпус устанавливается на опорные стойки, а изделия небольшого размера крепятся на кронштейнах.

Подсоединение к отопительному трубопроводу производится с помощью резьбы и фланцев. В качестве материала для гидрострелки применяется нержавеющая сталь, медь или полипропилен. При этом корпус обрабатывается антикоррозийным веществом.

Обратите внимание! Изделия из полимера используются в системе с котлом мощностью 14-35 кВт. Изготовление подобного прибора своими руками требует профессиональных навыков.

Особенности конструкции

Дополнительные функции оборудования

Принцип работы, назначение и расчеты гидрострелки можно узнать и выполнить самостоятельно. В новых моделях присутствуют функции сепаратора, разделителя и регулятора температуры. С помощью терморегулирующего клапана обеспечивается градиент температур для вторичных контуров. Устранение кислорода из теплоносителя позволяет уменьшить риск эрозии внутренних поверхностей оборудования. Удаление лишних частиц увеличивает срок службы рабочего колеса.

Внутри устройства есть перфорированные перегородки, которые делят внутренний объем пополам. При этом не создается дополнительное сопротивление.

На схеме показано устройство в разрезе

Полезная информация! Для сложного оборудования требуется датчик температуры, манометр и линия для запитки системы.

Принцип работы гидрострелки в системах отопления

От скоростного режима теплоносителя зависит выбор гидрострелки. При этом буферная зона отделяет отопительную цепь и котел отопления.

Существуют следующие схемы подключения гидрострелки:

  • нейтральная схема работы, при которой все параметры соответствуют расчетным значениям. При этом конструкция обладает достаточной суммарной мощностью;

Использование контура теплого пола

  • определенная схема применяется, если котел не обладает достаточной мощностью. При недостатке расхода требуется подмес охлажденного теплоносителя. При разнице температур срабатывают термодатчики;

Схема системы отопления

  •  объем потока в первичном контуре больше, чем расходование теплоносителя в второстепенной цепи. При этом отопительный агрегат функционирует в оптимальном режиме. При отключении насосов во втором контуре теплоноситель перемещается через гидрострелку по первому контуру.

Вариант использования гидрострелки

Производительность циркуляционного насоса должна быть на 10 % больше, чем напор насосов во втором контуре.

Особенности работы системы

В данной таблице продемонстрированы некоторые модели и их стоимость.

Расчет устройства

Способы расчеты устройства в отопительной системе

Чтобы сделать гидрострелку для отопления своими руками, нужно произвести расчеты

По этой формуле определяется диаметр устройства по паспортным данным:

Диаметр определяется по мощности отопительного прибора.

По этой формуле можно определить диаметр патрубка:

Диаметр патрубка должен сочетаться с диаметром выпуска отопительного агрегата. Примерный размер небольших изделий подбирается по размерам выпускных патрубков.

На схеме изображен подробный расчет

Если в конструкции не будет использоваться коллектор, то численность врезок следует увеличить.

Гидроразделитель из нержавейки

Калькулятор расчета гидрострелки исходя из мощности котла

Калькулятор расчета параметров гидрострелки исходя из производительности насосов

Совместная работа  гидрострелки и коллектора отопления

При изготовлении гидрострелки из полипропилена своими руками, нужно выполнить правильные расчеты и подобрать оборудование, с которым она будет работать. В домах вторичные контуры подсоединяются с помощью этого устройства. Распределительный коллектор подсоединяется в цепи после гидрострелки. Конструкция состоит из отдельных элементов, которые объединяются перемычками.

Подключение коллектора

Количество врезаемых патрубков зависит от контуров. С помощью распределительной гребенки осуществляется более простой ремонт и обслуживание устройства.

Коллектор и разделитель создают гидравлический элемент. Подобное устройство удобно для стесненных помещений.

Существуют следующие виды соединений:

  • контур с большим напором для радиаторов подключается сверху;
  • контур для конструкции теплых полов снизу;
  • сбоку подсоединяется теплообменник.

С помощью регулирующей арматуры производится напор и поток на дальних контурах. Сделать подобную конструкцию может специалист, обладающий знаниями в теплотехнике, а также профессиональными навыками в слесарном деле, электрической сварке и работе со специальным инструментом.

Вариант использования гидроразделительного оборудования

Перед работой нужно составить правильные чертежи и схемы устройства. Выполнение ответственных элементов отопления новичками может быть опасно для жизни.

Гидрострелка. Устройство и назначение (видео)

Зачем нужна гидрострелка? Назначение и принцип работы.

Оборудование котельной – это отдельная обширная тема, которую мы уже как-то затрагивали. Один из элементов котельной, который постоянно на слуху – это гидравлический разделитель. Затронем в этой статье принцип работы гидростелки, для чего она нужна и ее основное назначение.

Нужна ли Вам гидрострелка?

В погоне за дополнительной выгодой многие продавцы, менеджеры и даже производственники готовы рассказывать все, что угодно, если это поможет продать товар. Вот и появляются различные чудо шланги, невероятно надежные котлы и так далее.

Но настоящий простор для деятельности аферистов – это товары, про которые потребитель знает мало. Слышал что-то о его пользе, но не знает, в чем она заключается.

Один из таких приборов, овеянный массой легенд и слухов – это гидрострелка. Устройство нужное, но для совершенно определенной задачи, все остальное – маркетинг и профанация.

Устройство гидрострелки

Это просто небольшая труба с сечением в виде круга или прямоугольника, в которой есть четыре патрубка, через которые идет тепло к потребителю в одну сторону и обратка в котел в другую.

Назначение гидрострелки – это разделение контур котла и контура потребителя.

Расположить гидроразделитель можно как вертикально, так и в горизонтальной плоскости, все зависит от особенностей помещения. Чаще всего ставят вертикально, так как в этом положении проще установить сверху воздухоотводчик, а внизу – кран для удаления ненужных веществ.

Принцип работы гидрострелки таков, что она не может работать независимо, нужен комплекс. Вся система включает в себя такие компоненты:

  • Сама гидрострелка
  • Главный коллектор
  • Насосные группы (одни прямая и две смесительные)
  • Обвязка
  • Контроллер управления

Принцип работы гидрострелки

Производители и ушлые маркетологи заявляют о трех возможных режимах работы гидрострелки. В то время, как эксперты утверждают, что способ использовать данное устройство есть только один.

Когда котел дает больше энергии, чем нужно всей теплосистеме потребителя, в таком случае излишки тепла возвращаются по стрелке в сам котел.

Это защищает наш котел от обратки, которая при пониженных тепловых значениях может нанести ущерб всей системе и дает дополнительный нагрев.

Главный принцип работы гидрострелки – не манипуляции с перераспределением тепла между основной подачей и обраткой, а обеспечение возможности работы насосов всех контуров системы отопления.

Поясним: если один мощный насос дает повышенное давление на один из контуров, то второй насос, более слабый по своим характеристикам, перестает выполнять свою задачу и не забирает ровным счетом ничего, из-за чего возникают перебои, перепады температурные и другие неприятности.

Гидравлический разделитель создает область нулевого сопротивления. Благодаря чему удается распределить нагрузку по всем контурам и насосам равномерно, и таких проблем не будет никогда. Равномерность позволяет также повысить устойчивость и надежность всей системы в целом, так как ни один из участков больше не подвергается критическим нагрузкам.

Альтернативные режимы работы гидрострелки

Несмотря на то, что правильным принципом работы гидрострелки является только способ, описанный выше, нужно учитывать, что существует техническая возможность использовать и альтернативу.

Одна из них – это когда котел работает уравновешенно, отдает тепла столько же, сколько идет на обратку. Но это условие подобно сферическому коню в вакууме, так как полная тождественность значений Q1(контур котла) и Q2 (контур потребителя) достигается крайне редко и на очень небольшие сроки. Так что всерьез строить работу на этом режиме нельзя.

Второй режим работы гидрострелки несет в себе угрозу и его следует всячески избегать.

Он строится на том, что котел отдает тепла меньше, чем требуется потребителю, и в этом случае часть тепла из обратки по гидроразделителю уходит обратно в контур потребления, что не идет на пользу ни системе, ни потребителям.

Минусы очевидны – обратка в котел идет с пониженными температурными значениями, то есть котел фактически остужается при получении обратного теплоносителя, что запрещено по всем стандартам, ГОСТам и даже здравому смыслу, так как итоговая мощность, отдаваемая в контур потребления, становится меньше и желаемый результат не достигается.

Дополнительные возможности и мифы

Есть мнение, что конструкция гидрострелки позволяет также выполнять такие задачи:

  • Защита котла от теплового удара
  • Увеличение долговечности системы отопления
  • Повышает коэффициент полезного действия (КПД) котла

Однако независимые специалисты утверждают, что это только сказки для увеличения продаж.

При этом дополнительные опции все-таки есть, это дополнительная защита от грязи, воздухоотведение, защита котла от обратки с пониженной температурой.

Но эти функции можно обеспечить гораздо более дешевыми устройствами.

 

Когда и при каких условиях нужно ставить гидрострелку?

Граница необходимости включения в систему отопления, в котельную такого устройства, как гидрострелка, рассматривается индивидуально и зависит от ряда условий – мощности насосов, их взаимодействия, общая мощность системы, наличие дополнительных котлов, использующихся в связке в основным.ф

Профессиональные инженеры рекомендуют включать гидрострелку в систему отопления тогда, когда количество котлов больше одного и количество насосов больше трех. В противном случае необходимости в ней нет. Повредить она не повредит, но и пользы от усложнения всей конструкции не будет.

Таким образом данное устройство подходит только для большой разветвленной системы, например, в многоквартирных домах или крупных дачах с большим количеством пристроек, в противном случае. Особенно когда насоса всего один или два, это является просто пустой тратой денег и нерациональным использованием средств.

Читайте так же:

принцип работы и назначение — ВикиСтрой

Как устроена гидрострелка

Гидрострелка представляет собой колбу с установленным в верхней части автоматическим воздухоотводчиком. На боковой поверхности корпуса врезаются патрубки для присоединения магистральных труб отопления. Внутри гидрострелка абсолютно полая, в нижней части может врезаться резьбовой патрубок для установки шарового крана, предназначение которого — слив отстоявшегося шлама со дна разделителя.

По сути своей гидравлическая стрелка — это шунт, закорачивающий потоки подачи и обратки. Целью работы такого шунта является выравнивание температуры теплоносителя, а также его расхода в генерирующей и распределительной частях гидравлической системы отопления. Для получения реального эффекта от гидросепаратора требуется тщательный расчёт его внутреннего объёма и мест врезки патрубков. Однако большинство представленных на рынке устройств изготавливается серийно без адаптации под конкретную систему отопления.

Часто можно встретить мнение, что в полости колбы обязательно должны присутствовать дополнительные элементы, такие как рассекатели потока или сетки для фильтрации механических примесей или отделения растворённого кислорода. В реальности такие способы модернизации не демонстрируют сколь-нибудь значимой эффективности и даже наоборот: например, при засорении сетки гидрострелка полностью перестаёт работать, а вместе с ней и вся система отопления.

Какие возможности приписывают гидросепаратору

В среде инженеров-теплотехников встречаются диаметрально противоположные мнения по поводу необходимости установки гидрсотрелок в системах отопления. Масла в огонь подливают заявления производителей гидротехнического оборудования, сулящие увеличение гибкости настройки режимов работы, повышение КПД и эффективности теплоотдачи. Чтобы отделить зёрна от плевел, для начала рассмотрим абсолютно беспочвенные заявления о «выдающихся» способностях гидравлических сепараторов.

КПД котельной установки никак не зависит от устройств, установленных после присоединительных патрубков котла. Полезное действие котла целиком и полностью заключено в преобразовательной способности, то есть в процентном отношении тепла, выделенного генератором, к теплу, поглощённому теплоносителем. Никакие специальные методы обвязки не могут повысить КПД, он зависит только от площади поверхности теплообменника и корректного выбора скорости циркуляции теплоносителя.

Многорежимность, которая якобы обеспечивается установкой гидрострелки, это также абсолютный миф. Суть обещаний сводится к тому, что при наличии гидрострелки можно реализовать три варианта соотношений расхода в генераторной и потребительской части. Первый — абсолютное выравнивание расхода, что на практике как раз возможно только при отсутствии шунтирования и наличии в системе только одного контура. Второй вариант, при котором в контурах расход больше, чем через котёл, якобы обеспечивает повышенную экономию, однако в таком режиме по обратке в теплообменник неизбежно поступает переохлаждённый теплоноситель, что порождает ряд негативных эффектов: запотевание внутренних поверхностей камеры сгорания или температурный шок.

Также существует ряд доводов, каждый из которых представляет бессвязный набор терминов, но по сути своей не отражающий ничего конкретного. К таковым относятся повышение гидродинамической стабильности, увеличение срока службы оборудования, контроль за распределением температуры и иже с ними. Также можно встретить утверждение, что гидроразделитель позволяет стабилизировать балансировку гидравлической системы, что на практике оказывается прямо противоположным. Если при отсутствии гидрострелки реакция системы на изменение протока в любой её части неизбежна, то при наличии разделителя она ещё и абсолютно непредсказуема.

Реальная область применения

Тем не менее, термогидравлический разделитель — устройство далеко не бесполезное. Это гидротехнический прибор и принцип его действия достаточно подробно описывается в специальной литературе. Гидрострелка имеет вполне определённую, пусть и достаточно узкую область применения.

Важнейшая польза от гидроразделителя — возможность согласовать работу нескольких циркуляционных насосов в генераторной и потребительской части системы. Часто случается, что подключенные к общему коллекторному узлу контуры снабжаются насосами, производительность которых отличается в 2 и более раз. Наиболее мощный насос при этом создаёт разницу давлений настолько высокую, что забор теплоносителя остальными устройствами циркуляции оказывается невозможным. Несколько десятков лет назад эта проблема решалась так называемым шайбованием — искусственным занижением протока в потребительских контурах путём вваривания в трубу металлических пластин с различным диаметром отверстий. Гидрострелка шунтирует подающую и обратную магистраль, за счёт чего разрежение и избыточное давление в них нивелируются.

Второй частный случай — избыточная производительность котла по отношению к потреблению контуров распределения. Такая ситуация характерна для систем, в которых ряд потребителей работает не на постоянной основе. Например, к общей гидравлике могут быть привязаны бойлер косвенного нагрева, теплообменник бассейна и отопительные контуры зданий, которые отапливаются лишь время от времени. Установка гидрострелки в таких системах позволяет поддерживать номинальную мощность котла и скорость циркуляции всё время, при этом излишек нагретого теплоносителя поступает обратно в котёл. При включении дополнительного потребителя разница расходов снижается и излишек уже направляется не в теплообменник, а в открытый контур.

Гидрострелка также может служить коллектором генераторной части при согласовании работы двух котлов, особенно если их мощность существенно отличается. Дополнительным эффектом от работы гидрострелки можно назвать защиту котла от температурного шока, но для этого расход в генераторной части должен превышать расход в сети потребителей не менее чем на 20%. Последнее достигается путём установки насосов соответствующей производительности.

Схема подключения и монтаж

Гидравлическая стрелка имеет схему подключения, столь же простую, как и собственное устройство. Большая часть правил относится не столько к подключению, сколько к расчёту пропускной способности и расположению выводов. Тем не менее, знание полной информации позволит провести монтаж корректно, а также убедиться в пригодности выбранной гидрострелки для её установки в конкретную систему отопления.

Первое, что нужно чётко усвоить — гидрострелка будет работать только в системах отопления с принудительной циркуляцией. При этом насосов в системе должно быть как минимум два: один в контуре генерационной части, и хотя бы один в потребительской. При прочих условиях гидравлический разделитель будет играть роль шунта с нулевым сопротивлением и, соответственно, закоротит собой всю систему.

Пример схемы подключения гидрострелки: 1 — котёл отопления; 2 — группа безопасности котла; 3 — расширительный бак; 4 — циркуляционный насос; 5 — гидравлический разделитель; 6 — автоматический воздухоотводчик; 7 — запорные вентили; 8 — кран слива; 9 — контур № 1 бойлер косвенного нагрева; 10 — контур № 2 радиаторы отопления; 11 — трёхходовой кран с электроприводом; 12 — контур № 3 тёплый пол

Следующий аспект — размеры гидрострелки, диаметр и расположение выводов. В общем случае диаметр колбы определяется исходя из наибольшего расчётного протока в магистрали. За максимум может приниматься расход теплоносителя либо в генерационной, либо в потребительской части системы отопления согласно данным гидравлического расчёта. Зависимость диаметра колбы разделителя от протока описывается соотношением расхода к скорости протока теплоносителя через колбу. Последний параметр фиксированный и, в зависимости от мощности котельной установки, может варьироваться от 0,1 до 0,25 м/с. Частное, полученное при вычислении указанного соотношения, нужно умножить на поправочный коэффициент 18,8.

Диаметр патрубков подключения должен составлять 1/3 от диаметра колбы. При этом вводные патрубки располагаются от верха и низа колбы, а также друг от друга на расстоянии, равном диаметру колбы. В свою очередь выходные патрубки располагаются так, чтобы их оси были смещены относительно осей вводов на два собственных диаметра. Описанными закономерностями определяется общая высота корпуса гидрострелки.

Гидрострелка подключается к прямому и возвратному магистральному трубопроводам котла или нескольких котлов. Разумеется, при подключении гидрострелки не должно быть и намёка на сужение условного прохода. Это правило вынуждает использовать в обвязке котла и при подключении коллектора трубы с очень значительным условным проходом, что несколько осложняет вопрос оптимизации компоновки оборудования котельной и повышает материалоёмкость обвязки.

О сепарационных коллекторах

Напоследок кратко коснёмся темы многовыводных гидрострелок, также известных как сепколлы. По сути своей это коллекторная группа, в которой подающий и возвратный разветвитель объединены разделителем. Такого рода устройства крайне полезны при согласовании работы нескольких контуров отопления с разной нормой расхода и температурой теплоносителя.

Сепарационный коллектор вертикального монтажа позволяет обеспечить градиент температур в выходных патрубках за счёт смешивания порций теплоносителя. Это делает возможным прямое подключение, к примеру, бойлера косвенного нагрева, радиаторной группы и петель тёплого пола без смесительной группы: разница температур между соседними выводами сепколла будет естественным образом поддерживаться в пределах 10–15 °С в зависимости от режима циркуляции. Однако стоит помнить, что такой эффект возможен только если возвратный патрубок генераторной части расположен выше возвратных отводов потребителей.

В качестве итога дадим важную рекомендацию. Для большинства бытовых систем отопления мощностью до 100 кВт установка гидравлического разделителя не требуется. Гораздо более правильным решением будет подобрать производительность циркуляционных насосов и согласовать их работу, а для защиты котла от температурного шока связать магистрали трубкой-байпасом. Если же проектная либо монтажная организация настаивают на установке гидрострелки, это решение обязательно должно обосновываться технологически.

рмнт.ру

Защитит систему от непредвиденных ситуаций: принцип работы гидрострелки отопления

Гидрострелка — устройство, подключённое и работающее в контуре отопления, напрямую связанное с котлом.

Одно из важных назначений гидрострелки — увеличивать расход топлива, который не предусмотрен в котле, но требуется для обогревания дома.

Установив гидрострелку или, гидравлический разделитель, пользователи стремятся сэкономить, не покупая и не увеличивая мощность котла, подстраиваемого под общий расход воды или другой жидкости.

Гидравлический разделитель является искусственно созданным пространством, где как раз можно разогнать потребление, увеличив его в несколько раз под систему отопления. Другое не менее важное назначение — сохранение гидролитического баланса и давления во всей системе.

Благодаря гидрострелке в контуре отопления не будет перескакивать давление, нарушая все взаимодействие. Эта функция помогает беспрепятственно переключать отопление между разными жилыми помещениями, например, включать пол только на кухне, а не по всему дому.

Описание устройства

Само устройство походит на вытянутый параллелепипед, с шестью разными выходами, расположенными напротив друг друга. Каждый из этих выходов отвечает за отдельную функцию. Например, самый высокий из 5 клапанов позволяет воздуху беспроблемно выходить из системы, чтобы не повышать всё давление. Это происходит автоматически, владельцу не придётся ничего контролировать.

Фото 1. Гидрострелка, установленная в систему отопления. Красным цветом обозначен горячий теплоноситель, синим — холодный.

Нижний патрубок способствует уничтожению и вынесению «мусора», который остаётся в устройстве гидроразделителя. Грязный воздух из труб (его частички) и осадок от начавшейся коррозии или другого процесса опадает вниз, где, как лопатка, располагается самый нижняя — шестая патрубка. К остальным клапанам присоединяются трубы с водой. Внутри вся гидрострелка полая, в ней нет ничего, кроме воды, и продуктов распада.

Принцип работы в системе отопления

Гидрострелка помогает котлу, к которому подключена напрямую, увеличивать его мощность и скорость передачи воды. Зачем это нужно? Дело в том, что при нехватке мощности, но быстрой работе системы, котёл сильно нагревается. Как следствие — тепловой удар, т. е. воздух, начинает внутри распирать стенки котла, а что будет дальше — это физические повреждения дома, всей системы отопления и, разумеется, здоровья человека.

Такие перепады температуры и мощности случаются только в нескольких случаях: механизм отопления запустили в первый раз; теплообмен проходит техническую проверку и другие работы, заставляющие оторвать циркуляционный насос («Сердце всей тепловой организации») от основного контура или от источника горячей воды.

Фото 2. Схема подключения гидрострелки к системе отопления и принципы движения по ней теплоносителя.

Установив гидравлический разделитель, пользователь заставляет воздух или воду проходить через дополнительный пункт остывания. Таким образом, проходя через весь поток гидрострелки, горячий воздух разделяется пополам, теряя половину своей теплоты. Один поток воздуха продолжает идти в котёл, а другой вниз по трубке гидравлического разделителя, добавляясь в холодные примеси воды или газа и остывая.

И наоборот, если холодной воды вышло из котла слишком много, то лишние слои успевают прогреться, и на выходе потребитель получает нужную температуру. Примерно так работает вся система. Теперь разберём всё наглядно.

Как работает гидрострелка в разных случаях

Принцип работы гидрострелки различается в зависимости от целей её использования и типа систем, в которые она установлена.

Отопление с 4-х ходовым смесителем

Чтобы описать схему работы отопления с 4-х ходовым смесителем, для начала нужно представить квадрат, на каждой стороне которого находятся отверстия равные по ширине. Из всех этих отсеков протекает либо холодная, либо горячая вода.

В системе существует всего 3 режима: полностью открытый, полностью закрытый и промежуточный. Начнём разбор с полностью закрытого.

Как мы знаем тёплые потоки воздуха или горячей воды выходят прямиком из котла, а холодные потоки из системы отопления (вода вышла из котла, сделала круг и остыла).

Если вся система закрыта, т. е. не работает, то тёплая вода постоянно переливается через гидравлический разделитель, никуда не уходя, протекая постоянно по одному кругу и возвращаясь обратно в котёл.

Та же самая ситуация происходит и с холодным потоком воды или воздуха, который не нагревается заново, оставаясь холодным до открытого режима. Эти жидкости не смешиваются и не передают друг другу тепло, циркулируя строго по своему контуру.

При промежуточном режиме эти жидкости начинают смешиваться. При этом температура часто бывает немного выше средней, потому что весь пар, накопленный за период закрытого режима, выходит наружу и начинает согревать холодные потоки. Таким образом, обычно нагревают полы, чтобы ноги не жгло.

В открытом режиме протоки горячей и холодной воды вновь не пересекаются, но компенсируют утраты друг друга. Что это значит. Представим опять квадрат. Потоки горячего воздуха или воды выходят из одного края и входят в систему отопления, в то время как холодная жидкость, выходя из нее движется в стороны котла, где согревается. И такой процесс восполнения постоянно горячей воды холодной и наоборот почти вечный двигатель, если не учитывать, что тепло безвозвратно уходит.

Для нейтрального режима работы

Идеальным режимом работы гидроразделителя является тот момент, когда количество горячей и холодной воды примерно одинаково и не требует регуляции.

Обычно это случается, когда котёл работает постоянно и без перебоев — очень редко, потому что всегда существует погрешность.

Котёл не обладает достаточной мощностью

Основываясь на этой проблеме, и ставят термодатчик, или, в нашем случае, гидрострелку. Получив сигнал от встроенного термодатчика, гидравлический разделитель переходит в разные режимы: либо в открытый, либо в закрытый.

Внимание! Это обеспечивает безопасность котла, который может в одночасье просто расколоться от перепадов температур и давления. Перегоняя воду, охлаждая или нагревая, гидрострелка помогает котлу справиться с уравновешиванием термодинамики, чтобы продолжить работу.

Поток на первичном контуре объёмнее, чем расход теплоносителя

Как уже рассказывалось выше, в случае, если горячий поток слишком сильно разогрет для вхождения в котёл, то через гидрострелку он попадает в систему, гарантирующую разделение потока на две части, вторая будет охлаждаться и уйдёт в систему отопления вместе с холодной водой или паром, а горячая часть сильно сократиться и перестанет представлять угрозу для и так горячего котла.

Полезное видео

Посмотрите видео, в котором рассказывается, как именно изготовить гидрострелку своими руками.

Актуальность гидрострелки

Такая маленькая, но такая необходимая вещь должна быть в каждом доме, особенно загородном, потому что скачки температур и давления в мегаполисах и близлежащих районах сильно скачут из-за огромного количества людей, которые ими пользуются индивидуально.

Например, сосед снизу захотел выкрутить батарею на максимум, а сосед сверху хочет закаляться дома. Без гидрострелки не обойтись.

Скачок температур, выходящих из первого контура, оказывает влияние на весь котёл, поэтому покупайте гидрострелки и обезопасьте свою жизнь от глупых соседей и случайных домашних катаклизмов.

что такое гидравлическая стрелка в отоплении, схема гидравлического разделителя, как работает, как подобрать, подбор по мощности котла

Содержание:

Гидрострелкой называют несложное устройство, предназначенное для выполнения балансировки и защиты системы теплоснабжения. Встречаются иные названия данного изделия – гидравлический разделитель, бутылочка, гидроразделитель и прочие.


Функциональное назначение гидрострелки

Что такое гидравлическая стрелка в отоплении и зачем она нужна?

Этот дополнительный узел:

  • осуществляет гидродинамическую балансировку в системе обогрева, является защитой для теплообменника агрегата, изготовленного с использованием чугуна, от возможного поражения тепловым ударом;
  • предохраняет конструкцию теплоснабжения от повреждений, если в автоматическом режиме отключаются отделы ГВС или обогрев напольной поверхности — устройство гидрострелки отопления выполняют при монтаже систем обогрева с нагревательными котлами, которые оснащены чугунными теплообменниками;

  • нужно применять в случае обустройства многоконтурного теплоснабжения, ведь в данной ситуации оборудование предотвращает влияние одного контура на другой и обеспечивает их качественное функционирование;
  • будет способен выполнять работу отстойника, устраняющего из жидкой рабочей среды механические примеси, состоящие из шлама, накипи, ржавчины, если верно подсчитать габариты и гидромеханические характеристики гидрострелки;
  • помимо вышеперечисленных функций производит вытеснение воздуха из теплоносителя, что в значительной степени препятствует процессу окисления.

Принцип работы

Если посмотреть на гидравлический разделитель на отопление в разрезе, то можно увидеть часть полой трубы с сечением в форме квадрата. Процесс функционирования данного узла отличается простотой. При помощи воздухоотвода, который оснащают автомеханическим приспособлением, происходит отделение воздуха и его удаление.

Система теплоснабжения состоит из двух отдельных контуров – большой и малой протяженности. В составе первого из них имеется котел плюс гидрострелка плюс потребитель. Второй контур включает котел плюс гидроразделитель.


Если агрегат генерирует тепловую энергию в количестве, соответствующем его потреблению, направление перемещения рабочей среды будет только горизонтальным. При нарушении данного равновесия теплоноситель поступает в зону малого контура и это приводит к повышению температуры перед местом входа в котел.

Это вызывает автоматическое отключение прибора, а жидкость в системе продолжает циркулировать, пока ее температура не понизится до нужной отметки. После этого котел вновь включается. Благодаря тому, как в системе отопления работает гидрострелка, происходит балансировка между контурами котла и котельной. Данный процесс способствует независимой работе каждого контура.

Выбор гидравлического разделителя

Нет ничего сложного в том, как подобрать гидрострелку для отопления. Единственное, что при этом следует учитывать – это стрелочный диаметр патрубков, подводящих теплоноситель.

При подборе данного узла обращают внимание на предельно допустимый напор водного потока в системе обогрева и на сохранение минимальной скорости перемещения жидкости в полости гидрострелки и патрубках подвода.


Когда делают выбор, нужно знать, что наибольшая рекомендуемая скорость циркуляции воды сквозь поперечное сечение гидроразделителя, равна около 0,2 м/сек.

При расчете данного оборудования для отопительных конструкций потребуются следующие величины:

  • D – диаметр гидрострелки, выраженный в миллиметрах;
  • d – диаметр подводящих воду патрубков, в миллиметрах;
  • G – максимальная скорость перемещения водного потока через устройство;
  • w – предельная скорость продвижения жидкости по поперечному сечению узла;
  • с – теплоемкость теплоносителя;
  • P – максимальная мощность нагревательного агрегата, кВт;
  • ΔT – разность между величинами температуры теплоносителя в подающей трубе и обратке отопительной системы, °С ( равна приблизительно 10°С).

Чтобы подсчитать зависимость диаметра гидроразделителя от предельно допустимого напора воды в системе, пользуются формулой:

D=3хd=18,8х


Для подбора гидрострелки по мощности котла также нужно выполнить расчеты — зависимость диаметра узла от производительности агрегата определяют по следующей формуле:

D=3хd=18,8х=18,8х=116.

Преимущества использования гидравлического разделителя отопления

Схемы отопления с гидравлической стрелкой способствуют созданию в помещении комфортной температуры, поскольку:

  1. Ликвидируются проблемы при нахождении параметров отопительного насоса для вторичного контура и исполнительного элемента.
  2. Отсутствует определенное взаимовлияние между котловым контуром и отопительными контурами.
  3. Оказывается равномерное распределение нагрузок, оказываемых водным потоком, на генераторы тепловой энергии и ее потребителей.
  4. При правильном определении показателей исполнительные компоненты в системе  функционируют оптимально.
  5. Имеются места для подключения расширительного бачка, а также установления быстродействующего отводчика воздуха.
  6. Есть возможность подсоединения разнообразных узлов и деталей дополнительного назначения.


При наличии желания обустроить в своем домовладении комфортные условия проживания с минимальным использованием тепловой энергии, лучшим решением будет монтаж теплогенераторной системы, в основе функционирования которой находится применение схемы отопления с гидрострелкой.

Как показывает практика, по сравнению с эксплуатацией традиционной системы теплоснабжения эффект от функционирования правильно спроектированной отопительной конструкции на основе монтажа гидроразделителя состоит в экономии газа на 25% и электроэнергии на 50%.

Применение гидрострелки с твердотопливным оборудованием

При использовании твердотопливного агрегата подключение гидравлического разделителя осуществляют в месте входа – выхода. Данный вариант подсоединения нагревательного устройства разного типа обеспечивает подбор оптимального и индивидуального температурного режима для всех компонентов в отдельности.

Сегодня потребители, разобравшись с тем, как работает гидрострелка на отопление, отдают предпочтение уже готовой продукции, которая представлена в продаже. Выбирают гидроразделитель по каталогу, основываясь на мощности агрегате и максимальном потоке воды.


Гидрострелка для отопления — что это такое, как работает и установить

Чтобы отопительная система работала с максимальной эффективностью, необходимо добиться хорошей балансировки всех его узлов, а все элементы хорошо справлялись со своими функциями. Такая задача — достаточно сложная, особенно, когда речь идет и о разветвленном механизме с большим количеством контуров.

Очень часто подобные контуры имеют индивидуальные схемы термостатического управления, свой температурный градиент, различаются пропускной способностью, а также требуемым уровнем напора теплоносителя. Для того, чтобы объединить все узлы в единое целое. Поможет решить данную задачу гидрострелка для отопления. О том, что представляет собой гидравлические разделитель и как он работает, мы расскажем в этой статье.

Гидравлическая стрелка MEIBES МНK 32

Назначение гидроразделителя

Если в своем доме вы планируете установить простую отопительную систему закрытого типа, где функционирует не более двух циркуляционных насосов, то надобности в гидравлическом разделителе нет.

Когда контуров и насосов — три, при этом один из них необходимо для работы с бойлером косвенного нагрева, то и здесь можно не прибегать к монтажу гидрострелки. Устанавливать гидрострелку целесообразно в больших домах, где имеется два и более отопительных контура. Гидрострелка нужна для того, чтобы балансировать уровень давления во всей котельной системе, когда меняются показатели в главном контуре. Такой агрегат отвечает за регулировку трехконтурного варианта системы, в который входят одновременно и нагреватель воды, и радиатор отопления, и теплый пол.

В случае соблюдения всех правил гидродинамики, будет обеспечено стабильное функционирование в нормальном режиме.

Помимо этого гидрострелка выступает как своеобразный отстойник, в котором происходит изъятие различных отложений из теплоносителя: накипи, коррозии. Достигается это только при полном соблюдении всех гидромеханических норм.

Такая функция гидрострелки, выполненной как из нержавеющей стали, так и из других материалов способствует продолжительности срока эксплуатации многих элементов в системе отопления. Кроме этого устройство отводит образующийся в теплоносителе воздух, за счет чего уменьшается окислительный процесс в механических частях.

Традиционный вариант исполнения гидравлического разделителя предусматривает наличие только одного контура. В случае отключения нескольких веток, снижается расход тепла в системе. Именно поэтому температура теплоносителя после прохождения всего пути снижается не сильно. Гидрострелка дает возможность поддерживать стабильный уровень расхода тепла, тем самым обеспечивает стабильную циркуляцию в системе.

Для того, чтобы дать ответ на вопрос: в чем предназначение гидрострелки, следует разобраться как функционирует отопительная система. Наиболее простой вариант системы с принудительной циркуляцией упрощенно состоит из:

  • котла (К), здесь теплоноситель нагревается;
  • циркуляционного насоса (N1), за счет функционирования которого, теплоноситель движется по трубам подачи (красные линии) и обратки (синие линии). Насос монтируется на трубе или же входит в комплект конструкции котла — особенно это характерно для моделей настенного исполнения;
  • радиаторов отопления (РО), благодаря которым происходит теплообмен — тепловая энергия теплоносителя передается в комнаты.

Осуществив правильный выбор циркуляционного насоса по производительности и образуемому напору в простой одноконтурной системе, вам может вполне хватить одного экземпляра и не придется монтировать вспомогательные устройства.

Циркуляционный насос — неотъемлемое звено системы отопления. Благодаря этому прибору эффективность функционирования системы увеличивается.

Для домов, небольших по размеру, такой простой схемы может быть вполне достаточно. Но в больших помещениях очень часто приходится прибегать к применению несколько контуров отопления. Усложним схему.

Гидрострелка в системе с несколькими контурами отопления

Как видно на рисунке, благодаря насосу осуществляется циркуляция теплоносителя через коллектор Кл, откуда он разбирается на несколько разных контуров. Это могут быть:

  1. Один или более высокотемпературных контуров с обычными радиаторами или конвекторами (РО).
  2. Водяные теплые полы (ВТП), для которых температурный режим теплоносителя должен быть намного ниже. Это означает, что придется задействовать специально предназначенные для этого термостатические устройства. Чаще всего сенсорная длина контуров теплых полов в несколько раз выше обычной радиаторной разводки.
  3. Система обеспечения дома горячей водой с установкой бойлера косвенного нагрева (БКН). Здесь – совершенно особые требования к циркуляции теплоносителя, так как обычно изменением расхода протекающего через бойлер теплоносителя регулируется и температура нагрева горячей воды.

Теперь возникает вопрос: сможет ли справиться один насос с такой большой нагрузкой и таким расходом теплоносителя? Навряд ли. Несомненно, на рынке можно найти высокопроизводительные и высокомощные модели, которые отличаются хорошими показателями образуемого напора, но здесь стоит учесть и возможности самого котла, которые никак нельзя назвать неограниченными. Его теплообменник и патрубки рассчитаны на определенную производительность и определенное давление, которое возникает. Если превысить заданные параметры, можно попросту прийти к тому, что ваш отопительный прибор выйдет из строя.

Да и если насос все время будет функционировать на гране своих возможностей, обеспечивая теплоносителем все контуры разветвлённой системы, то долго он не прослужит. К тому же работа будет сопровождаться громким шумом, а электрическая энергия будет потребляться в больших количествах.

Чтобы решить эту проблему, необходимо необходимо разделить всю гидравлическую систему не только на контуры конечного потребления, через коллектор, но и выделить отдельный контур котла.

Как установить гидрострелку

Именно для этого и предназначена гидрострелка, которая монтируется между котлом и коллектором.

Установка гидрострелки в системе отопления позволяет избавиться от скачков температурного напора.


Гидрострелка для отопления — что это такое, как работает и установить

Чтобы отопительная система работала с максимальной эффективностью, необходимо добиться хорошей балансировки всех его узлов, а все элементы хорошо справлялись со своими функциями. Такая задача — достаточно сложная, особенно, когда речь идет и о разветвленном механизме с большим количеством контуров.

Очень часто подобные контуры имеют индивидуальные схемы термостатического управления, свой температурный градиент, различаются пропускной способностью, а также требуемым уровнем напора теплоносителя. Для того, чтобы объединить все узлы в единое целое. Поможет решить данную задачу гидрострелка для отопления. О том, что представляет собой гидравлические разделитель и как он работает, мы расскажем в этой статье.

Гидравлическая стрелка MEIBES МНK 32

Назначение гидроразделителя

Если в своем доме вы планируете установить простую отопительную систему закрытого типа, где функционирует не более двух циркуляционных насосов, то надобности в гидравлическом разделителе нет.

Когда контуров и насосов — три, при этом один из них необходимо для работы с бойлером косвенного нагрева, то и здесь можно не прибегать к монтажу гидрострелки. Устанавливать гидрострелку целесообразно в больших домах, где имеется два и более отопительных контура. Гидрострелка нужна для того, чтобы балансировать уровень давления во всей котельной системе, когда меняются показатели в главном контуре. Такой агрегат отвечает за регулировку трехконтурного варианта системы, в который входят одновременно и нагреватель воды, и радиатор отопления, и теплый пол.

В случае соблюдения всех правил гидродинамики, будет обеспечено стабильное функционирование в нормальном режиме.

Помимо этого гидрострелка выступает как своеобразный отстойник, в котором происходит изъятие различных отложений из теплоносителя: накипи, коррозии. Достигается это только при полном соблюдении всех гидромеханических норм.

Такая функция гидрострелки, выполненной как из нержавеющей стали, так и из других материалов способствует продолжительности срока эксплуатации многих элементов в системе отопления. Кроме этого устройство отводит образующийся в теплоносителе воздух, за счет чего уменьшается окислительный процесс в механических частях.

Традиционный вариант исполнения гидравлического разделителя предусматривает наличие только одного контура. В случае отключения нескольких веток, снижается расход тепла в системе. Именно поэтому температура теплоносителя после прохождения всего пути снижается не сильно. Гидрострелка дает возможность поддерживать стабильный уровень расхода тепла, тем самым обеспечивает стабильную циркуляцию в системе.

Для того, чтобы дать ответ на вопрос: в чем предназначение гидрострелки, следует разобраться как функционирует отопительная система. Наиболее простой вариант системы с принудительной циркуляцией упрощенно состоит из:

  • котла (К), здесь теплоноситель нагревается;
  • циркуляционного насоса (N1), за счет функционирования которого, теплоноситель движется по трубам подачи (красные линии) и обратки (синие линии). Насос монтируется на трубе или же входит в комплект конструкции котла — особенно это характерно для моделей настенного исполнения;
  • радиаторов отопления (РО), благодаря которым происходит теплообмен — тепловая энергия теплоносителя передается в комнаты.

Осуществив правильный выбор циркуляционного насоса по производительности и образуемому напору в простой одноконтурной системе, вам может вполне хватить одного экземпляра и не придется монтировать вспомогательные устройства.

Циркуляционный насос — неотъемлемое звено системы отопления. Благодаря этому прибору эффективность функционирования системы увеличивается.

Для домов, небольших по размеру, такой простой схемы может быть вполне достаточно. Но в больших помещениях очень часто приходится прибегать к применению несколько контуров отопления. Усложним схему.

Гидрострелка в системе с несколькими контурами отопления

Как видно на рисунке, благодаря насосу осуществляется циркуляция теплоносителя через коллектор Кл, откуда он разбирается на несколько разных контуров. Это могут быть:

  1. Один или более высокотемпературных контуров с обычными радиаторами или конвекторами (РО).
  2. Водяные теплые полы (ВТП), для которых температурный режим теплоносителя должен быть намного ниже. Это означает, что придется задействовать специально предназначенные для этого термостатические устройства. Чаще всего сенсорная длина контуров теплых полов в несколько раз выше обычной радиаторной разводки.
  3. Система обеспечения дома горячей водой с установкой бойлера косвенного нагрева (БКН). Здесь – совершенно особые требования к циркуляции теплоносителя, так как обычно изменением расхода протекающего через бойлер теплоносителя регулируется и температура нагрева горячей воды.

Теперь возникает вопрос: сможет ли справиться один насос с такой большой нагрузкой и таким расходом теплоносителя? Навряд ли. Несомненно, на рынке можно найти высокопроизводительные и высокомощные модели, которые отличаются хорошими показателями образуемого напора, но здесь стоит учесть и возможности самого котла, которые никак нельзя назвать неограниченными. Его теплообменник и патрубки рассчитаны на определенную производительность и определенное давление, которое возникает. Если превысить заданные параметры, можно попросту прийти к тому, что ваш отопительный прибор выйдет из строя.

Да и если насос все время будет функционировать на гране своих возможностей, обеспечивая теплоносителем все контуры разветвлённой системы, то долго он не прослужит. К тому же работа будет сопровождаться громким шумом, а электрическая энергия будет потребляться в больших количествах.

Чтобы решить эту проблему, необходимо необходимо разделить всю гидравлическую систему не только на контуры конечного потребления, через коллектор, но и выделить отдельный контур котла.

Как установить гидрострелку

Именно для этого и предназначена гидрострелка, которая монтируется между котлом и коллектором.

Установка гидрострелки в системе отопления позволяет избавиться от скачков температурного напора.

Что такое гидравлический разделитель и его устройство

Гидроразделитель
это вертикальный полый сосуд, состоящий из труб большого диаметра (квадратного профиля) с эллиптическими заглушками по торцам.

Размеры разделителя обусловлены мощностью котла, зависят от количества и объема контуров.

Тяжелый металлический корпус монтируется на опорные стойки, чтобы не создавать линейное напряжение на трубопровод. Компактные устройства крепят к стене, размещают их на кронштейнах.

Патрубок емкостного гидравлического разделителя и отопительный трубопровод соединяются с посредством фланцев или резьбы.

Автоматический клапан воздухоотводчика размещается в самом верхнем участке корпуса. От осадка избавляются при помощи вентиля или используют специальный клапан, который врезан снизу.

Материал, из которого изготавливается гидрострелка — низкоуглеродистая нержавеющая сталь, медь, полипропилен. Корпус обрабатывают антикоррозийным составом, покрывают теплоизоляцией.

Устройство гидрострелки

Принцип работы

Теперь, когда мы знаем для чего нужна гидрострелка для отопления и разобрались с ее конструкцией, можно переходить к особенностям ее функционирования.

В процессе её работы выделяется три основных режима.

Схема работы гидравлического разделителя

Режим первый.

Система практически находится в равновесии. Расход «малого» котлового контура практически не отличается от суммарного значения расходов всех контуров, подключенных к коллектору или непосредственно к гидрострелке.

Теплоноситель не задерживается в гидрострелке, а проходит сквозь нее по горизонтали, практически не создавая вертикального перемещения. Температура теплоносителя на патрубках подачи (Т1 и Т2) – одинакова. Естественно, такая же ситуация и на патрубках, подключенных к «обратке» (Т3 и Т4). В таком режиме гидрострелка, по сути, не оказывает никакого влияния на функционирование системы.

Но подобное равновесное положение – крайне редкое явление, которое может замечаться лишь эпизодически, так как исходные параметры системы всегда имеют тенденцию к динамическому изменению.

В продаже можно найти модели коллекторов со встроенными гидравлическими разделителями. Выбрать можно варианты на 2, 3, 4 или 5 контуров.

Режим второй.

В текущий момент сложилось так, что суммарный расход на контурах отопления превышает расход в контуре котла.

С такой ситуацией приходится сталкиваться достаточно часто, когда все подключённые к коллектору контуры именно в этот момент требуют максимального расхода теплоносителя. Обыденными словами – сиюминутный спрос на теплоноситель превысил то, что может выдать контур котла. Система при этом не остановится и не разбалансируется. Просто в гидрострелке сам по себе сформируется восходящий по вертикали поток от патрубка «обратки» коллектора к патрубку подачи. Одновременно к этому потоку в верхней области гидравлического разделителя будет производиться подмес горячего теплоносителя, циркулирующего по «малому» контуру. Температурный баланс: Т1 > Т2, Т3 = Т4.

Коллектор с гидрострелкой на 3 контура позволяет безопасно и грамотно подключить радиаторы, бойлер и тёплые полы. Является самым популярным в своём сегменте. Наличие 4 контуров позволяет дополнительно подключить нагреватель воздуха в вентиляции. Для подключения ещё и резервного котла нужно наличие 5 контуров.
Режим 3.

Этот режим функционирования гидравлического разделителя является, по сути, основным – в грамотно спланированной и правильно смонтированной системе отопления именно он и станет превалирующим.

Расход теплоносителя в «малом» контуре превышает аналогичный суммарный показатель на коллекторе, или, иными словами, «спрос» на необходимый объем стал ниже «предложения». Причин тому может быть немало: — Аппаратура термостатического регулирования на контурах снизила или даже временно прекратила поступление теплоносителя из коллектора подачи на приборы теплообмена.

Температура в бойлере косвенного нагрева достигла максимальной, а забора горячей воды давно не было – циркуляция через бойлер прекращена. Отключены на какое-то время или на длительный период отдельные радиаторы или даже контуры (необходимость профилактики или ремонта, нет нужды отапливать временно неиспользуемые помещения и иные причины). Система отопления вводится в действие ступенчато, с постепенным включением отдельных контуров.

Ни одна из перечисленных причин никак негативно не скажется на общей функциональности системы отопления. Излишек объема теплоносителя вертикальным нисходящим потоком просто будет уходить в «обратку» малого контура. По сути, котел станет обеспечивать несколько избыточный объем, а каждый из контуров, подключенных к коллектору или напрямую к гидрострелке, будет забирать ровно столько, сколько требуется в настоящий момент. Температурный баланс при таком режиме работы: Т1 = Т2, Т3 > Т4.

При монтаже гидрострелки в индивидуальных системах отопления чаще всего используются пластиковые модели, которые и стоят дешевле, и установка их производится при помощи фитингов.

На самом деле у гидрострелки имеется один единственный принцип функционирования, он представлен под номером три. Достичь идеального режима (представленного на первой схеме) невозможно, поскольку гидравлическое сопротивление ветвей потребителей постоянно меняется из-за функционирования терморегуляторов, да и подобрать так точно насосы не получится. По второй схеме действовать недопустимо, поскольку в таком случае большая часть теплоносителя станет обращаться по кругу со стороны потребителей.

Как итог вы получите пониженную температуру в отопительной системе, т.к. со стороны котла в гидрострелке будет перемешивать малое количество горячей воды. Для повышения температуры придется прибегнуть к выводу теплогенератора на максимальный режим, что негативно скажется на стабильности работы системы в целом. Таким образом, остается третий вариант, при котором в коллекторы подается оптимальное количество воды нужной температуры. А уже за понижение ее в контурах отвечают трехходовые клапаны. Главная функция гидрострелки в отопительной системе — создание зоны с нулевым давлением, откуда появится возможность осуществлять отбор теплоносителя любое число потребителей.

Расчет гидрострелки

Многие пользователи задаются вопросом: как рассчитать гидрострелку для отопления? Поскольку устройства, которые есть в продаже предназначены для определенной мощности отопительной системы.

Многие хотят самостоятельно изготовить прибор и тогда очень важно произвести правильные и точные расчеты.

Представим расчет в зависимости от мощности системы отопления.

Существует универсальная формула, описывающая зависимость расхода теплоносителя от общей потребности в тепловой мощности, теплоемкости теплоносителя и разницы температур в трубах подачи и «обратки».

Формула расчёта расхода теплоносителя
Q = W / (с × Δt)

Q – расход, л/час;
W – мощность системы отопления, кВт
с – теплоемкость теплоносителя (для воды – 4,19 кДж/кг×°С или 1,164 Вт×ч/кг×°С или 1,16 кВт/м³×°С)
Δt – разница температур на подаче и «обратке», °С.

Вместе с тем, расход при движении жидкости по трубе равен: Q = S × V
S – площадь поперечного сечения трубы, м²;
V — скорость потока, м/с.

S = Q / V= W / (с × Δt × V)

Опытным путем доказано, что для оптимального смешивания в гидравлическом разделителе, качественного отделения воздуха и выпадения в осадок шлама, скорость в нем должна быть не выше 0,1 – 0,2 м/с.

Раз уж выбрана единица измерения час, то умножаем на 3600 секунд. Получается 360 – 720 м/час.

Можно взять усредненное значение – 540 м/час.

Если расчет производится для воды, то можно сразу ввести несколько исходных значений, чтобы упростить формулу:
S = W / (1,16 × Δt × 540) = W / (626 × Δt).

Определив сечение, по формуле площади круга несложно определить и требуемый диаметр:
D = √ (4×S/π) = 2 × √ (S/π).

Подставляем значения:
D = 2 × √ (W / (626 × Δt × π)) = 2 × √ (W / (1966 × Δt)) = 2 × 0,02255 × √(W/Δt) = 0,0451 × √(W/Δt).

Так как значение будет получено в метрах, что не совсем удобно, можно перевести его сразу в миллиметры, умножив на 1000.

В итоге формула примет такой вид:
D = 45,1 √(W/Δt) – для скорости потока в трубе гидрострелки в 0,15 м/с.

Несложно просчитать и значения для верхнего и нижнего предела допустимой скорости потока:
D = 55,2 √(W/Δt) – для скорости в 0,1 м/с; D = 39,1 √(W/Δt) – для скорости в 0,2 м/с.

Определив диаметр гидрострелки, несложно вычислить и диаметры входных и выходных патрубков.

Поэтому гидрострелка для отопления решает важные задачи. При необходимости её нужно монтировать.

Принцип работы гидрострелки в системе отопления

Гидрострелка ( гидравлический разделитель ) – устройство, предназначенное для разделения потоков теплоносителей контура котла (котлов) и контуров потребления теплоты в системе отопления. Принцип его работы основан на обеспечении независимости работы отопительного оборудования. Материал публикации рассмотрит вопросы необходимости применения, общее устройство и методики расчета гидрострелки.

Для чего применяется гидрострелка

Гидравлический разделитель — гидрострелка

Необходимость применения гидравлического разделителя обусловлена различием гидродинамических режимов работы отопительного оборудования. Используют гидрострелку в системах отопления, имеющих различные комплексы потребления тепла. Чаще всего выделяют три направления распределения теплоты:

  1. Радиаторное отопление;
  2. Система водяных теплых полов;
  3. Бойлер косвенного нагрева.

Все указанные системы имеют различный режим работы. Радиаторное отопление работает в основном в стабильном режиме. При наличии автоматических терморегулирующих устройств на приборах отопления расход теплоносителя может меняться.

Система «теплый пол» работает по обособленной схеме в низкотемпературном режиме. Регулирование происходит на первом этапе с помощью термостатического смесителя, далее возможно регулирование контуров балансировочными вентилями. Кроме этого, теплые полы имеют собственный насос и значительное гидравлическое сопротивление.

Бойлер ГВС работает в циклическом режиме, имеет наименьшее сопротивление. Как правило, оснащается циркуляционным насосом.

Разнообразие гидравлических и температурных режимов работы не позволяет обеспечить стабильную работу всего комплекса в целом. Насос, встроенный в котел или смонтированный отдельно, не может обеспечить равноценные условия работы для всех ветвей системы. Чаще всего просто не хватает мощности для преодоления гидравлических сопротивлений трубопроводов и приборов системы.

Насос естественным образом будет осуществлять циркуляцию по пути наименьшего сопротивления – через бойлер. Следующей ветвью (при отключении бойлера) будут радиаторы. Обеспечить необходимым количеством теплоносителя теплые полы становится труднее всего.

Режим работы котла в такой системе приобретает скачкообразный характер, что негативно сказывается на всем оборудовании.

Решить проблему установкой более мощного насоса удается с трудом. При мощном насосе теплоноситель преодолевает теплообменник котла, не успевая качественно получать теплоту. При этом увеличивается расход электроэнергии (на работу насоса), повышается потребление топлива из-за некачественного отбора теплоты сгорания.

При работе нескольких котлов в каскаде также возникает рассогласование режимов работы автоматики и циркуляции теплоносителя.

 Котлы, оснащенные чугунными теплообменниками топок, крайне негативно реагируют на резкие температурные перепады. Это обусловлено физическими свойствами чугуна. Многие производители ставят обязательным условием применение гидрострелки, в ином случае они снимают гарантийные обязательства на свои изделия.

Решением всех этих технических трудностей является установка в систему гидравлического разделителя (гидрострелки).

Устройство и принцип действия гидрострелки

Классическое устройство гидрострелки – полый сосуд, имеющий две пары патрубков. Первая пара служит для подключения котла (или каскада котлов), вторая – для присоединения системы потребления. Внутренний объем сосуда круглого или прямоугольного сечения служит зоной гидравлического разделения, разряжения и смешивания потоков разнотемпературных теплоносителей.

В верхней части устройства устанавливают воздухоотводчик, нижняя служит грязеуловителем. В гидрострелке циркулирует два потока теплоносителя – поток котлового (первичного) контура и поток системы потребления (вторичного контура). При различных режимах работы оборудования величина потоков меняется. Происходит либо прямая подача от котла, либо смешивание потоков с разной температурой.

Гидрострелка подбирается из расчета снижения скорости теплоносителя до диапазона 0,1 – 0,2 м/с. Прим этой скорости практически отсутствует гидравлическое сопротивление, гидродинамический режим принимает ламинарный характер, происходит наиболее качественный тепломассообмен между контурами.

Контур циркуляции котла практически не зависит от вторичного контура, режим работы котла приобретает стабильный, ровный характер. Вторичный контур получает теплоноситель с равной температурой для всех ветвей, необходимое его количество отбирается собственными насосами.

Отключение, изменение режима работы любой зоны отопительного оборудование приобретает лишь косвенное влияние на работу котла и системы в целом. Обеспечивается гидравлическое разделение, снижающее нагрузку на теплогенератор, отопительные приборы, насосное оборудование, коммуникации.

Гидравлический разделитель имеет три режима работы:

 Режим 1.  Прямой тепломассообмен потоков теплоносителя первичного и вторичного контура. Стабильная тепловая нагрузка потребления равна постоянному значению тепловой мощности котлоагрегата. Смешивания теплоносителей практически не происходит, движение приобретает ламинарный режим, происходит отделение воздуха, примесей и так далее. Режим работы котла – постоянный, на средней нагрузке.

 Режим 2.  Котел работает с максимальной нагрузкой, при этом не может обеспечить все потребности системы. Происходит полная передача потока из первичного контура котла с подмешиванием воды из обратки вторичного контура. При этом общая температура снижается для всех потребителей.

 Режим 3.  Оптимальный режим работы характеризуется наличием необходимой тепловой мощности котла, обеспечением экономного, «щадящего» режима работы. В этом режиме происходит смешивание прямого и обратного потоков первичного контура, температура поднимается. Котел останавливается при достижении заданной температуры, режим его работы приобретает циклический характер.

Гидравлический разделитель имеет и более сложные конструктивные конфигурации. Устройство оснащается сетчатыми элементами в верхней зоне для качественного отделения воздуха. Внутри изделия выполняются перфорированные перегородки вертикального или горизонтального направления для более эффективного разделения потоков.

Гидрострелки часто комбинируются с распределительными коллекторами. При этом коллекторы иногда входят в конструкцию моноблока, могут подключаться независимые.

Производятся изделия в виде комбинации разделителя и коллектора. При этом реализуется зонный температурный отбор теплоносителя для различных отопительных блоков.

Расчет гидравлического разделителя

Существует большой ряд типоразмеров гидрострелок. Подбор устройств производится по расчетным показателям. При этом диаметр патрубков первичного контура должен соответствовать диаметру патрубков котла. При подключении каскада котлов сечение патрубков гидрострелки должно быть не менее суммы сечений патрубков котлов.

Основная формула, применяемая для расчета диаметра сосуда разделителя:

D = 47 √ (P/∆t), где

P – тепловая мощность котла, кВт;

∆t – разница температур между подачей и обраткой, для автономных систем принимается 100С.

Формула справедлива для движения теплоносителя со скоростью 0,15 м/с. Для режимов движения 0,1 и 0,2 м/с поправочные коэффициенты составляют соответственно 54 и 40.

Далее применяется правило 3d = D. Расчетный диаметр патрубков равен величине D/3. Расстояние между патрубками, от патрубков до верхней и нижней точек гидрострелки также должно составлять не менее 3d.

Также гидрострелку подбирают по гидродинамическим характеристикам (производительности) насосов обоих контуров. Формула расчета:

D = 60 √(∑ QСО – QК), где

∑ QСО – суммарная производительность циркуляционных насосов вторичного контура;

QК – производительность котлового насоса, м3/час.

Дальнейший расчет производится по правилу 3d = D.

Применение гидрострелки в многоконтурной системе отопления – качественное техническое решение. Принцип работы и устройство гидравлического разделителя позволяют обеспечить стабильный как в гидравлическом, так и в температурном плане режим работы оборудования. Отсутствие предельных нагрузок, скачкообразного режима позволят отопительному оборудованию работать без неполадок длительное время.

(Просмотров 1 022 , 1 сегодня)

Рекомендуем прочитать:

принцип работы и расчет

Гидравлический чертеж довольно прост.

Если есть сварочный аппарат и есть опыт сварки, приготовить гидрогидравлику довольно просто. Но есть много уколов.

Чертеж гидравлики можно найти в Интернете, но все они разные, единого шаблона нет. Все гидравлические чертежи разные. В устройстве гидросистемы каждый видит по-своему, но есть одно правило, которое соблюдается.

Гидроэлектростанция представляет собой металлическую емкость (т.е. профильную или круглую трубу), к которой присоединяются патрубки котла (подающие и реверсивные) и потребительские патрубки (подающие и реверсивные).

Также может быть опционально отсутствие труб для автоматического сброса воздуха (или группы безопасности) на 1/2 дюйма в верхней части гидросистемы.

Внизу насадка на 1/2 «для крана для удаления шлама и грязи.

Также где-нибудь можно разместить форсунку 1/2 «для подачи воды в систему.

Главное правило, которое необходимо соблюдать — правило трех диаметров. Те. Диаметр гидравлического хода должен быть равен 3-м диаметрам форсунок. Для того, чтобы гидроэлектростанция выполняла основные функции, которые ей предназначены:

Назначение гидросистемы:

1. Отделяет отстой из системы.

2. Отображает газы из системы.

3. Выравнивает гидравлическую разницу в системе.

4. Подайте в бойлер нагретую воду, тем самым продлив срок службы бойлера.

Некоторые пытаются спасти и сделать своими руками гидроузел из полипроидов. Это мнение любителей, что о работе и назначении гидросистемы

ничего не известно.

Схема котла с бойлером косвенного нагрева в разрезе

Схема подключения теплого пола

Простые системы отопления состоят из минимального количества компонентов — это не большое количество труб, несколько радиаторов и бойлер. Для небольших построек и домовладений этого достаточно.Когда необходимо утеплить здание, задача усложняется необходимостью использования дополнительного оборудования — гидравлическое распределение отопления обеспечит равномерное распределение тепла, снимет перепады давления, уравновесит работу системы отопления.

В этом обзоре мы рассмотрим:

  • Назначение гидросистемы в системе отопления.
  • Конструктивные особенности гидросистемы.
  • Простые расчетные схемы.

В материале будут даны схемы, полезные советы, подробные пояснения — все предельно ясно и понятно.

Что такое гидроэлектростанция

Гидроэлектрон — гидротратор в системе отопления, устройство, предназначенное для правильного распределения теплоносителя по нескольким контурам и устройствам. Своеобразный буферный элемент между отопительным котлом и вторичными контурами. Теплоноситель поступает из котла в гидроусилитель, после чего распределяется по нескольким направлениям.

Самая простая система обогрева в гидросистеме не нуждается. Важно правильно выбрать подобрать циркуляционный насос и настроить скорость его работы, чтобы обеспечить необходимое давление.Теплоноситель поступает из котла в батарее, отдает накопленное там тепло, после чего возвращается обратно в отопительный прибор — ничего сложного и сверхъестественного. Но современное жилье строится с использованием нескольких контуров и вспомогательного оборудования. Здесь присутствуют:

  • Несколько вторичных отопительных контуров (например, в группе помещений или на этаже).
  • Теплые полы — это еще один или несколько контуров.
  • Бойлеры косвенного нагрева — используются для приготовления горячей воды.

И здесь мы можем столкнуться с ситуацией, когда один циркуляционный насос не может протолкнуть теплоноситель по контуру.Вода (или антифриз) потечет по пути наименьшего сопротивления, после чего вернется обратно на тот же путь. Например, он пройдет через ближайший котел и частично проникнет в батареи, но для теплых полов этого может не хватить.

Гидравлическая стрела для систем отопления предназначена для обеспечения правильного распределения тепла по контурам и вспомогательному оборудованию. Это чрезвычайно простой гидравлический сепаратор, созданный из отрезков трубы диаметром.

Конструктивные особенности гидравлических моделей

Гидравлическое устройство отопления настолько простое, что в нем буквально нет движущихся частей, электроники и чего-то еще. Взгляните на его схему — это трубка круглой или прямоугольной формы, запаянная с двух сторон. Располагается вертикально или горизонтально. С одной стороны у нее есть две насадки для подключения к системе отопления, а с другой — две насадки для подключения к котлу.

Так выглядит гидролента для одинарной системы отопления.Внутри самой трубы ничего нет — абсолютно пусто, в дальнейшем залейте теплоноситель.

Снаружи видны гидравлические уплотнения:

  • Трубы для подключения к котлу и отоплению.
  • Кран для слива воды.
  • Автоматическая воздушная шлюшка.

Так устроены самые простые гидравлические системы.

Гидравлическая стрела для систем отопления на несколько контуров не сложнее. Просто появились еще насадки для соединения второстепенных контуров.Здесь подключены бойлеры и теплые полы. Циркуляционные насосы подключаются к каждой подающей насадке через краны — по одному на каждом контуре. Сюда помещаются термоманометры для контроля давления и температуры.

Гидростролл и его назначение

Hydrostral для отопления легко собрать самостоятельно, используя сварочный аппарат и отрезки труб необходимой длины. Для этого найдите подходящий рисунок и подберите материалы.

Мы рассмотрели принцип работы гидросистемы отопления — она ​​просто распределяет теплоноситель по нескольким контурам.Его основная задача — создать идеальные условия для работы вторичных и первичных контуров. Первичный контур включает отопительный котел с трубами, подключенными к гидросистеме. Вторичные контуры — все остальное. При равном давлении во всем контуре котел работает в щадящем режиме — часть нагретого теплоносителя попадает в обратную трубу, что снижает нагрузку на источник тепла.

Если в системе стоит котел малой мощности, а отопление отличается большой мощностью, то создаются условия для подачи теплоносителя из обратной трубы в подачу в обход котла (частично).Оборудование в этом случае работает практически на износ — теплообменники могут прийти в негодность в кратчайшие сроки.

Равномерное распределение тепла

Идеально сбалансированное отопление — это равномерная температура во всем доме, одинаковое давление во вторичных контурах и сбалансированная нагрузка на котел. В этом случае задача гидравлического режима проста — он «распределяет» теплоноситель на несколько контуров, в каждом из которых установлен циркуляционный насос. Регулируя его производительность и подачу теплоносителя, можно добиться равномерной температуры во всем доме.

Самое главное — благодаря такой разводке в доме не будет холодных контуров, так как теплоноситель будет идти в каждую трубу, и не только туда, намного проще.

Уравновешивание давления

Неуравновешенность системы отопления может повлиять на ее стабильность. Для длинного контура требуется одно давление, для более короткого — больше. То же касается и теплых полов, и котла. Если бы один большой насос стоял в системе сразу на всех контурах, то в некоторых местах произошла бы перегрузка — могли бы сломаться трубы или теплообменник в накопительном водонагревателе. Гидроэлектрон распределяет давление и позволяет правильно сбалансировать все контуры.

Работа с несколькими котлами

Есть системы отопления с двумя или даже тремя котлами (иногда и больше). Такие решения позволяют выделить достаточно большую площадь или использовать один из котлов как резервный. Если используется не последовательное, а параллельное подключение оборудования, то это осуществляется через гидросистему. В то же время это способствует нейтрализации взаимного влияния вторичных контуров друг на друга.

Гидроэлектрон позволяет добиться баланса в системах отопления любой сложности. Два-три котла, пять или семь контуров — степень может быть разной. Также раскрывается потенциал для расширения системы. Например, в будущем можно подключить еще один бойлер, полотенцесушитель, летнюю кухню с отдельным отопительным контуром. Все эти работы можно выполнять даже на ходу, не останавливая котельное оборудование, сохраняя при этом отопление здания.

Как установлен гидроэлектрон

Оптимальный вариант гидроустановки — вертикальный.Обычно в нижней части находятся краны для слива воды. Там же весь мусор, циркуляционное отопление. Аккуратно открываем кран — и он сливается. Горячий теплоноситель подается в верхней части, а обратная трубка расположена внизу. То же самое и с патрубками для соединения вторичных контуров — они монтируются аналогично.

Купленные модели

Типичный пример — коллектор Север-М5. Работает в системах отопления мощностью до 70 кВт.Стоимость агрегата около 9,5 тыс. Руб.

Система обогрева в системе обогрева представляет собой гидравлическое устройство распределительного вала, созданное для распределения охлаждающей жидкости по нескольким контурам. Его установка рекомендуется в случаях, когда мощность используемого котла превышает 50 кВт. Также стрелка применяется в сложных разветвленных системах с множеством вторичных контуров — это необходимо для балансировки. Его можно купить или собрать самостоятельно.

Проще всего купить гидроагрегат в готовом заводском исполнении.Самая простая модель, например Sintek ST-35 будет стоить 2700 рублей, если брать напрямую у производителя. Он выдерживает давление до 6 бар и может быть установлен в системах отопления с теплопроизводительностью до 35 кВт.

Коллектор отопления с гидросистемой на 5 контуров предназначен для разветвленных систем, о которых говорилось выше. Возможно подключение бойлера косвенного нагрева, теплых полов в ванной, кухне и коридоре, а также трех основных контуров — на первом этаже, в цокольном этаже, а также на чердаке.

Другое торговое оборудование:

  • WoodStoke 331 гидроэлектростанция — для отопления до 70 кВт на 7 контуров. Стоимость устройства 11 тысяч рублей.
  • Warme WGR 80 — это простая гидроэлектростанция с двумя форсунками и двумя выводами для подключения вентиляционного отверстия и крана. Стоимость — 4000 руб. Модель может работать в системах отопления мощностью до 80 кВт.
  • Proxiter GS 32-1 — гидроэлектрон выполнен в блестящем корпусе, так как выполнен из нержавеющей стали.Он предназначен для работы в системах отопления мощностью до 85 кВт. Стоимость — около 7-8 тысяч рублей.
  • Gidruss BM — это целая серия гидравлических систем для систем отопления мощностью от 60 до 150 кВт. Они изготовлены из высококачественной конструкционной стали и выдерживают давление до 6 бар при температуре до +110 градусов. Стоимость варьируется от 9 до 30 тысяч рублей.

Готовые гидроэлементы — тысячи, есть из чего выбрать.

Преимущества цеховой гидратации очевидны.Прежде всего, они отличаются безупречным качеством сборки. Оборудование должно выдерживать солидное давление — до 3-4 атмосфер для автономного отопления и до 20-25 атмосфер для общего отопления. Изготавливается из проверенных разновидностей стали, созданных для строительства отопительного оборудования и других систем.

Во-вторых — заводские гидросистемы уже рассчитаны на использование отопления в системах с определенной мощностью. Их многократно восстанавливают, поэтому их использование не приведет к несчастным случаям.Также в магазинах предложат комплектующие для монтажа систем отопления. И не будет проблем с гарантией на бойлеры и радиаторы.

Сборка гидравлики своими руками

Самостоятельная сборка производится в несколько этапов:

  • Расчет гидравлического отопления.
  • Подборка материалов.
  • Сварка заготовок и расчетов.

Для расчета лучше всего использовать специализированные калькуляторы, учитывающие множество параметров.Проще всего воспользуйтесь нашими расчетами.

Расчет формулы

Внутренний диаметр D зависит от мощности котла P и разницы между подачей и реверсом Δt. Делим мощность в киловаттах на разницу температур, извлекаем из полученных цифр квадратный корень и умножаем полученное значение на 49 — получаем диаметр гидросистемы. Высота трубы составляет 6 диаметров, а расстояние между патрубками равно двойному внутреннему диаметру трубы.

В Интернете много чертежей гидравлических ходов, как простых, так и совмещенных с коллекторами. Они позволят собрать то, что вам нужно, причем с минимальными расчетами. В любом случае при сборке и внедрении гидрораспределителя специалисты посоветуют хоть какие-то знания по балансировке систем отопления. Что касается систем отопления больших зданий, то вопрос выбора гидравлики и балансировки отопления следует доверить профильным специалистам.

Собрать гидроэлектростанцию ​​для отопления своими руками из полипропилена можно, но делать это не рекомендуется — она ​​может не выдержать нагрузки, если используется в больших системах отопления. Тем не менее, многие мастера практикуют.

Видео

Экология познания. Усадьба: Гидравлический сепаратор — устройство, омытое множеством мифов. Чтобы разобраться, с какими задачами действительно справляется гидроэлектрон, а какие свойства являются лишь необоснованными заявлениями маркетологов, предлагаем подробно рассмотреть принцип действия этого узла и его назначение.

Гидроэлектрон представляет собой колбу с автоматическим отводом воздуха. На боковой поверхности корпуса врезаны патрубки для крепления основных труб отопления. Внутри гидрораспределитель абсолютно полый, резьбовое сопло может врезаться в нижнюю часть. шаровой кран, предназначенный для слива шлама со дна сепаратора.

Как устроен гидроаккумулятор

Фактически, его гидравлическая стрела представляет собой шунт, перекрывающий потоки и возврат.Назначение такого шунта — выравнивание температуры теплоносителя, а также его расхода в генерирующей и распределительной частях гидравлической системы отопления. Для получения реального эффекта от гидросепаратора требуется тщательный расчет его внутреннего объема и деталей соединений форсунок. Однако большая часть представленных на рынке устройств производится без адаптации к конкретной системе отопления.


Часто можно встретить мнение, что в полости колбы должны присутствовать дополнительные элементы, такие как делители потока или сетка для фильтрации механических примесей или отделения растворенного кислорода.В действительности такие методы модернизации не демонстрируют значительной эффективности и даже наоборот: например, при засорении сети полностью перестает работать гидроусилитель, а вместе с ним и вся система отопления.

Какие возможности дает гидросепаратор

В среде теплотехников встречаются диаметрально противоположные мнения о необходимости установки гидрохрома в системах отопления. Масла в огонь разливают заявки производителей гидрооборудования, повышающие гибкость настройки режимов работы, повышающие эффективность и эффективность теплопередачи.Чтобы отделить зерно от проблемы, для начала рассмотрим совершенно скучные высказывания о «выдающихся» способностях гидравлических сепараторов.

КПД котельной установки не зависит от устройств, установленных после присоединительных патрубков котла. Полезный эффект котла полностью заключен в способности преобразователя, то есть в процентном соотношении тепла, выделяемого генератором, к теплу, поглощаемому теплоносителем. Никаких специальных методов Ремни не могут повысить КПД, это зависит только от площади поверхности теплообменника и правильного выбора скорости циркуляции теплоносителя.

Многорежимный режим, который якобы предусматривает установка гидравлики, это тоже абсолютный миф.

Суть обещаний сводится к тому, что при наличии гидросистем можно реализовать три варианта соотношений расхода в генераторной и потребительской части.

Первый — это абсолютное выравнивание потребления, которое на практике возможно только при отсутствии маневрирования и наличии только одного контура в системе.Второй вариант, при котором расход больше, чем через бойлер, якобы дает повышенную экономию, но в теплообменнике такой обратный теплообменник в теплообменник в теплообменнике, что порождает ряд негативных эффектов: запотевание внутренних поверхностей камеры сгорания или температурный удар.

Существует также ряд аргументов, каждый из которых представляет собой бессвязный набор терминов, но по существу не отражает ничего конкретного. К ним относятся повышение гидродинамической устойчивости, увеличение срока службы оборудования, контроль распределения температуры и тому подобное.

Также можно встретить утверждение, что гидротратор позволяет стабилизировать балансировку гидросистемы, что на практике оказывается прямо противоположным. Если при отсутствии гидравлики реакция системы на замену воздуховода в какой-либо части неизбежна, то при наличии сепаратора она также совершенно непредсказуема.

Реальный объем

Тем не менее, теплогидравлический сепаратор не бесполезен. Это гидравлическое устройство и принцип его действия достаточно подробно описаны в специальной литературе.У гидроэлектрона вполне определенная, хотя и довольно узкая сфера применения.

Самым главным преимуществом ареометра является возможность координировать работу нескольких циркуляционных насосов в генераторной и потребительской части системы. Часто бывает, что контуры, подключенные к общему коллекторному узлу, снабжены насосами, производительность которых отличается в 2 и более раза.

Самый мощный насос при этом создает настолько высокий перепад давления, что забор устройств циркуляции остатка теплоносителя невозможен.Несколько десятков лет назад эта проблема была решена с помощью так называемого долбления — искусственного занижения воздуховода в потребительских цепях способом в трубе из металлических пластин с разным диаметром отверстий.

Гидроэлектрон шунтирует подающую и обратную магистрали, за счет чего нивелируется разрежение и избыточное давление в них.

Второй частный случай — это избыточное давление котла по отношению к потреблению в распределительных контурах. Такая ситуация характерна для систем, в которых ряд потребителей работает не на постоянной основе.Например, бойлер косвенного нагрева, теплообменник бассейна и отопительные контуры зданий, которые отапливаются только время от времени, могут быть привязаны к общей гидравлике.

Установка гидроустановок в таких системах позволяет постоянно поддерживать номинальную мощность котла и скорость циркуляции, при этом избыток нагретого теплоносителя поступает обратно в котел. При включении дополнительного потребителя разница в затратах уменьшается и излишки отправляются не в теплообменник, а по разомкнутому контуру.

Также гидроэлектрон может служить коллектором генераторной части при согласовании работы двух котлов, особенно если их мощность существенно различается.

Дополнительным воздействием на работу гидроразрыва можно назвать защиту котла от температурного удара, но для этого потребление в генераторной части должно превышать потребление в сети потребителей не менее чем на 20%. Последнее достигается установкой насосов соответствующей производительности.

Схема подключения и установки

Гидравлическая стрела имеет схему подключения, простую, как собственное устройство. Большинство правил касается не столько подключения, сколько расчета пропускной способности и расположения выводов. Однако знание полной информации позволит правильно провести монтаж, а также убедиться в том, что выбранная гидросистема подходит для ее установки в конкретную систему отопления.

Первое, что нужно четко усвоить — гидроэлектрон будет работать только в системах отопления с принудительной циркуляцией.При этом насосов в системе должно быть не менее двух: один в контуре генерирующей части и не менее одного в потребителе. В общем, гидросепаратор будет играть роль шунта с нулевым сопротивлением и, соответственно, вредит всей системе.

Пример схемы гидравлического подключения: 1 — отопительный котел; 2 — группа безопасности котла; 3 — расширительный бачок; 4 — циркуляционный насос; 5 — гидравлический сепаратор; 6 — автоматический дефлектор; 7 — запорная арматура; 8 — сливовой кран; 9 — контур №1 бойлера косвенного нагрева; 10 — контур № 2 радиаторов отопления; 11 — кран трехходовой с электроприводом; 12 — Тираж No.3 Теплый пол

Следующим аспектом является размер гидросистемы, диаметр и расположение выводов. В общем случае диаметр колбы определяется исходя из наибольшего расчетного воздуховода на магистрали. За максимальный расход теплоносителя можно принять как в генерирующей, так и в потребительской части системы отопления по данным гидравлического расчета.

Зависимость диаметра канала сепаратора от воздуховода описывается отношением расхода к расходу теплоносителя через колбу.Последний параметр фиксированный и в зависимости от мощности котельной установки может варьироваться от 0,1 до 0,25 м / с. Приват, полученный при расчете указанного коэффициента, необходимо умножить на поправочный коэффициент 18,8.

Диаметр соединительных патрубков должен составлять 1/3 диаметра колбы. В то же время вводные сопла располагаются сверху и снизу колб, а также друг от друга на расстоянии, равном диаметру колбы. В свою очередь, выходные сопла расположены так, что их оси смещены относительно осей входов на два собственных диаметра.Общая высота гидравлического кожуха определяется законами.

Гидроэлектрон подключается к прямым и обратным магистральным трубопроводам котла или нескольких котлов. Конечно, при подключении гидросистемы не должно быть намека на сужение условного прохода. Это правило вынуждено применять при обвязке котла и при подключении коллекторной трубы с очень значительным условным проходом, что несколько усложняет вопрос оптимизации компоновки котельного оборудования и увеличивает материал обвязки.

О сепарационных коллекторах

Наконец, вкратце затронули темы многодневных гидравлических систем, также известных как Sepricli. По сути, это коллекторная группа, в которой делитель подачи и возврата объединен сепаратором. Такое устройство крайне полезно при согласовании работы нескольких отопительных контуров с разным расходом и температурой теплоносителя.

Вертикальная установка коллектора позволяет обеспечить перепад температур в выходных патрубках за счет смешивания порций теплоносителя.Это дает возможность напрямую подключать, например, бойлер косвенного нагрева, радиаторную группу и контуры теплого пола без смесительной группы: разница температур между соседними выводами сепколла естественно будет поддерживаться в пределах 10-15 °. C, в зависимости от режима циркуляции. Однако необходимо помнить, что такой эффект возможен только в том случае, если обратный патрубок генераторной части расположен выше обратных отводов потребителей.


По итогу дадим важную рекомендацию.Для большинства бытовых систем отопления мощностью до 100 кВт установка гидросепаратора не требуется.

Гораздо более правильным решением будет выбор производительности циркуляционных насосов и согласование их работы, а для защиты котла от температурного шока привязать трубоотводную тележку.

Если проект или монтажная организация настаивает на установке гидросистемы, это решение должно быть технологически обосновано. Опубликовано Если у вас есть вопросы по данной теме, задавайте их специалистам и читателям нашего проекта.

Многие современные люди задаются вопросом, как устанавливается гидроэлектор с коллектором (производитель ниже). В то же время даже многие профессионалы со временем начинают понимать, что использование специализированных гидравлических сепараторов для подключения котлов является довольно эффективным средством, позволяющим значительно повысить эффективность установленной системы отопления.

Проблемы старой техники

Многие знают, что котлы без подключенных насосов часто подключаются напрямую к коллектору, и именно вместо такого варианта чаще всего используется такая гидролента с коллектором (схема изготовления ниже).От котлов с насосами эти устройства просто сняли, в результате чего их установили на каждый отдельный отопительный контур, но на самом деле этот вариант можно использовать не в каких ситуациях, так как если на данный момент на котел еще гарантия Остается, в том случае, снять с него насосы невозможно, а если речь идет о чугунном котле, то при таком демонтаже его составных частей даже отдельные секции котла могут лопнуть, не поддерживая такая разница температур.

Что дает эта технология

Чтобы избавиться от всего этого, сегодня используется специализированная гидроколяска (схема изготовления представлена ​​в статье). Это устройство предназначено для разделения гидравлики и, если точнее сказать, делит котел напрямую с остальной системой отопления. Так, например, гидролента с коллектором (производитель изображен) может включать в себя один насос в котле, в то время как в системе установлено еще несколько таких агрегатов разной мощности.

Как это работает

Устройство такого оборудования предельно просто. На данный момент мы не будем разбирать некоторые высокотехнологичные устройства, а рассмотрим только основные варианты реализации такой технологии.

В принципе, достаточно использовать стандартный отрезок трубы, из которой сделан гидроэлектрон (гидроплиты). Расчет гидросистемы позволит понять, какими основными характеристиками должно обладать такое устройство и какие материалы лучше всего использовать для его изготовления.

Какое у нее назначение

В первую очередь конструкторы стараются исходить из того, что стрелка предназначена для отделения гидравлики. В подавляющем большинстве случаев производители стараются выпускать котлы, оснащенные собственными насосами, причем такие устройства достаточно мощные.

Например, есть котлы с закрытой камерой сгорания, в которых установлены встроенные насосы. Мощность таких устройств может составлять примерно 300 Вт, но на самом деле этого недостаточно, чтобы полностью нагнать систему обогрева, если объекту требуется 1000 м 2, а именно такое оборудование рассчитано примерно на среднюю площадь обогрева.

В связи с этим необходима установка дополнительных насосов, а также при использовании комбинированных систем. Именно в такой ситуации вместо помощи просто помешает тот насос, который изначально используется в котле, и именно в таких случаях гидролента (назначение, расчет, изготовление — об этом далее в статье). Стоит отметить тот факт, что такое мощное оборудование в большинстве случаев изначально идет с заводской гидросистемой в комплекте или хотя бы есть довольно точная инструкция, как ее подключить.

Если брать котлы меньшего размера, то с ними в основном та же история точно такая же, но в этом случае вам уже придется делать это самому.

Где установлен

Гидроэлектрон устанавливается на напольных котлах без встроенного насоса, чтобы обеспечить эффективную защиту котла от большой разницы температур при первом запуске системы отопления. Например, с помощью этого оборудования стандартные стальные котлы могут защитить от образующегося конденсата, а чугунные устройства — от возможности выхода из строя отдельных секций.

Для устранения подобных неприятных ситуаций используется специализированный гидроэлектрон. Чертеж и схема котельной в этом случае играет важную роль, так как в зависимости от особенностей отапливаемого объекта нужно выбирать соответствующее оборудование. Единственное, на что стоит обратить внимание, это использование дополнительного насоса для различных напольных котлов.

Пример

Изначально человек в своем доме хочет получить практически идеальную систему отопления, потратив на нее разумные деньги, и в этом случае все начинается с котла.Для небольшого частного дома можно выбрать стандартный двухконтурный котел с закрытой камерой, которая будет крепиться к стене. В то же время необходимо правильно понимать, что в подавляющем большинстве случаев для обеспечения нормального распределения теплоносителя в этой системе может потребоваться индивидуальное изготовление нагревательного коллектора гидравлического. В такой ситуации возникает вполне стандартный вопрос: будут ли использоваться их насосы и что делать с устройством в котле?

Вполне естественно, что многие в таких ситуациях предпочитают просто демонтировать насос с котла, чтобы не испортить установленную гидравлику системы, но ведь конструкция некоторых устройств сделана таким образом, что такая процедура маловероятна. преуспеть.Именно в таких ситуациях котел гидросистемы и коллектор становится идеальным решением.

Как в данной ситуации проводится монтаж

Изначально схема нарисована для примера, рассмотрим следующую ситуацию:

  • Два контура теплых полов.
  • В системе будет использоваться контур отопления, два запасных контура для теплового насоса или отдельного электрокотла, а также контур гидравлический, то есть 5 контуров.

В данном случае нет ничего сложного в том, как нарисовать схему коллектора — достаточно иметь хоть какое-то представление о том, как устроена такая система.

Изготовление и расчет

Стоит отметить тот факт, что вы можете самостоятельно регулировать мощность, которую будет иметь ваша гидравлическая стрела. Как рассчитать мощность, нужно исходить непосредственно из особенностей вашей комнаты и используемых устройств.

Если мощность приобретенного вами устройства вам не нужна, то в этом случае можно обрезать резьбу по диаметру, но при этом сделать более длинную стрелку.В некоторых ситуациях общую мощность закупаемого оборудования целесообразно снизить по мощности до двух раз, так как, например, устройства на 80 кВт нужны не в каждом доме, и в таких случаях вполне оптимальным будет оставить оборудование. мощностью 40 кВт.

Как его найти

Некоторые, кто привык производить гидравлику своими руками, предпочитают устанавливать ее в непосредственной близости от котла, но многие специалисты говорят, что это также хороший вариант для установки этого устройства на коллекторе, что в конечном итоге позволяет добиться законченного и гармоничного дизайна, который в будущем будет удобен в эксплуатации, проверке и обслуживании.

Котел можно смонтировать примерно на три метра к месту установки стрелы, а питающие и питающие магистрали котла можно смонтировать поперёк пола, при наличии жмыха в остальном нет принципиальных отличий в том, где находится ваш Стрелка будет смонтирована, а главное в этом случае будет установка оборудования подходящей мощности и обязательно в вертикальном состоянии. Если производится гидроаккумулятор для системы выше), в которой котел установлен без предохранительного клапана, в этом случае рекомендуется приварить к верхней части устройства дюймовую резьбу для крепления специальной группы безопасности.

Внизу также рекомендуется приветствовать небольшую резьбу для обеспечения нормального дренажа и заполнения стрелки. Обязательное практическое условие — это блокировка к системе «котел, гидроэлемент и коллектор» специализированных муфт для крепления термометров. В процессе дальнейшей эксплуатации он сможет облегчить вам жизнь, так как позволит при любой сложности следить за состоянием системы отопления.

Как это сделать

Если у вас есть стандартный сварочный аппарат и опыт работы с таким оборудованием, то в этом случае нет ничего сложного, чтобы сварить себе полноценную гидросистему.Однако необходимо правильно понимать тот факт, что в процессе выполнения этой работы нужно учитывать большое количество тонкостей.

В наше время найти чертеж гидросистемы нет ничего сложного, но при этом нужно правильно понимать, что все такие чертежи разные, и определенного шаблона нет. Каждый специалист видит гидростральное строение каждый специалист, но есть определенные правила, которые соблюдаются абсолютно все.

Сама по себе стрелка представляет собой специфическую металлическую емкость, к которой привариваются патрубки, предназначенные для подключения к котлу и подачи и питания. Также в систему встроены насадки потребителей.

По желанию можно использовать форсунки, предназначенные для автоматического сброса воздуха в верхней части установленной стрелки. В нижней части установлен кран для крана, обеспечивающий отвод различного шлама и грязи. Помимо прочего, в каком-то месте также можно поставить трубу для подачи воды в систему.

Первое правило

Самым важным правилом, которое следует всегда соблюдать, является так называемое «правило трех диаметров», то есть диаметр установленного гидравлического метода должен быть в три раза больше, чем параметр в форсунках. Если вы хотите, чтобы гидротратор полностью выполнял свои основные функции, а именно:

  • отделение от иловой системы;
  • взгляд;
  • выровняйте гидравлический перепад;
  • подают горячую воду в котел, чтобы обеспечить его большую долговечность.

Многие предпочитают экономить и изготавливать гидростанции своими силами из полипропилена, но на самом деле это абсолютно неправильное решение, принятое в основном людьми, мало разбирающимися в особенностях такой техники.

Именно по этой причине только полноценные металлические трубы позволяют полностью реализовать потенциал такой техники и действительно эффективно проявят себя на протяжении всего срока эксплуатации такой системы.

Гидроагрегаты для отопления — Назначение, принцип работы и расчет

2 (40%) Голосов: 1

Для того, чтобы система отопления работала с максимальной эффективностью, необходимо добиться хорошей балансировки всех ее узлов и всех элементов. хорошо справлялись со своими функциями.Это довольно сложная задача, особенно если речь идет о крупногабаритном механизме с большим количеством контуров.

Очень часто такие контуры имеют индивидуальные схемы термостатирования, их температурный градиент, различаются пропускной способностью, а также требуемым уровнем теплоносителя. Для того, чтобы все узлы объединить в единое целое. Поможет решить эту задачу по отоплению. О том, что такое гидравлический сепаратор и как он работает, мы расскажем в этой статье.

Узнать цену и купить отопительное оборудование и сопутствующие товары Вы можете уже.Пишите, звоните и приходите в один из магазинов вашего города. Доставка по всей РФ и странам СНГ.

Гидравлическая стрела Meibes MNK 32

Назначение гидрозатворов

Если в своем доме вы планируете установить простую систему отопления закрытого типа, в которой не более двух циркуляционных насосов, в гидросепараторе нет необходимости.

Когда контуров и насосов три, а один из них необходим для работы с бойлером косвенного нагрева, то здесь к установке гидроаттелей можно не прибегать.Установка гидросистемы желательна в больших домах, где есть два и более контура отопления. Гидроэлектрон нужен для того, чтобы уравновесить уровень давления во всей котельной системе при изменении показателей в основном контуре. Такой агрегат отвечает за настройку трехконструктивного варианта системы, в которую входит и водонагреватель, и радиатор отопления, и теплый пол.

При соблюдении всех правил гидродинамики будет обеспечена стабильная работа в штатном режиме.

Кроме того, гидроэлектрон выполняет роль своеобразного отстойника, в котором возникают различные отложения теплоносителя: накипь, коррозия. Это достигается только при полном соблюдении всех гидромеханических норм.

Эта функция гидравлики, выполненная из нержавеющей стали и других материалов, способствует увеличению продолжительности работы многих элементов системы отопления. Кроме того, устройство забирает воздух, образующийся в теплоносителе, за счет чего снижается процесс окисления в механических частях.

Традиционный вариант гидравлического сепаратора предусматривает только один контур. В случае отключения нескольких ответвлений потребление тепла в системе снижается. Именно поэтому температура теплоносителя после прохождения по пути не сильно снижается. Гидроэлектрон позволяет поддерживать стабильный уровень потребления тепла, тем самым обеспечивая стабильную циркуляцию в системе.

Для того, чтобы ответить на вопрос: для чего нужна гидросистема, следует разобраться, как работает система отопления.Самый простой вариант системы с принудительной циркуляцией упрощенный в составе:

  • котел (к), здесь подогревается теплоноситель;
  • Циркуляционный насос
  • (N1), за счет функционирования которого теплоноситель движется по подающим трубам (красные линии) и реверсивным (синие линии). Насос монтируется на трубу или входит в конструкцию котла — особенно это характерно для настенных моделей;
  • радиаторов отопления (RO), благодаря которым происходит теплообмен — тепловая энергия Теплоноситель передается в помещение.

Следуя правильному выбору Циркуляционный насос с точки зрения производительности и выполнен в виде простой одноконтурной системы, достаточно одного экземпляра, и дополнительные устройства устанавливать не нужно.

Циркуляционный насос — неотъемлемое звено системы отопления. Благодаря этому устройству эффективность системы увеличивается.

Для домов небольших размеров такой простой схемы может быть вполне достаточно. Но в больших помещениях очень часто приходится прибегать к использованию нескольких отопительных контуров.Сложная схема.

Hydrostral система с несколькими отопительными контурами

Как видно на рисунке, благодаря насосу циркуляция теплоносителя через коллектор КЛ, откуда он разбирает несколько разных контуров. Это может быть:

  1. Один или несколько высокотемпературных контуров с обычными радиаторами или конвекторами (ПО).
  2. Водные теплые полы (ВТП) для которых температурный режим теплоносителя должен быть намного ниже. Значит, здесь придется использовать термостатические устройства, специально предназначенные для этого.Чаще всего сенсорная длина контуров теплых полов в несколько раз превышает обычную разводку радиаторов.
  3. Система залога дома горячей водой с установкой (БКН). Здесь к циркуляции теплоносителя предъявляются совершенно особые требования, так как обычно изменение расхода теплоносителя, протекающего через котел, регулируется и температурой нагрева горячей воды.

Теперь возникает вопрос: сможет ли один насос справиться с такой большой нагрузкой и расходом теплоносителя? Вряд ли.Несомненно, на рынке можно найти высокопроизводительные и мощные модели, которые характеризуются хорошими показателями формируемого давления, но стоит учесть возможности самого котла, которые нельзя назвать неограниченными. Его и сопла рассчитаны на определенную производительность и определенное возникающее давление. Если вы превысите указанные параметры, можно просто прийти к тому, что ваш отопительный прибор выйдет из строя.

Да и если помпа все время будет работать на зерно своих возможностей, обеспечивая теплоносителем все контуры разветвленной системы, то долго она не протянет.К тому же работа будет сопровождаться громким шумом, а электрическая энергия будет потребляться в больших количествах.

Для решения этой задачи необходимо разбить всю гидросистему Не только по контурам конечного расхода, через коллектор, но и выделить отдельный котловой контур.

Как установить гидравлический

Именно для этого и предназначен гидроход, который устанавливается между котлом и коллектором.

Монтаж гидроустановок в системе отопления позволяет избавиться от завалов температурного давления.

Что такое гидравлический сепаратор и его устройство?

Гидроделлер представляет собой полый вертикальный сосуд, состоящий из труб большого диаметра (квадратного профиля) с эллиптическими заглушками на концах.

Размеры сепаратора обусловлены мощностью котла, зависят от количества и объема контуров.

Корпус из тяжелого металла устанавливается на опорных стойках, чтобы не создавать линейное напряжение на трубопроводе. Компактные устройства крепят к стене, размещайте их на кронштейнах.

Трубка емкостного гидравлического сепаратора и трубопровод отопления соединяются фланцами или резьбой.

Автоматический клапан пневмодорожки размещен в верхней части корпуса. Осадок избавляется от клапана либо с помощью специального клапана, который встраивается снизу.

Материал, из которого изготовлен гидроэлектрон, — низкоуглеродистая нержавеющая сталь, медь, полипропилен. Корпус обработан антикоррозийным составом, покрыт теплоизоляцией.

Устройство гидроаттели

Принцип действия

Теперь, когда мы знаем, зачем нужен обогрев, и разобрались с его конструкцией, можно переходить к особенностям его функционирования.

В процессе его работы выделяются три основных режима.

Схема гидросепаратора

Первый режим.

Система практически находится в равновесии. Расход «малого» контура котла практически не отличается от общей стоимости затрат всех контуров, подключенных к коллектору или непосредственно к гидросистеме.

Охлаждающая жидкость не задерживается в гидравлической силе, а проходит через нее горизонтально, практически не создавая вертикального движения.Температура теплоносителя на подающих патрубках (Т1 и Т2) одинакова. Естественно такая же ситуация и на форсунках, подключенных к «обратке» (Т3 и Т4). В этом режиме гидроэлектрон фактически никак не влияет на работу системы.

Но такое положение равновесия — чрезвычайно редкое событие, которое можно наблюдать только эпизодически, поскольку начальные параметры системы всегда имеют тенденцию к динамическому изменению.

В продаже есть модели коллекторов со встроенными гидравлическими сепараторами.Вы можете выбрать варианты для 2, 3, 4 или 5 контуров.

Второй режим.

В настоящее время случилось так, что общее потребление в контурах отопления превышает расход в контуре котла.

С такой ситуацией приходится довольно часто сталкиваться, когда все контуры, присоединенные к коллектору, в этот момент требуют максимального расхода теплоносителя. По словам Оллиарда — мгновенная потребность в теплоносителе превышала то, что могло быть выдано котловому контуру.Система не останавливается и не разбалансирована. Как раз в гидравлической силе поток коллектора в подающую трубу формируется сам собой. При этом горячий теплоноситель, циркулирующий по «малому» контуру, будет осуществляться в верхней части гидросепаратора. Температурный баланс: Т1> Т2, Т3 = Т4.

Коллектор с гидравлическим контуром на 3 контура позволяет безопасно и правильно подключать радиаторы, бойлер и теплые полы. Он самый популярный в своем сегменте.Наличие 4-х контуров позволяет дополнительно подключить калорифер в вентиляцию. Для подключения еще и резервного котла понадобится 5 контуров.
Режим 3.

Этот режим работы гидросепаратора, по сути, основной — в грамотно спланированной и правильно смонтированной системе отопления он станет преобладающим.

Расход теплоносителя в «малом» контуре превышает такой же суммарный показатель на коллекторе, или другими словами «спрос» на необходимый объем оказался ниже «предложения».Причин для этого может быть много: — терморегулирующая аппаратура на контурах уменьшилась или даже временно перестала поступать теплоноситель из питающего коллектора к теплообменным устройствам.

Температура в бойлере косвенного нагрева достигла максимума, а забора горячей воды давно не было — циркуляция через бойлер прекратилась. Отключены на время или на длительный период отдельные радиаторы или даже контуры (необходимость профилактики или ремонта, нет необходимости выносить временно неиспользуемые помещения и по другим причинам).Система отопления запитана ступенчато, с постепенным включением отдельных контуров.

Ни одна из перечисленных причин не повлияет отрицательно на общую работоспособность системы отопления. Избыточный объем вертикального нисходящего потока теплоносителя просто уйдет на «реверс» небольшого контура. Фактически котел будет обеспечивать несколько лишний объем, и каждый из контуров, подключенных к коллектору или непосредственно к гидросистеме, займет ровно столько, сколько требуется на данный момент.Температурный баланс при таком режиме работы: Т1 = Т2, Т3> Т4.

При установке гидрораспределителей в индивидуальных системах отопления чаще всего используют пластиковые модели, которые дешевле, и их устанавливают с использованием арматуры.

По сути, гидравлическое использование имеет один-единственный принцип действия, он представлен под номером три. Добиться идеального режима (представленного на первой схеме) невозможно, так как гидравлическое сопротивление ответвлений потребителей постоянно меняется из-за работы термостатов, и насосы не смогут подобрать так точно.По второй схеме действовать недопустимо, так как в этом случае большая часть теплоносителя будет уходить по кругу от потребителей.

В результате вы получите ПОНИЖЕННУЮ ТЕМПЕРАТУРУ в системе отопления, т.к. со стороны котла в гидросистеме она будет смешивать небольшое количество горячей воды. Для повышения температуры придется прибегнуть к выводу теплогенератора Максимальный режим, что негативно сказывается на стабильности работы системы в целом. Таким образом, остается третий вариант, при котором в коллекторы подается оптимальное количество воды нужной температуры.А уже за его опускание в контурах отвечают трехходовые клапаны. Основная функция гидросистемы в системе отопления — создание зоны с нулевым давлением, откуда возможность осуществлять подбор теплоносителя любому количеству потребителей.

Расчет гидролитрелки

Многие пользователи спрашивают: как рассчитать гидравлический нагрев? Так как устройства, которые есть в продаже, рассчитаны на определенную мощность системы обогрева.

Многие хотят самостоятельно изготовить прибор и тогда очень важно производить правильные и точные расчеты.

Представьте себе расчет в зависимости от мощности системы отопления.

Существует универсальная формула, описывающая зависимость расхода теплоносителя от общей потребности в тепловой энергии, теплоемкости теплоносителя и разности температур в подающих трубопроводах и «возвратах».

Формула для расчета расхода теплоносителя Q = W / (C × Δt)

Q — расход, л / ч;
Вт — Мощность системы отопления, кВт
С — тепловая мощность теплоносителя (для воды — 4.19 кДж / кг × ° C или 1,164 Вт × ч / кг × ° C или 1,16 кВт / м³ × ° C)
ΔT — разница температур на входе и «возврате», ° C.

При этом расход при движении по трубе жидкости равен: Q = S × V
S — площадь поперечного сечения трубы, м²;
В — расход, м / с.

S = Q / V = ​​W / (при × Δt × v)

Опытным путем доказано, что для оптимального перемешивания в гидросепараторе, качественного отделения воздуха и попадания в осадок шлама скорость в нем должна быть не выше 0.1 — 0,2 м / с.

Так как единица измерения выбрана час, то умножаем на 3600 секунд. Получается 360 — 720 м / ч.

Можно взять среднее значение — 540 м / ч.

Если расчет производится на воду, можно сразу ввести несколько исходных значений для упрощения формулы:
S = W / (1,16 × ΔT × 540) = w / (626 × Δt).

Определив сечение, по формуле Квадрат Круг легко определить искомый диаметр:
D = √ (4 × s / π) = 2 × √ (s / π).

Подставляем значения:
D = 2 × √ (w / (626 × Δt × π)) = 2 × √ (w / (1966 × Δt)) = 2 × 0,02255 × √ (w / Δt) = 0,0451 × √ (Вт / Δt).

Так как значение будет получено в метрах, что не совсем удобно, можно сразу перевести его в миллиметры, умножив на 1000.

В итоге формула примет такой вид:
D = 45,1 √ (Вт / ΔT) — для расхода в гидросистеме 0,15 м / с.

Определив диаметр гидросистемы, легко рассчитать и диаметры входных и выходных патрубков.

Таким образом, отопительная гидросистема решает важные задачи. При необходимости его необходимо смонтировать.

% PDF-1.3 % 119 0 объект > эндобдж xref 119 88 0000000016 00000 н. 0000002129 00000 н. 0000002295 00000 н. 0000002438 00000 н. 0000003223 00000 н. 0000003614 00000 н. 0000003698 00000 н. 0000003782 00000 н. 0000003879 00000 п. 0000003992 00000 н. 0000004062 00000 н. 0000004179 00000 н. 0000004250 00000 н. 0000004367 00000 н. 0000004439 00000 н. 0000004572 00000 н. 0000004643 00000 п. 0000004771 00000 п. 0000004842 00000 н. 0000004963 00000 н. 0000005034 00000 н. 0000005147 00000 н. 0000005218 00000 п. 0000005342 00000 п. 0000005413 00000 н. 0000005522 00000 н. 0000005593 00000 н. 0000005751 00000 п. 0000005806 00000 н. 0000005916 00000 н. 0000005987 00000 н. 0000006086 00000 н. 0000006180 00000 н. 0000006235 00000 н. 0000006337 00000 н. 0000006392 00000 н. 0000006539 00000 н. 0000006610 00000 н. 0000006681 00000 п. 0000006858 00000 н. 0000006929 00000 п. 0000007047 00000 н. 0000007101 00000 п. 0000007187 00000 н. 0000007273 00000 н. 0000007374 00000 н. 0000007445 00000 н. 0000007547 00000 н. 0000007618 00000 н. 0000007673 00000 н. 0000007774 00000 н. 0000007845 00000 н. 0000007916 00000 п. 0000008028 00000 н. 0000008099 00000 н. 0000008169 00000 н. 0000008225 00000 н. 0000008330 00000 н. 0000008440 00000 н. 0000008463 00000 н. 0000018469 00000 п. 0000018492 00000 п. 0000025919 00000 п. 0000025942 00000 п. 0000034100 00000 п. 0000034123 00000 п. 0000041384 00000 п. 0000041407 00000 п. 0000048513 00000 п. 0000048536 00000 п. 0000056591 00000 п. 0000056834 00000 п. 0000058070 00000 п. 0000058093 00000 п. 0000066679 00000 п. 0000066702 00000 п. 0000076306 00000 п. 0000076328 00000 п. 0000077415 00000 п. 0000077494 00000 п. 0000077516 00000 п. 0000078588 00000 п. 0000078643 00000 п. 0000078666 00000 п. 0000082314 00000 п. 0000082386 00000 п. 0000002494 00000 н. 0000003201 00000 н. трейлер ] >> startxref 0 %% EOF 120 0 объект > / Контуры 124 0 R >> эндобдж 121 0 объект ; $ D =% p7 $% k% \ rr) / U (= ~ a \ (~ P ۤ l: F:> \ nh |.AEl \ 2 {u ݺ 2 tgp wf ‘, A +, qr {Z! U; 1 # M? 5T BR:>! P! T_RiNNb

Справка по тесту: поток жидкости | EZ-pdh.com

Используйте поиск, чтобы быстро найти ответы на вопросы — откройте окно поиска (ctrl + f), затем введите ключевое слово из вопроса, чтобы перейти к этим терминам в материалах курса

Введение

Поток жидкости — важная часть большинства промышленных процессов; особенно те, которые связаны с передачей тепла. Часто, когда требуется отвести тепло из точки, в которой оно генерируется, в процессе теплопередачи участвует какой-либо тип жидкости.Примерами этого являются охлаждающая вода, циркулирующая через бензиновый или дизельный двигатель, поток воздуха, проходящий через обмотки двигателя, и поток воды через активную зону ядерного реактора. Системы подачи жидкости также обычно используются для смазки.

Течение жидкости в ядерной области может быть сложным и не всегда подлежит строгому математическому анализу. В отличие от твердых тел, частицы жидкости движутся по трубопроводу и компонентам с разной скоростью и часто подвергаются разным ускорениям.

Несмотря на то, что подробный анализ потока жидкости может быть чрезвычайно трудным, основные концепции, связанные с проблемами потока жидкости, довольно просты. Эти базовые концепции могут быть применены при решении проблем потока жидкости путем использования упрощающих допущений и средних значений, где это необходимо. Несмотря на то, что такого типа анализа было бы недостаточно при инженерном проектировании систем, он очень полезен для понимания работы систем и прогнозирования приблизительной реакции жидкостных систем на изменения рабочих параметров.

Основные принципы потока жидкости включают три концепции или принципа; первые два из которых студент изучал в предыдущих руководствах. Первый — это принцип количества движения (приводящий к уравнениям сил жидкости), который был рассмотрен в руководстве по классической физике. Второй — это сохранение энергии (ведущее к первому закону термодинамики), которое изучалось в термодинамике. Третий — это сохранение массы (приводящее к уравнению неразрывности), которое будет объяснено в этом модуле.

Свойства жидкостей

Жидкость — это любое вещество, которое течет, потому что его частицы не прикреплены друг к другу жестко. Сюда входят жидкости, газы и даже некоторые материалы, которые обычно считаются твердыми телами, например стекло. По сути, жидкости — это материалы, которые не имеют повторяющейся кристаллической структуры.

Некоторые свойства жидкостей обсуждались в разделе «Термодинамика» этого текста. К ним относятся температура, давление, масса, удельный объем и плотность. Температура была определена как относительная мера того, насколько горячий или холодный материал. Его можно использовать для прогнозирования направления передачи тепла. Давление было определено как сила на единицу площади. Обычными единицами измерения давления являются фунты силы на квадратный дюйм (psi). Масса определяется как количество вещества, содержащегося в теле, и его следует отличать от веса, который измеряется силой тяжести на теле. Удельный объем вещества — это объем на единицу массы вещества.Типичные единицы: футы 3 / фунт. Плотность — это масса вещества на единицу объема. Типичные единицы — фунт / фут 3 . Плотность и удельный объем противоположны друг другу. И плотность, и удельный объем зависят от температуры и в некоторой степени от давления жидкости. По мере увеличения температуры жидкости плотность уменьшается, а удельный объем увеличивается. Поскольку жидкости считаются несжимаемыми, увеличение давления не приведет к изменению плотности или удельного объема жидкости.На самом деле жидкости можно слегка сжимать при высоких давлениях, что приводит к небольшому увеличению плотности и небольшому уменьшению удельного объема жидкости.

Плавучесть

Плавучесть определяется как тенденция тела плавать или подниматься при погружении в жидкость. У всех нас было множество возможностей наблюдать плавучие эффекты жидкости. Когда мы идем плавать, наши тела почти полностью поддерживаются водой. Дерево, лед и пробка плавают на воде.Когда мы поднимаем камень с русла ручья, он внезапно кажется тяжелее, выходя из воды. Лодки полагаются на эту плавучую силу, чтобы оставаться на плаву. Величина этого плавучего эффекта была впервые вычислена и указана греческим философом Архимедом. Когда тело помещается в жидкость, оно поддерживается силой, равной весу вытесняемой им воды.

Если тело весит больше, чем жидкость, которую оно вытесняет, оно тонет, но будет казаться, что теряет вес, равный весу вытесненной жидкости, как наша скала.Если тело весит меньше, чем вес вытесненной жидкости, тело поднимется на поверхность, в конце концов, плавая на такой глубине, которая вытеснит объем жидкости, вес которой будет равен его собственному весу. Плавающее тело вытесняет под собственным весом жидкость, в которой оно плавает.

Сжимаемость

Сжимаемость — это мера изменения объема, которому подвергается вещество, когда на вещество оказывается давление. Жидкости обычно считаются несжимаемыми.Например, давление 16 400 фунтов на квадратный дюйм приведет к уменьшению данного объема воды всего на 5% от его объема при атмосферном давлении. С другой стороны, газы очень сжимаются. Объем газа можно легко изменить, оказав на газ внешнее давление.

Взаимосвязь между глубиной и давлением

Любой, кто ныряет под поверхность воды, замечает, что давление на его барабанные перепонки даже на глубине несколько футов заметно больше атмосферного давления.Тщательные измерения показывают, что давление жидкости прямо пропорционально глубине, и для данной глубины жидкость оказывает одинаковое давление во всех направлениях.

Рисунок 1: Давление в зависимости от глубины

Как показано на Рисунке 1, давление на разных уровнях в резервуаре меняется, и это заставляет жидкость покидать резервуар с разными скоростями. Давление определялось как сила на единицу площади. В случае этого резервуара сила обусловлена ​​весом воды выше точки, в которой определяется давление.

Давление = Сила / Площадь

= Вес / Площадь

P = (мг) / (A g c )

= (ρ V g) / (A g c )

Где:

m = масса в фунтах / м

g = ускорение свободного падения 32,17 фут / сек 2

g c = 32 фунт-фут / фунт-сила-сек 2

A = площадь в футах 2

V = объем в футах 3

ρ = плотность жидкости в фунтах / футах 3

Объем равен площади поперечного сечения, умноженной на высоту (h) жидкости.Подставляя это в приведенное выше уравнение, получаем:

P = (ρ A hg) / (A g c )

P = (ρ hg) / (g c )

Это уравнение говорит нам, что давление оказываемое водяным столбом прямо пропорционально высоте столба и плотности воды и не зависит от площади поперечного сечения столба. Давление на тридцать футов ниже поверхности стояка диаметром один дюйм такое же, как давление на тридцать футов ниже поверхности большого озера.

Пример 1:

Если резервуар на Рисунке 1 заполнен водой с плотностью 62,4 фунта / фут3, рассчитайте давление на глубинах 10, 20 и 30 футов.

Решение:

P = (ρhg) / g c

P 10 футов = (62,4 фунт / фут 3 ) (1 фут) (32,17 фут / с 2 / (32,17 фунт-м- фут / фунт-сила / дюйм 2 )

= 624 фунт-сила / фут 2 (1 фут 2 /144 дюйм 2 )

= 4,33 фунта-силы / дюйм 2

P 20 = ( 624 фунт / фут 3 ) (20 футов) (32.17 фут / сек 2 /( 32,17 фунт-фут / фунт-сила-сек 2 )

= 1248 фунт-сила / фут 2 (1 фут 2 /144 дюйм 2 )

= 8,67 фунт-фут / дюйм

P 30 футов = (62,4 фунт / фут3) (30 футов) (32,17 фут / сек 2 / 32,17 фунт-фут / фунт-сила-сек 2 )

= 1872 фунт-сила / фут 2 (1 футов 2 /144 дюйм 2 )

= 13,00 фунт-сила / дюйм 2

Пример 2:

Цилиндрический резервуар для воды высотой 40 футов и диаметром 20 футов заполнен водой с плотностью из 61.9 фунт / фут 3 .

(а) Какое давление воды на дне резервуара?

(b) Какая средняя сила действует на дно?

Решение:

(a) P = (phg) / g c

P = (61,9 фунт / фут 3 ) (40 футов) (32,17 фут / сек 2 / 32,17 фунт-фут / фунт-сила-сек 2 )

= 2476 фунт-сила / фут 2 (1 фут 2 /144 дюйм 2 )

= 17,2 фунт-сила / дюйм 2

(b) Давление = сила / площадь

Сила = (Давление) (Площадь)

Площадь = πr 2

F = (17.2 фунта-силы / дюйм 2 ) π (10 футов) 2 (144 дюйма 2 /1 фут 2 )

= 7,78 x 10 5 фунт-сила

Закон Паскаля

Давление жидкостей в каждом из ранее упомянутых случаев было связано с весом жидкости. Давление жидкости также может быть результатом приложения внешних сил к жидкости. Рассмотрим следующие примеры. На рисунке 2 изображен контейнер, полностью заполненный жидкостью. A, B, C, D и E представляют собой поршни одинаковой площади поперечного сечения, вставленные в стенки резервуара.На поршни C, D и E будут действовать силы из-за давления, вызванного разной глубиной жидкости. Предположим, что силы, действующие на поршни из-за давления, вызванного весом жидкости, следующие: A = 0 фунтов-силы, B = 0 фунтов-силы, C = 10 фунтов-силы, D = 30 фунтов-силы и E = 25 фунтов-силы. Теперь позвольте приложить к поршню А внешнюю силу в 50 фунтов-силы. Эта внешняя сила вызовет повышение давления во всех точках контейнера на такую ​​же величину. Поскольку все поршни имеют одинаковую площадь поперечного сечения, увеличение давления приведет к тому, что силы, действующие на поршни, увеличатся на 50 фунтов-силы.Таким образом, если к поршню A приложена внешняя сила в 50 фунтов-силы, сила, оказываемая жидкостью на другие поршни, теперь будет следующей: B = 50 фунтов-силы, C = 60 фунтов-силы, D = 80 фунтов-силы и E = 75 фунтов-силы. . »

Этот эффект внешней силы на замкнутый флюид был впервые заявлен Паскалем в 1653 году.

Давление, приложенное к замкнутому флюиду, передается в неизменном виде через ограничивающий сосуд системы.

Рис. 2: Закон Паскаля

Контрольный объем

В термодинамике контрольный объем был определен как фиксированная область в пространстве, где изучаются массы и энергии, пересекающие границы области.Эта концепция контрольного объема также очень полезна при анализе проблем с потоком жидкости. Граница контрольного объема для потока жидкости обычно принимается за физическую границу части, через которую протекает поток. Концепция контрольного объема используется в приложениях гидродинамики с использованием принципов непрерывности, импульса и энергии, упомянутых в начале этой главы. После того, как контрольный объем и его граница установлены, различные формы энергии, пересекающие границу с жидкостью, могут быть рассмотрены в форме уравнения для решения проблемы жидкости.Поскольку в задачах потока жидкости обычно рассматривается жидкость, пересекающая границы контрольного объема, подход с контрольным объемом называется «открытым» системным анализом, который аналогичен концепциям, изучаемым в термодинамике. В ядерной области есть особые случаи, когда жидкость не пересекает контрольную границу. Подобные случаи изучаются с использованием «закрытого» системного подхода.

Независимо от природы потока, все ситуации, связанные с потоком, подчиняются установленным основным законам природы, которые инженеры выразили в форме уравнений.Сохранение массы и сохранение энергии всегда выполняются в задачах с жидкостью, наряду с законами движения Ньютона. Кроме того, каждая задача будет иметь физические ограничения, называемые математически граничными условиями, которые должны быть выполнены, прежде чем решение проблемы будет согласовано с физическими результатами.

Объемный расход

Объемный расход расход расход (V˙) системы — это мера объема жидкости, проходящей через точку в системе за единицу времени.Объемный расход можно рассчитать как произведение площади поперечного сечения (A) потока и средней скорости потока (v).

V˙ = A v (3-1)

Если площадь измеряется в квадратных футах, а скорость — в футах в секунду, уравнение 3-1 приводит к объемному расходу, измеренному в кубических футах в секунду. Другие распространенные единицы объемного расхода включают галлоны в минуту, кубические сантиметры в секунду, литры в минуту и ​​галлоны в час.

Пример:

Труба с внутренним диаметром 4 дюйма содержит воду, которая течет со средней скоростью 14 футов в секунду.Рассчитайте объемный расход воды в трубе.

Решение:

Используйте уравнение 3-1 и замените площадь.

V˙ = (π r 2) v

V˙ = (3,14) (2/12 фута) 2 (14 футов / сек)

V˙ = 1,22 фута 3 / сек

Масса Расход

Массовый расход (м²) системы — это мера массы жидкости, проходящей через точку в системе за единицу времени. Массовый расход связан с объемным расходом, как показано в уравнении 3-2, где ρ — плотность жидкости.

m˙ = ρV˙ (3-2)

Если объемный расход выражен в кубических футах в секунду, а плотность выражена в фунтах массы на кубический фут, уравнение 3-2 приводит к массовому расходу, измеренному в фунтах: масса в секунду. Другие распространенные единицы измерения массового расхода включают килограммы в секунду и фунты массы в час.

Замена V˙ в уравнении 3-2 соответствующими членами из уравнения 3-1 позволяет напрямую рассчитать массовый расход.

m˙ = ρ A v (3-3)

Пример:

Вода в трубе из предыдущего примера имела плотность 62.44 фунт / фут3. Рассчитайте массовый расход.

Решение:

м˙ = ρ V˙

м˙ = (62,44 фунт / фут 3 ) (1,22 фута 3 / сек)

м˙ = 76,2 фунт / сек

Сохранение массы

Из термодинамики вы узнали, что энергию нельзя ни создать, ни уничтожить, а только изменить ее форму. То же самое и с массой. Сохранение массы — это инженерный принцип, который гласит, что все массовые расходы в контрольном объеме равны всем массовым расходам из контрольного объема плюс скорость изменения массы в контрольном объеме.Математически этот принцип выражается уравнением 3-4.

in = m˙ out + ∆m / ∆t (3-4)

где:

∆m / ∆t = увеличение или уменьшение массы в пределах контрольного объема за ( заданный период времени)

Устойчивый поток

Устойчивый поток относится к состоянию, при котором свойства жидкости в любой отдельной точке системы не меняются с течением времени. Эти свойства жидкости включают температуру, давление и скорость.Одним из наиболее важных свойств, которое является постоянным в системе с установившимся потоком, является массовый расход системы. Это означает, что в каком-либо компоненте системы не происходит накопления массы.

Уравнение неразрывности

Уравнение неразрывности — это просто математическое выражение принципа сохранения массы. Для контрольного объема с одним входом и одним выходом принцип сохранения массы гласит, что для установившегося потока массовый расход в объеме должен равняться массовому расходу на выходе.Уравнение неразрывности для этой ситуации выражается уравнением 3-5.

м˙

вход = м˙ выход (3-5)

(ρAv) вход = (ρAv) выход

Для контрольного объема с несколькими входами и выходами принцип сохранения масса требует, чтобы сумма массовых расходов в контрольном объеме была равна сумме массовых расходов из контрольного объема. Уравнение неразрывности для этой более общей ситуации выражается уравнением 3-6.

∑ м˙

входов = м˙ выходов (3-6)

Одним из простейших приложений уравнения неразрывности является определение изменения скорости жидкости
из-за расширения или сжатия диаметра трубка.

Пример: уравнение непрерывности — расширение трубопровода

Установившийся поток существует в трубе, которая постепенно расширяется с диаметра 6 дюймов до диаметра 8 дюймов. Плотность жидкости в трубе постоянна и равна 60 .8 фунт / фут3. Если скорость потока составляет 22,4 фута / сек в секции 6 дюймов, какова скорость потока в секции 8 дюймов?

Решение:

Из уравнения неразрывности мы знаем, что массовый расход в секции 6 дюймов должен равняться массовому расходу в секции 8 дюймов. Пусть нижний индекс 1 представляет 6-дюймовую секцию, а 2 — 8-дюймовую секцию, мы получим следующее.

1 = m˙ 2

ρ 1 A 1 v 1 = ρ 2 A 2 v 2

v 2 = v 1/ ρ 2 ) (A 1 / A 2 )

v 2 = v 1 / r 1 2 ) (π / r 2 2 )

v 2 = (22.4 фута / сек) [(3 дюйма) 2 / (4 дюйма) 2 ]

v 2 = 12,6 фута / сек

Таким образом, используя уравнение неразрывности, мы увеличиваем диаметр трубы от От 6 до 8 дюймов скорость потока снизилась с 22,4 до 12,6 футов / сек.

Уравнение неразрывности также можно использовать, чтобы показать, что уменьшение диаметра трубы приведет к увеличению скорости потока.

Пример: уравнение непрерывности — центробежный насос Рисунок 3: Уравнение непрерывности

Входной диаметр насоса охлаждающей жидкости реактора, показанный на рисунке 3, составляет 28 дюймов.в то время как поток на выходе через насос составляет 9200 фунтов / м3. Плотность воды составляет 49 фунт / фут3. Какая скорость на входе в насос?

Решение:

Вход = πr 2 = (3,13) (14 дюймов ((1 фут / 12 дюймов)) 2

= 4,28 фута 2

м˙ вход = м ˙ на выходе = 9200 фунтов / с

(ρAv) на входе = 9200 фунтов / с

на входе = 9200 фунтов / с / Aρ

= (9200 фунтов / с) / [(4.28 футов 2) (49 фунтов / фут 3 )]

v на входе = 43,9 футов / сек

Приведенный выше пример показывает, что скорость потока в систему такая же, как и вне системы. Та же самая концепция верна, даже если более одного пути потока могут входить или выходить из системы одновременно. Баланс массы просто настраивается так, чтобы указать, что сумма всех потоков, входящих в систему, равна сумме всех потоков, покидающих систему, если существуют установившиеся условия. Пример этого физического случая включен в следующий пример.

Пример: уравнение непрерывности — несколько выходов Рисунок 4: Y-образная конфигурация для примера задачи

Трубопроводная система имеет Y-образную конфигурацию для разделения потока, как показано на рисунке 4. Диаметр входной ветви составляет 12 дюймов, а диаметры выпускных колен составляют 8 и 10 дюймов. Скорость в 10-дюймовых опорах составляет 10 футов / сек. Поток через основную часть составляет 500 фунтов / м3. Плотность воды 62,4 фунта / фут3. Какова скорость на участке трубы диаметром 8 дюймов?

Решение:

A 8 = π [4 дюйм.(1 фут / 12 дюймов)] 2

= 0,349 фута 2

A 10 = π [5 дюймов (1 фут / 12 дюймов)] 2

= 0,545 фута 2

Σm˙ входов = Σm˙ выходов

м˙ 12 = m˙ 10 + m˙ 8

м˙ 8 = m˙ 10638 12 — m˙

(ρAv) 8 = м˙ 12 — (ρAv) 10

v 8 = (m˙ 12 — (ρAv) 10 ) / (ρA) 8

= [(500 фунт / сек) — (62.4 фунта / фут3) (0,545 фут2) (10 фут / сек)] / (62,4 фунта / фут3) (0,349 фут 2 )

v 8 = 7,3 фут / сек

Основные положения данной главы кратко изложены на следующей странице.

  • Изменения плотности жидкости обратно пропорциональны изменениям температуры.
  • Плавучесть — это тенденция тела плавать или подниматься при погружении в жидкость.
  • Давление , оказываемое водяным столбом, прямо пропорционально высоте столба и плотности воды.

P = ρ h г / г c

  • Закон Паскаля гласит, что давление, приложенное к замкнутой жидкости, передается в неизменном виде по замкнутому резервуару системы.
  • Объемный расход — это объем жидкости в единицу времени, проходящий через точку в жидкостной системе.
  • Массовый расход — это масса жидкости в единицу времени, проходящую через точку в жидкостной системе.
  • Объемный расход рассчитывается как произведение средней скорости жидкости и площади поперечного сечения потока.

V˙ = A v

  • Массовый расход рассчитывается как произведение объемного расхода и плотности жидкости.

m˙ = ρ A v

  • Принцип сохранения массы гласит, что все массовые расходы в контрольном объеме равны всем массовым расходам из контрольного объема плюс скорость изменения масса в контрольном объеме.
  • Для контрольного объема с одним входом и выходом уравнение неразрывности может быть выражено следующим образом:

м˙ на входе = м˙ на выходе

  • Для контрольного объема с несколькими входами и выходов уравнение непрерывности:

m входов = m выходов

Режимы потока

Весь поток жидкости классифицируется по одной из двух широких категорий или режимов.Эти два режима потока — ламинарный поток и турбулентный поток. Режим потока, будь то ламинарный или турбулентный, важен при проектировании и работе любой жидкостной системы. Величина гидравлического трения, которая определяет количество энергии, необходимое для поддержания желаемого потока, зависит от режима потока. Это также является важным соображением в некоторых приложениях, связанных с передачей тепла жидкости.

Ламинарный поток

Ламинарный поток также называют обтекаемым или вязким потоком.Эти термины описывают поток, потому что в ламинарном потоке (1) слои воды текут друг над другом с разными скоростями практически без перемешивания между слоями, (2) частицы жидкости движутся по определенным и наблюдаемым траекториям или линиям тока и (3) ) течение характерно для вязкой (густой) жидкости или является потоком, в котором вязкость жидкости играет значительную роль.

Турбулентный поток

Турбулентный поток характеризуется неравномерным движением частиц жидкости. Нет определенной частоты, как в волновом движении.Частицы движутся по неправильной траектории, без видимого рисунка и определенных слоев.

Профили скорости потока

Не все частицы жидкости движутся по трубе с одинаковой скоростью. Форма кривой скорости (профиль скорости на любом заданном участке трубы) зависит от того, является ли поток ламинарным или турбулентным. Если поток в трубе ламинарный, распределение скорости в поперечном сечении будет параболическим по форме с максимальной скоростью в центре, примерно вдвое превышающей среднюю скорость в трубе.В турбулентном потоке существует довольно равномерное распределение скорости по сечению трубы, в результате чего вся жидкость течет с заданным единственным значением. Рисунок 5 помогает проиллюстрировать приведенные выше идеи. Скорость жидкости, контактирующей со стенкой трубы, по существу равна нулю и увеличивается по мере удаления от стенки.

Рисунок 5: Профили скорости ламинарного и турбулентного потока

Обратите внимание на рисунок 5, что профиль скорости зависит от состояния поверхности стенки трубы. Более гладкая стенка дает более равномерный профиль скорости, чем грубая стенка трубы.

Средняя (объемная) скорость

Во многих задачах потока жидкости вместо определения точных скоростей в разных местах в одном и том же поперечном сечении потока достаточно позволить одной средней скорости представлять скорость всей жидкости в этой точке в трубе. Это довольно просто для турбулентного потока, поскольку профиль скорости плоский по большей части поперечного сечения трубы. Разумно предположить, что средняя скорость равна скорости в центре трубы.

Если режим потока ламинарный (профиль скорости параболический), все еще существует проблема попытки представить «среднюю» скорость в любом заданном поперечном сечении, поскольку среднее значение используется в уравнениях потока жидкости. Технически это делается с помощью интегрального исчисления. На практике ученик должен использовать среднее значение, равное половине значения средней линии.

Вязкость

Вязкость — это свойство жидкости, которое измеряет сопротивление жидкости деформации из-за силы сдвига.Вязкость — это внутреннее трение жидкости, которое заставляет ее сопротивляться протеканию мимо твердой поверхности или других слоев жидкости. Вязкость также можно рассматривать как меру сопротивления жидкости течению. Густое масло имеет высокую вязкость; вода имеет низкую вязкость. Единица измерения абсолютной вязкости:

µ = абсолютная вязкость жидкости (фунт-сила-сек / фут2).

Вязкость жидкости обычно существенно зависит от температуры жидкости и относительно не зависит от давления.Для большинства жидкостей, когда температура жидкости увеличивается, вязкость жидкости уменьшается. Пример этого можно увидеть в смазочном масле двигателей. Когда двигатель и его смазочное масло холодные, масло очень вязкое или густое. После запуска двигателя и повышения температуры смазочного масла вязкость масла значительно снижается, и масло кажется намного более жидким.

Идеальная жидкость

Идеальная жидкость — это несжимаемая жидкость без вязкости.Идеальных жидкостей на самом деле не существует, но иногда полезно рассмотреть, что случилось бы с идеальной жидкостью в конкретной задаче потока жидкости, чтобы упростить задачу.

Число Рейнольдса

Режим потока (ламинарный или турбулентный) определяется путем оценки числа Рейнольдса потока (см. Рисунок 5). Число Рейнольдса, основанное на исследованиях Осборна Рейнольдса, представляет собой безразмерное число, состоящее из физических характеристик потока. Уравнение 3-7 используется для расчета числа Рейнольдса (N R ) для потока жидкости.

N

R = PvD / мкг c (3-7)

где:

N R = число Рейнольдса (без единицы измерения)

v = средняя скорость (фут / сек)

D = диаметр трубы (футы)

µ = абсолютная вязкость жидкости (фунт-сила-сек / фут2)

ρ = массовая плотность жидкости (фунт / фут3)

г c = гравитационная постоянная (32,2 фут-фунт-сила / фунт-сила-сек2) )

Для практических целей, если число Рейнольдса меньше 2000, поток является ламинарным.Если оно больше 3500, поток турбулентный. Потоки с числами Рейнольдса от 2000 до 3500 иногда называют переходными. Большинство жидкостных систем на ядерных установках работают с турбулентным потоком. Числа Рейнольдса можно удобно определить с помощью диаграммы Moody Chart; пример которого приведен в Приложении B. Дополнительные сведения об использовании диаграммы Moody Chart представлены в последующем тексте.

Основные положения этой главы кратко изложены ниже.

• Ламинарный поток Слои воды текут друг над другом с разной скоростью, практически без перемешивания между слоями.Профиль скорости потока для ламинарного потока в круглых трубах имеет параболическую форму с максимальным потоком в центре трубы и минимальным потоком на стенках трубы. Средняя скорость потока составляет примерно половину максимальной скорости.

• Турбулентный поток Поток характеризуется неравномерным движением частиц жидкости. Профиль скорости турбулентного потока довольно плоский в центральной части трубы и быстро падает очень близко к стенкам.Средняя скорость потока примерно равна скорости в центре трубы.

• Вязкость — это свойство жидкости, которое измеряет сопротивление жидкости деформации из-за силы сдвига. Для большинства жидкостей температура и вязкость обратно пропорциональны.

• Идеальная жидкость — это несжимаемая жидкость без вязкости.

• Увеличение числа Рейнольдса указывает на усиление турбулентности потока.

Общее уравнение энергии

Принцип сохранения энергии гласит, что энергия не может быть ни создана, ни разрушена.Это эквивалентно Первому закону термодинамики, который использовался для разработки общего уравнения энергии в модуле по термодинамике. Уравнение 3-8 представляет собой формулировку общего уравнения энергии для открытой системы.

Q + (U + PE + KE + PV) в =

W + (U + PE + KE + PV)

из + (U + PE + KE + PV) сохранено (3-8 )

где:

Q = тепло (британские тепловые единицы)

U = внутренняя энергия (британские тепловые единицы)

PE = потенциальная энергия (фут-фунт-сила)

KE = кинетическая энергия (фут-фунт-сила)

P = давление ( фунт-сила / фут 2 )

V = объем (фут 3 )

W = работа (фут-фунт-сила)

Упрощенное уравнение Бернулли

Уравнение Бернулли является результатом применения общего уравнения энергии и первого закона термодинамики к системе с установившимся потоком, в которой никакая работа не выполняется с жидкостью или ею, тепло не передается к или от жидкости, и не происходит никаких изменений во внутренней энергии (т.е., без изменения температуры) жидкости. В этих условиях общее уравнение энергии упрощается до уравнения 3-9.

(PE + KE + PV)

1 = (PE + KE + PV) 2 (3-9)

Подставив соответствующие выражения для потенциальной энергии и кинетической энергии, уравнение 3-9 можно переписать как Equation 3-10.

mgz

1/ g c + mv 1 2/ 2g c + P 1 V 1 = mgz 2/ 2/ mv 2 2/ 2g c + P 2 V 2 (3-10)

где:

m = масса (фунт / м)

z = высота над ссылка (фут)

v = средняя скорость (фут / сек)

g = ускорение свободного падения (32.17 фут / сек 2 )

gc = гравитационная постоянная, (32,17 фут-фунт / фунт-сила-сек 2 )

Примечание: коэффициент g c требуется только при использовании английской системы измерения и Масса измеряется в фунтах массы. По сути, это коэффициент преобразования, необходимый для непосредственного вывода единиц измерения. Нет необходимости в множителе, если масса измеряется в пробках или если используется метрическая система измерения.

Каждый член в уравнении 3-10 представляет форму энергии, которой обладает движущаяся жидкость (потенциальная, кинетическая энергия и энергия, связанная с давлением).По сути, уравнение физически представляет собой баланс энергий KE, PE, PV, так что если одна форма энергии увеличивается, одна или несколько других уменьшаются, чтобы компенсировать, и наоборот.

Умножение всех членов в уравнении 3-10 на коэффициент gc / mg дает форму уравнения Бернулли, показанного уравнением 3-11.

z

1 + v 1 2 / 2g + P 1 ν 1 g c / g = z 2 + v 2 2 / 2g + P 2 ν 2 г c / г (3-11)

Напор

Поскольку единицы для всех различных форм энергии в уравнении 3-11 измеряются в единицах расстояния, эти термины иногда называют «Напоры» (напор, напор и напор).Термин «напор» используется инженерами применительно к давлению. Это ссылка на высоту, обычно в футах, водяного столба, который будет выдерживать данное давление. Каждую из энергий, которыми обладает жидкость, можно выразить через голову. Высота напора представляет потенциальную энергию жидкости из-за ее возвышения над контрольным уровнем. Скоростной напор представляет собой кинетическую энергию жидкости. Это высота в футах, на которую текущая жидкость поднялась бы в столбе, если бы вся ее кинетическая энергия была преобразована в потенциальную.Напор представляет собой энергию потока столба жидкости, вес которой эквивалентен давлению жидкости.

Сумма подъемного напора, скоростного напора и напора жидкости называется общим напором. Таким образом, уравнение Бернулли утверждает, что общий напор жидкости постоянен.

Преобразование энергии в жидкостных системах

Уравнение Бернулли позволяет легко исследовать, как происходит передача энергии между напором подъема, напором скорости и напором.Можно исследовать отдельные компоненты трубопроводных систем и определить, какие свойства жидкости изменяются и как это влияет на энергетический баланс.

Если труба, содержащая идеальную жидкость, подвергается постепенному расширению в диаметре, уравнение неразрывности говорит нам, что по мере увеличения диаметра и площади проходного сечения скорость потока должна уменьшаться, чтобы поддерживать тот же массовый расход. Поскольку скорость на выходе меньше скорости на входе, скоростной напор потока должен уменьшаться от входа к выходу.Если труба лежит горизонтально, напор не меняется; следовательно, уменьшение скоростного напора должно быть компенсировано увеличением напора. Поскольку мы рассматриваем идеальную несжимаемую жидкость, удельный объем жидкости не изменится. Единственный способ увеличения напора несжимаемой жидкости — это увеличение давления. Таким образом, уравнение Бернулли показывает, что уменьшение скорости потока в горизонтальной трубе приведет к увеличению давления.

Если труба постоянного диаметра, содержащая идеальную жидкость, подвергается уменьшению отметки, результат будет таким же, но по разным причинам. В этом случае скорость потока и скоростной напор должны быть постоянными, чтобы удовлетворять уравнению неразрывности массы.

Таким образом, уменьшение напора можно компенсировать только увеличением напора. Опять же, жидкость несжимаема, поэтому увеличение напора должно приводить к увеличению давления.

Несмотря на то, что уравнение Бернулли имеет несколько ограничений, существует множество задач с физической жидкостью, к которым оно применяется.Как и в случае сохранения массы, уравнение Бернулли может применяться к задачам, в которых более одного потока могут одновременно входить в систему или выходить из нее. Особо следует отметить тот факт, что задачи последовательной и параллельной системы трубопроводов решаются с помощью уравнения Бернулли.

Пример: уравнение Бернулли

Предположим, что поток без трения в длинной горизонтальной конической трубе. Диаметр составляет 2,0 фута на одном конце и 4,0 фута на другом. Напор на меньшем конце составляет 16 футов водяного столба.Если вода течет через этот конус со скоростью 125,6 фут3 / сек, найдите скорости на двух концах и напор на большем конце.

Решение:

1 = A 1 v 1

v 1 = 1 / A 1 v 2 = V 2 / A 2

v 1 = 125.6 футов 3 / сек / π (1 фут) 2 v 2 = 125,6 футов 3 / сек / π (2 фута) 2

v 1 = 40 футов / с v 2 = 10 футов / с

z 1 + v 1 2 / 2g + P 1 ν 1 g c / g = z 2 + v 2 2 / 2g + P 2 ν 2 g c / g

P 2 ν 2 g c / g = P 1 ν 1 g c / g + (z 1 — z 2 ) + (v 1 2 — v 2 2 ) / 2g

= 16 футов + 0 футов + [(40 футов / сек) 2 — (10 футов / сек) 2 /2 (32.17 фут-фунт-сила / фунт-сила — сек 2 )]

= 39,3 фута

Ограничения упрощенного уравнения Бернулли

Практическое применение упрощенного уравнения Бернулли к реальным трубопроводным системам невозможно из-за двух ограничений. Одно серьезное ограничение уравнения Бернулли в его нынешней форме состоит в том, что трение жидкости недопустимо при решении проблем трубопроводов. Следовательно, уравнение 3-10 применимо только к идеальным жидкостям. Однако в действительности общий напор жидкости не может быть полностью перенесен из одной точки в другую из-за трения.Учет этих потерь напора даст гораздо более точное описание того, что происходит физически. Это особенно верно, потому что одна из задач насоса в гидравлической системе — преодоление потерь давления из-за трения трубы.

Второе ограничение в уравнении Бернулли состоит в том, что нельзя выполнять какую-либо работу с жидкостью или с ней. Это ограничение предотвращает анализ двух точек в потоке жидкости, если между двумя точками существует насос. Поскольку большинство проточных систем включает насосы, это существенное ограничение.К счастью, упрощенное уравнение Бернулли можно модифицировать таким образом, чтобы удовлетворительно учитывать потери напора и работу насоса.

Расширенное Бернулли

Уравнение Бернулли можно модифицировать, чтобы учесть прирост и убыток напора. Полученное уравнение, называемое расширенным уравнением Бернулли, очень полезно при решении большинства задач потока жидкости. Фактически, расширенное уравнение Бернулли, вероятно, используется больше, чем любое другое уравнение потока жидкости. Уравнение 3-12 является одной из форм расширенного уравнения Бернулли.

z

1 + v 1 2 / 2g + P 1 ν 1 g c / g + H p = z 2 + v 2 2 / 2g + P 2 ν 2 g c / g + H f (3-12)

где:

z = высота над исходным уровнем (футы)

v = средняя скорость жидкости ( фут / сек)

P = давление жидкости (фунт-сила / фут 2 )

ν = удельный объем жидкости (фут 3 / фунт-метр)

л.с. = напор, добавленный насосом (футы)

Hf = потеря напора из-за гидравлического трения (футы)

g = ускорение свободного падения (фут / сек 2 )

Потеря напора из-за гидравлического трения (Hf) представляет собой энергию, используемую для преодоления трения, вызванного стенками трубка.Хотя это представляет собой потерю энергии с точки зрения потока текучей среды, обычно это не означает значительную потерю общей энергии текучей среды. Это также не нарушает закон сохранения энергии, поскольку потеря напора из-за трения приводит к эквивалентному увеличению внутренней энергии (u) жидкости. Эти потери являются наибольшими, когда жидкость протекает через входы, выходы, насосы, клапаны, фитинги и любые другие трубопроводы с шероховатой внутренней поверхностью.

Большинство методов оценки потери напора из-за трения являются эмпирическими (основанными почти исключительно на экспериментальных данных) и основаны на константе пропорциональности, называемой коэффициентом трения (f), который будет обсуждаться в следующем разделе.

Пример: Extended Bernoulli

Вода перекачивается из большого резервуара в точку на 65 футов выше резервуара. Сколько футов напора должно быть добавлено насосом, если через 6-дюймовую трубу течет 8000 фунтов / час, а потеря напора на трение составляет 2 фута? Плотность жидкости составляет 62,4 фунта / фут3, а площадь поперечного сечения 6-дюймовой трубы составляет 0.2006 футов 2 .

Решение:

Чтобы использовать модифицированную форму уравнения Бернулли, ориентиры выбираются на поверхности резервуара (точка 1) и на выходе из трубы (точка 2).Давление на поверхности резервуара такое же, как давление на выходе из трубы, то есть атмосферное давление. Скорость в точке 1 будет практически равна нулю.

Использование уравнения массового расхода для определения скорости в точке 2:

м˙ 2 = ρ A 2 v 2

v 2 = m˙ 2 / ρ A 2

v 2 = 8000 фунт / час / (62,4 фунт / фут 3 ) 0,2006 фут 2

v 2 = 639 фут / час (1 час / 3600 с)

v 2 = 0.178 фут / с

z 1 + v 1 2 / 2g + P 1 ν 1 g c / g + H p = z 2 + v 2 2 / 2g + P 2 ν 2 g c / g + H f

H p = (z 2- z 1 ) + (v 2 2 v 1 2 ) / 2g + (P 2 — P 1 ) ν (g c / g) + H f

H p = 65 футов + [(0.178 фут / сек) 2 (o фут / сек) 2 ] / [2 (32,17 фут-фунт-сила / фунт-сила-сек 2 )] + 0 футов + 2 фута

H p = 67 футов [/ box]

Следует отметить, что решение этой примерной задачи имеет числовое значение, которое «имеет смысл» из данных, приведенных в задаче. Общее увеличение напора на 67 футов в основном связано с увеличением оценки на 65 футов и увеличением напора трения на 2 фута.

Применение уравнения Бернулли к трубке Вентури

Многие компоненты установки, такие как трубка Вентури, могут быть проанализированы с использованием уравнения Бернулли и уравнения неразрывности.Вентури — это устройство для измерения расхода, которое состоит из постепенного сжатия с последующим постепенным расширением. Пример трубки Вентури показан на рисунке 6. Измеряя перепад давления между входом трубки Вентури (точка 1) и горловиной трубки Вентури (точка 2), можно определить скорость потока и массовый расход на основе формулы Бернулли. уравнение.

Рис. 6. Измеритель Вентури

Уравнение Бернулли утверждает, что общий напор потока должен быть постоянным. Так как высота не изменяется значительно, если вообще не изменяется между точками 1 и 2, высота напора в этих двух точках будет по существу одинакова и будет исключена из уравнения.Таким образом, уравнение Бернулли упрощается до уравнения 3-13 для трубки Вентури.

v

1 2 / 2g + P 1 ν 1 g c / g = v 2 2 / 2g + P 2 ν 2 g c / g (3-13)

Применение уравнения неразрывности к точкам 1 и 2 позволяет нам выразить скорость потока в точке 1 как функцию скорости потока в точке 2 и отношения двух областей потока.

ρ 1 A 1 v 1 = ρ 2 A 2 v 2

v 1 = ρ 2 A 2 v 1 / A 1

v 1 = v 2 A 2 / A 1

Использование алгебры для преобразования уравнения 3-13 и замена полученного выше результата на v 1 позволяет нам решить для v 2 .

v 2 2 — v 1 2 / 2g = (P 1 –P 2 ) ν g c / g

v 2 2 — (v 2 A 2 / A 1 ) 2 = (P 1 — P 2 ) 2 ν g c

v 2 2 (1 — (A 2 / A 1 ) 2 ) = (P 1 — P 2 ) 2 ν g c

v 2 2 = (P 1 — P 2 ) 2 ν g c / (1 — (A2 / A1) 2 )

v 2 = √ [(P 1 — P 2 ) 2 ν g c / (1 — (A2 / A1) 2 )]

v 2 = √ (P 1 — P 2 ) √ [2 ν g c / (1 — (A2 / A1) 2 )]

Следовательно, скорость потока в горловине трубки Вентури и объемный расход являются прямыми y пропорционально квадратному корню из перепада давления.

Давления на участке выше по потоку и в горловине являются фактическими давлениями, а скорости из уравнения Бернулли без потерь являются теоретическими скоростями. Когда потери учитываются в уравнении энергии, скорости являются фактическими скоростями. Во-первых, с помощью уравнения Бернулли (то есть без члена потери напора) получается теоретическая скорость в горловине. Затем умножив это на коэффициент Вентури (C v ), который учитывает потери на трение и равен 0.98 для большинства Вентури получается фактическая скорость. Фактическая скорость, умноженная на фактическую площадь горловины, определяет фактический объемный расход нагнетания.

Падение давления P 1 — P 2 на трубке Вентури можно использовать для измерения расхода с помощью U-образного манометра, как показано на рисунке 6. Показание R ‘манометра пропорционально падению давления и, следовательно, скорости жидкости.

Основные положения этой главы кратко изложены ниже.

• Краткое изложение уравнения Бернулли

• Уравнение Бернулли представляет собой приложение Первого закона термодинамики.

• Уравнение Бернулли представляет собой приложение общего уравнения энергии к системе с установившимся потоком, в которой никакая работа не выполняется с жидкостью или с жидкостью, тепло не передается к жидкости или от нее, и не происходит изменений внутренней энергии жидкости.

• Напор — это термин, используемый для описания давления, оказываемого на жидкость или со стороны жидкости.

• Поскольку жидкость течет в системе трубопроводов, изменения высоты, скорости и напора должны быть согласованными, чтобы удовлетворялось уравнение Бернулли.

• Уравнение Бернулли можно модифицировать, чтобы учесть потери на трение и работу насоса.

• Вентури можно использовать для определения массового расхода из-за изменений давления и скорости жидкости.

• Объемный расход через трубку Вентури прямо пропорционален квадратному корню из перепада давления между входом трубки Вентури и ее горловиной.

Потеря напора

Потеря напора — это мера уменьшения общего напора (сумма подъемного напора, скоростного напора и напора) жидкости при ее движении через жидкостную систему. В реальных жидкостях потеря напора неизбежна. Это происходит из-за: трения между жидкостью и стенками трубы; трение между соседними частицами жидкости при их движении относительно друг друга; и турбулентность, вызываемая всякий раз, когда поток перенаправляется или каким-либо образом влияет на такие компоненты, как входы и выходы трубопроводов, насосы, клапаны, редукторы потока и фитинги.

Потери на трение — это часть общей потери напора, которая возникает, когда жидкость течет по прямым трубам. Потеря напора для потока жидкости прямо пропорциональна длине трубы, квадрату скорости жидкости и члену, учитывающему трение жидкости, называемому коэффициентом трения. Потеря напора обратно пропорциональна диаметру трубы.

Потеря напора ∝ f Lv 2 / D

Коэффициент трения

Коэффициент трения, как было установлено, зависит от числа Рейнольдса для потока и степени шероховатости внутренней поверхности трубы.

Величина, используемая для измерения шероховатости трубы, называется относительной шероховатостью, которая равна средней высоте неровностей поверхности (ε), деленной на диаметр трубы (D).

Относительная шероховатость = ε / D

Значение коэффициента трения обычно получают из диаграммы Moody Chart (Рисунок A). Диаграмму Moody Chart можно использовать для определения коэффициента трения на основе числа Рейнольдса и относительной шероховатости.

Рисунок A: Moody Chart Пример:

Определите коэффициент трения (f) для потока жидкости в трубе с числом Рейнольдса 40 000 и относительной шероховатостью 0.01.

Решение:

Используя диаграмму Moody Chart, число Рейнольдса 40 000 пересекает кривую, соответствующую относительной шероховатости 0,01 при коэффициенте трения 0,04.

Уравнение Дарси

Потеря напора на трение может быть рассчитана с использованием математической зависимости, известной как уравнение Дарси для потери напора. Уравнение принимает две различные формы. Первая форма уравнения Дарси определяет потери в системе, связанные с длиной трубы.

H

r = f L v 2 / D 2 g (3-14)

где:

f = коэффициент трения (без единицы измерения)

L = длина трубы (футы)

D = диаметр длины трубы (футы)

v = скорость жидкости (фут / сек)

g = ускорение свободного падения (фут / сек 2 )

Пример:

Уравнение потери напора Дарси Труба длиной 100 футов и диаметром 20 дюймов содержит воду при температуре 200 ° F, текущую с массовым расходом 700 фунтов / м3.Вода имеет плотность 60 фунтов / фут 3 и вязкость 1,978 x 10 -7 фунт-сила-сек / фут 2 . Относительная шероховатость трубы 0,00008. Рассчитайте потерю напора для трубы.

Решение:

Последовательность шагов, необходимых для решения этой проблемы, состоит в том, чтобы сначала определить скорость потока. Во-вторых, используя скорость потока и заданные свойства жидкости, вычислите число Рейнольдса. В-третьих, определите коэффициент трения по числу Рейнольдса и относительной шероховатости.Наконец, используйте уравнение Дарси, чтобы определить потерю напора.

м˙ = ρ A v

v = м˙ / ρ A

= (700 фунт / сек) / (60 фунт / фут 3 ) π (10 дюймов) 2 (1 фут 2 / 144 дюйма 2)

v = 5,35 фут / сек

N R = ρ v D / мкг c

N R = (60 фунт / фут 3 ) (5,35 фут / сек) (20 дюймов) (1 фут / 12 дюймов) / (1,978 x 10 -7 фунт-сила-сек / фут 2 ) (32,17 фут-фунт-сила / фунт-сила-фут-сек 2) =

Н R = 8.4 x 10 7

Используйте диаграмму Moody для числа Рейнольдса 8,4 x 10 7 и относительной шероховатости 0,00008.

f = 0,012

H f = f (L / D) (v 2 / 2g)

H f = (o.o12) [100 футов / (20 дюймов) (1 фут / 12 дюймов) )] * (5,35 фут / сек) 2 /(2)(32,17 фут / сек 2 )

H f = 0,32 фута

Незначительные потери

Потери, возникающие в трубопроводах из-за изгибов, локти, суставы, клапаны и т. д.иногда называют незначительными потерями. Это неправильное название, потому что во многих случаях эти потери более важны, чем потери из-за трения трубы, рассмотренные в предыдущем разделе. Для всех незначительных потерь в турбулентном потоке потеря напора изменяется пропорционально квадрату скорости. Таким образом, удобный метод выражения незначительных потерь потока — это коэффициент потерь (k). Значения коэффициента потерь (k) для типовых ситуаций и арматуры можно найти в стандартных справочниках. Форма уравнения Дарси, используемого для расчета незначительных потерь отдельных компонентов жидкостной системы, выражается уравнением 3-15.

H

f = kv 2 / 2g (3-15)

Эквивалентная длина трубопровода

Незначительные потери могут быть выражены через эквивалентную длину (Leq) трубы, которая будет иметь такую ​​же потерю напора для такая же скорость нагнетаемого потока. Эту связь можно найти, установив две формы уравнения Дарси равными друг другу.

f L v 2 / D 2g = kv 2 / 2g

Это дает два полезных соотношения

L

eq = k D / f (3-16)

k = f L

eq / D (3-17)

Типичные значения L eq / D для общих компонентов трубопроводной системы перечислены в таблице 1.Эквивалентная длина трубопровода, которая вызовет такие же потери напора, как и конкретный компонент, может быть определена путем умножения значения L экв. / D для этого компонента на диаметр трубы. Чем выше значение L eq / D, тем длиннее эквивалентная длина трубы.

Таблица 1: Типичные значения Leq / D Пример:

Полностью открытая задвижка находится в трубе диаметром 10 дюймов. Какая эквивалентная длина трубы вызовет такую ​​же потерю напора, как и задвижка?

Решение:

Из таблицы 1 мы находим, что значение L экв. / D для полностью открытой задвижки равно 10.

L eq = (L / D) D

= 10 (10 дюймов)

= 100 дюймов

Добавляя эквивалентные длины всех компонентов к фактической длине трубы в системе, мы можем получить L экв. значение для всей системы трубопроводов.

Основные положения этой главы кратко изложены ниже.

• Потеря напора — это уменьшение общего напора (сумма потенциального напора, скоростного напора и напора) жидкости, вызванное трением, присутствующим при движении жидкости.

• Потери на трение — это часть общей потери напора, которая возникает, когда жидкость течет по прямым трубам.

• Незначительные потери — это потери напора, возникающие из-за изгибов, колен, соединений, клапанов и других компонентов. Каждый раз, когда поток изменяет направление или изменяется площадь поперечного сечения, он испытывает потерю напора.

• Коэффициент трения для потока жидкости можно определить с помощью диаграммы Moody Chart, если можно определить относительную шероховатость трубы и число Рейнольдса потока.

• Уравнение Дарси можно использовать для расчета потерь на трение.

• Для расчета незначительных потерь можно использовать специальную форму уравнения Дарси.

• Длину трубы, которая может вызвать такую ​​же потерю напора, как у клапана или фитинга, можно определить, умножив значение L / D для компонента, указанного в справочниках или руководствах поставщиков, на диаметр трубы.

Принудительная и естественная циркуляция

В предыдущих главах, посвященных потоку жидкости, было объяснено, что каждый раз, когда жидкость течет, возникает некоторое трение, связанное с движением, которое вызывает потерю напора.Было отмечено, что эта потеря напора обычно компенсируется в системах трубопроводов насосами, которые действительно работают с жидкостью, компенсируя потерю напора из-за трения. Циркуляция жидкости в системах с помощью насосов обозначается как принудительная циркуляция .

Некоторые жидкостные системы можно спроектировать таким образом, чтобы не было необходимости в насосах для обеспечения циркуляции. Напор, необходимый для компенсации потерь напора, создается градиентами плотности и перепадами высоты.Поток, возникающий в этих условиях, называется естественной циркуляцией .

Тепловая приводная головка

Тепловая приводная головка — это сила, которая вызывает естественную циркуляцию. Это вызвано разницей в плотности между двумя телами или областями жидкости.

Рассмотрим два равных объема жидкости одного и того же типа. Если два объема имеют разную температуру, тогда объем с более высокой температурой также будет иметь более низкую плотность и, следовательно, меньшую массу.Поскольку объем при более высокой температуре будет иметь меньшую массу, на него также будет оказываться меньшая сила тяжести. Эта разница в силе тяжести, действующей на жидкость, будет приводить к тому, что более горячая жидкость поднимается, а более холодная жидкость опускается.

Этот эффект наблюдается во многих местах. Один из примеров — воздушный шар. Сила, заставляющая воздушный шар подниматься вверх, является результатом разницы в плотности между горячим воздухом внутри воздушного шара и более холодным воздухом, окружающим его.

Тепло, добавляемое воздуху в воздушном шаре, добавляет энергию молекулам воздуха. Движение молекул воздуха увеличивается, и молекулы воздуха занимают больше места. Молекулы воздуха внутри воздушного шара занимают больше места, чем такое же количество молекул воздуха вне воздушного шара. Это означает, что горячий воздух менее плотный и легкий, чем окружающий воздух. Поскольку воздух в воздушном шаре менее плотный, сила тяжести оказывает на него меньшее влияние. В результате воздушный шар весит меньше окружающего воздуха.Гравитация втягивает более холодный воздух в пространство, занимаемое воздушным шаром. Движение более холодного воздуха вниз выталкивает воздушный шар из ранее занятого пространства, и он поднимается.

Условия, необходимые для естественной циркуляции

Естественная циркуляция будет иметь место только при наличии правильных условий. Даже после того, как естественное кровообращение началось, устранение любого из этих условий приведет к остановке естественного кровообращения. Условия естественной циркуляции следующие.

1. Существует разница температур (имеется источник тепла и радиатор).

2. Источник тепла находится ниже радиатора.

3. Жидкости должны контактировать друг с другом.

Должны быть два тела жидкости с разными температурами. Это также может быть одно жидкое тело с участками с разной температурой. Разница в температуре необходима для разницы в плотности жидкости. Разница в плотности является движущей силой естественного циркуляционного потока.

Для продолжения естественной циркуляции необходимо поддерживать разницу температур. Добавление тепла от источника тепла должно происходить в зоне с высокой температурой. В области низких температур должен существовать непрерывный отвод тепла радиатором. В противном случае температуры со временем выровнялись бы и дальнейшая циркуляция прекратилась.

Источник тепла должен располагаться ниже радиатора. Как показано на примере воздушного шара, более теплая жидкость менее плотна и имеет тенденцию подниматься, а более холодная жидкость более плотная и имеет тенденцию опускаться.Чтобы воспользоваться преимуществом естественного движения теплых и холодных жидкостей, источник тепла и радиатор должны располагаться на соответствующей высоте.

Две области должны соприкасаться, чтобы был возможен поток между ними. Если путь потока заблокирован или заблокирован, естественная циркуляция невозможна.

Пример охлаждения с естественной циркуляцией

Естественная циркуляция часто является основным средством охлаждения реакторов бассейнового типа и облученных тепловыделяющих сборок, хранящихся в бассейнах с водой после извлечения из реактора.Источником тепла является тепловыделяющая сборка. Радиатор — это основная часть воды в бассейне.

Вода в нижней части тепловыделяющей сборки поглощает энергию, генерируемую сборкой. Температура воды увеличивается, а плотность уменьшается. Сила тяжести втягивает более холодную (более плотную) воду в нижнюю часть узла, вытесняя более теплую воду. Более теплая (более легкая) вода вынуждена уступить свое место более холодной (более тяжелой) воде. Более теплая (более легкая) вода поднимается выше в сборке. По мере продвижения воды по длине сборки она поглощает больше энергии.Вода становится все светлее и светлее, непрерывно выталкиваясь вверх более плотной водой, движущейся под ней. В свою очередь, более холодная вода поглощает энергию от узла и также вынуждена подниматься по мере продолжения естественного циркуляционного потока. Вода, выходящая из верхней части топливной сборки, отдает свою энергию, смешиваясь с большей частью воды в бассейне. Основная часть воды в бассейне обычно охлаждается путем циркуляции через теплообменники в отдельном процессе.

Расход и разница температур

Тепловая приводная головка, которая вызывает естественную циркуляцию, возникает из-за изменения плотности, вызванного разницей температур.Как правило, чем больше разница температур между горячей и холодной областями жидкости, тем больше тепловая приводная головка и результирующая скорость потока. Однако рекомендуется держать горячую жидкость переохлажденной, чтобы предотвратить изменение фазы. Можно иметь естественную циркуляцию в двухфазном потоке, но, как правило, поддерживать поток труднее.

Для индикации или проверки естественной циркуляции могут использоваться различные параметры. Это зависит от типа растения.Например, для реактора с водой под давлением (PWR) выбранные параметры системы охлаждения реактора (RCS), которые будут использоваться, следующие.

1. RCS ∆T (T Горячий — T Холодный ) должен составлять 25-80% от значения полной мощности и должен быть постоянным или медленно уменьшаться. Это указывает на то, что остаточное тепло удаляется из системы с достаточной скоростью для поддержания или снижения внутренней температуры.

2. Температура горячих и холодных ног RCS должна быть постоянной или медленно снижаться. Опять же, это указывает на то, что тепло удаляется, а тепловая нагрузка распада, как и ожидалось, уменьшается.

3. Давление пара парогенератора (давление вторичного контура) должно соответствовать температуре RCS. Это подтверждает, что парогенератор отводит тепло от охлаждающей жидкости RCS.

Если естественная циркуляция для PWR происходит или неизбежна, можно выполнить несколько действий, чтобы обеспечить или улучшить возможности охлаждения активной зоны. Во-первых, уровень в компенсаторе давления может поддерживаться выше 50%. Во-вторых, поддерживайте переохлаждение RCS на уровне 15 90 600 o 90 601 F или выше.

Оба этих действия помогут предотвратить образование паровых карманов в RCS, где они будут ограничивать поток RCS.В-третьих, поддерживайте уровень воды в парогенераторе ≥ нормального диапазона. Это обеспечивает соответствующий теплоотвод, чтобы гарантировать, что отвод тепла будет достаточным для предотвращения закипания RCS.

Основные положения этой главы перечислены ниже.

• Естественный циркуляционный поток — это циркуляция жидкости без использования механических устройств.

• Принудительный циркуляционный поток — это циркуляция жидкости в системе с помощью насосов.

• Тепловая приводная головка является движущей силой для естественной циркуляции, вызванной разницей в плотности между двумя областями жидкости.

• Для поддержания естественной циркуляции необходимы три элемента:

  • Должны быть теплоотвод и источник тепла.
  • Источник тепла должен располагаться под радиатором.
  • Между теплой и холодной жидкостью должны существовать пути потока.

• Как правило, чем больше разница температур, тем выше расход естественной циркуляции.

• Естественную циркуляцию в PWR можно проверить с помощью мониторинга:

  • RCS ∆T — 25% -80% значение полной мощности
  • T Горячий / T Холодный — постоянно или медленно снижение
  • Давление пара S / G — отслеживание температуры RCS

• Естественная циркуляция в PWR может быть увеличена за счет:

  • поддерживать уровень компенсатора давления> 50%
  • поддерживать RCS ≥ 15o F переохлаждение. .В некоторых важных местах в системах потока жидкости происходит одновременный поток жидкой воды и пара, известный как двухфазный поток. Этих простых соотношений, используемых для анализа однофазного потока, недостаточно для анализа двухфазного потока.

    Существует несколько методов, используемых для прогнозирования потери напора из-за трения жидкости для двухфазного потока. Трение двухфазного потока больше, чем трение однофазного потока, при тех же размерах трубопровода и массовом расходе. Разница, по-видимому, зависит от типа потока и является результатом увеличения скорости потока.Потери на двухфазное трение экспериментально определяются путем измерения перепада давления на различных элементах трубопровода.

    Двухфазные потери обычно связаны с однофазными потерями через те же элементы. Один из общепринятых методов определения потерь на двухфазное трение на основе однофазных потерь включает множитель двухфазного трения (R), который определяется как отношение двухфазных потерь напора к потерям напора, оцененным с использованием насыщенного жидкие свойства.

    R = H

    f, двухфазный / H f, насыщенная жидкость (3-18)

    где:

    R = двухфазный множитель трения (без единиц)

    H f, два -фаза = двухфазная потеря напора из-за трения (футы)

    H f, насыщенная жидкость = однофазная потеря напора из-за трения (футы)

    Множитель трения (R) оказался намного выше при более низких давлениях, чем при более высоких давлениях.Двухфазная потеря напора может быть во много раз больше, чем однофазная потеря напора.

    Хотя для моделей двухфазного потока использовалось множество названий, мы определим только три типа потока. Используемые схемы потока определены следующим образом:

    1. Пузырьковый поток: происходит рассеяние пузырьков пара в непрерывном потоке жидкости.

    2. Пробковый поток: в пузырьковом потоке пузырьки растут за счет слияния и в конечном итоге становятся того же диаметра, что и труба. При этом образуются типичные пузыри пулевидной формы, характерные для снарядного режима.

    3. Кольцевой поток: теперь жидкость распределяется между жидкой пленкой, текущей вверх по стенке, и дисперсией капель, текущих в паровом ядре потока.

    Нестабильность потока

    Нестабильный поток может возникать в форме колебаний потока или его реверсирования. Колебания потока — это изменения потока из-за образования пустот или механических препятствий при проектировании и производстве. Колебания потока в одном канале теплоносителя реактора иногда вызывают колебания потока в окружающих каналах теплоносителя из-за перераспределения потока.Колебания потока нежелательны по нескольким причинам. Во-первых, устойчивые колебания потока могут вызывать нежелательную вынужденную механическую вибрацию компонентов. Это может привести к выходу этих компонентов из строя из-за усталости. Во-вторых, колебания потока могут вызвать проблемы управления системой, имеющие особое значение в ядерных реакторах с жидкостным охлаждением, поскольку теплоноситель также используется в качестве замедлителя. В-третьих, колебания потока влияют на местные характеристики теплообмена и кипение. В ходе испытаний было обнаружено, что критический тепловой поток (CHF), необходимый для отклонения от пузырькового кипения (DNB), может быть снижен на целых 40%, когда поток колеблется.Это сильно снижает тепловой предел и плотность мощности по длине активной зоны реактора. Опять же, посредством испытаний было обнаружено, что колебания потока не являются серьезной проблемой для некоторых реакторов с водой под давлением, если мощность не превышает 150% для нормальных условий потока. Колебания потока могут быть проблемой при работе с естественной циркуляцией из-за присутствующих низких скоростей потока.

    Во время естественной циркуляции пузырьки пара, образующиеся при колебаниях потока, могут иметь достаточно влияния, чтобы фактически вызвать полное реверсирование потока в затронутом канале.

    И колебания потока, и реверсирование потока приводят к очень нестабильному состоянию, поскольку паровые подушки, образующиеся на нагретых поверхностях, напрямую влияют на способность отводить тепло от этих поверхностей.

    Штыревой патрубок

    В случае разрыва трубы сила реакции, создаваемая высокоскоростной струей жидкости, может вызвать смещение трубопровода и серьезное повреждение компонентов, контрольно-измерительных приборов и оборудования в зоне разрыва. Эта характеристика аналогична необслуживаемому садовому шлангу или пожарному шлангу, который непредсказуемо «хлестает».Этот тип отказа анализируется, чтобы свести к минимуму повреждение, если бы труба изгибалась вблизи оборудования, связанного с безопасностью.

    Гидравлический удар

    Гидравлический удар представляет собой ударную волну жидкости, возникающую в результате внезапного начала или остановки потока. На него влияют начальное давление в системе, плотность жидкости, скорость звука в жидкости, эластичность жидкости и трубы, изменение скорости жидкости, диаметр и толщина трубы и клапана. рабочее время.

    Во время закрытия клапана кинетическая энергия движущейся жидкости преобразуется в потенциальную энергию. Эластичность жидкости и стенки трубы создает волну положительного давления, направленную к источнику жидкости. Когда эта волна достигнет источника, масса жидкости будет в покое, но под огромным давлением. Сжатая жидкость и растянутые стенки трубы теперь начнут выпускать жидкость из трубы обратно к источнику и вернуться к статическому давлению источника. Это выделение энергии сформирует еще одну волну давления, возвращающуюся к клапану.Когда эта ударная волна достигает клапана, из-за импульса жидкости стенка трубы начинает сокращаться. Это сжатие передается обратно источнику, в результате чего давление в трубопроводе ниже статического давления источника. Эти волны давления будут перемещаться вперед и назад несколько раз, пока трение жидкости не демпфирует переменные волны давления до статического давления источника. Обычно весь процесс молота занимает менее одной секунды.

    Первоначальный толчок внезапной остановки потока может вызвать переходные изменения давления, превышающие статическое давление.Если клапан закрывается медленно, потеря кинетической энергии будет постепенной. Если его закрыть быстро, потеря кинетической энергии будет очень быстрой. Из-за быстрой потери кинетической энергии возникает ударная волна. Ударная волна, вызванная гидравлическим ударом, может иметь достаточную силу, чтобы вызвать физическое повреждение трубопроводов, оборудования и персонала. Гидравлический удар в трубах, как известно, выдергивает опоры труб из их креплений, разрывает трубопроводы и вызывает биение труб.

    Пик давления

    Пик давления — это результирующий резкий рост давления выше статического, вызванный гидроударом.Максимальный всплеск давления будет в момент изменения расхода и регулируется следующим уравнением.

    ∆P = ρ c ∆v / g c

    где:

    ∆P = скачок давления (фунт-сила / фут 2 )

    ρ = плотность жидкости (фунт / фут 3 )

    c = Скорость волны давления (фут / сек) (Скорость звука в жидкости)

    ∆v = Изменение скорости жидкости (фут / сек)

    gc = Гравитационная постоянная 32.17 (фунт-фут / фунт-сила-сек 2 )

    Пример:

    Скачок давления Вода плотностью 62,4 фунт / фут 3 и давлением 120 фунтов на квадратный дюйм течет по трубе со скоростью 10 футов / сек. Скорость звука в воде 4780 футов / сек. Внезапно закрылся обратный клапан. Какое максимальное давление жидкости в фунтах на квадратный дюйм?

    Решение

    P Макс = P статический + ΔP Пик

    P Макс = 120 фунт-сила / дюйм 2 + ρ c ΔV / g c

    38

    P = 120 фунт-сила / дюйм 2 + (62.4 фунта / фут 3 ) (4780 фут / с) (10 фут / с) / (32,17 фунт-фут / фунт-сила с 2 )

    P Макс. дюйм 2

    P Макс. = 76,3 фунт / кв. дюйм

    Паровой молот

    Паровой молот похож на гидравлический молот, за исключением того, что он предназначен для паровой системы. Паровой молот — это газовая ударная волна, возникающая в результате внезапного запуска или остановки потока. Паровой молот не так силен, как гидравлический, по трем причинам:

    1.Сжимаемость пара гасит ударную волну

    2. Скорость звука в паре составляет примерно одну треть скорости звука в воде.

    3. Плотность пара примерно в 1600 раз меньше плотности воды.

    Проблемы, связанные с паропроводом, включают термический удар и водяные пробки (то есть конденсацию в паровой системе) в результате неправильного нагрева.

    Рекомендации по эксплуатации

    Гидравлический и паровой молот — не редкость на промышленных предприятиях.Изменения расхода в трубопроводных системах должны производиться медленно, что является частью надлежащей практики оператора. Чтобы предотвратить гидравлический и паровой удар, операторы должны обеспечить надлежащую вентиляцию жидкостных систем и обеспечить надлежащий слив газовых или паровых систем во время запуска. Если возможно, инициируйте запуск насоса при закрытом нагнетательном клапане и медленно откройте нагнетательный клапан, чтобы запустить поток в системе. Если возможно, запускайте насосы меньшей производительности перед насосами большей производительности. По возможности используйте клапаны разогрева вокруг запорных клапанов основного потока.Если возможно, закройте нагнетательные клапаны насоса перед остановкой насосов. Периодически проверяйте правильность работы влагоуловителей и воздухоотводчиков во время работы.

    Основные положения этой главы кратко изложены ниже.

    Комбинация жидкости и пара, протекающей по трубе, называется двухфазным потоком.

    Типы двухфазного потока включают:

    • Пузырьковый поток: происходит диспергирование пузырьков пара в непрерывном потоке жидкости.

    • Пробковый поток: пузырьки растут за счет слияния и в конечном итоге становятся того же диаметра, что и труба, образуя пузырьки в форме пули.

    • Кольцевой поток: жидкость распределяется между жидкой пленкой, текущей вверх по стенке, и дисперсией капель, текущей в паровой сердцевине потока.

    Колебания и нестабильность основного потока могут вызвать:

    • нежелательную механическую вибрацию компонентов.

    • уменьшение теплового потока, необходимого для возникновения DNB.

    • прерывание фактического циркуляционного потока.

    Колебания и нестабильность потока могут возникать в следующих условиях:

    • сердечник вне проектных условий, мощность> 150%

    • механический отказ, вызывающий закупорку потока

    • недостаточное охлаждение активной зоны во время естественная циркуляция, при которой происходит кипение.

    Изгиб трубы — это смещение трубопровода, создаваемое реакционными силами высокоскоростной струи жидкости после разрыва трубы.

    Гидравлический удар — это ударная волна жидкости, возникающая в результате внезапного начала или остановки потока.

    Преобразование энергии в центробежном насосе

    Жидкость, поступающая в центробежный насос, сразу же направляется в зону низкого давления в центре или в проушине рабочего колеса. При вращении крыльчатки и лопастей они передают импульс поступающей жидкости. Передача количества движения движущейся жидкости увеличивает скорость жидкости. По мере увеличения скорости жидкости увеличивается ее кинетическая энергия.Жидкость с высокой кинетической энергией вытесняется из области рабочего колеса и попадает в улитку.

    Улитка — это область с постоянно увеличивающейся площадью поперечного сечения, предназначенная для преобразования кинетической энергии жидкости в давление жидкости. Механизм этого преобразования энергии такой же, как и для дозвукового потока через расширяющуюся часть сопла. Математический анализ потока через улитку основан на общем уравнении энергии, уравнении неразрывности и уравнении, связывающем внутренние свойства системы.Ключевыми параметрами, влияющими на преобразование энергии, являются увеличивающаяся площадь поперечного сечения улитки, более высокое противодавление системы на выходе улитки и несжимаемый дозвуковой поток жидкости. В результате взаимозависимости этих параметров поток жидкости в улитке, аналогичный дозвуковому потоку в расширяющемся сопле, испытывает уменьшение скорости и увеличение давления.

    Рабочие характеристики центробежного насоса

    Рис. 7: Типичные характеристики центробежного насоса Кривая

    Обычно центробежный насос создает относительно небольшое повышение давления в жидкости.Это повышение давления может составлять от нескольких десятков до нескольких сотен фунтов на квадратный дюйм в центробежном насосе с одноступенчатым рабочим колесом. Термин PSID (фунт-сила на квадратный дюйм дифференциала) эквивалентен ∆P. В данном контексте это разница давлений на всасывании и нагнетании насоса. PSID также можно использовать для описания перепада давления в компоненте системы (сетчатые фильтры, фильтры, теплообменники, клапаны, деминерализаторы и т. Д.). Когда центробежный насос работает с постоянной скоростью, увеличение противодавления системы на текущий поток приводит к уменьшению величины объемной скорости потока, которую центробежный насос может поддерживать.

    Анализ взаимосвязи между объемным расходом (), который центробежный насос V˙ может поддерживать, и перепадом давления в насосе (∆Ppump) основан на различных физических характеристиках насоса и жидкости в системе. Переменные, оцениваемые инженерами-конструкторами для определения этой взаимосвязи, включают эффективность насоса, мощность, подаваемую на насос, скорость вращения, диаметр рабочего колеса и лопастей, плотность жидкости и вязкость жидкости. Результат этого сложного анализа для типичного центробежного насоса, работающего на одной конкретной скорости, показан на графике на рисунке 7.

    Напор насоса по вертикальной оси — это разница между противодавлением в системе и давлением на входе насоса (∆Ppump). Объемный расход (V) по горизонтальной оси — это скорость, с которой жидкость протекает через насос. График предполагает одну конкретную скорость (N) для рабочего колеса насоса.

    Кавитация

    Когда перекачиваемая жидкость попадает в проушину центробежного насоса, давление значительно снижается. Чем больше скорость потока через насос, тем больше перепад давления.Если перепад давления достаточно велик или если температура жидкости достаточно высока, перепад давления может быть достаточным, чтобы заставить жидкость мгновенно превращаться в пар, когда местное давление падает ниже давления насыщения для перекачиваемой жидкости. Эти пузырьки пара перемещаются вдоль рабочего колеса насоса вместе с жидкостью. По мере уменьшения скорости потока давление жидкости увеличивается. Это вызывает внезапное схлопывание пузырьков пара на внешних частях крыльчатки. Образование этих пузырьков пара и их последующее схлопывание — кавитация.

    Кавитация может быть очень серьезной проблемой для центробежных насосов. Некоторые насосы могут быть рассчитаны на работу с ограниченным количеством кавитации. Большинство центробежных насосов не могут выдерживать кавитацию в течение значительных периодов времени; они повреждаются из-за эрозии рабочего колеса, вибрации или других проблем, вызванных кавитацией.

    Чистый положительный напор на всасывании

    Чтобы избежать кавитации во время работы насоса, можно контролировать чистый положительный напор на всасывании насоса.Чистый положительный напор на всасывании (NPSH) для насоса — это разница между давлением всасывания и давлением насыщения перекачиваемой жидкости. NPSH используется для измерения того, насколько жидкость близка к насыщенным условиям. Уравнение 3-19 можно использовать для расчета чистой положительной высоты всасывания, доступной для насоса. Единицы NPSH — футы воды.

    NPSH = P

    всасывание — P насыщение (3-19)

    где:

    P всасывание = давление всасывания насоса

    P насыщение = давление насыщения для жидкости

    Путем поддержания доступный NPSH на уровне больше, чем NPSH, требуемый производителем насоса, кавитации можно избежать.

    Законы о насосах

    Центробежные насосы обычно подчиняются так называемым законам о насосах. Эти законы гласят, что скорость потока или производительность прямо пропорциональны скорости насоса; напор прямо пропорционален квадрату скорости насоса; а мощность, требуемая двигателем насоса, прямо пропорциональна кубу скорости насоса. Эти законы суммированы в следующих уравнениях.

    V˙ ∝ n (3-20)

    H

    P ∝ n 2 (3-21)

    P ∝ n

    3 (3-22)

    где:

    n = скорость рабочее колесо насоса (об / мин)

    V = объемный расход насоса (галлонов в минуту или фут3 / час)

    H p = напор, развиваемый насосом (фунты на квадратный дюйм или футы)

    p = мощность насоса (кВт)

    Использование этих пропорциональности, можно разработать уравнения, связывающие условия на одной скорости с условиями на другой скорости.

    1 (n 2 / n 1 ) = V 2 (3-23)

    H

    p1 (n 2 / n 1 ) 2 = H p2 (3-24)

    P

    1 (n 2 / n 1 ) 3 = P 2 (3-25) Пример: Закон о насосах

    Насос охлаждающей воды работает со скоростью 1800 об / мин. Его расход составляет 400 галлонов в минуту при напоре 48 футов. Мощность насоса составляет 45 кВт.Определите расход, напор и потребляемую мощность насоса, если скорость насоса увеличится до 3600 об / мин.

    Решение:

    Расход

    2 = V˙ 1 (n 2 / n 1 )

    = (400 галлонов в минуту) (3600 об / мин / 1800 об / мин)

    = 800 галлонов в минуту

    Напор

    H p2 = H p1 (n 2 / n 1 ) 2

    = 48 футов (3600 об / мин / 1800 об / мин) 2

    = 192 футов

    Мощность

    P 2 = P 1 (n 2 / n 1 ) 3

    = 45 кВт (3600 об / 1800 об / мин) 3

    = 360 кВт

    Рисунок 8 : Изменение скоростей центробежного насоса

    Можно построить характеристическую кривую для новой скорости насоса на основе кривой для его исходной скорости.Метод состоит в том, чтобы взять несколько точек на исходной кривой и применить законы насоса для определения нового напора и расхода при новой скорости. Кривая зависимости напора насоса от расхода, которая возникает в результате изменения скорости насоса, графически проиллюстрирована на Рисунке 8.

    Характеристическая кривая системы

    Рисунок 9: Типичная кривая потери напора в системе

    В главе, посвященной потере напора, было определено, что оба фрикционные потери и незначительные потери в системах трубопроводов были пропорциональны квадрату скорости потока.Поскольку скорость потока прямо пропорциональна объемному расходу, потеря напора в системе должна быть прямо пропорциональна квадрату объемного расхода. Исходя из этого соотношения, можно построить кривую потери напора в системе в зависимости от объемного расхода. Кривая потери напора для типичной системы трубопроводов имеет форму параболы, как показано на рисунке 9.

    Рабочая точка системы

    Рисунок 10: Рабочая точка центробежного насоса

    Точка, в которой насос работает в данной системе трубопроводов, зависит от от расхода и потери напора этой системы.Для данной системы объемный расход сравнивается с потерями напора в системе на характеристической кривой. Построив график характеристической кривой системы и характеристической кривой насоса в одной и той же системе координат, можно определить точку, в которой насос должен работать. Например, на рисунке 10 рабочая точка центробежного насоса в исходной системе обозначена пересечением кривой насоса и кривой системы (h Lo ).

    Система имеет расход, равный V˙ 0 , и полную потерю напора в системе, равную ∆P 0 .Для поддержания расхода V˙ 0 напор насоса должен быть равен ∆P o . В системе, описанной системной кривой (h L1 ), в системе был открыт клапан, чтобы уменьшить сопротивление системы потоку. В этой системе насос поддерживает большой расход (V˙ 1 ) при меньшем напоре насоса (∆P 1 ).

    Использование в системе нескольких центробежных насосов

    Типичный центробежный насос имеет относительно небольшое количество движущихся частей и может быть легко адаптирован к различным первичным двигателям.Эти первичные двигатели включают электродвигатели переменного и постоянного тока, дизельные двигатели, паровые турбины и пневмодвигатели. Центробежные насосы, как правило, имеют небольшие размеры и могут быть изготовлены с относительно низкими затратами. Кроме того, центробежные насосы обеспечивают высокий объемный расход при относительно низком давлении.

    Для увеличения объемного расхода в системе или для компенсации больших сопротивлений потоку центробежные насосы часто используются параллельно или последовательно. На рисунке 11 изображены два идентичных центробежных насоса, работающих параллельно с одинаковой скоростью.

    Рисунок 11: Кривая характеристик насоса для двух идентичных центробежных насосов, используемых параллельно

    Центробежные насосы, подключенные параллельно

    Поскольку вход и выход каждого насоса, показанные на рисунке 11, находятся в идентичных точках системы, каждый насос должен производить один и тот же насос глава. Однако общий расход в системе представляет собой сумму индивидуальных расходов для каждого насоса.

    Когда характеристическая кривая системы рассматривается с кривой для параллельных насосов, рабочая точка на пересечении двух кривых представляет более высокий объемный расход, чем для одиночного насоса, и большую потерю напора в системе.Как показано на Рисунке 12, большая потеря напора в системе происходит с увеличением скорости жидкости в результате увеличения объемного расхода. Из-за большего напора системы объемный расход фактически в два раза меньше расхода, достигаемого при использовании одного насоса.

    Рисунок 12: Рабочая точка для двух параллельных центробежных насосов

    Центробежные насосы в серии

    Центробежные насосы используются последовательно для преодоления больших потерь напора в системе, чем один насос может компенсировать по отдельности.Как показано на Рисунке 13, два идентичных центробежных насоса, работающих с одинаковой скоростью и одинаковым объемным расходом, создают одинаковый напор. Поскольку вход второго насоса является выходом первого насоса, напор, создаваемый обоими насосами, является суммой отдельных напоров. Объемный расход от входа первого насоса до выхода второго остается прежним.

    Рисунок 13: Кривая характеристик насоса для двух идентичных центробежных насосов, используемых в серии

    Как показано на Рисунке 14, использование двух насосов последовательно не увеличивает сопротивление потоку в системе вдвое.Два насоса обеспечивают достаточный напор для новой системы, а также поддерживают немного более высокий объемный расход.

    Рис. 14: Рабочая точка для двух центробежных насосов серии

    Основные моменты этой главы кратко изложены ниже.

    • Чистый положительный напор на всасывании — это разница между давлением всасывания насоса и давлением насыщения жидкости.

    • Кавитация — это образование и последующее схлопывание пузырьков пара на крыльчатке насоса, когда местное давление падает ниже, а затем поднимается выше давления насыщения перекачиваемой жидкости.

    • Законы насоса можно использовать для определения влияния изменения скорости центробежного насоса на расход, напор и мощность.

    1 (n 2 / n 1 ) = V˙ 2

    H p1 (n 2 / n 1 ) H 2 p2

    P 1 (n 2 / n 1 ) 3 = P 2

    • Кривая комбинированного насоса для двух центробежных насосов, подключенных параллельно, может быть определена путем сложения индивидуальные потоки для любой данной головы.

    • Комбинированная характеристика насосов для двух последовательно включенных центробежных насосов может быть определена путем сложения отдельных напоров для любого заданного расхода.

    • Рабочая точка (напор и расход) системы может быть определена путем построения кривой насоса и кривой потери напора системы на одних и тех же осях. Система будет работать на пересечении двух кривых.

    Гидравлические символы 205 — гидравлические насосы

    Базовое обозначение гидравлического насоса (Рис. 1) на самом деле довольно простое.Он начинается со стандартного круга и стрелки, указывающей на один конец внутри этого круга. Треугольник, закрашенный сплошным цветом, указывает на то, что это гидравлический насос, в то время как пневматические насосы (и большинство пневматических символов) представляют собой только контур. Других вариантов для этого символа насоса, который можно точно описать как однонаправленный гидравлический насос с фиксированным рабочим объемом, не существует.

    Редко можно увидеть насос в любой ориентации, кроме севера, при чтении схем, и они часто соединяются внизу с линией, заканчивающейся символом резервуара, который я показываю только один раз.Если используется несколько компонентов, таких как фильтры, шаровые краны, аксессуары или даже другие насосы, линия резервуара может быть расширена по мере необходимости. Другие дизайнеры предпочитают показывать, что каждая линия резервуаров оканчивается одним и тем же маленьким символом, в то время как другие помещают символ резервуара прямо на каждый компонент, для которого это требуется, это делается в электрике с помощью символа заземления.

    Рис. 1. Символика гидравлического насоса

    К сожалению, за исключением редких случаев, различий в символике между типами насосов нет.Символы шестеренчатого насоса, лопастного насоса, поршневого насоса или любого другого типа физической конфигурации не несут в себе никакой символической разницы и не имеют значения, как вы узнаете к концу.

    Второй насос не сильно отличается от первого, за исключением второго черного треугольника направления, который сообщает нам, что этот насос может вытеснять жидкость из того, что в противном случае было бы всасывающим отверстием. Это символ двухоборотного насоса, который редко встречается за пределами современной мобильной техники, особенно в версии с фиксированным рабочим объемом, как показано.Хотя серия обратных клапанов может позволить обоим портам стать либо резервуаром, либо напорным трубопроводом, в зависимости от направления вращения, это все еще редкость.

    Третий символ на рис. 1 показывает очень упрощенную версию однонаправленного гидравлического насоса переменного рабочего объема с компенсацией давления. Он включает переменную стрелку по всему символу, поясняющую, что производительность насоса может быть изменена. Слева находится меньшая стрелка, и, как вы, возможно, уловили из более ранних статей с символами, она говорит нам, что рабочий объем насоса изменяется автоматически с компенсацией давления.Как поклонник символики ISO 1219, я не считаю этот символ визуально приятным и лаконичным.

    Мой любимый символ для обозначения насоса с компенсацией давления — это меньший из двух символов на Рисунке 2. Это немного более подробный пример символа, который я изобразил в Гидравлической символике 101, и я добавил цвет, чтобы помочь с объяснением. Не беспокойтесь о страшно выглядящем объекте справа, мы скоро к этому вернемся.

    Рисунок 2. Гидравлический насос с компенсацией давления

    Для этого конкретного символа насоса с компенсацией давления вал выступает вправо, что может быть присоединено к квадрату символа первичного двигателя двигателя внутреннего сгорания или круглому символу электродвигателя.Полукруглая стрелка показывает нам, что вал вращается по часовой стрелке или вправо, поскольку направление вращения всегда наблюдается с точки обзора конца вала.

    Переменная стрелка делит символ насоса пополам и, конечно же, сообщает нам, что объем насоса регулируется. Метод управления рабочим объемом определяется составным символом, прикрепленным слева от насоса. Под длинным прямоугольником находится пружина со стрелкой изменяемости, которая представляет пружину компенсатора давления, которая сама по себе полузакрыта и прикреплена к нижней части стрелки изменения давления насоса.Напротив пружины находится треугольный вход для управляющего давления, и это совпадение сделано намеренно.

    Оранжевый пилотный сигнал берется непосредственно из красной линии давления системы, выходящей из насоса, а оранжевая пунктирная линия подтверждает, что это действительно пилотная энергия. Настройка пружины борется с давлением пилота, чтобы плавно и плавно регулировать расход, чтобы соответствовать падению давления на выходе, равному настройке компенсатора. Например, если настройка составляет 3000 фунтов на квадратный дюйм, любая комбинация нагрузки ниже по потоку и связанного с потоком давления ниже 3000 фунтов на квадратный дюйм приведет к тому, что пружина будет поддерживать полное смещение наклонной шайбы, создавая полный поток насоса.

    При повышении давления ниже по потоку энергия пилота воздействует на (не показан) регулирующий поршень, уменьшая поток до тех пор, пока нагрузка ниже по потоку и давление, связанное с потоком, не сравняются до 3000 фунтов на кв. Дюйм. Если давление ниже по потоку продолжает расти, управляющий поршень, нажимаемый оранжевой пилотной энергией, может уменьшить угол наклонной шайбы почти до нуля, когда единственный поток — это поток, который поглощается за счет смазки и утечки. Утечка теряется через синюю пунктирную линию, идущую в резервуар, которая может или не может быть проведена вместе с зеленой линией всасывания, которая, очевидно, начинается в резервуаре.

    Переходя к пугающему виду справа, мы видим подробную разбивку однонаправленного гидравлического насоса переменного рабочего объема с компенсацией давления, с измерением нагрузки и функцией определения нагрузки. Вы, вероятно, видели этот символ раньше, потому что производители предпочитают показывать этот уровень детализации, особенно для различения дополнительных параметров управления, таких как удаленная компенсация или управление мощностью. Этот «насос с измерением нагрузки» вскоре станет вам понятен. Предупреждаю, что вам понадобится время и усилия, чтобы понять этот символ, пока вы будете методично работать над остальной частью этой статьи.

    Начиная с насоса (а), он имеет диагональную стрелку изменчивости, пересекающую окружность пополам, и прикреплен к концам штоков двух цилиндров. Цилиндр (b) — это поршень смещения, предназначенный для приведения насоса к полному рабочему объему, когда это возможно. Эта задача упрощается благодаря тому, что пружина толкает поршень вперед. Некоторые насосы обходятся только сильной пружиной, но в этом примере уравновешивается энергия пилота. Справа прикреплен крошечный объект с переменной стрелкой, которую можно отрегулировать для перемещения влево или вправо внутри цилиндра.Не все насосы имеют этот дополнительный компонент, который представляет собой ограничитель минимального объема, предотвращающий полное втягивание поршня смещения, что впоследствии предотвращает полный режим ожидания насоса.

    Если вы знакомы с обозначениями цилиндров, вы увидите, что (c) также выглядит как цилиндр одностороннего действия с регулятором хода на стороне крышки. Это управляющий поршень, диаметр отверстия которого всегда будет больше диаметра поршня смещения. Регулировка хода управляющего поршня называется ограничителем максимального объема и используется для изменения максимального рабочего объема насоса, что удобно, когда вам необходимо установить рабочий объем между двумя размерами, доступными для выбранного насоса.Два «цилиндра» прикреплены стержнями друг к другу, и когда один выдвигается, другой должен втягиваться, и наоборот, и я вскоре объясню, почему и как развивается их битва.

    Поскольку все насосы с измерением нагрузки должны иметь компенсацию давления, я начну с (d), который представляет собой компенсатор давления. Хотя он выглядит иначе, по сути, это предохранительный клапан, управляющий поршнем управления (c). Он показан в нейтральном состоянии, где он стравливает воздух из камеры управляющего поршня (c) через отверстие (e), отверстие (f), а также через другой компенсатор (g), где он может выбрать любой путь потока непосредственно в резервуар.Независимо от пути потока, энергия пилота внутри управляющего поршня (c) равна нулю, поэтому он проигрывает битву смещающему поршню (b), и насос работает с полным рабочим объемом с максимальной скоростью.

    Компенсатор измерения нагрузки (g) выглядит почти так же, как компенсатор давления (d), и аналогичен по функциям, за исключением того, где он забирает энергию пилота и что он делает с ней впоследствии. Как и символ компенсатора давления (d), это 3-ходовой 2-позиционный клапан с пружинным смещением и регулируемыми настройками давления для обоих.Каждая дополнена параллельными линиями над и под обоими позиционными огибающими, и эти линии говорят нам, что клапан может плавно изменяться между двумя положениями.

    Переменное отверстие в точке (j) может быть любым регулятором потока, рычажным клапаном или пропорциональным клапаном, используемым для регулировки потока (который создает противодавление при уменьшении) в красной линии давления системы, начинающейся от насоса. Вы можете увидеть узел сразу после выхода насоса, который объединяет давление в системе с пилотными линиями, питающими поршень смещения и оба компенсатора.Давайте сначала возьмем компенсатор измерения нагрузки (g) с рисунка и опишем компенсатор давления (d) и то, что происходит во время работы.

    Когда насос запускается и при условии, что все расположенные ниже по потоку распределители закрыты, пружина внутри поршня смещения (b) полностью перемещает насос до максимального рабочего объема. Это немедленно создает давление в рабочей и пилотной линиях, поскольку жидкость заполняет водопровод без стратегии выхода, и это повышение давления в пилотной линии в точке (d) заставляет компенсатор давления смещаться вправо.Вторая пилотная линия, прикрепленная к верхней части компенсатора (d), позволяет пилотной энергии поступать через линию (i), где она быстро заполняет управляющий поршень (c). Поскольку регулирующий поршень имеет больший диаметр, чем поршень смещения, он побеждает в борьбе и перемещает регулируемую стрелку насоса для уменьшения рабочего объема до тех пор, пока единственный поток не станет тем, что требуется для преодоления утечки. Насос находится в режиме ожидания.

    Теперь, когда открывается направленный клапан ниже по потоку, создается путь потока, который снижает давление в системе до уровня ниже настройки компенсатора (d), и он немедленно уступает давлению пружины и возвращается в положение, близкое к нейтральному, открывая дренажные линии. еще раз на танк.Отверстия (e) и (f) гасят движение компенсатора, предотвращая быстрые колебания, но отверстие также предотвращает скачки давления в корпусе насоса. Они также гарантируют, что давление в управляющем поршне (c) не падает, когда давление в системе быстро падает за доли секунды. Поток из насоса будет уравновешиваться противоположным смещением и регулирующими поршнями, чтобы соответствовать падению давления на выходе при точной настройке компенсатора давления.

    Наконец, мы рассмотрим работу компенсатора измерения нагрузки (g), показанного вверху.Он также получает пилотный сигнал непосредственно от выхода насоса, но вы увидите, что он также получает конкурирующий сигнал от рабочей линии после дозирующего отверстия. Сигнал давления в (g) сравнивает объединенное усилие пружины и пилотный сигнал измерения нагрузки непосредственно перед (h). Настройка компенсатора давления (d) намного выше, чем настройка компенсатора измерения нагрузки (g), который настроен на создание разумного перепада давления на (j). Если компенсатор (d) установлен на 3000 фунтов на квадратный дюйм, он будет видеть это давление только в режиме ожидания или при максимальном давлении нагрузки, в то время как компенсатор (g) может быть установлен на 300 фунтов на квадратный дюйм, где он измеряет перепад давления на клапане (j).

    Обычно схема измерения нагрузки имеет несколько отверстий в сети измерения нагрузки, все они возвращают пилотный сигнал в компенсатор измерения нагрузки (g), где он выбирает сигнал наивысшего давления и измеряет поток насоса, чтобы соответствовать этому перепаду давления и обеспечивает только достаточный поток, чтобы удовлетворить желаемый расход при желаемом рабочем давлении плюс давление пружины компенсатора измерения нагрузки. Например, если давление нагрузки составляет 1000 фунтов на квадратный дюйм, насос будет поддерживать давление на уровне 1300 фунтов на квадратный дюйм, обеспечивая дополнительные 300 фунтов на квадратный дюйм только для создания потока через дозирующий клапан (j).

    Этот символ показывает вам, что независимо от первоначального ощущения сложности, вдумчивое разбиение любой схемы раскрывает ее цель дизайна. Я влюбился в гидравлику, когда узнал о концепции измерения нагрузки. Это просто использование столбов давления жидкости для создания эффективного сценария спроса и предложения, чтобы удовлетворить многие приводы, расположенные ниже по потоку, с по существу точным расходом и давлением, которые им нужны для работы, и немного больше, что меня воодушевило.


    Раздел: Основы гидравлической энергии, насосы и двигатели


    Принципы охлаждения и принцип работы холодильной системы

    КОМПРЕССОРЫ

    Современные парокомпрессионные системы для комфортного охлаждения и промышленного охлаждения используют один из нескольких типов компрессоров: поршневой, ротационный, винтовой (винтовой), центробежный и спиральный.

    В некоторых системах компрессор приводится в действие внешним двигателем (называемым системой с открытым приводом или открытым приводом). Компрессорные системы с открытым приводом легче обслуживать, но использование уплотнения на приводном конце коленчатого вала компрессора может быть источником утечек. В открытых системах привода обычно используются клиновые ремни или гибкие муфты для передачи мощности от двигателя к компрессору.

    Вторая основная категория — это герметичная система, в которой двигатель размещается внутри корпуса с компрессором.В герметичных системах двигатель охлаждается парами хладагента, а не внешним воздухом, картер служит впускным коллектором, и впускные клапаны не нужно напрямую подключать к линии всасывания. В герметичных системах меньше проблем с утечками, чем в открытых, поскольку в них нет уплотнения картера. Однако герметичные компрессоры труднее обслуживать, хотя некоторые компоненты, которые могут выйти из строя, обычно размещаются вне корпуса. Эти компоненты соединены с компрессором и двигателем с помощью герметичных устройств.Двигатели в герметичных системах не должны излучать электрическую дугу (поэтому они не могут использовать щетки), поскольку они могут загрязнить хладагент и вызвать возгорание двигателя.

    Герметичные системы подразделяются на 1) полностью герметичные или 2) исправные герметичные (полугерметичные). Многие герметичные компрессоры имеют сварной корпус, который не подлежит обслуживанию. В случае выхода из строя мотора или компрессора необходимо заменить весь агрегат.

    Полугерметичные системы обычно используются в больших поршневых, центробежных, винтовых и спиральных компрессорах.Корпус в полугерметичной системе скреплен болтами и прокладкой и может быть разобран для основных операций по обслуживанию.

    КОМПРЕССОР ОХЛАЖДЕНИЯ

    Компрессоры выделяют значительное количество тепла в процессе сжатия пара хладагента. Большая часть перемещается с паром под высоким давлением в конденсатор, но головка компрессора также должна утилизировать нежелательное тепло, чтобы оставаться в пределах безопасных рабочих температур. Обычно это достигается либо с помощью плавников, либо с помощью каналов для воды.

    В герметичных и полугерметичных системах линия всасывания подает поток холодного хладагента к головкам цилиндров.Таким образом, температура и давление всасываемого газа имеют решающее значение для поддержания надлежащей температуры корпуса компрессора. Температура всасываемого газа, поступающего в компрессор, не должна превышать 65 град. F (18 ° C) для низкотемпературной установки или 90 ° C. F (32 ° C) в высокотемпературной системе. Более горячий газ менее плотен и будет поглощать меньше тепла в компрессоре, поскольку разница температур между двигателем компрессора и всасываемым газом меньше. Устройство отключения по низкому давлению должно защищать двигатель от недостаточного давления в линии всасывания.

    Компрессоры с открытым приводом с воздушным охлаждением можно охлаждать, помещая их непосредственно в патрубок вентилятора конденсатора. Альтернативой является использование вентилятора для охлаждения компрессора. В компрессорах с водяным охлаждением могут использоваться головки с рубашкой, позволяющие воде циркулировать через головку.

    ЦЕНТРОБЕЖНЫЙ КОМПРЕССОР

    В центробежных компрессорах

    используются рабочие колеса, которые быстро вращаются и выбрасывают хладагент от центрального впускного отверстия, используя силу, называемую центробежной силой.Центробежная сила использует принцип, который, например, позволяет вам раскачивать заднюю часть головы, не проливая на нее воду. Поскольку каждое рабочее колесо добавляет относительно небольшое давление, несколько рабочих колес часто собираются вместе, чтобы создать необходимое давление на стороне высокого давления (давление нагнетания).

    Центробежные компрессоры используются в больших системах, часто в полугерметичных или открытых конфигурациях. Компрессор может работать в системе с положительным давлением всасывания или в вакууме, в зависимости от используемого хладагента и желаемой рабочей температуры испарителя.Большие центробежные системы могут поставляться уже заправленными хладагентом и маслом.

    Центробежный компрессор не имеет шатунов, поршней и клапанов; поэтому подшипники вала — единственные места, подверженные износу. Давление на выходе компрессора зависит от плотности газа, диаметра и конструкции рабочего колеса, а также скорости вращения рабочего колеса. Рабочие колеса центробежного компрессора вращаются очень быстро:

    Низкая скорость 3600 об / мин

    Средняя скорость 9000 об / мин

    Высокая скорость выше 9000 об / мин

    Питание осуществляется от электродвигателя или паровой турбины.Пар входит в центр рабочего колеса вокруг вала и направляется через лопасти рабочего колеса. Поскольку рабочее колесо ускоряет газ, кинетическая энергия рабочего колеса преобразуется в кинетическую энергию быстро движущегося газа. Когда газ входит в улитку, он сжимается, и кинетическая энергия преобразуется в потенциальную энергию сжатого газа. Скорость газа, покидающего крыльчатку, чрезвычайно высока.

    Впускные лопатки, которые регулируют количество подачи и направление пара хладагента из испарителя, могут регулировать производительность.В больших компрессорах с более чем тремя ступенями впускные лопатки могут отсутствовать.

    Обратный поток хладагента в центробежные компрессоры опасен из-за высокой скорости вращения крыльчаток. Во избежание обратного затопления заправка хладагента не должна быть чрезмерной, а перегрев должен быть адекватным. Многие центробежные компрессоры, особенно те, которые работают в вакууме, имеют встроенное устройство продувки, позволяющее удалять нежелательный воздух из системы. Блок продувки представляет собой блок конденсации с компрессором и конденсатором, который забирает пар из самой высокой точки конденсатора и компрессора системы и конденсирует его.Поскольку только хладагент будет конденсироваться под давлением, создаваемым блоком продувки, воздух и другие неконденсирующиеся вещества, которые собираются сверху, можно удалить вручную или автоматически через клапан в атмосферу. Очищенный жидкий хладагент через поплавковый клапан в конденсаторе продувочного агрегата возвращается в основную систему. Если фильтр-осушитель установлен в центробежной системе, его можно разместить в байпасе вокруг поплавкового клапана. Размещение фильтра-осушителя на главном выходе ухудшит работу компрессора.Несмотря на то, что байпас забирает только часть потока жидкости, в конечном итоге он удаляет достаточно влаги из хладагента для регулирования кислотности системы.

    КОМПОНЕНТЫ ХОЛОДИЛЬНОЙ СИСТЕМЫ

    Рисунок 6-1: Двухступенчатый центробежный компрессор. 1 — Регулируемая входная направляющая лопатка второй ступени. 2-Крыльчатка первой ступени. 3-я крыльчатка второй ступени. 4-двигатель с водяным охлаждением. 5-Основание, масляный бак и узел насоса смазочного масла. 6-Направляющие лопатки первой ступени и регулировка производительности.7-Лабиринтное уплотнение. 8-перекрестное соединение. Привод с 9 направляющими лопатками. Корпус с 10 спиралями. 11-Подшипник скольжения со смазкой под давлением. Обратите внимание, что выпускное отверстие не показано.

    Рисунок 6-2: Герметичный центробежный охладитель жидкости, одноступенчатый компрессор. Использование ГХФУ-22 от 300 до 600 условных тонн; с использованием HFC-134a, от 200 до 530 номинальных тонн. В системе может использоваться R-22 или R-134a, что позволяет при необходимости преобразовывать R-22 в R-134a. Устройство имеет микропроцессор для управления системой. Вид в разрезе, показывающий цикл охлаждения.

    ВИНТОВЫЕ КОМПРЕССОРЫ

    Винтовые компрессоры обычно и эффективно используются в системах с холодопроизводительностью более 20 тонн. В этих компрессорах используется пара винтовых винтов или роторов, которые вместе вращаются внутри камеры и выталкивают хладагент из впускного отверстия, со стороны низкого давления камеры, по направлению к концу высокого давления

    .

    Рисунок 6-3: Поперечное сечение винтового компрессора.Ротор A-Male. B-Женский ротор. C-цилиндр. Испаренный хладагент входит с одного конца и выходит с другого конца.

    Когда газ продвигается вперед, он сжимается в сужающиеся зазоры между лопастями винта, создавая сжимающее действие. Никаких клапанов не требуется, кроме обслуживания на впускном и выпускном отверстиях. Поскольку роторы вращаются непрерывно, вибрация меньше, чем у поршневых компрессоров с камерой охлаждения и кондиционирования воздуха. Винтовые (винтовые) компрессоры изготавливаются в открытом приводе или в герметичном исполнении.

    Роторы называются «охватываемыми» для ведущего ротора и «охватывающими» для ведомого ротора. Мужской ротор с большим количеством лопастей вращается быстрее, чем женский ротор. Регулирование производительности осуществляется с помощью золотникового клапана, который открывается в камере компрессора и позволяет пару выходить без сжатия. Некоторые агрегаты могут эффективно работать только при 10% номинальной производительности.

    Рисунок 6-4: Основные операции винтового компрессора. Вращающийся ротор сжимает пар.Заполняются межлопастные пространства A-компрессора. B-Начало сжатия. C-Полное сжатие захваченного пара. D-Начало сброса сжатого пара. E-Сжатый пар полностью отводится из межлопастных пространств.

    РЕЦЕПТУРНЫЕ КОМПРЕССОРЫ

    Поршневой компрессор использует поршень, скользящий внутри цилиндра для сжатия паров хладагента. На рис. 4-29 показан принцип работы поршневого компрессора. На рисунке 4-29A поршень переместился вниз в цилиндре A.Он переместил пары хладагента из линии всасывания через впускной клапан. Оттуда пар хладагента переместился в пространство цилиндра. На рисунке 4-29B поршень переместился вверх. Он сжал испарившийся хладагент в гораздо меньшее пространство (зазор). Сжатый пар выталкивается через выпускной клапан в конденсатор.

    Рисунок 6-5: Основная конструкция поршневого компрессора.

    В верхней части хода поршень должен приближаться к головке блока цилиндров.Чем меньше зазор, тем большее давление будет создавать ход поршня. Этот зазор может составлять от 0,010 до 0,020 дюйма (от 0,254 до 0,508 мм).

    В малых системах может использоваться двухпоршневой компрессор, в то время как в больших промышленных системах используются многоцилиндровые многопоршневые компрессоры. Картер компрессора должен быть спроектирован так, чтобы отводить тепло сжатия. Картеры компрессоров обычно изготавливаются из чугуна и имеют ребра для отвода тепла в воздух или, в некоторых случаях, водяные рубашки для отвода тепла сжатия в воду.В полугерметичных и герметичных компрессорах охлаждение обеспечивается хладагентом из линии всасывания. Поршни в больших поршневых компрессорах имеют отдельные масляные и компрессионные кольца. Масляные кольца, расположенные ниже на поршне, используются для уменьшения количества масла, поступающего в цилиндр из картера. В небольших системах масляные кольца можно не устанавливать, а вместо них использовать масляные канавки для регулирования потока масла. Компрессионные кольца используются для плотного прилегания к стенкам цилиндра, гарантируя, что каждый ход перекачивает максимальное количество хладагента.

    КАРТЕР И ШАТУНКИ

    Рисунок 6-6: Небольшой двухцилиндровый поршневой компрессор с внешним приводом в разрезе. Корпус отлит из легкого сплава. Чугунные гильзы цилиндров постоянно залиты в корпус картера.

    В поршневых компрессорах вал картера преобразует вращательное движение двигателя в возвратно-поступательное движение поршней. Коленчатый вал вращается внутри коренного подшипника, который должен прочно поддерживать коленчатый вал и выдерживать концевые нагрузки, прикладываемые к валу двигателем и шатунами.Точная величина осевого люфта должна быть указана в документации производителя.

    Для соединения шатуна с коленчатым валом можно использовать несколько типов рычагов:

    1. Обычная шатунная штанга, наиболее распространенная связь в коммерческих системах, зажимается до конца.
    2. : эксцентриковый коленчатый вал имеет центральную круглую бобышку на коленчатом валу для создания движения вверх и вниз. Эта система устраняет необходимость в крышках или болтах на шатуне. Вместо этого цельный конец штока устанавливается на коленчатый вал перед окончательной сборкой.
    3. Скотч-вилка не имеет шатуна. Вместо этого в нижней части поршня имеется канавка, которая принимает ход коленчатого вала. Канавка позволяет коленчатому валу перемещаться в боковом направлении и перемещать поршень только вверх и вниз. И вилка, и эксцентрик используются в основном в бытовых и автомобильных системах.

    УПЛОТНЕНИЕ КАРТЕРА

    В системах с открытым приводом уплотнение между коленчатым валом и картером является частым источником проблем.Уплотнение подвергается значительным колебаниям давления и должно работать, должно работать и уплотнять независимо от того, вращается ли коленчатый вал или неподвижен. Зазор между вращающейся и неподвижной поверхностями должен быть точным (до 0,000001 дюйма или 0,0000254 мм), и смазка заполняет этот крошечный зазор. Уплотнение обычно изготавливается из закаленной стали, бронзы, керамики или углерода. Отсутствие сальника коленчатого вала — главное преимущество герметичной конструкции.

    Роторное уплотнение — это простое обычное уплотнение, которое вращается на валу во время работы.Пружина в сочетании с внутренним давлением прижимает поверхность уплотнения к неподвижной поверхности уплотнения.

    Основной причиной проблем с уплотнениями картера является утечка из-за несоосности. При выравнивании вала двигателя относительно вала компрессора необходимо соблюдать осторожность, чтобы уплотнение не подвергалось нагрузкам во время работы. Точные допуски, указанные при изготовлении компрессора, должны соблюдаться как в горизонтальном, так и в угловом направлениях. В большинстве случаев уплотнение смазывается масляным насосом компрессора.Убедитесь, что компрессор включается время от времени во время длительных простоев, чтобы уплотнение оставалось смазанным. Небольшая утечка после запуска, во время которой сухое уплотнение смазывается маслом, может быть нормальным явлением.

    Протекающее уплотнение можно обнаружить с помощью детектора утечки хладагента. Чтобы проверить негерметичное уплотнение:

    1. Откачайте систему в сторону высокого давления (ресивер или конденсатор).
    2. Снимите муфту на конце вала компрессора.
    3. Снимите крышку уплотнения и все кольца, удерживающие вращающееся уплотнение на месте.
    4. Очистите поверхности колец очень мягкой тканью.
    5. Осмотрите уплотнительные поверхности и замените все уплотнение, если видны царапины, царапины или канавки.
    6. Соберите систему.
    7. Проверьте центровку валов компрессора и двигателя в горизонтальном и угловом направлениях, она должна находиться в пределах допусков, указанных производителем, или лучше.
    8. Выпустите воздух из компрессора и откройте необходимые клапаны, чтобы вернуть систему в рабочее состояние.
    9. Перед запуском производства проверьте, нет ли повторяющейся утечки через уплотнение.

    ГОЛОВКИ РЕЦИРКУЛЯЦИОННЫХ КОМПРЕССОРОВ И ПЛИТЫ КЛАПАНОВ

    Головки цилиндров компрессора обычно изготавливаются из чугуна и предназначены для удержания прокладок на месте для обеспечения надежного уплотнения между пластиной клапана, блоком цилиндров и головкой. Головки цилиндров должны иметь проходы для впуска всасываемого газа в цилиндр. Головка обычно крепится к блоку винтами с головкой под ключ.

    Впускные клапаны предназначены для впуска хладагента во время такта впуска и закрытия во время такта сжатия.Выпускные клапаны закрыты во время такта впуска и открываются в конце такта сжатия. Пластина клапана представляет собой узел, плотно удерживающий оба клапана на месте.

    Клапаны

    обычно изготавливаются из пружинной стали и предназначены для обеспечения герметичного уплотнения до тех пор, пока насосное действие поршня не откроет их. Сопрягаемые поверхности клапанов должны быть идеально ровными, а дефекты размером всего 0,001 дюйма (0,0254 мм) могут вызвать недопустимые утечки. В процессе эксплуатации клапан должен открываться примерно на 0,010 дюйма (0,254 мм). Большие отверстия вызовут шум клапана, а отверстия меньшего размера будут препятствовать попаданию и выходу достаточного количества хладагента из цилиндра.

    Рабочая температура сильно влияет на срок службы клапанов. Впускные клапаны работают в относительно прохладной среде и имеют постоянную смазку из паров масла. Нагнетательные клапаны — это самый горячий компонент холодильной системы, работающий до 50 градусов. F до 100 град. F горячее, чем нагнетательная линия, поэтому они чаще являются источником проблем, чем впускные клапаны. Нагнетательные клапаны необходимо устанавливать с особой осторожностью. На них обычно скапливаются тяжелые молекулы масла, вызывая накопление углерода и нарушая работу клапана.Нагнетательные клапаны и масло будут повреждены температурой выше 325 град. F до 350 град. F (от 163 до 177 ° C). Как правило, температура нагнетательного трубопровода должна поддерживаться на уровне 225 град. F до 250 град. F. (от 107 до 121 ° C).

    Рисунок 6-7: Пластина клапана поршневого компрессора в сборе.

    Нагнетательные клапаны могут иметь разгрузочные пружины, позволяющие им открываться слишком широко, если пробка жидкого хладагента или масла попадает в поршень компрессора из линии всасывания или картера компрессора.

    Рисунок 6-8: Коммерческий герметичный поршневой компрессор. Он имеет четыре ряда по два цилиндра в каждом (по четыре шатуна на каждом валу кривошипа) и крепится болтами для облегчения обслуживания.

    РОТАЦИОННЫЙ КОМПРЕССОР

    В ротационных компрессорах

    используется одна или несколько лопастей для создания сжимающего действия внутри цилиндра. В отличие от поршневого компрессора, поршень не используется. Есть два основных типа роторных компрессоров:

    1. Вращающиеся лопасти (лопасти).
    2. Отвал стационарный (разделительный блок).

    В обоих типах лопасть должна иметь возможность проскальзывать в своем корпусе, чтобы приспособиться к движению ротора, который вращается вне центра цилиндра. Впускные (всасывающие) порты намного больше, чем напорные. Нет необходимости во впускных (всасывающих) или выпускных клапанах; однако желательны обратные клапаны на линии всасывания, чтобы предотвратить попадание масла и паров высокого давления в испаритель, когда компрессор не работает.

    ВРАЩАЮЩАЯСЯ ЛЕЗВИЯ (ЛОПАТОЧНЫЙ) КОМПРЕССОР

    В конструкции с вращающейся лопастью ротор (вал) вращается внутри цилиндра, но центральные оси цилиндра и вала не идентичны. Вращающийся ротор (вал) имеет несколько прецизионных канавок, в которые вставляются скользящие лопатки. Когда вал вращается, эти лопатки прижимаются к цилиндру под действием центробежной силы. Когда газ поступает в компрессор из линии всасывания, лопатки сметают его. Поскольку ротор не отцентрован в цилиндре, пространство, содержащее газ, уменьшается, поскольку лопасти нагнетают газ вокруг цилиндра.Результат — сжатие газа. Когда газ достигает минимального объема и максимального сжатия, он вытесняется из выпускного отверстия. Объем зазора этой системы очень мал, а эффективность сжатия очень высока.

    Ротационные пластинчатые компрессоры обычно используются для первой ступени каскадной системы. Пластинчато-роторные компрессоры могут иметь от двух до восьми лопастей; в больших системах больше лезвий. Край лезвия там, где он соприкасается со стенкой цилиндра, должен быть тщательно отшлифован и гладкий, иначе возникнет утечка, что приведет к чрезмерному износу.Лезвие также должно точно входить в паз ротора.

    Рисунок 6-9: Роторно-лопастной компрессор. Черные стрелки указывают направление вращения ротора. Красные стрелки указывают поток паров хладагента.

    СТАЦИОНАРНЫЙ ЛОПАТНЫЙ (РАЗДЕЛИТЕЛЬНЫЙ БЛОК) РОТАЦИОННЫЙ КОМПРЕССОР

    В системе со стационарными лопастями скользящая лопасть в корпусе цилиндра отделяет пар низкого давления от пара высокого давления. Эксцентриковый вал вращает рабочее колесо в цилиндре.Эта крыльчатка постоянно трется о внешнюю стенку цилиндра. При вращении крыльчатки лопасть улавливает некоторое количество пара. Пар сжимается в все меньшее и меньшее пространство. Повышается давление и температура. Наконец, пар проходит через выпускное отверстие.

    Рисунок 6-10: Роторный компрессор. Неподвижная лопасть или разделительный блок контактирует с крыльчаткой.

    Рисунок 6-11: Герметичный одинарный роторный компрессор с неподвижными лопастями.

    СПИРАЛЬНЫЙ КОМПРЕССОР

    В спиральном компрессоре сжатие выполняется двумя спиральными элементами: вращающейся спиралью и фиксированной спиралью. Один свиток «фиксированный свиток» остается неподвижным. Другая «вращающаяся» прокрутка вращается по смещенной круговой траектории вокруг центра фиксированной прокрутки. Это движение создает компрессионные карманы между двумя элементами прокрутки. Всасываемый газ низкого давления задерживается в каждом периферийном кармане по мере его образования; продолжающееся движение вращающейся спирали закрывает карман, объем которого уменьшается по мере того, как карман перемещается к центру прокрутки.Максимальное сжатие достигается, когда выемка достигает центра, где находится выпускное отверстие, и выпускается газ. Во время этого процесса сжатия одновременно формируется несколько карманов.

    Рисунок 6-12: Сжатие в спирали вызвано взаимодействием вращающейся спирали, сопряженной с неподвижной спиралью. 1-Газ втягивается во внешнее отверстие, когда одна из спиралей движется по орбите. 2-По мере продолжения орбитального движения открытый проход закрывается, и газ направляется к центру спирали.3 — Объем кармана постепенно уменьшается. Это создает все более высокое давление газа. 4-Давление нагнетания достигается в центре кармана. Газ выходит из порта стационарного спирального элемента. 5-В реальной эксплуатации шесть газовых каналов все время находятся на различных стадиях сжатия. Это создает почти непрерывное всасывание и нагнетание.

    Рисунок 6-13: Поперечное сечение поршневого компрессора с наклонной шайбой. При вращении приводного вала и наклонной шайбы двусторонний поршень перемещается в цилиндре вперед и назад.

    Процесс всасывания из внешней части спирали и выпуск из внутренней части непрерывны. Этот непрерывный процесс обеспечивает очень плавную работу компрессора.

    Компрессия — это непрерывный процесс без обычных всасывающих и нагнетательных клапанов. Чтобы компрессор не работал в обратном направлении после отключения питания, обратный клапан расположен непосредственно над нагнетательным патрубком с неподвижной спиралью.

    A: Схема спирального компрессора в разрезе.

    B: Базовое представление сжатия спирального компрессора. Орбитальная спираль вращается вокруг неподвижной спирали, создавая плавное, постоянное сжатие внутрь к выпускному отверстию в центре.

    МАСЛЯНЫЕ СИСТЕМЫ ДЛЯ КОМПРЕССОРОВ

    В поршневых компрессорах

    обычно используются два типа смазочных систем:

    1. Система разбрызгивания использует коленчатый вал для разбрызгивания масла; масло попадает в коренной подшипник по каналам подшипника.Подшипник может быть шумным, потому что эта система создает небольшую масляную подушку.
    2. В системе давления масла используется масляный насос, приводимый в действие шестернями в картере; масло нагнетается в каналы в шатунах, коренных подшипниках и поршневых пальцах. Система масляного насоса лучше справляется со смазкой и бесшумной работой. Насос должен иметь предохранительный клапан для предотвращения возникновения опасного давления в контуре смазки компрессора. Защитный выключатель обычно используется для контроля давления масла и отключения компрессора, если давление масла падает ниже безопасного уровня.

    Роторные компрессоры

    Требуется масляная пленка на цилиндре, лезвиях и роликах. Некоторые машины продвигают масло за счет скольжения; другие используют масляный насос.

    Центробежные компрессоры

    Работает на высокой скорости и может иметь сложные системы контроля масла, включая насос, маслоотделитель, резервуары для смазки подшипников при разливке, масляный фильтр, предохранительный клапан и маслоохладитель.

    Винтовые компрессоры

    Требуется масло для охлаждения, уплотнения и бесшумности роторов; они обычно имеют систему принудительной смазки.Насос прямого вытеснения может работать независимо от компрессора, обеспечивая полную смазку при запуске компрессора. Масло отделяется и подается в масляный поддон (резервуар). Охлаждается и доставляется к подшипникам и портам для впрыска в камеру сжатия. Масляный поддон (резервуар) имеет нагреватель для предотвращения разбавления масла хладагентом во время выключения.

    Спиральные компрессоры

    Требуется охлаждение масла и уплотнение между вращающейся и неподвижной спиралью.Масло подается в спирали центробежным действием через отверстие в валу двигателя и вращающуюся спираль.

    В промышленных холодильных установках обычно используются три устройства для контроля масла в системе: маслоотделитель, регулятор уровня масла и масляный резервуар. Другие элементы, такие как масляные фильтры, соленоидные и запорные клапаны, могут потребоваться для завершения системы. Необходимо проводить регулярную проверку масла в системе, чтобы выявить опасную кислотность в масле холодильного компрессора.

    Содействие возврату масла

    Масло в системах с прямым расширением или в системах с сухим испарителем должно возвращаться в компрессор потоком хладагента.Скорость в трубках испарителя должна быть достаточной для возврата масла.

    Требуется скорость около 700 футов (214 м) в минуту по горизонтальным линиям и около 1500 футов (457 м) в минуту по вертикальным линиям.

    Несколько дополнительных мер помогут обеспечить надлежащий возврат масла в компрессор. Наклоните трубопроводы охлаждения к компрессору. Обеспечьте адекватную скорость хладагента во всасывающей линии, сделав ее подходящей по размеру, а не завышенной. Масло с высокой вязкостью (измеренное в условиях испарителя) более устойчиво к возврату потоком хладагента.Масло, которое легко растворяет хладагент, остается более текучим, чем масло без хладагента. Количество хладагента, растворенного в масле, зависит от давления и температуры в различных частях испарителя, а также от природы двух жидкостей.

    Возврат масла затруднен в низкотемпературных испарителях, потому что масло становится более вязким при понижении температуры и давления хладагента. Высокая степень сжатия также снижает возврат масла, поскольку всасываемый газ менее плотный.Таким образом, адекватная скорость всасывающего трубопровода особенно важна для низкотемпературных испарителей.

    Масло не будет возвращаться в компрессор в затопленном испарителе, поэтому требуется возвратный маслопровод. В некоторых системах к испарителю подключена специальная камера, позволяющая кипятить хладагент из масла перед возвратом масла в компрессор.

    ВЫПУСКНАЯ ЛИНИЯ

    Напорный трубопровод на стороне высокого давления системы, соединяет компрессор с конденсатором.Линия обычно представляет собой медные трубки, соединенные пайкой. Выделение может содержать; Гаситель вибрации, глушитель, маслоотделитель, клапаны регулирования давления, а также перепускные или сервисные клапаны.

    Амортизатор

    Как всасывающий, так и нагнетательный трубопроводы передают вибрацию от компрессора к другим компонентам системы охлаждения. Эта вибрация может вызвать нежелательный шум и повреждение трубок хладагента, что приведет к утечкам хладагента.

    В небольшой системе с мягкими медными трубками малого диаметра гаситель вибрации может состоять из мотка трубок.Гибкий металлический шланг с внутренним диаметром, по крайней мере, таким же большим, как и подсоединенная трубка, предпочтительнее для более крупных систем. Эта секция трубки может быть оканчивалась гнездом с наружным диаметром, наружной резьбой или фланцами. Хладагент, движущийся с высокой скоростью по извилистому внутреннему диаметру поглотителя, может вызывать свистящий звук. Гасители вибрации не предназначены для сжатия или растяжения, поэтому их следует ориентировать параллельно коленчатому валу компрессора, а не под прямым углом к ​​нему.

    Глушитель

    Глушитель используется для уменьшения передачи пульсаций и шума нагнетания поршневого компрессора в систему трубопроводов и конденсатор.Глушитель представляет собой цилиндр с перегородками внутри. В целом глушители, создающие большой перепад давления, более эффективны, чем глушители с меньшим ограничением. Как объем, так и плотность потока газа через глушитель влияют на характеристики глушителя.

    Маслоотделитель

    Маслоотделитель — это контейнер с рядом перегородок и сеток, размещенных в линии нагнетания. Выходящий пар с масляным туманом, поступающий в маслоотделитель, вынужден поворачиваться и сталкиваться с перегородками и экранами, позволяя каплям масла объединяться в большие капли, которые стекают в поддон внизу.Отстойник позволяет осадку и загрязнителям оседать и может иметь магнит, притягивающий частицы железа. Когда в поддоне накопится достаточно масла, он поднимает поплавок и стекает обратно в картер компрессора, движимый давлением масла в маслоотделителе.

    Маслоотделители чаще всего используются в больших и низкотемпературных системах. Они обязательны в аммиачных системах.

    КОНДЕНСАТОР

    Конденсатор — это компонент со стороны высокого давления холодильного контура, который позволяет горячему газу хладагента под высоким давлением отводить скрытую теплоту конденсации в окружающую среду.Эта потеря тепла вызывает конденсацию газа в жидкость под высоким давлением, которая может быть подана по трубопроводу к измерительному устройству. Тепло, отводимое конденсатором, поступает в систему через испаритель и компрессор. Из-за неэффективности и других источников тепла конденсатор в открытой системе должен утилизировать примерно в 1,25 раза больше тепла, чем в испарителе. Конденсаторы в герметичных системах также должны отводить тепло от обмоток двигателя.

    В зависимости от функции и способов отвода тепла используется много различных типов конденсаторов.Две основные категории «с водяным охлаждением» и «с воздушным охлаждением» подразделяются на среду, используемую для отвода тепла. Основная цель конструкции конденсатора — отвести максимум тепла при минимальных затратах и ​​занимаемой площади.

    Вода и воздух обычно являются обильными и экономичными конденсирующими средами. Вода может быстро и эффективно отводить большое количество тепла, что позволяет сделать конденсатор относительно небольшим и делает конденсатор с водяным охлаждением более экономичным, если он доступен. Однако воды может быть мало или она химически непригодна для охлаждения конденсатора.Кроме того, конденсаторы с водяным охлаждением подвержены образованию накипи, загрязнения, замерзания и коррозии.

    Конденсаторы с воздушным охлаждением должны быть больше, чем агрегаты с водяным охлаждением, но не должны иметь проблем с замерзанием или водой. Воздушное охлаждение используется, когда вода недоступна, дорога или химически непригодна.

    Ребра, проволока или пластины могут быть прикреплены к трубке конденсатора для увеличения площади поверхности и способности отводить тепло конденсации. Вентиляторы или насосы обычно используются для увеличения потока конденсирующейся среды.Такие усовершенствования увеличивают переохлаждение хладагента, увеличивают скорость теплопередачи и уменьшают овальный размер конденсатора.

    КОНДЕНСАТОР ВОЗДУШНОГО ОХЛАЖДЕНИЯ

    Реле конденсаторов с воздушным охлаждением на вентиляторах для перемещения воздуха по трубкам и ребрам для отвода тепла от хладагента. Кожухи используются для повышения эффективности вентилятора за счет направления всего воздушного потока через трубы конденсатора. Для увеличения площади поверхности конденсатора можно использовать ребра различного типа.Правильная теплопередача в конденсаторах с воздушным охлаждением может быть достигнута только при чистой поверхности конденсатора.

    Конденсатор с воздушным охлаждением должен быть спроектирован для работы в самых жарких условиях окружающей среды, когда теплопередача будет самой медленной, а охлаждающая нагрузка, вероятно, будет максимальной.

    Наружный конденсатор с воздушным охлаждением, работающий в холодную погоду, представляет собой особую проблему при проектировании системы. Необходимы особые меры предосторожности для защиты наружного конденсатора с воздушным охлаждением от низких температур окружающей среды.Основная проблема заключается в том, что хладагент не будет протекать через дозирующее устройство, если напор не будет достаточным, а низкие температуры окружающей среды уменьшат напор.

    Для работы конденсатора с воздушным охлаждением при низких температурах окружающей среды системе может потребоваться любое из следующих устройств или их комбинация:

    1. Всепогодный кожух конденсатора
    2. Способ предотвращения короткого цикла компрессора
    3. Способ регулирования напора в зимний период и при отрицательных температурах окружающей среды
    4. Способ предотвращения разбавления компрессорного масла жидким хладагентом

    Заявление об ограничении ответственности — В то время как Berg Chilling Systems Inc.(«Берг») прилагает разумные усилия для предоставления точной информации, мы не делаем никаких заявлений и не даем никаких гарантий относительно точности любого содержания в ней. Мы не несем ответственности за какие-либо типографские ошибки, ошибки или упущения в содержании или другие ошибки. Мы оставляем за собой право изменять содержание этой документации без предварительного уведомления.

    , Олдрих Бочек (1939-2003)
    Эксперт по управлению температурным режимом
    Berg Chilling Systems Inc.

    2.9 Гидравлические схемы — Гидравлика и электрическое управление гидравлическими системами

    Обсудите преимущества и недостатки представления гидравлических компонентов с помощью графических изображений, условных обозначений в разрезе и схематических обозначений.

    Проведите различие между рабочей, пилотной и дренажной линиями и покажите, как эти линии изображены схематически.

    Различия между схематически подключенными и неподключенными проводниками жидкости

    Опишите корпус и схематическое его изображение.

    Опишите, какую жидкость (жидкости) эти цвета представляют на гидравлической схеме.

    Красный

    Синий

    Желтый

    Оранжевый (2)

    Зеленый (2)

    фиолетовый

    Определите назначение этих общих форм на гидравлической схеме:

    Круг

    Площадь

    Алмаз

    Косая стрела

    Определите первичный двигатель. Нарисуйте схематический символ двигателя и двигателя внутреннего сгорания.

    Определите насос. Нарисуйте схематический символ для насоса постоянного рабочего объема, насоса переменного рабочего объема, насоса переменного рабочего объема с компенсацией давления и ручного насоса. Различайте эти типы насосов.

    Определите назначение слива корпуса и начертите условное обозначение.

    Определите муфту. Нарисуйте схематический символ вала, соединяющего первичный двигатель и насос.

    Определите резервуар.Нарисуйте схематический символ резервуара с атмосферным / вентилируемым резервуаром и резервуара под давлением.

    Определите гидравлический двигатель. Нарисуйте схематический символ.

    Определите гидроцилиндр. Нарисуйте схематический символ для гидроцилиндра двустороннего действия, цилиндра одностороннего действия с выдвижной пружиной, втягиваемого с помощью пружины, цилиндра одностороннего действия с выдвижной пружиной и втягивания с гидравлическим приводом и гидроцилиндра одностороннего действия. Обсудите, как эти цилиндры выдвигаются и втягиваются. Опишите назначение вентиляционного отверстия на цилиндре одностороннего действия.

    Нарисуйте схематический символ для двухстержневого цилиндра, тандемного / дуплексного цилиндра, телескопического цилиндра и усилителя.

    Нарисуйте схематический символ цилиндров двустороннего действия с фиксированной подушкой на выдвижении, фиксированной подушкой при втягивании и фиксированной подушкой при выдвижении и втягивании. То же самое проделайте и с различными подушками.

    Определите назначение клапана сброса давления и нарисуйте схематический символ.

    Определите назначение разрывной мембраны и нарисуйте схематический символ.(см. лекцию по предохранительному клапану)

    Определите назначение гидрораспределителя. Нарисуйте схематический символ следующих гидрораспределителей и обсудите использование этих клапанов:

    2-позиционный, 2-ходовой, пружина гидрораспределителя с электромагнитным приводом, смещение пружины в положение NC с ручным дублированием

    2-позиционный, 3-ходовой, с ручным приводом пружина гидрораспределителя смещена в положение, при котором от A до T

    2-позиционный 4-ходовой гидрораспределитель с электромагнитным приводом и фиксаторами с перекрестным соединением и прямым проходом

    3-х позиционный 4-ходовой гидрораспределитель с ручным приводом, пружина центрирована в закрытом центральном положении с прямым сквозным и перекрестным соединением

    Различия между закрытым, тандемным, плавающим и открытым центральным положениями.Нарисуйте условные обозначения.

    Укажите назначение обратного клапана, пилотного клапана для открытия обратного клапана, пилотного клапана для закрытия обратного клапана, обратного клапана дроссельного / диафрагменного типа и ручного запорного клапана. Нарисуйте схематический символ этих устройств и обсудите, как работают эти клапаны.

    Определите назначение клапана управления потоком и нарисуйте схематический символ для следующих устройств: клапан управления постоянным потоком, клапан управления переменным потоком, клапан управления переменным потоком с байпасом обратного клапана, клапан управления переменным потоком с компенсацией давления с байпасом обратного клапана, давление и регулирующий клапан с регулируемым расходом с температурной компенсацией и байпасом обратного клапана.Для регулирующих клапанов с обратным клапаном байпас определите направление свободного и регулируемого потока.

    Определите назначение клапана регулирования давления и нарисуйте схематический символ для следующих устройств: предохранительный клапан, клапан последовательности, редукционный клапан, противовесной клапан, разгрузочный клапан.

    Обсудите, как следующие характеристики помогают в идентификации клапанов регулирования давления:

    Пилотная линия

    Деактивировано

    Обратный клапан перепускной

    Внутренний и внешний сток

    Местоположение и воспринимаемая функция

    Определите назначение и общий принцип работы аккумулятора и нарисуйте схематический символ заряженного газом аккумулятора, подпружиненного аккумулятора и взвешенного аккумулятора.Обсудите все меры безопасности, касающиеся аккумуляторов.

    Определите назначение и нарисуйте схематический символ для следующих устройств: манометр / манометр, быстроразъемные контрольные отверстия, реле давления (гидравлическое и электрическое), датчик давления, расходомер, концевой выключатель, магнитный датчик приближения (гидравлический и электрический)

    Определите назначение и начертите схематический символ для следующих устройств: фильтр, фильтр с байпасом обратного клапана, нагреватель, охладитель, охладитель с жидким теплоносителем, охладитель с газовым теплоносителем.Обсудите назначение противотока в теплообменниках.

    Определите гидроагрегат (HPU). Определите устройства, которые обычно встречаются в HPU.
    Определите назначение и начертите схематический символ поворотной гидравлической муфты.

    Основы циркуляционного насоса

    — Принцип работы насоса Нагревательный насос HVAC Принцип работы

    Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube

    Изучите основы обычного циркуляционного насоса, чтобы понять, как он работает и где мы их используем.

    Посетите stateupply.com, который любезно спонсировал эту статью. Здесь вы можете узнать, какие циркуляционные насосы доступны, купить запчасти или поговорить со знающими специалистами по продукции о ведущих брендах насосов, таких как Bell & Gossett и Taco. Просто нажмите здесь, чтобы узнать больше.

    State Supply — это ваш источник компонентов паровых и гидравлических систем отопления, таких как конденсатоотводчики, клапаны, регуляторы и насосы (включая ведущие в отрасли бренды, такие как Bell & Gossett, Taco и другие).Посетите www.statesupply.com или позвоните нам по бесплатному телефону 877-775-7705, чтобы получить беспрецедентный выбор продуктов, опытных экспертов и отличное обслуживание клиентов.

    Проверьте циркуляционные насосы ➡️ https://www.statesupply.com/pump/hydronic

    Просмотреть видеоролики о ремонте и техническом обслуживании насоса ➡️ https://www.youtube.com/statesupply

    Загрузите это руководство ➡️ https://www.statesupply.com/boiler-inspection-checklist

    Что такое циркуляционный насос и где они используются?

    Циркуляционные насосы

    Циркуляционные насосы бывают разных форм, цветов и размеров, но обычно выглядят примерно так.Эти насосы представляют собой встроенные насосы центробежного типа, что означает, что их вход и выход выровнены, а метод перемещения воды основан на центробежных силах.

    Контур горячей воды

    Мы собираемся найти эти насосы, используемые для циркуляции горячей воды по контуру нагретой воды, так что, открывая кран, мы почти мгновенно получаем доступ к горячей воде. В противном случае каждый раз, когда мы открывали кран, нам приходилось ждать, пока горячая вода не потечет через всю систему.

    Системы водяного отопления

    В системах водяного отопления мы также найдем эти насосы, используемые для циркуляции нагретой воды между котлом и радиаторами или другими типами теплообменников.

    Большие системы отопления

    Мы также можем найти циркуляционные насосы, используемые в более крупных системах отопления, для подачи тепла в различные части или зоны внутри здания.

    Основные части циркуляционного насоса

    Детали насоса

    Циркуляционный насос состоит из двух основных частей: насоса и двигателя.

    Двигатель представляет собой двигатель асинхронного типа, который позволяет преобразовывать электрическую энергию в механическую. Эта механическая энергия используется для приведения в действие насоса и перемещения воды.

    Вход и выход

    Когда мы смотрим на корпус насоса, мы видим как вход, так и выход. Насос всасывает воду через впускное отверстие и выталкивает через выпускное отверстие. Как правило, на корпусе есть стрелка, указывающая направление потока, чтобы вы знали, где находится вход и выход.

    Поскольку это встроенный насос, впускной и выпускной патрубки выровнены концентрически, это полезно, потому что мы потенциально можем вырезать часть трубы из системы горячего водоснабжения и установить циркуляционный насос в этом пространстве без необходимости изменять трубопровод, например это необходимо для стандартного центробежного насоса.

    Ушка рабочего колеса

    Это все еще насос центробежного типа, поэтому вода должна поступать в насос через проушину крыльчатки. Для этого впускное отверстие следует по изогнутой траектории, которая входит в крыльчатку.

    Корпус насоса

    Эта деталь представляет собой корпус насоса. У него внутри есть канал, известный как спираль. После того, как вода выйдет из крыльчатки, она будет собираться в этом канале и поступать к выпускному отверстию. Мы увидим это более подробно позже в статье.

    Улитка

    Затем мы находим рабочее колесо, которое находится внутри корпуса насоса и окружено каналом улитки.Рабочее колесо вращается и передает центробежную силу на воду, которая выталкивает ее из насоса по трубам.

    Рабочее колесо

    За рабочим колесом находится задняя пластина. Задняя пластина действует как барьер и удерживает поток воды внутри корпуса насоса. На задней пластине также находится один из подшипников вала, обеспечивающий плавное вращение. К нему мы также найдем резиновое уплотнение для предотвращения утечек.

    BackplateRubber Seal

    Далее мы собираемся найти вал и ротор.Ротор прикреплен к валу, а вал прикреплен к крыльчатке. Когда ротор вращается, вал и крыльчатка вращаются вместе с ним. Это движущая сила воды внутри насоса.

    Ротор и вал

    Ротор находится внутри корпуса ротора. Ротор обеспечивает физический барьер, который предотвращает попадание воды на электрическую цепь асинхронного двигателя.

    Роторная банка

    Вокруг ротора находится индукционный двигатель. Он состоит из нескольких витков медной проволоки, плотно упакованных в статор.Катушки и статор неподвижны и не вращаются. Электричество проходит через катушки внутри статора, это создает вращающееся электромагнитное поле, которое заставляет вращаться ротор.

    Статор и обмотки

    Защищая статор и обмотки, мы имеем корпус двигателя. Сбоку от корпуса двигателя мы найдем электрическую клеммную коробку. На передней панели у нас есть переключатель скорости, он позволяет нам вручную изменять скорость вращения двигателя между низкой, средней и высокой, что изменяет скорость потока насоса.

    Корпус двигателя

    Внутри клеммной коробки находится переключатель скорости. У нас также есть клеммы заземления, нейтрали и линии, которые позволяют нам подключать насос к источнику питания. Обычно внутри этого типа насоса находится конденсатор, который жизненно важен для работы насоса, поэтому мы вскоре рассмотрим его подробно.

    Клеммная коробка

    Обмотки двигателя и конденсатор

    Электродвигатель циркуляционного насоса представляет собой однофазный асинхронный двигатель переменного тока.

    Однофазный асинхронный двигатель переменного тока

    Электричество — это поток электронов по проводу. У нас есть постоянный или постоянный ток, который мы получаем от таких источников, как батареи, и в этом типе электричества электроны текут только в одном направлении от отрицательного к положительному.

    Постоянный ток

    Но в ваших домах и на работе будет использоваться другой тип электричества, известный как переменный ток. При переменном токе электроны меняют направление и многократно текут вперед и назад.

    Переменный ток

    Когда электричество течет по проводу, оно генерирует электромагнитное поле. Когда электроны меняют направление, магнитное поле непрерывно расширяется и сжимается. Сворачивая провод в катушку, мы генерируем гораздо более сильное электромагнитное поле.

    Обмотка проволоки

    Когда провод наматывается на катушку, мы называем это индуктором. Когда мы применяем переменный ток, магнитное поле расширяется и сжимается, каждый раз, когда оно расширяется и сжимается, северная и южная полярность катушки меняются местами.Нам нужно это расширяющееся и сжимающееся магнитное поле для создания вращения.

    Переменный ток

    Чтобы сформировать двигатель, мы наматываем провод на две катушки внутри статора, чтобы создать сильное электромагнитное поле. Если мы поместим ротор в центр этого магнитного поля, ротор выровняется с магнитным полем, а затем он застрянет. Чтобы вращать ротор, нам понадобится вращающееся магнитное поле. Если бы мы взяли несколько магнитов и тщательно рассчитали время их взаимодействия с ротором, мы могли бы добиться этого, но это не очень практично.

    Ротор застрял, необходимо вращающееся магнитное поле

    В более крупных двигателях мы создаем вращающееся магнитное поле, используя большее количество фаз, потому что электроны движутся вперед и назад в разное время в двух фазах, что, таким образом, создает другое магнитное поле в разное время. Однако этот тип насоса имеет только однофазное соединение, поэтому вместо этого мы будем использовать конденсатор для создания поддельной фазы 2 и .

    Вращающееся магнитное поле

    Поэтому мы вставляем вторую катушку в статор на 90 градусов от первой катушки.Две катушки подключены параллельно, но во второй катушке есть конденсатор, подключенный последовательно с катушкой.

    Конденсатор создает поддельную вторую фазу

    Электричество не проходит через конденсаторы. Цепь разорвана внутри конденсатора, образуя две стенки. Две внутренние стенки расположены очень близко друг к другу, поэтому электроны могут накапливаться на этих стенках и выходить отсюда. Поэтому конденсатор — это что-то вроде накопительного бака или диафрагмы. Когда подача электричества движется в одном направлении, конденсатор будет накапливать электроны.Когда подача электричества меняет направление, конденсатор высвобождает электроны

    .

    Таким образом, у нас есть электроны, протекающие через разные катушки в разное время, это создаст наше вращающееся магнитное поле. Однако для этого необходимо правильно подобрать размер конденсатора.

    Мы подробно рассмотрели основы конденсаторов в предыдущей статье, проверьте это здесь.

    Обмотки многоскоростного двигателя

    Обычно у нас есть переключатель сбоку на клемме двигателя, который позволяет нам изменять скорость двигателя и, следовательно, скорость потока насоса, а также давление напора.

    Выбор скорости

    Внутри двигателя катушка хода будет иметь различные точки подключения, или даже может быть несколько разных катушек. Переключатель используется для подключения к этим различным точкам и эффективного изменения длины катушки, через которую должно проходить электричество.

    Несколько точек подключения

    Вам может быть интересно, почему при низком значении катушка длиннее, чем при высоком значении.

    Когда мы пропускаем переменный ток через индуктивную катушку, создаваемое ею магнитное поле мешает электронам, пытающимся пройти через нее.Сила, известная как индуктивное реактивное сопротивление, препятствует изменению тока.

    Индуктивное реактивное сопротивление

    Когда мы увеличиваем длину катушки, индуктивное реактивное сопротивление также увеличивается, и это затрудняет прохождение тока электронов. Таким образом, по мере уменьшения тока электромагнитное поле также уменьшается, что снижает скорость и крутящий момент двигателя.

    Максимальное индуктивное реактивное сопротивление

    По мере того, как мы переходим к минимальному значению, индуктивное реактивное сопротивление становится максимальным, ток уменьшается, и двигатель медленно вращается.

    Минимальное индуктивное реактивное сопротивление

    Когда мы переходим к высокому значению, индуктивное реактивное сопротивление минимально, поэтому ток высокий, а ротор вращается намного быстрее.

    Мы рассмотрели многоскоростные насосы и то, как читать их диаграммы насосов, в нашей предыдущей статье. Проверьте это здесь.

    Как работает циркуляционный насос?

    Итак, как работает циркуляционный насос. Прежде всего, вода из системы горячего водоснабжения поступает в насос через входное отверстие и попадает в проушину рабочего колеса, эта вода будет задерживаться между лопастями рабочего колеса внутри корпуса насоса.

    Циркуляционный насос

    Электричество поступает в клеммную коробку и проходит через обмотки двигателя, конденсатор помогает создавать вращающееся магнитное поле, и это магнитное поле заставляет ротор вращаться. К ротору прикреплен вал. Вал проходит от двигателя вниз в корпус насоса, где он соединяется с рабочим колесом.

    Вал и крыльчатка вращаются вместе с ротором. Когда крыльчатка вращается, она передает воде кинетическую энергию или скорость, и она движется наружу.
    Вода увеличивается по скорости и кинетической энергии, когда достигает края крыльчатки.

    К тому времени, когда вода достигает края крыльчатки, она достигает очень высокой скорости. Эта высокоскоростная водяная муха отлетает от рабочего колеса и попадает в спиральную камеру, где ударяется о стенку корпуса насоса.

    Этот удар преобразует скорость в потенциальную энергию или давление.
    Корпус насоса для гидравлических ударов. Кинетическая энергия преобразуется в потенциальную энергию (давление).

    Вода сталкивается с корпусом насоса

    По мере того, как вода движется наружу и от крыльчатки, она создает область низкого давления в центре, которая втягивает больше воды и, таким образом, развивается поток.Спиральный канал имеет расширяющийся диаметр, поскольку он закручивается по окружности корпуса насоса. По мере его увеличения скорость воды будет уменьшаться, что приведет к увеличению давления.
    Сзади идет вода; скорость потока развивается. Увеличивается диаметр спирального канала; это вызывает уменьшение скорости воды, что увеличивает давление.

    Диаметр спирального канала расширяется.

    Расширяющийся канал, таким образом, позволяет большему количеству воды присоединяться и преобразовываться в давление.

    Выходное отверстие нагнетания имеет более высокое давление

    Таким образом, выпускное отверстие нагнетания имеет более высокое давление, чем входное отверстие всасывания. Высокое давление на выходе позволяет нам заставлять воду циркулировать по трубопроводам и отводить ее, когда и где это необходимо. Хорошо, ребята, это все для этого видео, но чтобы продолжить обучение, посмотрите одно из видео на экране, и я поймаю вас там на следующем уроке. Не забывайте подписываться на нас в Facebook, Instagram, Twitter, linkedin, а также проявлять инженерный склад ума.com