- Электромагнитные контакторы
- Контакторы и магнитные пускатели: сходства, различия
- Электромагнитный пускатель: устройство и принцип действия
- виды, принцип работы, характеристики, подключение :: SYL.ru
- Электромагнитный пускатель: типы, устройство, характеристики
- Контакторы электромагнитные | состав и характеристики контакторов электромагнитных
- Классификация и особенности электромагнитных контакторов
Электромагнитные контакторы
Контактор представляет собой двухпозиционный электрический аппарат, предназначенный для частых коммутаций силовых электрических цепей с током, не превышающим тока перегрузки. Замыкание (размыкание) контактов контактора осуществляется электромагнитным приводом.
Различают контакторы постоянного и переменного тока.
Контакторы постоянного токапредназначены для коммутации силовых электрических цепей постоянного тока и приводятся в действие электромагнитом постоянного тока.
Контакторы переменного токапредназначены для коммутации силовых электрических цепей переменного тока и приводятся в действие электромагнитом постоянного или переменного тока.
Основные узлы контактора:
Контактная системаобеспечивает включение и отключение силовой электрической цепи.
Дугогасительная система
Электромагнитный механизмприводит в движение подвижные контакты, осуществляет замыкание главных контактов.
Вспомогательные контакты (блок-контакты) предназначены для коммутации цепей сигнализации и контроля.
Принцип действия контактора:
Включение контакторапроисходит при подаче напряжения на обмотку электромагнитного привода. Якорь электромагнита притягивается к сердечнику. Одновременно с якорем подвижный контакт притягивается к неподвижному и происходит замыкание силовой электрической цепи.
Отключение контактора происходит при снятии напряжения с катушки электромагнита. Подвижные контакты отпадают от неподвижных под действием силы тяжести подвижных частей и усилия отключающей (возвратной) пружины.
Параметры контактора:
номинальный ток главной цепи;
предельная коммутационная способность – максимальный ток, который способен отключить контактор и быть пригодным для дальнейшей эксплуатации;
номинальное напряжение главной цепи – до 660В;
номинальное напряжение цепи управления – 12, 24, 48, 110, 220В;
коммутационная износостойкость – это способность аппарата выдерживать определенное число коммутаций при наличии тока в главной цепи и быть пригодным для дальнейшей эксплуатации. До 2 млн. циклов;
механическая износостойкость– это способность аппарата выдерживать определенное число коммутаций без тока в главной цепи и быть пригодным для дальнейшей эксплуатации. Для контакторов 10÷20 млн. циклов;
частота включения в часдля различных серий контакторов составляет 150, 300, 600, 1200, 3600 циклов в час;
собственное время включения– отрезок времени с момента подачи команды на включение до полного замыкания контактов;
собственное время отключения– отрезок времени с момента подачи команды на отключение до погасания дуги;
напряжение и ток вспомогательных контактов;
число вспомогательных контактов и их вид(размыкающие, замыкающие).
Контакторы постоянного тока
Серии контакторов постоянного тока: КП, КМК, КПМ, КПВ.
Контакторы постоянного тока имеют пять категорий применения: ДС-1; ДС-2; ДС-3; ДС-4; ДС-5.
Контакторы серии КПВ имеют два исполнения:
Замыкание главных контактов при подаче управляющего напряжения.
Размыкание главных контактов при подаче управляющего напряжения.
Контактная системавключает неподвижный контакт, подвижный контакт, гибкая связь с выводом. Подвижный контакт выполнен в виде толстой пластины поворотного типа и может перекатываться и скользить по поверхности неподвижного контакта. При этом в месте контактирования стираются окисные пленки, и уменьшается переходное сопротивление. Вывод соединяется с подвижным контактом гибкой связью. Контактное нажатие создается контактной пружиной. В контакторах постоянного тока широко распространена мостиковая система контактов с двумя разрывами на полюс, что значительно облегчает условия дугогашения. Под номинальным током контакторы могут находиться не более 8 часов.По истечении этого времени необходимо провести несколько операций включение-отключение для удаления с поверхности контактов окисной пленки. При нахождении под током более 8 часов, номинальный ток необходимо снизить до. У контакторов, установленных в закрытых объемах, номинальный ток уменьшается до.
Дугогасительная система: дугогасительная камера, катушка магнитного дутья. При отключении контактора, магнитное поле дугогасительной катушки, взаимодействуя с током дуги, вызывает движение последней в сторону дугогасительной камеры. Обеспечивается механическое растяжение, охлаждение и гашение дуги. При токах ниже
Электромагнит. В контакторах постоянного тока наибольшее распространение получили электромагниты клапанного типа. Якорь вращается на призме. Такая конструкция обеспечивает механическую износостойкость узла вращения до 20 млн. циклов при частоте включения до 1200 включений в час. Катушка электромагнита наматывается на изолированную стальную гильзу для обеспечения механической прочности и улучшения условий охлаждения. Сила, развиваемая электромагнитом, должна проходить выше характеристики противодействующих пружин при напряжении на катушке не нижев нагретом состоянии. Наибольшее напряжение на катушке не должно превышать
. К важным параметрам контактора относится коэффициент возврата, равный отношению напряжения отпускания к напряжению срабатывания. Для большинства контакторов этот коэффициент равен 0.2, что не позволяет использовать контакторы для защиты электроустановок от пониженного напряжения.Блок-контакты.Все контакторы выпускаются со вспомогательными контактами. Вспомогательные контакты обеспечивают подключение дополнительных схем (сигнализация состояния цепи).
Контакторы переменного тока
Контакторы переменного тока имеют четыре категории применения: АС-1; АС-2; АС-3; АС-4. Контакторы переменного тока выпускаются на токи от 100 до 1000А. Наибольшее распространение получили 3-х полюсные контакторы серии КТ-6000.
Контактная система. Из-за облегченных условий гашения дуги, раствор главных контактов уменьшен по сравнению с контакторами постоянного, что позволяет уменьшить габариты электромагнита.
Дугогасительная системасостоит из катушки магнитного дутья, включенной последовательно в токовую цепь, сердечника, полюсных пластин и керамической дугогасительной камеры. Принцип работы дугогасительной системы аналогичен контакторам постоянного тока. В контакторах переменного тока серии КТ-7000 широкое распространение получили дугогасительные решетки, которые не требуют магнитного дутья и более эффективны в качестве дугогасительных устройств. К недостаткам такой системы можно отнести значительный нагрев дугогасительных пластин решетки, что не позволяет применять такие контакторы при большой частоте включения.
Электромагнит.В качестве привода контакторов переменного тока могут использоваться электромагниты переменного тока (серии КТ 6000, КТ 7000) и электромагниты постоянного тока (серии КТП 6000).
С целью устранения вибрации якоря в притянутом положении на полюсах магнитной системы АС расположены короткозамкнутые витки, эффективность работы которых увеличивается при уменьшении зазора между якорем и сердечником, что требует тщательной шлифовки опорных поверхностей магнитопровода. Из-за изменяющейся индуктивности катушки, ток в начальном положении якоря значительно больше тока в конечном положении. В среднем можно считать, что пусковой ток в 10 раз превышает ток в конечном положении якоря. Из данного положения следует недопустимость подачи напряжения на катушку при заторможенном якоре. Допускается питание катушек от сети постоянного тока с обязательной установкой дополнительного резистора. Тяговая характеристика электромагнитов такова, что при уменьшении воздушного зазора сила растет, не так быстро, как у электромагнитов постоянного тока и тяговая характеристика близка к противодействующей. Это обеспечивает высокий коэффициент возврата 0.6÷0.7, что позволяет использовать контакторы переменного тока для защиты электрооборудования от пониженного напряжения.
Электромагниты обеспечивают работу контактора в диапазоне напряжений 0,85-1,05 номинального.
Блок-контакты предназначены для коммутации цепей сигнализации и контроля. В качестве контактного материала вспомогательных контактов применяется серебро или биметалл.
Вакуумные контакторы
Вакуумные контакторы предназначены для коммутации силовых электрических цепей переменного тока и приводятся в действие электромагнитом постоянного тока. Вакуумные контакторы имеют герметичное дугогасительное устройство (вакуумную камеру), с помощью которого отключение коммутируемой цепи происходит в вакуумной среде. Трехфазные вакуумные контакторы выпускаются на номинальные токи 160, 250, 400 и 630А и номинальное напряжение 660 и 1140 В. Контакторы предназначены для работы в режимах АС-3 и АС-4 при числе циклов 600 и 1200 в час с высокой износостойкостью.
Зазор между главными контактами 1,2 мм и увеличивается в процессе работы до 2 мм. Возможна однократная регулировка зазора. Малый ход контактов обеспечивает малую вибрацию и высокую износостойкость до 2·10 6циклов в режиме АС-3 при напряжении 1140 В.
Вакуумная дугогасительная камера (дугогасительное устройство) обладает высокими изоляционными и дугогасительными свойствами, а также высоким пробивным напряжением между контактами, высокой скоростью восстановления электрической прочности межконтактного промежутка.
studfiles.net
Контакторы и магнитные пускатели: сходства, различия
Контакторы и магнитные пускатели — электротехнические приспособления, являющиеся немаловажными составляющими электрических сетей. Они предназначаются для связи между цепями силового типа и для цепей управления. Зачастую, специалисты по наладке оборудования, не всегда могут дать обоснованный ответ, чем отличается контактор от магнитного пускателя. Оба выполняют перечень схожих назначений, но все же различия между ними существуют, так как, каждый из них, обладает своеобразными функциями и особенностями.
Контакторы
Контактор — двухпозиционное устройство электромагнитного принципа, выполняющее дистанционное воздействие на включение и выключение электрических силовых цепей, в условиях обычного режима работы.
Принцип работы
Контакторы состоят из проводных катушек, в которых расположены сердечники, присоединенные к контактам замыкания (размыкания). Контакты замыкают (размыкают) цепь, которая пропускает ток. Медный (стальной) каркас упрочняет катушку и создает условия для охлаждения элементов.
Принцип работы контакторов заложен в двух действиях противоположного характера. На катушку поступает напряжение, вследствие чего, создается магнитный импульс, и подвижная часть сердечника начинает движение в сторону неподвижной части, и замыкает цепь, благодаря чему, в цепи появляется ток и включается электрооборудование. Когда подача энергии прекращается, сердечник, при помощи пружинной системы, возвращается в разомкнутое положение, что приводит к размыканию цепи и отключению оборудования.
Включаются и выключаются контакторы благодаря двум кнопкам «Пуск» и «Стоп» на панели кнопочного устройства. Замыкание контактов кнопки «Пуск» запускает процесс, описанный чуть выше, который приводит к замыканию силовых контактов и те остаются в замкнутом положении, даже после возврата кнопки в исходное положение. Такой эффект достигается, благодаря наличию, вспомогательных блок-контактов.
Системные цепи, имеют принципиальные отличия. Питание, поступающее на катушку, приходит с цепи управление, где ток не превышает 230 В. А цепь, которую замыкают контакты, называется силовой, так как она проводит ток, с силой, превышающей силу тока в цепи управления.
Область применения
Данные устройства, коммутируют цепи реактивной мощности и применяются в управлении электрическими двигателями, имеющими высокую мощность, а так же, в области инфраструктуры электрического транспорта.
Магнитные пускатели
Магнитный пускатель — низковольтный аппарат комбинированного типа и электромагнитного принципа, который производит запуск электродвигателей, обеспечивает их непрерывное вращение, отключает от электропитания, защищает, выполняет реверсивные функции.
Принцип работы
Данный прибор, состоит из основной части, для стационарного крепления, катушки, якоря, который передвигается по направляющим механизма, пружинного механизма, стационарных и подвижных контактов и корпуса. Самые простые пускатели, предстают в виде коробки, оборудованной кнопкой и клеммами, для присоединения к силовым цепям и стационарным контактам.
Принцип действия, заключается в том, что, когда ток попадает на катушку пускателя, он срабатывает по принципу электромагнита. Под воздействием магнитного поля, якорь притягивается к сердечнику, вследствие чего происходит замыкание контактного мостика, и запускается электрооборудование. Нижнее положение якоря, влияет на работу всего прибора. В данном положении, должно быть надежное сцепление контактов, так как данная составляющая играет роль прочного соединения входных и выходных электрических проводов, в момент срабатывания схемы.
Отсутствие тока, влечет за собой, исчезновение магнитного поля вокруг катушки. Это приводит к отбрасыванию якоря вверх за счет энергии пружин, контактный мостик, находящийся на подвижной части, обеспечивает разрыв силовой цепи, что приводит к отключению питания и оборудования. В данной системе, тоже есть наличие, вспомогательных блок-контактов.
Исправность магнитных пускателей, можно проверять вручную. Если устройство исправно, то, при нажатии на якорь, должно ощущаться сопротивление от сжатия пружин. Такое ручное управление допустимо только для проверок и не применяется во время рабочего процесса.
Область применения
Основная сфера использования магнитных пускателей — запуск, остановка и реверс электрических двигателей асинхронного типа. А, так как эти устройства достаточно неприхотливы и защищены от воздействия окружающей среды, то их устанавливают для дистанционного управления осветительным оборудованием, компрессорными установками, насосами, кранами, электропечами, конвейерами, кондиционерами.
Отличия контакторов от магнитных пускателей
Габариты, конструктивные особенности и защищенность
В состав контактора входит пара силовых контактов и объемные камеры для дугового гашения, что делает это устройство достаточно тяжелым и большим. По этим причинам, он не оборудуется корпусом, что делает его опасным для посторонних лиц и незащищенным от влаги. Поэтому, они монтируются в специальных местах, коими являются специализированные щиты или электрические шкафы. Имеют от 1 до 5 полюсов.
Магнитный пускатель, в отличие от контактора, имеет пластиковый корпус и трех — парные силовые провода, не имеет камер для дугового гашения. Корпус делает его безопасным и защищенным от влаги и позволяет использовать пускатели, даже под открытым небом, но отсутствие камер защиты от дуговых зарядов, не позволяет его использование в цепях с высокими мощностями и множественными коммутациями.
Производственный фактор
Важно знать, что слаботочные контакторы не выпускаются, а значит в слаботочных цепях, возможно, устанавливать только магнитные пускатели. Именно это обстоятельство, позволяет пускателям держаться на плаву в рыночном сегменте данной сферы.
Назначение устройств
Несмотря на то, что пускатели отлично подходят для большинства электрических приборов, основным его назначением, являются трехфазные двигатели переменного тока. Пускатель выполняет функцию их запуска и отключения, а также предотвращает непроизвольный пуск. В принципе, пускатель обладает достаточно узконаправленной значимостью. Используются в сетях с напряжением до 380 В.
Контактор, в свою очередь, коммутирует, абсолютно все виды электрических цепей и применяется в конструкции сложносоставных схем, что делает его, практически универсальным. Мощные электродвигатели, цепи компенсации реактивной мощности и иные области электротехники, где присутствуют частые запуски и большие нагрузки, вот основные сферы применения контакторов. Используются в сетях с напряжением до 660 В.
Необходимые действия при эксплуатации контакторов и магнитных пускателей
- Перед установкой приборов, необходимо убрать смазку с рабочих поверхностей и проверить состояние, каждого электрического соединения и проверить, правильность регулировки устройств.
- Необходимо регулярно проверять состояние контактной группы, периодически осматривая после 50 000 срабатываний или после каждого отключения тока в аварийном режиме.
- Выполняя зачистку поверхности контактов, главное сохранять их первоначальную форму.
- Проверять расположение разрывных контактов, относительно друг друга. В помощь будет копировальная бумага.
- У контакторов, с несколькими полюсами, проверяется одновременное замыкание контактов всех полюсов.
- Необходимо проводить проверку на исправность механической блокировки.
- Постоянно проверять зазор между контактами. Заменяются они, когда первоначальная толщина уменьшается на 50%, а у контактов с накладками на 80%.
Заново установленные контакты, должны соприкасаться по линии, длина которой по сумме, ровняется 75% и более, ширине подвижного контакта. Допускается контактное смещение, не более 1 мм по ширине.
Основные поломки контакторов и магнитных пускателей, и их причины
Выход из строя управляющей катушки
Причины:
- было подано напряжение, от электрической сети, не соответствующее рекомендациям. То есть, была установлена катушка под напряжение 220 вольт, а напряжение подсоединяемой сети, составляло 380 вольт;
- подача тока на катушку, у контактов которой, образовалась перемычка. Итог — короткое замыкание и сгоревшие контакты катушки;
- межвитковое замыкание, вследствие естественного старения изоляции на медной обмотке катушки;
- превышенные рабочие температуры.
Сгорание главных контактов
Причины:
- неправильный расчёт параметров нагрузки на пускатель.
- подключение устройства, с двумя силовыми и одним дополнительным контактом, к трёхфазной нагрузке. Дополнительный контакт не рассчитан на номинальную силу тока выше 10 А, вследствие чего, происходит сгорание более слабого звена;
- низкое напряжение на катушке, вследствие чего, возникает недостаток мощности вырабатываемой силы, необходимой для сцепления главных контактов. Причина такого недостатка, кроется в разной жесткости возвратных пружин, когда возникает дребезг и уменьшается постоянство и площадь сцепления контактов.
- в процессе длительного срока работы, по причине воздействия, создаваемого вибрацией, ослабевает крепление проводников с контактными выводами. Уменьшение площади смыкания контактов, влечет за собой местный перегрев, что выводит контакты из строя.
Видео по теме
profazu.ru
Электромагнитный пускатель: устройство и принцип действия
Обычно мы видим это устройство в виде аккуратной коробки с двумя кнопками: «пуск» и «стоп». Если снять верхнюю крышку, внутри обнаружится коммутатор довольно сложной конструкции, который может выполнять несколько задач (как по очереди, так и одновременно).
Это электромагнитный пускатель. Возникает вопрос: а зачем создавать сложные электротехнические устройства, если нужно всего лишь замкнуть два (или больше) контакта? Есть кнопки с фиксацией, рычажные включатели, защитные автоматы, рубильники. Рассмотрим типовое применение магнитного пускателя: включение мощной электроустановки (например, асинхронный электродвигатель).
- Необходима мощная контактная группа с дугогасителями, соответственно потребуется большое усилие для смыкания контактов. Ручной привод будет достаточно громоздким (использование классического рубильника не всегда вписывается в эстетику рабочего места).
- Ручными переключателями сложно обеспечить оперативное изменение режима работы (например, изменение направления вращения мотора). Устройство магнитного пускателя позволяет собрать такую схему подключения.
- Организация защиты. Любой автомат с аварийным отключением не рассчитан на многократное включение. Назначение (пусть и не основное) магнитного пускателя не только многократно производить коммутацию, но и отключать цепь питания при перегрузках и коротком замыкании. При этом, у него есть неоспоримое преимущество перед иными коммутаторами. Отключение необратимо: то есть, после аварийного размыкания контактов, или кратковременного прекращения подачи энергии, рабочие контакты не возвращаются в положение «ВКЛ» по умолчанию. Принцип работы магнитного пускателя подразумевает только принудительное повторное включение.
Устройство и принцип работы устройства
Главное отличие пускателя от любого другого коммутационного устройства — подключенное к нему электропитание одновременно является и управляющим. Как это работает?
Рассмотрим общий принцип действия магнитного пускателя с помощью иллюстрации:
- Силовые контакты (3), через которые проходит питание с высоким током на потребителя (электроустановку).
- Они соединяются между собой с помощью контактных мостиков (2). Сила нажатия обеспечивается пружинами (1), которые представляют собой особым образом отформованную стальную пластину. Сами контактные группы изготовлены из медных сплавов, для лучшей электропроводности.
- Пластиковая траверса (4), на которой закреплены мостики (2), соединена с подвижным якорем (5). Вся конструкция может перемещаться вертикально с помощью внешнего усилия (кнопки), и возвращается обратно после прекращения давления на нее.
- С помощью катушки электромагнита (6) создается магнитное поле, которое прижимает подвижный якорь (5) к неподвижной части сердечника (7). Силы достаточно, чтобы преодолеть сопротивление возвратной пружины.
- Питание на электромагнит подается с помощью дополнительных контактов (8). Чтобы обеспечить правильную работу схемы, питание на эти контакты заводится параллельно силовым (3), от единого источника. Для размыкания всей контактной группы предусматривается кнопка отключения, которая устанавливается в цепь дополнительных контактов.
Виды контакторов
По оснащению средствами защиты: практически все модели включают в себя блок термореле, который размыкает цепь дополнительных контактов в случае перегрузки по току. В этом смысле принцип работы магнитного пускателя не отличается от защитного автомата. После аварийного отключения, и остывания защитной группы (цепь питания обмотки электромагнита восстанавливается), замыкание силовых контактов не происходит. Предполагается, что оператор устранит причину возникновения аварийной ситуации, и произведет повторный пуск электроустановки.
По способу замыкания контактов, имеются следующие виды магнитных пускателей:
- Прямого подключения, то есть с одной группой силовых контактов. Он работает по принципу: «вкл» или «выкл», плюс защита от перегрузки или короткого замыкания.
- Реверсивного подключения. Электромагнитный пускатель такого типа оснащен двумя группами контактов, с помощью которых можно комбинировать линии питания. Например, чередование фаз для асинхронного электромотора. При замыкании различных групп контактов, вал электродвигателя вращается в разные стороны, то есть происходит реверс.
- Работающие только на замыкание силовых контактов, либо имеющие нормально замкнутые и нормально разомкнутые контактные группы.Такие коммутаторы могут управлять (в противофазе) двумя электроустановками. Одно устройство подключается, второе синхронно обесточивается.
- По количеству контактов силовой группы:
- Двух контактные (для однофазных потребителей).
- Трех контактные (подключаются только фазные группы, нейтраль всегда соединена). Это самая распространенная модель пускателя, к ней можно подключать как одно — так и трех фазные электроустановки.
- Четыре и более контакта в силовых группах. Под группой подразумевается либо нормально замкнутый, либо нормально разомкнутый комплект. Применяются редко, только в специальных устройствах, работающих по особой схеме подключения.
Большинство пускателей выглядят так:
Силовые контакты (три фазы), в одной плоскости расположены дополнительные, для питания обмотки.
Или так:
Для удобства монтажа, дополнительные контакты вынесены на отдельную площадку, ниже и сбоку.
Схемы подключения
Для чего нужен магнитный пускатель? Преимущественно для организации безопасного подключения (и управления) асинхронных трехфазных двигателей. Поэтому рассмотрим варианты работы схемы при различных условиях. На всех иллюстрациях присутствует защитное реле, обозначенное литерой «P». Биметаллические пластины, приводящие в действие аварийный размыкатель (установленный в цепи управления), располагаются на силовых линиях контактной группы. Они могут размещаться на одном или нескольких фазных проводниках. При перегреве (он возникает при превышении нагрузки или банальном коротком замыкании), управляющая линия разрывается, питание на катушку «KM» не подается. Соответственно, силовые контактные группы «KM» размыкаются.
Классическая схема прямого включения трехфазного электродвигателя
Схема управления использует питание от напряжения между двумя соседними фазными линиями. При нажатии кнопки «Пуск», с помощью основного ее контакта замыкается цепь катушки «KM». При этом все контактные группы, включая дополнительные контакты в цепи управления, соединяются под управлением электромагнита катушки. Разомкнуть цепь можно двумя способами: при срабатывании аварийного реле, или нажав на кнопку «Стоп». В этом случае магнитный пускатель возвращается в исходное положение «все выключено» (или в случае с двумя категориями контактов, нормально замкнутые группы будут подключены).
Этот же вариант подключения, только управляющая цепь соединяется с фазой и нейтралью. С точки зрения работы пускателя, разницы нет. Так же точно срабатывают кнопки, и защитное термореле.
Реверсивное подключение трехфазного электродвигателя
Как правило, для этого применяются два электромагнитных пускателя, в которых выхода фазных контактов комбинированы со сдвигом. Устройства скомбинированы в один коммутатор, поэтому его можно рассматривать как единый элемент.
В зависимости от того, какая контактная группа подключена к электродвигателю, его ротор крутится в одну либо другую сторону. Такой вариант незаменим при использовании на конвейерах, станках, и прочих электроустановках, в которых предусмотрено 2 направления вращения (движения).
Как работает эта схема на практике? Смотрим иллюстрацию:
Единая схема управления с двумя группами кнопок пуска: «Вперед» и «Назад». Каждая из них включает соответствующую катушку электромагнита. Почему схема общая? Кнопка «Стоп» по условиям безопасности должна быть единой. Иначе при возникновении аварийной ситуации, оператор потеряет драгоценные секунды в поисках необходимой кнопки (для «Вперед» или для «Назад»).
Проверка работоспособности магнитного пускателя и его ремонт
Проверяется устройство путем подачи питания на управляющие (дополнительные, или блок контакты). Если происходит смыкание рабочей группы, выполняется прозвонка ее контактов с помощью мультиметра. Затем провоцируется короткое замыкание, для проверки защитного реле.
Любой коммутационный прибор состоит из схожих по конструкции элементов. Поэтому ремонт магнитного пускателя выполняется по общему принципу: поиск неисправного узла, восстановление или замена.
Механические части (мостик, прижимная либо возвратная пружина) меняются, контакты можно зачистить. Катушка управления перематывается, или производится восстановление сгоревшего витка с помощью пайки.
Видео по теме
profazu.ru
виды, принцип работы, характеристики, подключение :: SYL.ru
Электромагнитный пускатель 220 В позволяет осуществлять коммутацию в цепях переменного (и постоянного) тока. Обычно такие устройства используются при включении мощных потребителей – электродвигателей, нагревателей и т. д. Необходимость его оправдана в тех случаях, когда требуется часто включать и отключать нагрузку.
Применение магнитных пускателей
Чаще всего электромагнитные пускатели используется для запуска, остановки и реверса асинхронных электродвигателей. Но поскольку эти устройства очень неприхотливы, они могут использоваться для дистанционного управления освещением, в компрессорных установках, насосах, кран-балках, электрических печах, конвейерах, кондиционерах. Область применения магнитных пускателей очень широкая. Но в последнее время пускатели были вытеснены электромагнитными контакторами. Но, по сути, эти два прибора по конструкции и характеристикам мало чем отличаются. Даже схемы включения одинаковы.
Как работает пускатель?
Электромагнитный контактор работает по следующей схеме:
- На рабочую катушку электромагнитного пускателя подаётся напряжение.
- Вокруг этой катушки появляется магнитное поле.
- Сердечник из металла, который расположен рядом с катушкой, втягивается внутрь.
- К сердечнику произведено крепление силовых контактов.
- При втягивании сердечника замыкаются силовые контакты, на нагрузку поступает ток.
В самом простом случае магнитные пускатели управляются при помощи всего двух кнопок — «Пуск» и «Стоп». При необходимости можно осуществить реверс — делается это при помощи соединения двух магнитных пускателей с использованием специальной схемы.
Как устроен электромагнитный пускатель?
Всего имеется две основные части у этого устройства:
- Контактный блок.
- Непосредственно пускатель.
Контактный блок устанавливается поверх корпуса пускателя. Он предназначен для того, чтобы расширить функционал схемы управления. С помощью дополнительного блока можно:
- Осуществить реверсивное движение электрического двигателя.
- Запитать лампу, которая сигнализирует о работе мотора.
- Включить дополнительное оборудование.
- Но контактная приставка не всегда используется, в большинстве случаев достаточно одного пускателя.
Контактная приставка
Этот механизм включает в себя две пары нормально разомкнутых и столько же нормально замкнутых контактов. Сверху пускателя имеются полозья и зацепы, именно к ним и производится крепление приставки. В итоге эта система жёстко связана с силовыми контактами пускателя и работает одновременно с ними.
Нормально замкнутые контакты по умолчанию соединяют элементы цепи, а нормально разомкнутые разрывают. При включении магнитного пускателя, когда сердечник замыкает силовые элементы, нормально замкнутые контакты размыкаются, а нормально разомкнутые замыкаются.
Конструкция магнитного пускателя
В общем, можно выделить две части — верхнюю и нижнюю. Сверху располагается группа контактов, подвижная часть электромагнита, связанная с силовыми переключателями, а также дугогасительная камера. В нижней части расположены катушка и возвратная пружина, а также вторая половина электромагнита.
При помощи пружины верхняя часть возвращается в изначальное положение после того, как прекратится подача напряжения на катушку. При этом силовые контакты размыкаются. Электромагнит собран из пластин Ш-образной формы, изготовленных из технической трансформаторной стали. Катушка наматывается медным проводом, причём количество витков зависит от того, на какое напряжение она рассчитана.
Секторы с обозначениями
Параметры находятся на пускателе, всего имеется три сектора:
- В первом указываются, где можно применять магнитный пускатель, а также общая информация о нём. А именно: частота переменного тока, номинальное значение тока, условный тепловой ток. Например, обозначение АС-1 говорит о том, что при помощи таких механизмов можно коммутировать цепи питания тэнов, ламп накаливания, других слабоиндуктивных нагрузок.
- Во втором секторе указывается, какая максимальная мощность нагрузки может коммутировать с силовыми контактами.
- В третьем секторе обычно обозначается схема устройства: в неё включены силовые и вспомогательные контакты, катушка электромагнита. В том случае, если по всем контактам на схеме от катушки идет пунктирная линия, то это означает, что они работают синхронно.
Контактные группы пускателей
Силовые контакты обозначаются следующим образом:
- 1L1, 3L2, 5L3 — это входящие, на них подается питание от сети переменного или постоянного тока.
- 2Т1, 4Т2, 6Т3 — выходящие силовые контакты, которые соединяются с нагрузкой.
На самом же деле совершенно неважно, куда вы подключите источник питания, а куда нагрузку. Просто такая схема является общепринятой, ее и необходимо использовать.
Ведь если придется другому человеку проводить ремонт, он просто не сможет сразу разобраться в том, что было намудрено монтажником. Вспомогательная группа контактов 13НО–14НО предназначена для того, чтобы осуществить самоподхват. Другими словами, эту пару используют, чтобы во время включения электродвигателя не удерживать пусковую кнопку постоянно нажатой.
Кнопка остановки
Независимо от вида электромагнитного пускателя, используемого в конструкции, управление производится при помощи двух кнопок – «Пуск» и «Стоп». Может присутствовать включение реверса. Кнопка остановки отличается от других тем, что у нее красный окрас. Нормально замкнутые контакты механически соединены с кнопкой. Поэтому при работе устройств ток протекает через них беспрепятственно.
Если кнопку не нажимать, то металлическая планка под действием пружины замыкает два контакта. При необходимости остановки питания устройства нужно просто нажать на кнопку – контакты при этом разомкнутся. Но фиксации нет, как только вы отпустите кнопку, контакты вновь замкнутся.
Поэтому для управления работой электродвигателей используются специальные схемы включения электромагнитных пускателей 220В. На дин-рейку такие устройства устанавливаются без проблем, поэтому они могут использоваться даже в самых маленьких монтажных блоках.
Кнопка запуска
Она обычно имеет зеленый или черный цвет, механически соединяется с нормально разомкнутой группой контактов.
Как только нажимаете на кнопку запуска, происходит замыкание цепи и по контактам протекает электрический ток. Отличие от кнопки остановки только в том, что по умолчанию контакты находятся в разомкнутом состоянии. Пружина удерживает контактную группу в разомкнутом положении и позволяет после запуска вернуть кнопку в начальное положение. Именно такой принцип работы электромагнитных пускателей 220В, используемых в схемах управления большими нагрузками.
Классическая схема включения
При реализации такой схемы выполняются следующие действия:
- При нажатии на кнопку «Пуск» происходит замыкание контактов и подача напряжения на нагрузку.
- При нажатии на кнопку «Стоп» контакты пускателя размыкаются и прекращается подача напряжения.
В качестве нагрузки можно подключать ТЭНы, электродвигатели, иные приборы. Нормально открытый электромагнитный пускатель 220В можно использовать для включения абсолютно любой нагрузки.
К силовой части схемы относятся:
- Контакты для подключения трех фаз – «А», «В», «С».
- Автоматический выключатель. Он устанавливается между источником питания и входом электромагнитного пускателя 220В 25А. Дело в том, что 380В – это межфазное напряжение, а если проводить замер между нулем и любой из фаз, оно будет равно 220В.
- Нагрузка – мощный потребитель электроэнергии (двигатель, нагревательный элемент).
Вся цепь управления подключается к нулю и фазе «А». Цепь состоит из таких компонентов:
- Кнопки запуска и остановки.
- Катушки.
- Вспомогательного контакта (включается параллельно кнопке запуска).
Работа классической схемы
Как только включается автоматический выключатель, на верхних контактах пускателя появляется три фазы, вся схема переводится в режим ожидания. Фаза под литерой «А» проходит по цепи:
- Через замкнутые контакты кнопки остановки.
- На контакт кнопки запуска.
- На вспомогательную группу контактов.
При этом схема полностью подготовлена к работе. Как только замыкаются контакты под воздействием кнопки запуска, на катушке появляется напряжение и ее сердечник втягивается. При этом сердечник тянет за собой группу контактов, замыкая их.
В нижней части магнитного пускателя находятся силовые контакты, на которых также появляется напряжение, которое далее идет к потребителю электроэнергии. После отпускания кнопки запуска силовые контакты будут замкнуты за счет реализации схемы с «подхватом». При этом фаза идет не через контакты кнопки запуска к электромагниту, а посредством вспомогательной группы.
Степень защиты
Лучше всего в работе показывают себя приборы со степенью защиты IP54. Их можно использовать во влажных и очень пыльных помещениях. Без проблем можно его установить на открытом месте. Но если монтаж производится внутри шкафа, то достаточно использовать устройства со степенью защиты IP20. Чем выше числовой индекс, тем в более жестких условиях может производиться эксплуатация прибора – это применимо к любому электрическому устройству. Обязательно нужно учитывать и такие факторы:
- Наличие теплового реле, при помощи которого производится отключение нагрузки при превышении максимального тока потребления. Особенно актуально использование такого прибора при управлении электродвигателями.
- Если имеется функция реверса, то в конструкции присутствует две катушки и шесть контактов. По сути, это пара пускателей, совмещенных в одном корпусе.
- Обязательно нужно учитывать износостойкость прибора, особенно если очень часто включается и отключается нагрузка пускателем.
Не последнее место при эксплуатации любого устройства, в том числе и электромагнитного пускателя 220В, занимает человеческий фактор. Неквалифицированные работники способны сломать всю цепь управления, так как они не знают, как правильно работать на оборудовании. Если сработала тепловая защита, то включение производить сразу же нельзя. И нельзя заново запускать двигатель — сначала нужно проверить, не заклинил ли мотор, нет ли короткого замыкания в цепи питания.
www.syl.ru
Электромагнитный пускатель: типы, устройство, характеристики
Электромагнитный пускатель (магнитный пускатель) – автоматическое устройство коммутации обмоток, как правило, асинхронного двигателя. Пускозащитное реле холодильника допустимо отнести к указанному классу устройств.
Необходимость применения
К 60-му году XX века 40% электроэнергии в стране потреблялось асинхронным двигателями. Класс устройств рассчитан так, в период эксплуатации требуется регулировка. Это сопротивления в цепях короткозамкнутого ротора (реостаты), пусковые обмотки однофазных моторов, реверс и прочее. В результате использование принципа индукции, открытого Араго и Фуко, оказывается затруднительным без средств автоматизации.
Неудивительно, что объем производства электромагнитных пускателей велик. За удачно подобранный материал следует поблагодарить Ермолаева Н.Н. и группу людей, задумавших выпустить серию Библиотека электромонтёра. Качественное изложение материала оценивайте по достоинству.
Краткая классификация и маркировка
Ввиду существующего разнообразия возможно приводить множество критерием для деления на группы, укажем лишь общие:
- По функциональности: реверсивные и нереверсивные.
- Номинальное напряжение внутренних агрегатов.
- По мощности подключаемой нагрузки.
- По корпусному исполнению: открытые и закрытые.
- По числу полюсов, контактов, дополнительных узлов блок-контактов.
Маркировка электромагнитных пускателей типична:
- Фирменный знак либо наименование производителя.
- Тип.
- Рабочий вольтаж защищаемого оборудования.
- Потребляемый ток защищаемого оборудования.
- Категория применения.
- Электрические параметры внутренней цепи управления (реле).
- Защита корпуса по IP, за исключением полного отсутствия (IP00). Масса для устройств, весящих более 10 кг. Допускается пункт указывать в документации и не наносить на корпус.
- Дата производства.
- ГОСТ или ТУ, в соответствии с которыми изготовлен электромагнитный пускатель. Допускается пункт не указывать на корпусе, а поместить в документацию.
Отдельно маркируется электромагнитная катушка реле пускателя. Здесь дублируются сведения о токе, напряжении, частоте питания, чтобы облегчить ремонт оборудования и частичную замену. Диаметр провода, марка и число витков необходимы намотчику для полной и правильной реконструкции индуктивности. Если катушка слишком мала, маркировка включает лишь электрические параметры. Прочее опытный намотчик способен определить самостоятельно.
Устройство
Электромагнитный пускатель призван соответствовать двигателю, в паре с которым работает. Составными частями оборудования считаются контактор и пусковое реле. Иногда в состав добавляется тепловая защита на основе биметаллических пластин. Контактор становится исполнительной частью и представляет электромагнитное реле. Различают открытое (бескорпусное) и закрытое (корпусное) исполнения пускателя. Отдельные изделия по условиям применения заключаются во взрывобезопасные оболочки.
Неподвижная часть образована обмоткой. Подвижный якорь из ферромагнитного сплава служит непосредственно для замыкания контактов. С первого взгляда конструкция кажется ущербной, но вспомним, что сэр Джозеф Генри в 1831 году поднимал почти тонну с электромагнитом, питавшегося от вольтова столба. Выходит, скорость подобной конструкции трудновообразима. Упомянутый учёный 1837 годом обсуждал новинку с Витстоном, и мало что изменилось:
- Якорь бывает прямоходовым (Генри).
- Якорь — поворотный (Витстон, Шиллинг, Ампер).
Подвижные контакты снабжаются пружинным механизмом, ускоряющим срабатывание, связь их с якорем не всегда жёсткая. В дополнение конструкция содержит замок-защёлку. Реле бывают нормально замкнутыми, нормально разомкнутыми. Пускали чаще относятся к последнему семейству электромеханических устройств.
Часть магнитных пускателей управляется дистанционно, будучи автоматизированными, иные содержат элементы управления на корпусе. Часто управляющие сигналы передаются через промежуточные реле. Итак, контактор считается исполнительным устройством, в обязательном порядке включаемым в состав рассматриваемого оборудования.
Тепловое реле порой отсутствует. Его назначение в отключении нагрузки, если потребляемый ток слишком велик. Биметаллическая пластина влияет на общее пропускание устройством носителей заряда. Контактором обычно не управляет, демонстрируя собственную цепь, включённую последовательно. В этом заложен глубокий смысл: двигатель включается часто, а защита срабатывает редко. Поэтому требования к размыкателям цепи различаются. Если биметаллическое реле заискрит, это случается редко и большой роли не играет.
Чувствительная пластина одним концом иногда приварена к токонесущей части цепи, образуя вечное соединение. Материалы для пускателей берутся унифицированные:
- Железно-никелевый сплав (от 36 о 40% содержания никеля) имеет низкий коэффициент температурного расширения.
- Второй элемент сплав либо чистый металл: латунь, медь, сталь и пр.
Биметалл либо служит цепью работы двигателя непосредственно, либо подогревается специальной спиралью, куда ответвляется часть тока. Главное, чтобы правильно оказались рассчитаны тепловые режимы. В обоих случаях используется закон Джоуля-Ленца, описывающий нагрев проводников под действием протекающего электрического тока. Сопротивлением служит либо биметаллическая пластина непосредственно (прямой подогрев), либо металл спиралевидного нагревателя (косвенный нагрев). При достижении температурой некоего порога происходит щелчком срабатывание защиты. Биметаллическая пластина изгибается и рвёт контакт.
Встречаются реле, где нагрев смешанный — используются одновременно оба способа контроля температуры. Контакт защиты иногда усилен пружиной для подавления искрения и горения дуги. Тепловое реле обычно контролирует только две фазы из трёх в цепях с напряжением 380 В. Пусковое реле порой содержит лишь две пары контактов.
Реверс
Из сказанного выше следует, что далеко не каждый электромагнитный пускатель обеспечивает реверс. Изменение направления вращения вала осуществляется добавлением дополнительного контактора в устройство. Фактически производится коммутация фаз для изменения направления вращения магнитного поля внутри статора. Специальная механическая блокировка исключает одновременное включение контакторов, что немедленно привело бы в сетях 380 В к линейному (межфазному) короткому замыканию. Не разрешается на пульте одновременно нажимать кнопки «вперёд» и «назад».
Реверсионный пускатель
Иногда блокировка выполняется электрически: один контактор запитывается через дополнительные, нормально замкнутые контакты второго.
Технические характеристики
- Износоустойчивость в первую очередь определяется механической стойкостью контактов. Если посмотреть характеристики любого электромагнитного реле, легко заметить, что срок эксплуатации даётся двух типов. Действительно, второй характеристикой служит электрическая износоустойчивость характеризует успешность противостояния устройства горящей дуге.
- Коммутационная способность определяет, какой максимальный ток способен выключить или включить реле, чтобы не нарушились заявленные характеристики по износоустойчивости. Пример: большинство людей способно поднять на бицепс 8 кг 10 раз. Превышение над восемью килограммами станет выходом за пределы коммутационной способности, если 10 повторений выполнить не удаётся.
- Чёткость срабатывания показывает, насколько плавно движутся контакты. Если ход замирает в конкретной точке, образовавшаяся дуга сварит группу, прибор мгновенно придёт в негодность. Плавность хода прямо влияет на электрическую износоустойчивость и косвенно на механическую, определяя и коммутационную способность. Указанная характеристика считается базовой, определяющей прочие параметры электромагнитного пускателя.
- Потребляемая мощность расходуется на переключение и работу теплового реле.
- Параметры тепловой защиты оберегают обмотки двигателя от эксплуатации в напряжённых температурных режимах. Эта мера призвана продлить жизнь оборудования и не допустить выхода из строя от перегрева.
Износоустойчивость
Частота включений и отключений достигает сотен и тысяч операций в час (максимальная скорость признаётся важной характеристикой). Срок эксплуатации иногда заменяется числом срабатываний. Износоустойчивость важна, починка или замена деталей в процессе эксплуатации практически невозможны. Обычно она составляет единицы миллионов циклов. Но электрическая износоустойчивость на порядок (предположим, в 5 раз) ниже механической.
Хорошим считается электромагнитный пускатель, выдерживающий 10 млн. срабатываний. Цифра выбирается наименьшей из двух приведённых в характеристиках. При необходимости уточняется возможность замены электрических контактов. Большинство современных (на 2016 год) изделий удовлетворяют требованию. Сказанное свидетельствует, что важнее в пускателе погасить дугу, нежели улучшить механическую часть, которая редко служит причиной выхода изделия из строя.
Для ориентации на срок действия изделия литература (Ермолаев Н.Н. Магнитные пускатели переменного тока) приводит расчёт:
«Устройство с 10 млн. рабочих циклов продержится 5 лет в указанных условиях:
- Две полные рабочие смены – 16 часов в день;
- 300 переключений в час: средний режим напряжённости».
На рынке продаются устройства с лимитом в 2 млн., следовательно, возможно оценить ориентировочно по приведённому расчёту, подходит ли выбор имеющимся условиям. На долговечность механической части влияют:
- Якорь магнитной системы изнашивается, пакет распушается, разрываются заклёпки, рвутся короткозамкнутые витки.
- Трущиеся поверхности подвергаются повышенному риску.
На электрическую износостойкость влияют условия горения дуги. Как указано выше, эта значительно уступает механической, часто предусматривается возможность замены контактов. Электрическая износоустойчивость зависит от напряжения в сети и типа нагрузки, что влияет на условия возникновения дуги. Асинхронные двигатели потребляют крайне большой ток при пуске. Дуга растёт с увеличением мощности. Исследования показали, что износ контактов пропорционален квадрату величины электрического тока, потому режим включения считается самым напряжённым.
В итоге разница ущерба при пуске до 3-4 раз превышает урон при останове двигателя. Губительным считается режим подпрыгивания, когда контактор совершает ряд затухающих по амплитуде скачков в результате удара. Ситуация осложняется, когда выше масса подвижной части, больше скорость движения и меньше сила прижатия.
Дуга при отключении двигателя гаснет в момент перехода напряжения через нуль. Обычно это наступает быстро, при частоте сети 50 Гц подобная ситуация возникает 100 раз в секунду. Останов мало влияет в конечном итоге на результат мероприятий по защите реле и не требует отдельных и специальных мер. Хорошей электрической прочность обладают контакты из серебра:
- Контакты из серебра хорошо держат сравнительно малый переменный ток.
- Металлокерамические контакты (композиция оксидов и серебра) прекрасно работает с высокими токами.
Коммутационная способность
По требованиям нормативных актов пускатель обязан выдерживать токи, указанные в таблице 6 ГОСТ 12434-83. Согласно категории пускателя отношение коммутируемого максимального тока к рабочему различается, типично составляет не менее 6. В общем случае термин трактуется, к примеру, как способность переключить ток, в 7 раз превышающий рабочий, 50 раз подряд и неизменно остаться в работоспособном состоянии. Напряжение предполагается номинальным, а косинус угла сдвига фаз (см. Реактивная мощность) равным 0,3.
На коммутационную способность прямо влияет конструкция дугогасительной камеры и любые меры, предпринятые в описанном направлении. Частичное влияние оказывает форма контактов. Коммутационная способность тесно связана с электрической износоустойчивостью, от характера движения контактов зависит долговечность изделия и максимальный коммутируемый ток.
Чёткость срабатывания
На графике, представленном ниже, показаны характеристики движения якоря магнитного пускателя с двумя пружинами: контактной и возвратной. Противодействие показано на графике 1. Это усилие, возникающее в конкретной координате движения контактной группы. Совпадает с усилием возврата прямоходного якоря. Пружины нужны, чтобы по возможности быстро разорвать контакт, обеспечивая быстрое и качественное гашение дуги за счёт повышения сопротивления зазора, снижения плотности разницы потенциалов и увеличения длины горения. Предполагается, что реле электромагнитного пускателя в нормальном состоянии разомкнуто.
Характеристики движения якоря
Прочие линии показывают тяговое усилие электромагнита при прямом (2, 3) и обратном (4, 5) ходе якоря. Хорошо видно, что линии 3 и 4 пересекают график противодействующего усилия. При прямом ходе на замыкание контактов, в некоторых точках силы электромагнита с трудом хватит на преодоление натяжения пружин. Якорь продолжит двигаться в том числе за счёт инерции. На практике это означает наличие рывка, изменения скорости, что отрицательно влияет на чёткость срабатывания и на механическую и электрическую износоустойчивости изделия. Кривая прямого хода обязана во всех точках оставаться выше линии противодействия. Пусть это не обеспечит постоянной скорости, но поспособствует скорейшему переключению, снижая силу горения дуги.
На обратном пути усилие электромагнита предвидится ниже линии противодействия. Ток из катушки должен исчезнуть любым путём раньше, нежели начнётся обратный ход под действием пружин. В противном случае контактная группа застрянет на возвратном ходе. Это не продлится долго по человеческим меркам – доли секунды – но сварочный аппарат быстро создаёт шов. Получается, дуга за это время обожжёт контактную группу, уменьшая электрическую износоустойчивость и приводя реле электромагнитного пускателя в негодность. Обмотка конструируется, чтобы ток успевал ослабнуть, а кривая возврата в каждой точке оказывалась ниже линии противодействия.
Итак, чёткость срабатывания выше у магнитного пускателя с характеристиками 2 и 5. Производители стандартов высчитали, что с учётом допусков на напряжение питания (ГОСТ 13109), составляющих 10% в обе стороны, магнитные пускатели должны чётко срабатывать:
- На прямой ход при напряжении не выше 80-85% от номинала.
- На обратный ход при напряжении не более 40-50% от номинала.
Параметры тепловой защиты
Конструкция и общие принципы действия секции тепловой защиты проиллюстрированы на рисунке. В основе лежит биметаллическая пластина, показана подогревающая нихромовая спираль. Пружинный механизм способен отсутствовать, если ток проходит непосредственно по чувствительной части. Активным, как правило, выбирается единсвтенный металл, расширяющийся при нагреве. Кнопка возврата далеко не всегда включена в конструкцию: пускозащитные реле холодильников не требуют постоянного слежения (очевидный факт).
Номинальный ток пускателя не является порогом срабатывания биметаллического охранного механизма. В собственных видео А. Земсков тщательно обсуждает свойства автоматов защиты электрической сети квартиры. Принцип их действия аналогичен магнитным пускателям, составные части идентичны. Из таблиц видно, что известен ряд классов автоматов, у каждого характеристики специфичны, но присутствует общая черта (Алексей специально акцентировал её анимированными красными стрелками):
- Превышение тока на 13% вызывает срабатывание тепловой защиты более, нежели через час появления опасной ситуации.
- Превышение тока на 45% вызывает срабатывание тепловой защиты менее, чем за час с момента возникновения опасной ситуации.
Ссылка на видео приведена не зря. А. Земсков прямо говорит, что автоматы серий D и, в меньшей степени, K не годятся для дома. Алексей обронил фразу о мощных асинхронных двигателях. Таким образом, бытовые автоматы защиты серий D и в меньшей степени K возможно считать магнитными пускателями. Собственно, в первом приближении это они и есть, но лишённые пульта управления, возможности реверса и прочих качеств. Впрочем, выше оговорено, что комплектация изделий различается, но магнитный пускатель сохраняет собственную суть.
Тепловые реле (см. выше) срабатывают за счёт изгибания биметаллической пластины от излишнего нагрева. Процесс подчиняется закону Джоуля-Ленца и протекает с постепенным накоплением тепла. Конструкция инженерами рассчитывается так, чтобы выполнились условия срабатывания. Как указано выше, методов подогрева три, приводят к одинаковому результату – изгибанию биметаллической пластины. Инженер просто выбирает схему, больше уместную в конкретной ситуации.
В основу защитных качеств положено недопущение работы обмоток двигателя в опасных режимах. Не каждым осознается важность утверждения. Простое повышение температуры вызывает ударное старение изоляции жил, что снижает срок эксплуатации оборудования. Вторым критичным моментом становятся температурные деформации обмоток. В результате силы трения вызывают механическое разрушение проволоки, порчу изоляции. Для ферромагнитных сплавов положительного в постоянном расширении и сжатии нет, накапливается усталость.
Таблица из книги Ермолаева Н.Н., возможно, чуть устарела, но вполне показывает очевидность указанных доводов, осознанную 50 лет назад. Данные приведены из условия, что электродвигатель эксплуатируется не менее 10000 часов. Уже тогда знали, что время достижения опасного состояния разнится от тока, конструкции двигателя и дополнительных факторов. Так промышленные пускатели отличаются от бытовых автоматов защиты, обсуждаемых А. Земсковым: процентные превышения над рабочим значением для схожего времени срабатывания различаются в зависимости от типа защищаемого оборудования. По причине такой критичности классов автоматов порядка 7, тогда пускозащитное реле двигателя холодильника, как правило, работает с одним-двумя типами компрессора.
Для оценки адекватности защиты строят графики перегрузочной характеристики двигателя. Линия тепловой защиты в идеале совпадает с этой простенькой кривой. Этим обеспечиваются одновременно сохранность оборудования и максимально напряжённый режим работы. Не возникнет необходимость в ремонте, вдобавок– промышленник способен гонять станки хоть в три смены. Главное – не выйти за защитную кривую.
Построение графика
Поскольку идеал недостижим, действительный график реле должен лежать ниже характеристической линии двигателя. Выше неё находятся потенциально опасные режимы, приводящие к последствиям, указанным выше. Повышенный ток наблюдается при заклинивании вала, что признаётся потенциально опасной ситуацией. Пускатели не занимаются регулированием скорости, стоят прочие электрические схемы, выполняющие контроль. Поэтому априорно потребляемый ток не постоянный и иногда превышает номинал. Главное, чтобы по продолжительности событие не превышало интервал, ограниченный графиком.
Потребляемая мощность
Реле при работе потребляет мощность. Во-первых, постоянно греется тепловое реле вне зависимости от факта, стоит ли нихромовая спираль или ток проходит по биметаллической пластине. Специалистами подсчитано, что при постоянных темпах роста промышленного потребления на долю пускателей выпадают миллионы кВт-часов энергии. Разумеется, России это пока не грозит, но в развитых странах при существующих требованиях экономии пускатели начнут постоянно совершенствоваться.
Задача озвучивается следующим образом. Неплохо бы пускатель заключить в изолирующую внешнюю оболочку, экономя энергию и делая нихромовую спираль тоньше (но длиннее), потреблять меньше энергии. Но оказывается, рассчитать сопротивления теплопередаче корпуса не под силу современной науке. Результат работы становится непредсказуем. А когда биметаллическая пластина находится в заведомо оговорённых условиях цеха (где и охраняемый двигатель), срабатывание в нужный момент гарантировано.
Получается, нихромовая спираль греет рабочих, помещение, иногда улицу. Это не положительный результат. Но расчёт тепловых режимов для корпуса затруднителен. Возможно, в будущем ситуацию исправят микропроцессорным управлением. Как результат, ныне оболочка пускателя выглядит значительно более объёмной, нежели требуют размеры устройства. Это плата за предсказуемость теплового режима реле и ведёт к дополнительным неудобствам и тратам.
Доходит до того, что пускатель требуют размещать в помещении с ограниченными климатическими условиями, чтобы температура внутри оказывалась стабилизированной (к примеру, 35 градусов Цельсия). Сказанное выше касается теплового реле, но основную часть энергии потребляет электромагнитное (до 60%):
- Выделение тепла на омическом сопротивлении катушки.
- Потери на короткозамкнутых витках, назначением которых является смягчение вибрации системы контактов при переключении (за счёт наведённой индукции).
- Потери в якоре подобные тем, которыми страдают сердечники трансформаторов. Это вихревые токи и перемагничивание.
Последняя сложность частично устраняется изготовлением якоря из электротехнической стали, но шихтовать его не всегда выглядит лучшей затеей. Изоляционный лак способен не выдержать ударной нагрузки и расколоться. Вдобавок контакты собираются сложными пакетами, механическую прочность непросто обеспечить. Для примера: пускатель трёхфазной сети с мощностью нагрузки до 28 кВт потребляет 80 Вт. Легко сосчитать, что в процентном отношении это составит 0,3%. Учитывая, что годовое потребление страны (РФ) измеряется миллиардами кВт-часов, цифры получаются в пределах миллионов. В переводе на денежное выражение выходит жилая многоэтажка ежегодно. Подобная сумма стоит усилий и дум, как увеличить КПД магнитного пускателя.
Что касается шихтования, экономически целесообразно применять его для небольших реле со сравнительно слабым электромагнитным полем катушки, когда удар несильный либо амортизирован.
vashtehnik.ru
Контакторы электромагнитные | состав и характеристики контакторов электромагнитных
Контакторы электромагнитные применяются для дистанционного включения – выключения цепей, при работе в цепях постоянного тока они бывают одно и двух полюсные, а при работе в цепях переменного тока – трехполюсные. При работе контакторы электромагнитные подвергаются сильным нагрузкам, число включений – выключений колеблется от 60 до 600. И контакторы тока переменного, и контакторы тока постоянного содержат:
- систему блок-контактов
- контактную систему
- электромагнитную систему
- дугогасительную систему
Отличие контактора от магнитного пускателя состоит в том, что они не могут отключать ток короткого замыкания, так как работают только с номинальным током. Электромагнитные контакторы не оборудованы средствами для механического зацепления контактов во включенном положении, поэтому, если в цепи нет тока, они размыкаются. Чтобы удержать их в рабочем положении, применяют нормально-разомкнутые контакты, либо постоянный потенциал.
Контакторы электромагнитные нашли применение в электрических цепях с током до 1 600А и напряжением до 660В, это промышленные сети. Управление происходит по вспомогательной цепи по катушкам с напряжением 380, 220, 127, 42 и 24В. В большинстве случаев, контакторы устанавливаются на очень мощных двигателях, электропоездах, лифтах, в сетях с постоянным током большого значения, и так далее. Электромагнитный контактор МК имеет степень защиты IP00, прерывисто-продолжительный режим работы, повторно-кратковременный, или продолжительный.
В таблице представлены характеристики контакторов:
Тип контактора | Напряжение катушки |
|
|
| Номинал тока | Главные контакты | Вспомогательная цепь |
| 24В | 48В | 110В | 220В |
|
|
|
МК1-01А | 400 | 900 | 100 | 200 | 40 | 1Р | 2Р, 2З |
МК1-10А | 400 | 900 | 100 | 200 | 40 | 1З | 2Р, 2З |
МК1-11А | 400 | 900 | 100 | 200 | 40 | 1Р, 1З | 2Р, 2З |
МК1-20А | 400 | 900 | 100 | 200 | 40 | 2З | 2Р, 2З |
МК2-01А | 400 | 900 | 100 | 200 | 63 | 1Р | 2Р, 2З |
МК2-10А | 400 | 900 | 100 | 200 | 63 | 1З | 2Р, 2З |
МК2-20А* | 400 | 900 | 100 | 200 | 63 | 2Р,2З | 2Р, 2З |
МК3-01А | 400 | 900 | 100 | 200 | 100 | 1Р | 2Р, 2З |
МК3-10Б | 400 | 900 | 100 | 200 | 100 | 1З | 2Р, 2З |
МК3-11Б | 400 | 900 | 100 | 200 | 100 | 1З,1Р | 2Р, 2З |
МК4-01А | 400 | 900 | 100 | 200 | 160 | 1Р | 2Р, 2З |
МК4-11Б | 400 | 900 | 100 | 200 | 160 | 1З,1Р | 2Р, 2З |
При работе с токами 100А и 160А контактор магнитный выдерживает 10 000 000 циклов. Вспомогательные контакты имеют номинальный ток 10А. Конструкция вспомогательной цепи такова, что позволяет переставлять размыкающие и замыкающие контакты. Ставить контакторы МК можно и на рейку, и на металлические панели, при условии, что они имеют заземление.
Контакторы электромагнитные
Электромагнитные контакторы класса МК Х-WYZFTV обозначают:
Х – число показывает тип контактора по току в цепи:
- 1-до 40А
- 2-до 63А
- 3-до110А
- 4-до160А
W – число контактов замыкающих
Y – число контактов размыкающих
Z – для какого подразделения предназначен:
- Б – высоковольтные выключатели
- Д – лифты
- М – электровозы
- F – климатическое исполнение
- Т – где размещается
- V — износостойкость
Область применения от -40 до +40 градусов, а в транспорте до +60 градусов. Рабочее время не больше 20 часов в сутки, а в транспорте на 15% меньше. Эксплуатация предусматривается на высоте не более двух километров, а в особых случаях, не более четырех с половиной. Не допускается попадание таких веществ, как масла, эмульсии, вода. Вокруг не должно быть пыли и взрывоопасных веществ. Внешняя группа эксплуатации не выше М7, на транспорте – М25.
Контакторы электромагнитные
Электромагнитные контакторы серии КТ-6000 и КТ-6600 используются при запуске мощных резервных машин, они охлаждаются естественным способом, рассчитаны па режим 1200 отключений – включений в час. Работают как в тропиках, так и в условиях севера, категория размещения – третья, исполнены в Т категории, У категории и ХТ категории. Работают при частоте тока 60-50Гц, число полюсов от двух до пяти. Блок дополнительных контактов позволяет быстро менять их количество, к силовым контактам хороший доступ, якорь может при срабатывании самоустанавливаться под действием сил электромагнитной индукции.
Режим работы можно подстраивать, регулируя провал и раствор силовых контактов, а так же можно производить ремонт электромагнитного контактора, устанавливая подвижные контакты из композита серебра. Дугогасительные камеры можно изготавливать из новых материалов, отказавшись от асбеста. Привод застрахован от порывов, так как подвижные части соединяются при помощи гибких элементов.
Для приводов, где режим работы тяжелый, применяются вакуумные контакторы КВ1, которые имеют при работе от сетей постоянного тока Uноминальное 12, 24, 36, 48, 75, 110 и 220В, а от сетей переменного тока Uноминальное 12, 127, 220 и 380В. Частота тока рабочая 50-60Гц, катушки соединяются параллельно или последовательно. Если соединегние последовательное, то катушки делят номинальное напряжение и каждой из них достаточно половины Uноминального. Они запитаны от сети с 36В через выпрямитель.
Контакторы электромагнитные
Для нормальной работы асинхронных двигателей, для их реверса и остановки, применяются электромагнитные пускатели ПМ12 и ПМЕ. Аналогом их служат контакторы CJ-40 125A переменного тока. Применяются они в схемах напряжением до 660В и частотой 60-50Гц в категориях АС-4, АС-3 и АС-1. Пускатели защищают двигатель от длительных перегрузок, а кроме того, от опасных значений токов, если происходит обрыв фазы. Выпускается с двумя и четырьмя контактами. Выдерживают три миллиона циклов при силе тока до 1000А, шесть миллионов циклов при силе тока до 500А и десять миллионов циклов при силе тока до 250А.
myfta.ru
Классификация и особенности электромагнитных контакторов
Электромагнитные контакторы относятся к электромеханическим системам, которые используются для частой коммутации силовых токоподводящих цепей. Основное применение этих устройств — это использование в системах управления работой электроприводов, которые устанавливаются на разных промышленных установках и электрических машинах. Посредством электромагнитной системы, имеющейся в контакторах можно дистанционно осуществлять процессы замыкания/размыкания главных контактов, регулируя, таким образом, режим подачи тока к электрическому оборудованию.
Конструкционные особенности контакторных систем
Электромагнитный контактор включает в свой состав следующие ключевые узлы:
- Группа главных контактов;
- Электромагнитная подсистема;
- Подсистема гашения дуги;
- Вспомогательная контактная группа.
Главные контакты
Главная контактная группа представляет собой набор коммутационных контактов, при помощи которых производится замыкание/размыкание токоподводящих силовых цепей. В основном контакты производятся из меди и отвечают высоким показателям качества, поскольку они должны выдерживать большое количество циклов переключения и выдерживать длительный период проведение токов достаточно большой величины. В некоторых случаях могут использоваться накладки на контакты из сплава на основе серебра. Контакты главного типа могут иметь два исполнения – мостикового либо рычажного. Подвижная система первых из них имеет прямоходовую систему, а вторые – поворотную.
Электромагнитная подсистема
Подсистема служит для возможности совершения дистанционного управления работой контакторного механизма, то есть, непосредственно осуществлять цикл включения/отключения его контактов. Основными элементами электромагнитной подсистемы являются сердечник, якорь, втягивающая катушка, а также крепежные детали.
Эта система может настраиваться на включение и удержание якоря во включенном состоянии или только на его включение без последующего удержания – в таком случае удерживание реализуется за счет защелки. При остановке протекания тока через управляющую катушку происходит отключение и механизма контактной группы – это происходит под воздействием возвратной пружины. Если удержание выполнялось при помощи защелки, то для ее отключения требуется дополнительный электромеханический механизм.
Дугогасительная система
Эта система позволяет выполнять гашение электрической дуги, которая генерируется в процессе размыкания главных контактов. Наличие дугового разряда отрицательно влияет на состояние контактов и через определенное время может привести к их выходу из строя.
В контакторах, работающих с постоянным током, гашение дуги происходит за счет использования магнитного поля, а в контакторных системах, функционирующих в цепях переменного тока, применятся специальная деионная решетка.
Вспомогательная контактная группа
Вспомогательные контакты используются для возможности переключений управляющих цепей контакторных систем, а также цепей блокировок и сигнализаций. Эта контактная группа предназначается для возможности продолжительного проведение токов с величиной более 20А, а также на отключение цепей со значением тока не более 5А. Вспомогательную группу контактов производят двух видов – замыкающего и размыкающего, в основном мостикового типа.
Классификация электромагнитных контакторных систем
Классифицируя общепромышленные контакторы, используется несколько классификационных пунктов, среди которых следующие:
- Тип тока в главной и управляющей цепях – могут быть варианты для постоянного, переменного или комбинированного – постоянного и переменного токов;
- Количество главных полюсов – может варьироваться от 1-го до 5-ти;
- Значение силы тока в главной цепи – от 1,5а до 4,8ка;
- Величина значений номинальных напряжений в рабочей цепи:
- Постоянные токи – от 27v до 2kv;
- Переменные токи – от 110v до 1.6kv при частоте тока от 50hz до 10khz;
- По значению номинального напряжения в управляющей цепи:
- Для постоянных токов – от 12v до 440v;
- Для переменных токов – от 12v до 660v при частоте тока 50hz и от 24v до 660v при частоте 60hz;
- По использованию вспомогательной группы контактов (и без дополнительных контактов).
Отличительные особенности конструкции контакторов
Контакторы постоянного тока используются достаточно редко и модернизация их конструкции практически не производится. В основном они выполняются в виде однополюсных или двополюсных конструкций.
Контакторные системы переменного тока в основном имеют 3-полюсное исполнение с применением шихтованной конструкции. Этот тип конструкции предусматривает использование изолированных отдельных пластин, толщиной не больше 1мм. Рабочая катушка такой системы выполнена с небольшим количеством витков и небольшим значением электрического сопротивления.
Структура обозначений электромагнитных контакторов
Для маркировки контакторов используются следующие обозначение: КТ(КТП)-Z1 Z2 Z3 Z4 Z5 Z6.
- Z1 – указывает на номер серии контакторов;
- Z2 – означает величину контактора: от 0 до 6;
- Z3 – количество полюсов в конструкции контактора;
- Z4 – используется для дополнительного обозначения специфических особенностей контактора;
- Z5 – буква «А» — повышена коммутационная способность; «Б» — использование модернизированных контактов; «С» — указывает на использование контактов с металлокерамическими накладками (без буквы «С» – контакты выполнены из меди).
- Z6 – указывает на тип климатического исполнения.
Правила и порядок выбора контактора
Электромагнитные контакторы следует подбирать исходя из области их использования и задач, которые с их помощью планируется реализовать. Учитывая технические особенности контакторов, их выбор производят по следующим пунктам:
- По области использования и назначения;
- Исходя из категории использования;
- Учитывая требуемую коммутационную/механическую износоустойчивость;
- По количеству и исполнению главной контактной группы;
- По наличию в структуре дополнительной контактной группы;
- По типу тока и значению напряжения, подаваемого в главную цепь;
- По поддерживаемому напряжению рабочей катушкой и показателю ее рабочей мощности;
- По поддерживаемым режимам эксплуатации;
- Учитывая климатическое выполнение устройств, а также их тип по категориям размещения в рабочей зоне.
xn--g1aj0a6a.xn--p1ai