- Подробно рассказываем о кривых срабатывания автоматических выключателей
- Как не оконфузиться при выборе автоматического выключателя / Хабр
- Характеристики кривых срабатывания автоматического выключателя и координация – статьи
- Что такое автоматические выключатели с обратнозависимой выдержкой времени и автоматические выключатели мгновенного действия?
Подробно рассказываем о кривых срабатывания автоматических выключателей
В результате протекания по проводам токов, превышающих максимально допустимые значения, выходит из строя бытовая техника, перегревается и плавится проводка. Задача замыкающего и размыкающего электроцепь автоматического выключателя – защитить линию от повреждений сверхтоками перегрузок и коротких замыканий. Правильный выбор автомата даёт возможность не только своевременно обесточить электролинию на избыточно нагруженном участке, сохранив работоспособность защитного устройства, но и избежать перебоев с электричеством при подключении в сеть электроприборов с высокими пусковыми токами. Кривые срабатывания автоматических выключателей наглядно демонстрируют зависимость времени срабатывания защитного устройства от отношения величины протекающего по нему тока к номинальному.
Особенности работы автоматов защиты сети
Чтобы понять, какой автоматический выключатель вам подходит больше всего, нужно детально представлять себе работу устройства с комбинированным расцепителем.
Электромагнитный расцепитель представляет собой катушку с установленным на специальной пружине сердечником, который втягивается внутрь катушки под воздействием увеличившегося в результате короткого замыкания электромагнитного поля, размыкая подвижный контакт автоматического выключателя. Электрическая дуга, возникающая на подвижном контакте при срабатывании любого из расцепителей, дробится и затухает между пластинами дугогасительной камеры автомата.
Маркировка A, B, C, D, K или Z на корпусе автоматического выключателя – это токовременная характеристика срабатывания. Она показывает, во сколько раз значение силы тока должно превысить номинальное, чтобы произошло автоматическое отключение. Цифра справа от неё – номинальный ток, на который рассчитан автомат.
Справка! Номинальный ток – это максимально допустимый ток, который электрическая сеть способна проводить продолжительное время без перегрева токопроводящих элементов и изоляции. Оптимальное для объекта значение номинального тока определяется сечением проводки и предполагаемой нагрузкой оборудования, которое планируется к ней подключить.
По кривой тока можно узнать, разомкнёт ли автомат, который вы собираетесь установить в электрощитке на входе в квартиру, сеть в случае, если произойдёт короткое замыкание. На графике ниже красная пунктирная линия, соответствующая рассчитанной для автомата типа C с номиналом 16 А кратности увеличения нагрузки в момент КЗ, пересекает кривую в зоне электромагнитной защиты автомата и соответствует времени срабатывания 0,01 с.
Однако если вы поставите автоматический выключатель, номинал которого существенно больше повседневной нагрузки, в случае возникновения короткого замыкания кратность превышения номинального значения тока, под которое рассчитан приобретённый вами автомат, будет незначительной, отключение, судя по графику ниже, произойдёт лишь через 10 с после наступления аварийной ситуации. За это время проводка, работающая под большой нагрузкой, может оплавиться.
Установка разных по типу защитных устройств на входе в квартиру и отдельно для каждой ветви электрической сети позволяет поддерживать нормальное электроснабжение практически всей жилой площади даже в случае, если на одном из участков произошла перегрузка сети в результате КЗ. Совмещая кривые двух автоматов, мы видим, что повышение нагрузки, в результате которого автомат типа B (кривая синего цвета) разомкнёт цепь через 0,02 с, вызовет отключение автомата типа C (сиреневая кривая) больше чем через минуту. Отключение ветви, где произошло замыкание, восстановит нормальное значение силы тока в проводке, поэтому выключатель C не сработает.
Типы кривых срабатывания
Каждая кривая расположенного ниже графика показывает, как изменяется время размыкания цепи в зависимости от нагрузки и типа автоматического защитного устройства. Тип мгновенного расцепления A, B, C, D, K или Z определяется кратностью превышения нагрузки в токопроводящей сети:
- A – для срабатывания автомата необходимо повышение нагрузки в 2–3 раза;
- B – чтобы сработал электромагнитный расцепитель, нагрузка должна увеличиться в 3–5 раз;
- C – расцепитель сработает в случае увеличения тока в 5–10 раз;
- D – защитный выключатель сработает после того, как ток в сети превысит номинальный в 10–20 раз;
- K, Z – параметры задаются техническими условиями производителя.
Каждому типу кривой соответствуют две линии, определяющие диапазон, в котором работает автомат, и две зоны: верхняя, демонстрирующая, как быстро будет срабатывать автоматический выключатель в неразогретом состоянии, и нижняя, показывающая, как изменится время отключения, если проводка будет разогретой.
На вертикально расположенной оси отмечено время размыкания цепи защитным устройством, по горизонтальной оси графика можно определить, во сколько раз сила тока должна увеличиться, чтобы автомат сработал в заданное время. Цифры в верхнем левом углу графика означают, что тепловой расцепитель может разомкнуть цепь в случае превышения номинального значения силы тока в 1,13 раза и точно сработает примерно через час, если нагрузка увеличится в 1,45 раза.Время-токовая характеристика типа В
Защитное устройство с токовременной нагрузкой типа B используется в электролиниях, где практически не фиксируются пусковые токи. Срабатывает он за 0,04 с при повышении значения номинала переменного тока в 5 раз в разогретом состоянии и через 32 секунды в неразогретом виде, если его номинал не превышает 32 А.
Время-токовая характеристика типа С
Перегрузочная способность автоматов C-типа позволяет использовать их в качестве вводных устройств, размыкающих в случае необходимости общую сеть. При повышении силы тока в 5 раз по отношению к номинальной автомат разомкнёт гоячую сеть через 0,02 с и через 10 с, если номинальное значение силы тока защитного устройства не более 32 А. Если значение номинальной силы тока будет превышено в 5 раз, автоматическое защитное устройство разомкнёт цепь через 0,01 с.
Время-токовая характеристика типа D
Автоматические защитные устройства типа D устанавливают в сетях с большими пусковыми нагрузками. При увеличении номинального значения в 10 раз, сеть будет разомкнута через 0,02 с в разогретом виде и через 3 секунды, если номинальный ток увеличится в те же 10 раз для автомата с номинальным значением силы тока не превышающим 32 А в то время, когда проводка ещё не успела разогреться.
Время-токовая характеристики A, K и Z
Высокочувствительные автоматы типа A защищают удлинённые цепи с полупроводниками, в работе которых не допускаются даже незначительные перегрузки.
Выключатели K-типа применяются в цепях с индуктивной нагрузкой и срабатывают при увеличении номинального переменного тока в 12 раз и в 18 постоянного. Автоматы Z-типа применяются в линиях, оснащённых электроникой. Срабатывают они при повышении номинального переменного тока в 3 раза или в 4,5 постоянного.
Изменение характеристик расцепления автоматов
Температура окружающего воздуха и тепло, исходящее от расположенных рядом полюсов могут существенно изменить параметры работы автоматического выключателя. При рассчёте нагрузочной способности защитного автомата возможный перегрев учитывается с помощью умножения значения номинального тока на коэффициенты Kt и Kn.
Приспосабливая автоматический выключатель к требованиям управляемой им электросети, некоторые производители оснащают защитные устройства регулируемыми расцепителями. Максимум номинального значения тока такого автомата при покупке вы можете определить по максимальному уровню уставки тока отключения.
Испытания автоматических выключателей
Чтобы убедиться в работоспособности защитного устройства, параметры его работы проверяют следующим образом:
- В неразогретом состоянии через автомат защиты пускают ток, превышающий номинальное значение в 1,13 раза. Автоматы с номинальным значением силы тока не более 63 A должны отключить электричество через час, с номинальным значением более 63 A – лишь через 2 часа.
- Ток, превышающий номинальное значение в 1,45 раза заставит сработать выключатель номиналом до 63 А меньше чем за час. Для автоматов, рассчитанных на 63 А и более, время до размыкания электрической цепи не должно превысить 2 часа.
- Если через холодное защитное устройство номиналом до 63 А пропустить ток, в 2,55 раза больше номинала, автомат, рассчитанный не более чем на 32 А, сработает в диапазоне от 1 с до 1 мин и не позднее чем через 2 минуты, если номинальный ток защитного автомата выше 32 А.
- Через защитное устройство типа B или C в неразогретом состоянии пропускают ток нижнего порога диапазона. Для приборов с номиналом меньше 32 А время срабатывания должно находиться в пределах от 0,1 с до 45 с, для автоматов с номиналом силы тока от 32 А оно составит не больше 90 с.
- Через тот же холодный выключатель B или C, пропускают ток верхнего порога диапазона. Автоиат должен сработать за время меньше 0,1 с.
Полученные результаты должны соответствовать токовременным характеристикам, отображённым кривыми графика. При проведении испытательных мероприятий следует помнить, что обязательное отключение защитного автомата в установленное Правилами устройства электроустановок время, происходит лишь в случае, если ток однофазного КЗ равен или превышает верхнее значение, определённое производителем для выключателя такого диапазона.
Как не оконфузиться при выборе автоматического выключателя / Хабр
Краткая заметка по поводу выбора автоматических выключателей. Искренне надеюсь, что читатель не узнает для себя ничего нового.
У поста есть видеоверсия на моем ютуб канале. Реалии времени заставляют меня делать еще и видео:
Определимся с целью
Для начала нужно определиться — для чего нам автоматический выключатель в электрощите. Задача автоматического выключателя — прежде всего защитить стационарную кабельную линию от протекания токов свыше предельно допустимых. Если ток превышен — то проводники нагреваются, с плавлением и разрушением изоляции или расплавлением самих проводников. И если не случится пожара, то случится дорогостоящий ремонт, с работами по замене замурованной в стенах электропроводки. А ток может быть превышен, если к линии подключили слишком много потребителей (происходит перегрузка) или если происходит короткое замыкание. Неправильный выбор характеристик автоматического выключателя — путь к дорогостоящему ремонту, а при особенной везучести — к пожару.
Номинальный ток
Поняв, что автоматический выключатель должен защитить кабельную линию от протекания тока свыше допустимого, мы должны понять, какой же ток допустимый. Чаще всего ссылаются на вот эту табличку из ПУЭ (таблица 1.3.4):
Но, на мой субъективный взгляд, у этой таблички есть существенный недостаток, и он указан в источнике — эта табличка составлена для окружающей температуры +25, температуры земли +15 и температуры жилы (!!!) +65. Длительная работа изоляции при повышенной температуре ускоряет процесс старения полимеров, поэтому мое личное мнение — указанные в таблице цифры стоит уменьшить хотя бы на 1/4. Если кабель проложен таким образом, что его охлаждение затруднено, то предельно допустимый рабочий ток также уменьшают. Например если кабель расположен в пучке с другими кабелями или под слоем теплоизоляции.
И вот в этом месте подходим к самой неочевидной вещи. В таблице указаны предельно допустимые токи, а на автоматических выключателях указан номинальный ток. Номинальный ток автоматического выключателя, указанный на нем — это ток, который может длительно проходить через автоматический выключатель и не вызывать его отключения. Для определения тока отключения заглянем в документацию, в график время-токовых характеристик:
Но это график конкретного экземпляра автоматического выключателя. В реальном мире, у автоматических выключателей есть разброс характеристик, даже у выключателей взятых из одной коробки. Поэтому на графике изображена область, в которой окажется характеристика случайно взятого автоматического выключателя.
В результате, если взять определенный ток, то мы получим диапазон значений времени, за которое сработает автоматический выключатель. От и до, как например вот здесь:
Думаю очевидно, что в расчетах стоит полагать, что нам попался самый плохой экземпляр, и берется самое худшее значение.
В автоматическом выключателе есть два расцепителя — тепловой, который достаточно точный, но медленный, и электромагнитный — очень быстрый, но неточный. (В посте (https://serkov.su/blog/?p=5563) я разбирал, как к такому пришли, и почему лучше пока ничего не придумали.) В итоге получается нелинейная зависимость времени срабатывания от протекающего тока. Для наглядности возьмем автоматический выключатель, на котором указан номинальный ток 16А. При перегрузке будет работать тепловой расцепитель:
До тока в 1,13 от номинального, расцепления совсем не произойдет (16*1,13=18,08А)
При токе в 1,45 от номинального тепловой расцепитель сработает, но за время менее 1 часа (!). (16*1,45=23,2А)
При токе в 2,55 от номинального тепловой расцепитель сработает за время менее 60 сек. (16*2,55= 40А)
При превышении тока еще сильнее — сработает электромагнитный расцепитель, но об этом чуть позже.
Все это становится понятнее, если взглянуть на график:
Откуда взялись эти магические цифры? Из стандарта (у нас в стране — ГОСТ 60898-1-220). Просто разработчики условились, что разброс параметров срабатывания расцепителей должны быть в этих пределах. Причем скорее всего взяли просто две удобные точки времени — 1 час и 1 минута, и воспользовались статистическими данными, чтобы получить кратности номинального тока.
Ну и чтобы совсем жизнь мёдом не казалась, стоит добавить, что в зависимости от температуры окружающей среды применяют коэффициенты. На жаре тепловой расцепитель прогревается и срабатывает быстрее, а вот на морозе наоборот.
А теперь сценарий везунчика по жизни. В частный дом заходит кабель, сечением 1,5 мм2. Щиток с автоматическим выключателем находится в холодном предбаннике, когда на улице мороз -35. Кабель от щитка идет через стену под слоем утеплителя. Автоматический выключатель на 16А почти час (!) будет пропускать ток в (16*1,45*1,25(поправочный на температуру, рис.4) = 29А. При 19А по табличке из ПУЭ у нас жилы будут горячими — +65С, а под слоем утеплителя изоляция уже начнет плавиться.
Еще раз резюмирую: Номинальный ток автоматического выключателя НЕ РАВЕН предельно допустимому току кабеля. Предельный ток кабеля должен вызывать отключение автоматического выключателя в адекватное время.
Тип электромагнитного расцепителя
Тепловой расцепитель медленный, что плохо при коротком замыкании — токи могут быть огромными, и даже за одну секунду могут наделать бед. Поэтому в конструкцию автоматического выключателя добавили электромагнитный расцепитель, который срабатывает за доли секунды. Но он настроен на ток в разы превышающий номинальный.
Дело в том, что некоторые виды потребителей при включении потребляют ток в разы, превышающий ток в рабочем режиме. Например мотор в пылесосе в момент включения кратковременно потребляет ток в 2-3 раза больший, но после разгона мотора, потребление снижается. Возможно вы замечали, как лампочки накаливания слегка притухают в момент включения чего-то как раз из-за этого. Вот график потребления тока мотора пылесоса:
Чтобы эти пусковые токи не заставляли сработать электромагнитный расцепитель, его характеристику сдвинули в зону бОльших токов, что бы такие кратковременные превышения тока были в зоне теплового расцепителя, который в силу своей инерционности такие краткосрочные процессы не замечает.
В итоге получилась линейка автоматических выключателей с одинаковыми тепловыми расцепителями, но с разными электромагнитными. Из-за огромного разброса параметров электромагнитных расцепителей — получились большие разбросы кратности тока срабатывания:
Характеристика В — электромагнитный расцепитель сработает при превышении тока в 3-5 раз
Характеристика С — электромагнитный расцепитель сработает при превышении тока в 5-10 раз
Характеристика D — электромагнитный расцепитель сработает при превышении тока в 10-20 раз
Вот они на графике:
Есть и другие характеристики (K, Z и т.д) но встречаются крайне редко и под заказ, поэтому опустим их.
Если по какой-то причине стартовые токи кратковременно попадут в зону действия электромагнитного расцепителя то возможны ложные срабатывания. И именно для исключения таких ложных срабатываний и сделали несколько типов характеристик.
Некоторые производители для упрощения указывают стартовые токи, вот например светодиодный драйвер уважаемой фирмы при включении кушает солидные 55А (из-за зарядки конденсатора в блоке питания), производитель даже сразу посчитал, сколько светодиодных драйверов можно подключить параллельно на один автоматический выключатель:
4 штуки с характеристикой В и 7 штук на автомат с характеристикой С. Кто бы мог подумать, что 150 ватт светодиодного света могут вышибать 16А автомат! Ситуация становится еще хуже, если используются некачественные светодиодные светильники, где производитель не только не предусмотрел плавный старт, да даже пусковой ток не регламентирует!
Если используется большое количество светодиодных светильников — то придется делить их на группы, чтобы одновременный пуск не вызывал срабатывание автоматического выключателя. Пытливый читатель задастся вопросом — а почему бы не взять просто автоматический выключатель с характеристикой «C» или «D»? Тогда бы пусковые токи не вызывали бы ложных срабатываний! Но не все так просто….
Ток короткого замыкания
Можно иногда услышать выражение «сопротивление цепи фаза-нуль», оно по сути про то же. Ток короткого замыкания — это величина тока в цепи, в случае если из-за повреждения случается короткое замыкание (прямое соединение фазного проводника и нейтрального, или соединение фазного и заземления) в самом дальнем участке. В идеальном мире с идеальными проводниками ток короткого замыкания был бы бесконечным. Но в реальном мире кабели имеют собственное сопротивление, и чем они длиннее тоньше — тем выше их собственное сопротивление. При обычной работе это не так важно — их собственное сопротивление много меньше сопротивления нагрузки. Но если случится короткое замыкание, ток будет ограничен именно этим собственным сопротивлением всех проводников в цепи + внутреннее сопротивление источника тока.
А теперь смотрим. В деревне Вилларибо измеренный ток короткого замыкания линии 278 Ампер, и электрик поставил автоматический выключатель С16:
Как видим все отлично — при коротком замыкании тока будет достаточно, чтобы электромагнитный расцепитель сработал. А вот в деревне Вилабаджо очень плохая проводка, и ток короткого замыкания всего 124 А. Смотрим на график:
В самом худшем случае, электромагнитный расцепитель типа «С» сработает при токе в 10 раз больше номинального (16*10=160А). А значит при 124А возможна ситуация, когда электромагнитный расцепитель при коротком замыкании не сработает, а пока тепловой расцепитель успеет сработать — по линии будет гулять ток в 124А, что может закончиться плохо. В таком случае деревне Вилабаджо нужно или менять проводку, чтобы уменьшить потери, или использовать автоматический выключатель типа В16, у которого электромагнитный расцепитель сработает в худшем случае при токе 5*16=80А. Теперь вы понимаете, почему характеристика типа D (10-20 *Iном) в некоторых случаях изощренный способ стрелять себе в ногу?
Как же определить ток короткого замыкания? Для проектируемых линий его можно расчитать — длина кабеля известна, сечение тоже. Для линий уже находящихся в эксплуатации — только измерять, поскольку никто не знает, на что пришлось пойти электрикам при ремонте поврежденных участков.
Для определения тока короткого замыкания есть специальные приборы. Показывать современные не интересно, поэтому покажу суровый советский олдскул, который есть у меня. М-417 измеряет сопротивление цепи путем измерения падения напряжения на известном сопротивлении, а ток короткого замыкания необходимо рассчитывать:
Щ41160, творение сумрачного советского гения. Устраивает короткое замыкание на доли секунды и измеряет ток непосредственно. В коричневой коробочке на проводе — предохранитель на 100А.:
Как правило, ток короткого замыкания измеряют при введении линии в эксплуатацию, и планово, раз в несколько лет. Только после измерения тока короткого замыкания можно сказать, правильно ли подобрана защита.
Ток короткого замыкания равен …Oh shi….
Если ток короткого замыкания будет черезчур большим? Вот тут мы сталкиваемся с отключающей способностью автоматического выключателя. В момент размыкания контактов выключателя загорается электрическая дуга, которая сама по себе проводит ток и гаснет неохотно. Для ее принудительного разрушения в конструкции автоматических выключателей предусмотрены дугогасительные камеры. Вот здесь на высокоскоростной съемке видно как работает дугогасительная камера:
На автоматическом выключателе в прямоугольной рамке нанесена величина отключающей способности в амперах — это максимальный ток, который способен разомкнуть автоматический выключатель без поломки. Вот на фото автоматические выключатели с отключающей способностью в 3000, 4500, 6000 и 10000 А:
Для наглядности я их разобрал. Большая отключающая способность заставляет не только делать дугогасительные камеры больше, но и усиливать другие конструктивные части, например защиту от прогара вбок.
Отключающая способность автоматического выключателя должна быть больше тока короткого замыкания в линии. Как правило, 6000 А достаточно для большинства применений. 4500А обычно достаточно для работы в линиях старых домов, но может быть недостаточным в новых сетях.
Коммутационная стойкость
При каждом включении/отключении автомата меж контактов загорается дуга, которая постепенно разрушает контактную группу. Производитель часто указывает количество циклов включения/отключения, который должны выдержать контакты:
Отсюда легко видеть, что автоматический выключатель не замена нормальному выключателю при частом использовании. Если пожадничать, и вместо пускателя с контактором заставить сотрудника включать/отключать мешалку дергая автомат по 10 раз в день, то автомат может прийти в негодность менее чем за пару лет. Вот фото автоматического выключателя, контакты которого пришли в негодность из-за большого тока:
Помните, каждая коммутация и срабатывание автоматического выключателя «съедает» его ресурс.
Класс токоограничения
Наверное самая мистическая характеристика. Указывается в виде цифры в квадратике. Про нее в рунете написано мало и чаще ерунда. Класс токоограничения, если упрощать, говорит о количестве электричества, которое успеет пройти через автоматический выключатель при коротком замыкании прежде, чем он отключит цепь, и говорит о быстродействии. Всего классов три:
Что интересно, отечественными стандартами класс токоограничения не регламентируется, поэтому на картинке выше нет кириллицы. Цифры в таблице — это величина интеграла Джоуля. Отечественные производители указывают класс просто потому что «так принято», а не того требуют отечественные стандарты 🙂 В быту на данный параметр можно не обращать внимание — классы хуже третьего встречаются в продаже не часто.
Селективность
Вам бы не хотелось, чтобы при перегрузке или коротком замыкании срабатывал автоматический выключатель где-то на столбе у ввода в дом. При последовательном соединении автоматов защиты, подбором их характеристик можно добиться селективности — свойству срабатывать защите ближайшей к повреждению, без срабатывания вышестоящей. И у меня две новости.
Хорошая — можно воспользоваться специальными таблицами, которые есть у многих производителей, и подобрать пары автоматических выключателей, которые при перегрузке будут обеспечивать селективность. На графике это видно как непересекающиеся графики работы расцепителей:
Но по графику вы могли понять, что плохая новость — обеспечить полную селективность автоматических выключателей при коротком замыкании затруднительно. Кривые пересекаются в области больших токов. Поэтому чаще всего речь о частичной селективности. Например, если синий график — автомат В10, а фиолетовый В40, то ток селективности составит 120А (значение взято из таблиц одного производителя для конкретной модели автоматов). Тоесть при токах меньше тока селективности — все отлично. При токах больше — сработать могут оба устройства защиты.
В бытовой серии модульных автоматических выключателей обеспечивать селективность, даже частичную, довольно трудно. Лишь большие и мощные устройства защиты, например на подстанциях, имеют тонкие настройки уставок расцепителей для обеспечения селективности с вышестоящими устройствами защиты.
Да скажи уже что ставить!?
Прежде всего то, что предусмотрено проектом.
Ну а если уж совсем среднестатистический случай с кучей оговорок, то:
Линия 1,5 мм2 — Автомат В10 с отключающей способностью 6000А
Линия 2,5 мм2 — Автомат В16 с отключающей способностью 6000А
Применение автоматического выключателя с характеристикой «C» или «D» вместо «B» должно иметь вескую причину.
Плюшки
Автоматические выключатели разных производителей могут содержать разные приятности/полезности, которые напрямую на защитные функции не влияют, но могут быть полезны:
Это различные шторки/колпачки/крышечки для пломбирования вводного автомата по требованию электросетевой компании.
Это визуальный индикатор фактического состояния контактов, такой индикатор останется красным, если контакты из-за перегрузки сварились
Это окошки для дополнительных нашлепок с электромагнитными расцепителями, контактами
Это дополнительное окошко у клемм для использования гребенки при подключении
и прочее и прочее.
Номинальный ток автоматического выключателя не равен предельно допустимому для кабеля! В силу особенностей конструкции автоматический выключатель может длительное время пропускать через себя токи значительно больше номинальных и не отключаться.
Разные типы электромагнитных расцепителей позволяют избежать ложных срабатываний, но использовать тип С, и в особенности тип D нужно понимая что к чему.
Если ток короткого замыкания в вашей линии мал — то использование автоматического выключателя требует вдумчивого подхода.
Если ток короткого замыкания в вашей линии огромен, то отключающая способность автоматического выключателя должна быть еще больше.
А чтобы знать ток короткого замыкания, его нужно измерить специализированным прибором. И только после измерения можно сказать, будет ли правильно работать защита
Хочу сказать спасибо всем, кто принимал участие в рецензировании черновика. Буду рад указаниям на фактические ошибки в статье и ценным дополнениям.
Характеристики кривых срабатывания автоматического выключателя и координация – статьи
Рис. 1: Упрощенная времятоковая кривая. Фото: TestGuy
Времятоковые кривые используются для отображения количества времени, необходимого для срабатывания автоматического выключателя при заданном уровне перегрузки по току.
Кривые время-ток обычно отображаются в логарифмическом масштабе. Цифры по горизонтальной оси кривой представляют собой номинальный постоянный ток (In) для автоматического выключателя, цифры по вертикальной оси представляют время в секундах.
Чтобы определить, сколько времени потребуется для отключения выключателя: найдите значение тока, кратное (In), в нижней части графика. Затем проведите вертикальную линию до точки, где она пересекает кривую, а затем проведите горизонтальную линию до левой стороны графика, чтобы найти время в пути.
Общее время отключения автоматического выключателя представляет собой сумму времени срабатывания выключателя, времени разблокировки, времени механического срабатывания и времени образования дуги.
Кривые разрабатываются с использованием предварительно заданных спецификаций, таких как работа при температуре окружающей среды 40°C, поэтому имейте в виду, что фактические условия эксплуатации автоматического выключателя могут вызвать отклонения в его характеристиках.
Большинство кривых имеют информационное поле, в котором указывается, к какому автоматическому выключателю относится кривая. Это информационное поле может также содержать важные примечания от производителя, такие как допустимое отклонение от времени срабатывания.
Пример кривой времени тока автоматического выключателя в реальном мире с выделением. Фото: TestGuy
Защита от перегрузки
Верхняя часть времятоковой кривой показывает тепловую реакцию автоматического выключателя, изогнутая линия указывает на номинальную производительность автоматического выключателя.
В термомагнитных выключателях тепловая перегрузка возникает, когда биметаллический проводник внутри выключателя отклоняется после нагревания током нагрузки, разблокируя приводной механизм и размыкая контакты.
Чем больше перегрузка, тем быстрее биметаллическая пластина будет нагреваться и отклоняться для устранения перегрузки. Это то, что известно как «обратная кривая времени».
Долговременная функция
В электронных автоматических выключателях долговременная функция (L) имитирует эффект теплового биметаллического элемента. Номинальная точка срабатывания, в которой электронный расцепитель обнаруживает перегрузку, составляет примерно около 10 % от выбранного номинального тока. После срабатывания автоматический выключатель сработает по истечении времени, заданного регулировкой долговременной задержки.
Защита от короткого замыкания
В нижней части времятоковой кривой отображается реакция автоматического выключателя на короткое замыкание. В тепловых магнитных выключателях место срабатывания при перегрузке по току значительной величины приводит в действие магнитный якорь внутри выключателя, который размыкает механизм.
Мгновенная функция
В электронных автоматических выключателях функция мгновенного действия (I) имитирует магнитную характеристику термомагнитного автоматического выключателя. Это достигается с помощью микропроцессора, который берет выборки из формы сигнала переменного тока много раз в секунду для расчета истинного среднеквадратичного значения тока нагрузки. Мгновенное отключение происходит без преднамеренной задержки по времени.
Рисунок 3: Комбинированная кривая LSIG. Фото: TestGuy.
Кратковременная функция
Некоторые электронные автоматические выключатели могут быть оборудованы Кратковременной функцией (S), которая дает автоматическому выключателю задержку перед отключением при значительном перегрузке по току. Это позволяет осуществлять выборочную координацию между защитными устройствами, чтобы гарантировать, что только устройство, ближайшее к повреждению, размыкается, не затрагивая другие цепи (см. координацию автоматических выключателей ниже) .
Характеристика I 2 t функции короткого времени определяет тип задержки. I 2 t IN приведет к обратнозависимой выдержке времени, которая напоминает время/токовые характеристики предохранителей. Это похоже на функцию длительного времени, но с гораздо более быстрой задержкой. I 2 t OUT обеспечивает постоянную задержку, обычно 0,5 секунды или менее, как указано на кривой время-ток.
Функция блокировки зон
Для автоматических выключателей, оборудованных блокировкой зон с короткой задержкой при отсутствии ограничивающего сигнала от нижестоящего устройства, независимо от настройки применяется минимальный временной диапазон, который иногда называют максимальной неограниченной задержкой.
Когда функция мгновенного отключения отключена, используется блокировка с кратковременной задержкой для мгновенного срабатывания автоматических выключателей в случае значительного короткого замыкания. Это называется номиналом кратковременной стойкости и представлено на кривой отключения в виде абсолютного значения тока.
Связанный: Избирательная блокировка зон (ZSI) Основные принципы
Защита от замыканий на землю
Как и долговременная функция, элемент защиты от замыканий на землю (G) состоит из уставки срабатывания и задержки. Когда происходит замыкание фазы на землю, сумма фазных токов больше не равна, потому что ток замыкания на землю возвращается через шину заземления. В 4-проводной системе четвертый ТТ устанавливается на нулевой шине для обнаружения этого дисбаланса.
При возникновении дисбаланса тока автоматический выключатель сработает, если величина превышает уставку срабатывания при замыкании на землю. Если прерыватель остается включенным в течение времени, заданного задержкой замыкания на землю, автоматический выключатель сработает. Защита от замыкания на землю иногда поставляется с функцией I 2 t, которая работает по тому же принципу, что и кратковременная задержка.
Пример 4-проводной системы защиты от остаточного замыкания на землю. Фото: TestGuy.
Защита от замыкания на землю требует наименьшей энергии для срабатывания автоматического выключателя, часто со значениями срабатывания, установленными значительно ниже уставки срабатывания длительного времени. При проверке функции автоматического выключателя на перегрузку или короткое замыкание необходимо отключить защиту от замыкания на землю или «убрать в сторону» для работы других функций.
Использование комплекта для проверки производителя или изменение проводки входа нейтрального трансформатора тока является предпочтительным методом проверки первичной подачей низковольтного автоматического выключателя с защитой от замыкания на землю, в противном случае два полюса могут быть соединены последовательно, чтобы обеспечить сбалансированные вторичные токи для отключения единица.
Связанный: Системы защиты от замыканий на землю: основы тестирования производительности
Координация автоматических выключателей
Кривые время-ток необходимы для правильной координации автоматических выключателей. В случае неисправности должен сработать только ближайший к месту неисправности автоматический выключатель, не затрагивая другие цепи.
В приведенном ниже примере три автоматических выключателя были скоординированы таким образом, что время срабатывания каждого выключателя было больше, чем время срабатывания нижестоящего выключателя (автоматов), независимо от величины неисправности.
Упрощенный пример координации отключения выключателя. Фото: TestGuy.
Автоматический выключатель CB-3 настроен на отключение при перегрузке 2000A или выше в течение 0,080 секунды . Автоматический выключатель CB-2 сработает, если перегрузка сохраняется в течение 0,200 секунд, и автоматический выключатель CB-1 , если неисправность сохраняется в течение 20 секунд .
При возникновении неисправности нижестоящий выключателя CB-3, он сработает первым и устранит неисправность. Автоматические выключатели CB-2 и CB-1 продолжат обеспечивать питание цепи.
Каждая функция расцепителя также должна быть согласована, чтобы предотвратить ложные срабатывания. Например, если автоматический выключатель питает часть оборудования с большими пусковыми токами, значение мгновенного срабатывания должно быть установлено выше, чем значение кратковременного срабатывания, чтобы предотвратить отключение, когда оборудование находится под напряжением.
Связанный: Объяснение исследований координации электроэнергетической системы
Каталожные номера:
- Кривые отключения и координация, Бюллетень данных Square D 0600DB0105
- Основные сведения об автоматических выключателях: Siemens STEP Series
Что такое автоматические выключатели с обратнозависимой выдержкой времени и автоматические выключатели мгновенного действия?
Р Джаган Мохан Рао
Автоматические выключателидоступны в двух типах.
- Автоматические выключатели с обратнозависимой выдержкой времени, также называемые термомагнитными автоматическими выключателями.
- Автоматические выключатели мгновенного действия также известны как магнитные автоматические выключатели.
Автоматические выключатели с инверсной выдержкой времени
Автоматические выключатели с инверсной выдержкой времени связаны с тепловой характеристикой. При более низких уровнях перегрузки по току автоматический выключатель должен подождать некоторое время, чтобы увидеть, является ли эта неисправность временной.
После того, как в течение некоторого времени перегрузочный ток протекал, если в нем все еще присутствует некоторый ток короткого замыкания, прерывающий автоматический выключатель должен разорвать цепь. Это называется обратнозависимой характеристикой времени.
В этих прерывателях обычно используется биметаллический элемент, который изгибается, чтобы ударить по расцепителю при нагревании. При малом перегрузке по току нагрев невелик и элемент изгибается медленно. Больше перегрузки по току, больше нагрев и быстрее гнется. Следовательно, это «обратное время».
Автоматические выключатели с обратнозависимой выдержкой времени имеют как тепловую, так и мгновенную характеристики срабатывания и предварительно настроены на срабатывание при стандартных регулируемых настройках. Их характерное обратнозависимое время отключения в условиях перегрузки идеально подходит для многих применений, от жилых до тяжелых промышленных нагрузок.
Тепловое действие обратного выключателя реагирует на тепло. Если входных и выходных вентиляционных отверстий двигателя недостаточно для отвода тепла от обмоток двигателя, тепло будет обнаружено по тепловому действию автоматического выключателя.
В случае короткого замыкания магнитное действие автоматического выключателя определяет мгновенные значения тока и отключает автоматический выключатель.
Национальные электротехнические нормы и правила (NEC 430. 52) требуют, чтобы номинал автоматических выключателей с обратнозависимой выдержкой времени не превышал 250 % тока полной нагрузки двигателя (FLA).
Автоматические выключатели мгновенного действия
Автоматические выключатели мгновенного действия, также известные как только магнитные автоматические выключатели. Они выглядят как термомагнитные автоматические выключатели.
Они не имеют функции термозащиты и не защитят от перегрузки по току даже для себя.
Реагируют только на мгновенные токи, такие как короткое замыкание. Автоматические выключатели мгновенного действия предназначены для одной очень конкретной цели, а именно для обеспечения защиты цепей двигателя от короткого замыкания ответвления. В соответствии со стандартом NEC их использование только в перечисленных комбинированных контроллерах двигателей.
Чаще всего эти выключатели используются в сочетании со пускателями двигателей. Пускатель двигателя состоит из контактора и реле перегрузки.
Контактор выполняет другую функцию и не обеспечивает защиты ни двигателя, ни его цепи, ни самого себя.