Узо схема: как правильно + схемы и варианты подключения

Содержание

Принцип работы и схема подключения УЗО к однофазной сети

Отсутствие средств защиты от поражения электрического тока приводит к трагическим последствиям. Средства УЗО способны предотвратить утечку тока, а также отключить электрическую цепь в случае превышения номинального значения тока, воспламенения или задымления. Нормальная работа УЗО возможна только при грамотном подключении. Если такое устройство будет подключено неправильно, то никакой защиты не гарантируется.

Защищенные однофазные цепи с заземлением и без

Цепь, имеющая заземление считается безопасной. Сегодня все электрический цепи оснащаются специальными автоматами, которые срабатывают в результате нарушения нормальной работы сети. УЗО реагирует на изменение силы тока утечки от одного звена к другому.

Если после прохождения через устройство показатель тока будет выше или ниже УЗО срабатывает и отключает подачу тока на последующее звено.

Подключение УЗО к однофазной сети производится после непосредственного отключения сети.

Подключение однофазного УЗО предусматривает, что устройство не защищенно от перегрузки. Поэтому к создаваемой схеме нужно обязательно подключить автоматический выключатель.

УЗО может подключаться с заземлением и без него. В случае возникновения пробоев, ток, попадающий на корпус устройства, уменьшается благодаря сопротивлению обмотки.

В этом случае, при возникновении разницы, поступление тока через УЗО прекращается. Поэтому такое устройства целесообразно устанавливать перед автоматами, которые подключаются к приборам.

Преимущества использования УЗО:

  • Высокая безопасность электрической сети;
  • Исключена возможность поражения человека электрическим током;
  • Повышается срок эксплуатации оборудования;
  • Защита от перегрузок;
  • Высокая скорость срабатывания;
  • Большой срок эксплуатации.

В большинстве жилых домов местное заземление отсутствует. Это приводит к увеличению рисков утечки тока. В свою очередь человек может случайным образом дотронутся до поврежденного участка цепи. Переменный ток, проходя через человеческий организм, оказывает поражающее действие на ткани и клетки организма.

Принцип работы

УЗО – устройство защитного отключения, срабатывающее в результате возникновения тока утечки. Защита срабатывает после попадания тока на землю или провод заземлителя.

Устройство мгновенно отключает потребителей от источников питания. Порог срабатывания задается настройками, которые определяют минимальный порог (номинал), после которого устройство будет срабатывать.

УЗО однофазное работает по такому же принципу, как и в случае подключения к трехфазным сетям. В случае с тремя фазами, провод заземления уменьшает время срабатывания УЗО. Схема включения УЗО в однофазной сети исключает наличие обязательного заземляющего провода.

Каждая схема подключения УЗО создается исходя из расчета общего количества потребителей. Чем больше потребителей, тем выше размер значения максимального тока. Работа УЗО в однофазной сети определяется разницей входного и выходного тока.

При возникновении разницы устройство срабатывает, и отключает цепь от источника питания. Если возникающий ток будет выше заданной величины максимального порога УЗО, то он сразу же выйдет из строя.

Поэтому такие устройства подбираются строго под определенный размер максимального тока.

Своевременное отключение электрической сети от источника тока позволяет избежать:

  • летальных исходов;
  • перегревов;
  • возгораний;
  • повреждений нормальной работы оборудования.

Устройство УЗО состоит из контактной группы и пружины, которая при достижении заданного номинального значения размыкает цепь. Часто УЗО путают с дифавтоматом.

Основное отличие этих устройств состоит в том, что перед УЗО обязательно должен быть установлен автоматический выключатель.

Подключение УЗО к однофазным сетям

Принцип работы УЗО в однофазной сети основывается на подключении фазы и ноль, а заземляющий провод присоединяется к корпусу устройства. Схема подключения УЗО в однофазной сети обязательно предусматривает наличие автомата, который подбирается исходя из расчёта максимальной ёмкости.

Устройства защитного подключения могут подключаться к однофазным сетям, в которых не предусмотрено участковое заземление. В этом случае УЗО подключается на фазную и нулевую клемму, а клемма заземлителя отсутствует. Заземляющие проводники используются только в постройках нового типа.

Единственное различие между УЗО с заземлителем, заключается в времени срабатывая. За счет установленного заземлителя сети время срабатывания увеличивается. Соответственно такие цепи считаются более безопасными.

Отсутствие заземления в однофазных сетях приводит к тому, что УЗО будет срабатывать только в случае прикосновения к корпусу устройства.

Но и этот факт обеспечивает надежную безопасность для того, чтобы человек не получил смертельный удар током.

Особенности схемы подключения

Рассмотрим основной принцип построения однофазной сети с использованием УЗО. Подключать такое устройство необходимо строго после автоматического выключателя. Так как устройство защитного отключения считывает разницу поступающего и выходящего тока на потребителях, то в случае неполадок сработает автоматический выключатель.

Если произвести установку обратным способом, то поступление тока не будет прекращаться. После включения УЗО, система стает полностью надежной и безопасной.

Отключающее устройство срабатывает практически мгновенно, после чего поступление тока прекращается. УЗО однофазное ABB устанавливать должен специалист.

Чтобы устройство всегда срабатывало, необходимо перед установкой произвести предварительный расчёт максимального номинального тока. Это действие показывает максимально-допустимую нагрузку, которую может выдерживать создаваемая цепь.

Превышение заданного номинального значения приводит к тому, что УЗО не срабатывает или полностью выходит из строя.

Как выбрать?

Выбирая УЗО, необходимо учитывать типы устройств, схему соединения, а также законы по которым работает устройство. Устройства защитного отключения имеют различные модификации. Каждая модификация такого устройства предназначается для цепей определенного типа. Существуют следующие типы УЗО:

  1. АС – Очень чувствительный прибор, реагирующий синусоидальные колебания тока, который имеет очень маленькое значение.
  2. А – этот тип устройства предназначается для цепей, которые работают по синусоидальным законам. Также, в этом случае УЗО улавливает разницу колебаний пульсирующего тока (тока выпрямителя).
  3. В – самый прогрессивный тип устройств защитного отключения, реагирующий на токи синусоидальной, пульсирующей и сглаженной формы.

Практика показывает, что чаще всего покупатели отдают предпочтение компании «Энергомера». Например, устройство Энергомера УЗО ВАД2 однофазное, предназначается для сверхтоков и выдерживает большие токи перегрузки. Также, УЗО вад2 однофазное имеет:

  • Надежные технические характеристики;
  • Компактные габаритные размеры;
  • Дистанционное управление;
  • Срок службы от 10 лет.

Включение УЗО в однофазную сеть даёт возможность обезопасить человека от поражения электрическим током. В этот момент общая безопасность цепи позволяет избежать резких перепадов тока, которые негативно воздействуют на электрические устройства.

Не стоит экономить на безопасности. Если вы хотите обезопасить себя и оборудование, с которым работаете, то устанавливайте УЗО. Не стоит периодически отключать устройство, с целью подключить дополнительный потребитель. Это может привести к возгоранию, пробою изоляции, а также износу элементов электрической сети. Также необходимо обращать внимание на производителя.

Наиболее популярными производителями считаются: Abb, Hager, Legrand, Schneider Electric, Moeller/Eaton, Doepke.

Таким образом, подключение УЗО к однофазным сетям, является необходимым условием для обеспечения безопасности. Используя правильную схему подключения, автоматические выключатели, вы можете обезопасить себя и своих близких.

Как правильно подключить устройство защитного отключения (УЗО)?

В интернете можно найти большое множество электрических схем того, как правильно подключить УЗО? Какие-то из этих схем верные, другие попадают в разряд сомнительных, с точки зрения профессионала. На форумах электриков, это часто обсуждаемая тема. Непосвященному человеку  очень сложно разобраться в таких вопросах. Например, сколько нужно устанавливать УЗО? Где в схеме они должны устанавливаться?  Как подключить УЗО так,чтобы устройства работали корректно?

Первое, что нужно усвоить, что все контактные соединения заводятся в автоматические выключатели и УЗО не снизу, а сверху вниз, этого требует этикет электромонтажа.  На то есть несколько причин:  во-первых, большинство автоматов снижает кпд работы, если заводить контакты снизу; во-вторых, электрик во время ремонтных работ в электрощитовой будет избавлен от дополнительных исследований схемы и не будет введен в заблуждение.

автоматические выключатели

На схеме сайта electric-tolk.ru, расцветка проводов обозначена следующим образом; красный-фаза (L), синий-нуль (N), желто-зеленый-защитный проводник (РЕ).

Практическая схема правильного подключения УЗО

узо 300 mA

Распределение электрической сети начинается с вводного автоматического выключателя. Устанавливаем двухполюсный ВА(выключатель автоматический), на 40 Ампер — максимальная нагрузка 8,8 кВт (1). После ВА контакты фаза и ноль заводим в электрический счетчик (2). В этой схеме электрический счетчик достаточно установить на 5-60Ампер, другие контакты выводим к нагрузке, схема указывает путь к противопожарному УЗО. Если планируется установка противопожарного УЗО (3), устанавливаем с номиналом 300 мА / 50Ампер, т.е. номинал протекания силы тока через противопожарное УЗО должен быть на ступень выше номинала вводного автоматического выключателя.

Противопожарное УЗО не защищает человека от поражения током, но охраняет всю электропроводку здания с чувствительностью утечки тока в 300мА (грубая отсечка). Оно предупредит короткое замыкание и не допустит возгорания. т.е. обесточит все здание до устранения утечки тока.

Подключение УЗО по линии фазы

После противопожарного УЗО, фазовый проводник разводим на автоматические выключатели (5,6,12)-освещения 10 Ампер. Далее, на дифференциальный автоматический выключатель  30мА/20Ампер, ДИФ(13). Следующие контактные соединения идут на УЗО 30мА/40А (7), затем запитываем три автомата 16Ампер (8,9,10),отвечающие за группы розеток (2,3,4). Аналогично происходит расключение после УЗО 30мА/40А (14), выводим проводник к автоматам 16 Ампер (15,16,17), отвечающим за группы розеток (5,6,7).

Схема правильного подключения УЗО

как правильно подключить УЗО?

Подключение УЗО по линии нейтрали

С фазой разобрались, теперь переходим к проводнику нейтрали (N). После противопожарного УЗО (3), нулевой проводник закрепляем на общую нулевую шину (4). Затем от общей нулевой шины проводник (N) заводим на УЗО (7) и УЗО (14), а так же диф. автомат (13). Обратите внимание, после диф.автомата, нулевой проводник проложен непосредственно к нагрузке, а не к нулевой шине, так как автомат работает автономно, обеспечивая, к примеру, только стиральную машину, или только выделенную компьютерную сеть.

После УЗО (7) нулевой проводник ведем к шине (11), к которой будут подключены нулевые проводники розеток (2,3,4), во время утечки тока в одной из групп розеток, сработает УЗО (7). Аналогичная схема УЗО (14), к которой подключены группа розеток (5,6,7). При такой схеме УЗО будет работать корректно.

Если была бы только одна общая нулевая шина, то во время утечки тока в одной группе, могли бы сработать оба УЗО или среагировало бы противопожарное УЗО, что могло бы привести к обесточиванию всего здания. Нулевые проводники освещения через УЗО не проходят и не заводятся под контактные зажимы шин (11,18), их нужно завести под контактные зажимы нулевой общей шины (4).

Читайте следующие статьи про УЗО:

Дополнительные схемы подключения устройства защитного отключения

Например, во Франции для подключения электроустановок используют двух-полюсные узо — такие у них нормы и правила. Как показано на схеме, после узо не требуется устанавливать дополнительные нулевые шины. После автоматов проводники, и фаза и ноль направляются к потребителям.

1 схема подключения узо

Так повелось, что у нас используют одно-полюсные выключатели, поэтому нужны дополнительные нулевые шины.

2 схема подключения узо

Для того чтобы не разводить в щитовой множество нулевых шин очень удобно установить нулевую шину в корпусе (20). В корпусе могут быть встроены от двух до четырех шин изолированных друг от друга.

Все защитные проводники (заземление), выводим под контактную шину РЕ (19) в системе заземления TN-C-S, TN-S, TT.

Читайте также следующую статью про основы УЗО — «Принцип работы УЗО»

Видео-урок «Как подключить устройство защитного отключения»

Оцените качество статьи:

УЗО схема подключения

В предыдущих статьях мы подробно разобрались с вопросами: что такое УЗО, какие типы бывают, как правильно его выбрать, как подключить и т.д. Если Вы еще всего этого не знаете, то в меню справа выбирайте раздел «УЗО и диф. автоматы» и знакомьтесь со всей этой информацией. А если уже все это знаете, то давайте ниже будем разбирать схемы подключения УЗО. Конкретно у каждого случая есть свои особенности и поэтому существует несколько схем подключения УЗО. Ниже я их все зарисовал, сопроводил необходимыми комментариями и выложил для вашего внимания. Вперед…

 УЗО могут использоваться как в однофазных сетях, так и в трехфазных. Они могут стоять на входе и защищать всю квартиру от утечек тока, а могут стоять на отдельной линии и защищать только определенный участок сети. Поэтому у защитных устройств существует много схем подключения. Вам нужно их знать и уметь читать, так как у многих современных бытовых электроприборов в паспорте четко указано подключение их к электросети через определенный тип УЗО. Следуйте этим рекомендациям. Поверьте это не прихоть производителей микроволновок и стиральных машин, а прежде всего ваша безопасность.

Узо схема подключения

Так как их существует много, то приведу всего несколько общих электросхем, которые могут позволить разобраться с подключением УЗО в любой ситуации.

Схема с общим УЗО на входе в однофазной сети.

В этой схеме применяется одно УЗО, которое ставится на входе после 2-хполюсного автоматического выключателя, но перед отходящими автоматами. В этом случае устройство защищает одновременно от утечек тока все отходящие линии. Недостатком выбора такой схемы является сложность в определении линии, где произошла неисправность (утечка тока).

Например, в какой-то момент попала фаза на металлический корпус электроприбора, включенного в какую-то розетку и сразу сработало УЗО (если есть в доме заземление). Обесточилась вся квартира. Что это за электроприбор, в какой розетке произошла авария сразу непонятно. Приходится долго искать место неисправности. Плюсами такой схемы является возможность применения небольшого щитка и ее дешевизна, так как нужно купить только одно защитное устройство.

Схема с общим УЗО на входе с прибором учета электроэнергии в однофазной сети.

Данная схема аналогична предыдущей, но уже с использованием прибора учета электроэнергии.

Схема в однофазной сети с общим УЗО на входе и с групповыми УЗО на отходящих линиях.

В данном варианте схемы помимо входного устройства защитного отключения подключены УЗО на каждой отходящей линии. Тут только необходимо соблюсти селективность, чтобы во время утечки тока не отключались одновременно групповое и общее УЗО. Как подобрать селективное УЗО читайте в статье: как выбрать УЗО. Плюсами данной схемы является, то что при возникновении неисправности отключится только аварийная линия. Остальная часть квартиры будет работать в штатном режиме. Минусами такого варианта являются дороговизна (УЗО недешевая игрушка) и необходимость установки большого распределительного щита, в котором можно это все разместить.

Схема подключения УЗО на отходящих линиях в однофазной сети.

Данный вариант практически аналогичный предыдущему. Отличием является отсутствие общего входного УЗО. Многие считают, что покупка общего УЗО это пустая трата денег, так как каждая линия уже защищена от утечек тока групповым защитным устройством. Тут только принимать решение вам в дополнительных тратах. Кто-то скажет а вдруг групповое УЗО выйдет из строя и тогда вся линия будет не защищена. Конечно может быть и такое. Если так рассуждать, то можно предположить, что может отказать и некачественный автоматический выключатель. Тут не перестрахуешься. Если вы решили поставить только групповые УЗО на отходящие линии, то уже будет очень хорошо. Многие просто экономят и их вообще не ставят.

Схема подключения УЗО в трехфазной сети.

Если вы живете в частном доме, то может ваш дом питаться от трехфазной сети. Ниже представлена схема подключения четырехполюсного УЗО в сети 380В. Также на каждой отходящей линии я нарисовал групповые УЗО. Хотя имеет право на жизнь и схема без них. Все фазы, нули и землю я подписал. Думаю все понятно.

Схема подключения УЗО в трехфазной сети с прибором учета электроэнергии.

Данный вариант практически аналогичен предыдущему, только тут используется еще и счетчик электрической энергии.

Если остались вопросы и что-то не понятно, то задавайте их в комментариях. С удовольствием буду на них отвечать.

Улыбнемся:

— Милый, ну что ты все молчишь и молчишь? Расскажи, о чем думаешь.
— Понимаешь, дорогая. Вот если обмотать Землю и Луну медной проволокой в несколько слоев, то получился бы неплохой генератор переменного тока.
— Опять ты куришь всякую дрянь. Не переменного, а постоянного.

Схема подключения УЗО в однофазной сети с заземлением в частном доме

На чтение 6 мин. Просмотров 13 Опубликовано Обновлено

При эксплуатации действующих электросетей важно побеспокоиться о безопасности обслуживающего персонала и пользующихся их услугами потребителей. Согласно требованиям ПУЭ это касается как однофазных, так и трехфазных цепей, нередко обустраиваемых в частных домах. Чтобы уберечь пользователей от удара током, на потребительской стороне устанавливаются приборы, называемые устройствами защитного отключения (УЗО). При этом важно знать, как подключить УЗО с заземлением в частном доме, не нарушая положений действующих стандартов.

Обобщенный взгляд на защиту

Безопасность оперативного персонала и пользователей электросетей достигается за счет проведения следующих мероприятий:

  • заземление или зануление (соединение с нейтралью) всех металлических частей оборудования;
  • организация повторного заземления путем обустройства отдельного контура;
  • установка в нагрузочных цепях особо опасных комнат (ванных например) устройств отключения типа УЗО.

Последний вариант допускается использовать как в заземленных, так и в незаземленных электрических цепях.

При общем подходе к оценке средств защиты отмечается, что заземлять конструкции необходимо для снижения угрожающего человеку потенциала до безопасного уровня. В отличие от них УЗО обеспечивает защищенность за счет мгновенного отключения сети при достижении токами утечки предельных значений. В технических характеристиках этих устройств данный параметр относится к основным показателям эффективности функционирования.

Что собой представляет УЗО

Характеристики УЗО

В расшифровке аббревиатуры УЗО основной акцент делается на отключении, что указывает на кардинальный характер защитных мер. Чтобы понять, как срабатывает этот прибор в опасной ситуации, следует ознакомиться с его конструкцией. Прибор УЗО состоит из следующих основных частей:

  • дифференциальное устройство, в котором сравниваются втекающий и вытекающий токи;
  • электронная схема, способная реагировать на их дисбаланс;
  • исполнительный модуль, оформленный в виде контактора, отключающего электросеть от потребителя.

Принцип защитного действия УЗО основан на особенностях его конструкции, позволяющих оценивать величину утечек на землю и мгновенно реагировать на них. За счет высокой скорости обрыва соединения с действующей сетью величина тока в нагрузке не успевает достичь критических значений.

Традиционные схемы подключения УЗО

В электрических сетях бытового назначения с установленными в них розетками и осветительными приборами применяются УЗО без заземления, что характерно для системы защиты TN-C. В соответствии с особенностями ее функционирования от станционного оборудования до потребителя проводится линия, в которой предусмотрен только совмещенный проводник PEN. Как правило, разделение его на защитную шину PE (к ней подсоединяется заземляющий контур) и рабочую N в многоквартирных домах не производится.

Классическая схема УЗО без заземления

Схема подключения УЗО без заземления

Обычно устройства УЗО включаются в незаземленные сети бытовых потребителей, электропитание в которых организовано посредством двухпроводной линии. Все что они гарантируют – это ее отключение в случае превышения током утечки допустимого значения (30 мА, например). Такие защитные коммутации, как отключение сетевого питания при перегрузке или коротком замыкании, эти приборы обеспечить не в состоянии. Поэтому схемы подключения УЗО в однофазных сетях предполагают обязательное наличие в них автомата защиты от КЗ и перегруза.

Диапазон токов, на которые рассчитывается автоматический выключатель, подбираются индивидуально для каждой конкретной нагрузочной линии. Совместная работа этих двух приборов гарантирует надежную защиту человека от высоких напряжений в бане, например. Одновременно с этим их применение позволяет уберечь эксплуатируемую в современной квартире бытовую технику от выхода из строя. Довольно часто автоматический выключатель вместе с УЗО заменяют дифавтоматом, который содержит в общем корпусе сразу оба устройства.

Групповая и многоступенчатая защита

При так называемом «групповом» включении УЗО на выделенную линию ставится отдельное устройство с автоматическим выключателем или дифавтомат. В этом случае каждая из подключенных к сети групп нагрузок обслуживается независимо от других, что повышает избирательность защитных функций. В итоге безопасность пользования бытовыми приборами в каждой из комнат заметно возрастает.

Подключение УЗО в разветвленной однофазной двухпроводной системе

Большую защищенность дает ступенчатая схема, при которой группа нагрузок подключается к сети через еще одно аналогичное устройство (оно образует вторую ступень). Использование этих систем позволяет повысить надежность защиты в сравнении с классической. Но из-за сложности исполнения и технической избыточности в быту они применяются крайне редко.

Подключения УЗО в сети с заземлением

Подключение УЗО с заземлением

Типовая схема подключения УЗО в однофазной сети с заземлением строится по тем же правилам, согласно которым оно монтируется сразу за счетчиком энергии. Отличие состоит в наличии в ней отдельной шины, прокладываемой в обход комплекта защитных устройств. При этом надежность срабатывания каждого из устройств заметно повышается за счет значительных по величине утечек по цепи «фаза – корпус оборудования – земля».

Специальных операций для обустройства защиты в этом случае не требуется. При наличии защитного контура в частном доме, например, заземлить действующую электросеть с УЗО не составит труда. Для этого следует сделать расщепление на главной заземляющей шине (ГЗШ), а затем оформить отвод от PE проводника.

Какая схема лучше

Подключение УЗО и вводного автомата

При оценке рассмотренных схем исходят из того, какой уровень безопасности обеспечивает каждая из них. Для решения этого вопроса потребуется сравнить их не только по эффективности защиты, но и по затратам на реализацию. После внимательного изучения можно сделать следующие выводы:

  • При ограниченном числе линейных потребителей применяется простейший комплект приборов, состоящий из одного УЗО и стоящего за ним линейного автомата.
  • В случае разветвленной сети из одно- или трехфазных нагрузок предпочтительнее групповое включение.
  • При высоких требованиях к безопасности допускается применять ступенчатое подключение защитных устройств.

Последний способ оптимален для частного дома.

Перед тем как подключать УЗО без заземления в частных домах, схему его коммутаций следует тщательно изучить. В этом случае самый надежный вариант – использование многоступенчатых систем из нескольких устройств с разными значениями токовых утечек.

Современные дачные постройки отличаются развитой системой электроснабжения с хорошей защищенностью от поражения током благодаря наличию повторного заземления. Поэтому в них применяются упрощенные схемы, предполагающие использование универсальных УЗО на токи утечки до 30 мА (для отдельной защиты водонагревателя, например). Но чаще всего предпочтение отдается типовым дифференциальным устройствам, рассчитанным на соответствующую отсечку по перегрузкам.

К характерным ошибкам относят нарушения в выборе уровня установки УЗО, когда его включают в цепи с неправильно подобранными токами утечки. Чтобы избежать нарушений правил подсоединения подводящих и отводящих проводников, при их коммутации руководствуются схемой на корпусе прибора.

Схема подключения УЗО

Схема подключения УЗО приводится на его корпусе, однако считаю необходимым дать некоторые пояснения.

Сразу скажу — УЗО является аббревиатурой слов устройство защитного отключения. На отдельной странице желающие могут ознакомиться с его назначением и принципом работы. Кроме того, это может пригодиться для дальнейшего понимания материала.

На рисунке 1 представлены:

  1. условное обозначение УЗО, в том виде, который буду использовать в электрических схемах,
  2. внешний вид одного из типов УЗО,
  3. схема УЗО, нанесенная на его корпусе.

Обратите внимание, на корпусе устройства фаза (L) обозначена как 1 и 2. Собственно для подключения, нам на этой схеме нужны только уже упомянутые фазовые провода и «ноль» (N). Все остальное является схемой самого УЗО и, в контексте данного материала, нам не интересно.

Точки подключения электрических цепей к устройству на рисунке обозначены соответствующими буквами, так что куда подключить провода, думаю, ясно.

Теперь про то как правильно подключить УЗО в схему электропроводки.

Очень важно правильно подключить ввод электроэнергии и ее потребителей (розетки, освещение и т.п.). Такое подключение следует производить каждое строго со своей стороны. Электрическая схема, поясняющая это, приведена на рисунке 2 слева.

Справа, пример неправильного подключения. Если посмотреть на корпус УЗО, то, например, вход — две клеммы сверху, выход — снизу.

Следующий момент касается защиты от коротких замыканий (перегрузок). Если устройство защитного отключения имеет встроенный автомат защиты, то больше ничего не надо (рис.3), при его отсутствии следует установить отдельный автомат (схема рисунок 4).

Теперь про то, каких потребителей электроэнергии следует подключать через УЗО. Очень просто — тех, при пользовании которыми существует опасность поражения электрическим током. По большому счету это розетки, а если бытовые приборы подключаются напрямую (например, стиральная машина), то следует установить УЗО в цепи их подключения.

Кроме того, если розетка имеет контакт заземления, который (что само по себе уже неправильно) подключен к нулевому проводу, то УЗО в такой цепи может не работать.

До сих пор здесь рассматривалось подключение однофазного УЗО в однофазную сеть. Несколько слов про другие схемы.

  • подключение 3-х фазного УЗО в трехфазную сеть производится аналогично однофазного с поправкой на количество фаз (рисунок 5),
  • подключить трехфазное УЗО в однофазную цепь можно по схеме рис.6, но это, право, не серьезно.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Как подключить УЗО: схема подключения, инструкция

УЗО – это устройства защитного отключения, которые предназначаются для защиты жизнедеятельности человека в ситуациях, опасных для последнего, а так же для предотвращения пожароопасных ситуаций. УЗО действуют по следующему принципу: постоянно сравнивая ток, что течет к прибору, с током, что из прибора вытекает, распознает утечки из цепи.

При возникновении опасных ситуаций, УЗО прекращает подачу напряжения. Несмотря на схожий с автоматами принцип действия, такие защитные устройства срабатывают при значениях тока, порой в разы меньших по значению, чем требуемые для срабатывания классических и привычных автоматов.

Важным моментом при установке УЗО в помещениях любого типа, является этап подключения, которое необходимо произвести по всем правилам и требованиям для того, чтобы устройство функционировало нормально.

Подключаем УЗО в квартире

Встроить такое устройство в цепь жилого помещения квартир или частных домов – довольно простая процедура, которую часто возможно выполнить своими руками. Процесс установки осуществляется посредством применения особой DIN-рейки. Она может быть как изначально встроенной в щит-распределитель, так и отличаться отдельным размещением.

Указанная составляющая специально оснащается перфорированными отверстиями. Они предназначаются для присоединения к тыльным защелкам автоматов. Клеммы, расположенные сверху и снизу устройства защитного отключения, имеют специальные обозначения: N и L (нуль и фаза).

Проводить подключение рекомендуется по следующей инструкции:

  1. Соединяются водный автомат и силовой кабель, который проходит от внешней сети. Выбрать автомат можно правильно, учитывая показатель максимального электротока и суммарных нагрузок в сети;
  2. Далее подключается счетчик. Он потребуется, чтобы регистрировать энергозатраты, а так же для обеспечения УЗО напряжением;
  3. Теперь подключаем сам защитный механизм. Чтобы сделать это правильно, подсоединяют силовой кабель сверху, а нагрузочный кабель снизу устройства;
  4. Так же необходимо произвести соединение фаз и нулей устройств так: L к L, N к N;
  5. Важно понимать, что фаза «защиты» требует подключения к фазе автомата, а ноль должен быть подсоединен к нейтрали.

Когда описанные шаги выполнены, работы по установке можно считать завершенными.

Подключаем «однофазку»

Когда проводятся работы по подключению однофазного устройства защиты, часто допускаются непозволительные ошибки, которые влияют на работоспособность системы.

Чтобы их не допустить, рекомендуется использование пошагового руководства:

  1. Автовыключатель переводится в режим, когда проводники будут обесточены;
  2. Далее монтируется защитное устройство в электрощит;
  3. К клеммам выхода подключаются проводники «нуль» и «фаза»;
  4. К клемме L присоединяется кабель автовыключателя;
  5. К клемме N подключается кабель нуля, который отсоединен от щита.

Чтобы проверить работоспособность и правильность подключения, необходимо будет активировать кнопку тестирования. Если прибор отключится после нажатия, то УЗО функционирует нормально.

Подключаем УЗО к «двухфазке»

Чтобы подключить устройства защиты к цепи с количеством фаз, равным двум, где нет заземления (а это особенно распространено в зданиях старого фонда), стоит придерживаться пошаговой инструкции:

  1. Провод питания отсоединяется от автовыключателя и проводника «нуль» щита;
  2. Производится установка прибора внутрь щита;
  3. Все, что ранее отключалось, подключается вновь к определенным выходам устройства защитного отключения;
  4. К входу фазы устройства подключается клемма выхода автомата;
  5. К «нулю» УЗО подключается «нуль», который начинается в корпусе электрического щитка;
  6. Подключается автомат.

Подключаем трехфазные устройства защиты

«Трехфазки» имеют 4 полюса, что придает процессу монтажа определенные особенности. Первые шаги подключения трехфазного УЗО схожи с теми, что выполняются для подключения «однофазки». Разница начинается, когда работы доходят до отходящих цепей. С этого момента и начнем рассматривать следующие шаги:

  1. При «трехфазке» потребуется установка дополнительных УЗО на 10 мА на все отходящие участки;
  2. Для этих защитных устройств устанавливаются так же дополнительные автоматы;
  3. Нейтральный кабель подключают к колодке, с неё вывод осуществляется лишь при наличии необходимости;
  4. На любой кабель фазы подключается автомат.

Подключаем устройство защиты по линии фазы

Устройство защитного отключения можно внедрить в сеть путем установки его по линии фазы, которая проводится так:

  1. Разводятся проводники фазы и подключаются к автоматам на 10 А, которые отвечают за освещение;
  2. Фаза подключается к дифференциальному автомату на 20 А;
  3. Следующие контакты соединяются с другим устройством на 30 А;
  4. Проводится подключение последовательно к трем автоматам на 16 А. Они ответственны за группы розеток;
  5. Тот же процесс проводится с 3-им устройством защиты;
  6. В завершение установки проводник выводится к иным автоматам, которые отвечают за группы розеток.

Подключение проводнику нейтрали

Опишем шаги:

  1. Проводится и фиксируется проводник «нуль» на требующейся шине, содержащей, так же, «нуль»;
  2. От этой шины проводник протягивают к следующим устройствам защиты и дифференциальному автомату;
  3. Далее «нуль» подключается к нагрузке;
  4. Со второго устройства проводник с нулем проводится ко второй шине с нулем.

Тот же принцип применяется при подключении шин третьего устройства защитного отключения и требующейся группы розеток.

Важно понять нюансы подключения устройств защиты при наличии заземления и без него.

Нюансы подключения УЗО

Некоторые из мастеров предполагают, что устройство защиты, подключенное без наличия заземления будет неработоспособно. На самом деле, это мнение ошибочно по ряду причин: заземление никак не учитывается УЗО; особенно «рукастые» мастера (от слов не совсем) умудряются организовать заземление таким образом, что оно не функционирует вообще; утечки тока имеют свойство попадать на объекты вне зависимости от наличия заземления.

Итак, вывод очевиден: роль заземления при подключении защитных устройств,грубо говоря, никакая. А значит, ни о каких нюансах, сопряженных с заземлением, при установке УЗО речи быть не может.

Ошибки при подключении защитных устройств

Чтобы разобраться подробнее в теме подключения, потребуется ознакомиться с самыми распространенными ошибками, допускаемыми неопытными или не имеющими соответствующей квалификации людьми. Среди них:

  1. Сплетения или пересечения проводников с нулем. Они недопустимы из-за невозможности дальнейшего тестирования и вероятности появления риска ложных срабатываний;
  2. Подключение розеточной группы к нейтрали, либо допущение контактов нулевых проводов УЗО с контурами заземления, выполненного собственноручно. Такие схемы небезопасны и могут вызвать короткие замыкания;
  3. Контакт заземления и нейтрали. Данная схема опасности не представляет, однако при ней устройство защитного отключения будет работать неправильно, либо не будет работать вообще, так как она, эта схема, нарушит сам принцип срабатывания УЗО. К тому же, появляется вероятность ложного срабатывания и, как следствие, обесточивания домашней электросети.

УЗО – необходимый элемент любо цепи, который позволит избежать опасных для жизни человека и его жизнедеятельности ситуаций. Их применение особенно актуально при нынешнем уровне качества проводок, кабелей и различных проводов не только в жилых помещениях, но и на производствах (особенно крупных) и местах, требующих постоянного освещения и наличия электроэнергии.

Для того, чтобы произвести установку защитного устройства правильно, нужно придерживаться некоторых правил, а так же избегать распространенных ошибок, которые нельзя допускать при монтаже УЗО для обеспечения надлежащей работоспособности последних.

Схема подключения УЗО, её разновидности и особенности

Устройство защитного отключения (УЗО) относится к виду выключающих устройств, в основе работы которого лежит автоматическое отключение электросети или ее части, при достижении или превышении определённой отметки дифференциального тока. Его использование в значительной степени повышает электробезопасность потребителя, а также предотвращает возникновение чрезвычайных происшествий, как в домашних условиях, так и на производстве.
Тем не менее, несмотря на то, что схема включения УЗО на первый взгляд кажется простой, даже малейшие недочёты при подключении могут нанести довольно серьёзный урон. Как не превратить средство защиты в источник неприятностей? Ответ на этот вопрос Вы сможете найти в данной статье.

Что нужно знать об УЗО

Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО, рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:

  • Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
  • Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
  • С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
  • Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.

Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.

 

Устройство УЗО

Обозначение УЗО на однолинейной схеме

Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.

Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.

Обозначение УЗО на однолинейной схеме

Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».

Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.

Это лучший пример того, как подключить УЗО с заземлением. Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.

Но всё это характерно для современной электропроводки, с учётом наличия «земли».

Типовая схема УЗО на примере «квартирной» электросети

Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.

Подключение УЗО без заземления. Схема и особенности

Отсутствие контуров заземления в домах — ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:

  • Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
  • Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
  • Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
  • Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.

Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.

Такое подключение создаёт условия для образования для своеобразной петли, действие которой охватит магнитопровод дифтрансформатора. При этом возникнет нагрузка на эквивалентное сопротивление потребителя (R), осуществимая образованной паразитной обмоткой. Несмотря на всю сложность ситуации, её влияние кажется настолько малым, что ей могут попросту пренебречь. Исключают из рассмотрения и электромагнитное поле установки, которое уже сосредоточено внутри аппарата, и шнур, в котором проходящие вплотную один к другому провода создают Т-волну (своеобразное поле).

Выглядит всё довольно приемлемо и какое-то время работает без нареканий. Но любой пробой корпуса или появление наводок в сети, с большой вероятностью могут направить в паразитную петлю короткий мощный импульс тока. Такое стечение обстоятельств может привести к двум исходам:

  • В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
  • Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».

Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.

Схема подключения УЗО в однофазной сети

Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.

Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.

Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)

Схема подключения УЗО в однофазной сети

Ошибки и их последствия при подключении УЗО

Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:

  • Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник, с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
  • УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
  • Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
  • Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
  • Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
  • Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
  • Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
  • Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

Ошибки при подключении УЗО

Посмотрите видео, где рассказано о подключении УЗО:

Вас могут заинтересовать:

Прямая визуализация зоны узо посредством излучения красителя, вызванного агрегацией, для синтеза высокомонодисперсных полимерных наночастиц

Полимерные наночастицы (НЧ) привлекли значительное внимание для использования в оптоэлектронных устройствах и биомедицинских приложениях. Среди их физико-химических свойств размер НЧ считается одним из наиболее важных параметров. Взяв в качестве примера инкапсуляцию гидрофобных молекул лекарственного средства или красителя в биосовместимые полимеры, метод замещения растворителя (также известный как нанопреципитация) предлагает хороший контроль над процессом смешивания для синтеза наночастиц с размерами от 25 до 300 нм.Однако при нанопреципитации образуются крупные агрегаты, превышающие определенную долю растворителя и концентрацию полимера, что приводит к синтезу высокополидисперсных частиц с неконтролируемыми размерами. Таким образом, для систематического и контролируемого синтеза монодисперсных наночастиц мы построили узо-зоны двух полимеров, PLGA и DSPE-mPEG, новым и простым способом, используя уникальные свойства красителей с эмиссией, вызванной агрегацией (AIE). , которые показывают разную флуоресценцию в разных состояниях.Кроме того, мы разработали новый процесс, улучшенный метод вытеснения растворителя (ESDM), для производства высокомонодисперсных наночастиц со сверхнизкими значениями PDI (от 0,05 до 0,1) и размерами от 25 до 200 нм путем увеличения смешиваемости между антирастворитель и растворитель с предварительным смешиванием растворителя (тетрагидрофурана) с антирастворителем (водой).

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте еще раз?

Выбор растворителя вызывает заметные сдвиги «области Узо» для наночастиц поли (лактид-гликолид), полученных с помощью нанопреципитации

rsc.org/schema/rscart38″> Полимерные наночастицы (НЧ) предлагают разнообразные новые биологические свойства, представляющие интерес для приложений доставки лекарств.«Диаграммы Узо» позволили систематически производить определенные коллоидные составы с помощью широко используемого процесса нанопреципитации. Удивительно, но, несмотря на хорошо задокументированную значимость применяемого органического растворителя для нанопреципитации, его влияние на фактический статус «региона Узо» до сих пор не изучено. Здесь были предприняты исследования для учета потенциального влияния типа растворителя на «диаграммы Узо» для поли (лактид- co -гликолида) (PLGA) и тетрагидрофурана (THF), 1,4-диоксана, ацетона и диметилового эфира. сульфоксид (ДМСО).«Область Узо» значительно сместилась в сторону более высоких фракций полимера при смене растворителя (порядок ранжирования: ТГФ <1,4-диоксан <ацетон <ДМСО). Предполагая однозначное преобразование отделившихся капель растворителя, несущих PLGA (диаметр капель для THF: ∼800 нм, 1,4-диоксана: ∼700 нм, ацетона: ∼500 нм и ДМСО: ∼300 нм) в не- делящиеся полимерные агрегаты при вытеснении растворителя, что позволяет предсказать размер НЧ, обнаруженных в «области Узо» (диапазон размеров: 40–200 нм). В заключение следует отметить, что применение «диаграмм Узо» является ценным инструментом для исследования доставки лекарств и, скорее всего, заменит подход «проб и ошибок» для определения рабочего окна для производства стабильных коллоидных составов методом нанопреципитации.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте еще раз?

Лимончелло и наука об эмульсиях

Как сделать так, чтобы масло и вода оставались смешанными? Интерес ученого к лимонному ликеру показал, как это сделать — с некоторыми многообещающими промышленными применениями.


бутылок Limoncello для продажи на Капри, Италия
Хорхе Роян / Wikimedia Commons, CC BY-SA 3.0

Лимончелло, ароматный итальянский ликер из лимонов, становится все более популярным во всем мире. Этот сладкий и цитрусовый дижестив является культовым элементом итальянской кулинарной культуры, но он также представляет собой сложную коллоидную систему, состоящую из эфирных масел, этанола, сахарозы и воды.

Как итальянский химик, работающий в Институте Лауэ-Ланжевена (ILL) w1 , мне было любопытно узнать, что передовая технология ILL может рассказать об этой сложной системе.Итак, ранее в этом году мы с коллегами подали заявку на получение времени на пучке для проведения небольшого исследования, и оказалось, что лимончелло не только восхитительно, но и обладает некоторыми довольно специфическими научными характеристиками.

Что такое лимончелло?

В традиционном рецепте лимончелло цедру цитрусовых (полученную путем соскабливания внешней части цедры лимона) мацерируют в спирте (этаноле) в течение нескольких недель. Цедра содержит большинство эфирных масел лимонов, что придает ликеру характерный вкус и цвет.Затем этанол и лимонный экстракт смешивают с сахарным сиропом. Лимончелло обычно содержит около 30% спирта и около 20% сахарозы (сахара) по объему, но, поскольку лимончелло часто делается дома, способ приготовления и конечный состав варьируются от семьи к семье.


Рисунок 1: Структура
лимонена

Никола Граф

Эфирные масла, столь важные для вкуса лимончелло, находятся в небольших карманах кожуры цитрусовых, которые лопаются и излучают типичный сильный запах, который мы замечаем при чистке таких фруктов.Эти эфирные масла имеют очень сложный состав: было идентифицировано более 60 различных молекул, основными компонентами которых являются органические молекулы, называемые монотерпенами. В лимонах наиболее распространенным компонентом является лимонен (рис. 1).

Limoncello производится путем смешивания двух растворов: спиртового экстракта, содержащего масла, и водного раствора сахарозы. Каждый из этих исходных решений полностью прозрачен; Однако сам лимончелло «мутный», непрозрачный и непрозрачный.Мутные системы пронизывают повседневную жизнь: другие примеры включают кристаллы льда в облаках, капли жира в молоке и водоросли в пруду. Все эти различные системы содержат частицы или капли размером в сотни нанометров, что сравнимо с длиной волны видимого света. Именно эти «неоднородности» — крошечные количества твердого вещества или жидкости, взвешенные в текучей среде, — придают этим системам мутный вид.

«Эффект узо»

Так откуда взялось помутнение лимончелло? Вода и этанол полностью смешиваются (растворимы друг в друге), как и лимонен и этанол, но лимонен и вода почти не смешиваются.В лимончелло эта комбинация трех жидкостей спонтанно производит «эмульсию»: суспензию крошечных капелек одной жидкости в другой. Однако это происходит только в некоторых определенных диапазонах композиции (см. Текстовое поле).

Это явление самопроизвольного образования эмульсии называется «эффектом узо», по названию известного средиземноморского напитка узо, который сразу же мутнеет при смешивании с водой, образуя эмульсию. Действительно, с научной точки зрения узо очень похож на лимончелло, поскольку он сделан из воды, этанола и ароматического компонента анетола, который, как и лимонен, хорошо растворяется в этаноле, но лишь слабо растворяется в воде.


Эффект узо: средиземноморский напиток узо (в центре) сразу же мутнеет (справа), когда в него добавляют воду (слева).
canbilgic / Shutterstock.com

В отличие от этих систем узо, типичные эмульсии требуют очень больших затрат энергии, таких как встряхивание и перемешивание, необходимые для приготовления эмульсии, которую мы называем майонезом. Еще одно очень важное отличие узо-систем от классических эмульсий — отсутствие каких-либо стабилизаторов.Например, майонез готовят путем эмульгирования растительного масла с водой, содержащейся в яичном желтке. Процесс долгий и утомительный, и он требует значительного количества энергии, обеспечиваемой энергичным встряхиванием и перемешиванием, чтобы заставить две жидкости смешаться с образованием эмульсии. Лецитин и белки, содержащиеся в яичном желтке, также необходимы для стабилизации эмульсии.

Так почему же системы узо важны вне кухни? В эмульсиях происходят некоторые важные промышленные процессы — например, полимеризация, когда небольшие молекулы (мономеры) объединяются с образованием больших макромолекул или полимеров.Здесь часто создаются эмульсии, чтобы максимально приблизить реагенты, чтобы реакция могла протекать быстро. Если такие эмульсии образуются спонтанно (как в лимончелло), требуя очень мало энергии, если таковая имеется, это, очевидно, делает процесс более эффективным и устойчивым. Кроме того, полимерный продукт необходимо извлекать из реакционной среды в конце реакции, что часто является наиболее сложной стадией всего процесса. Однако, если система не содержит стабилизаторов, экстракция полимера и катализаторов намного проще, поскольку компоненты могут легко разделиться, как только эмульсионная композиция больше не существует.Еще одно широко используемое применение эмульсий — пестициды, чтобы эти нерастворимые в воде продукты можно было разбавить и разложить по полям. Использование эмульсии узо-типа также позволит избежать распространения ненужных поверхностно-активных веществ, которые часто вредны для окружающей среды.

Лимончелло на микроуровне


Инструмент SANS D11 в ILL, который был
использовался для исследования лимончелло

A Chezière / ILL

Как уже упоминалось, то, как лимончелло рассеивает свет, весьма красноречиво свидетельствует о структуре жидкости на микроскопическом уровне.Использование излучения с более короткой длиной волны, рентгеновских лучей или нейтронных пучков позволяет нам более подробно рассмотреть структуры и взаимодействия внутри этой жидкости, и в еще меньшем масштабе.

Мы надеялись использовать оборудование для рассеяния нейтронов в ILL, чтобы узнать, что они могут рассказать нам о лимончелло — и, к счастью, нам было выделено время на канале малоуглового рассеяния нейтронов (SANS). Целью нашего исследования было выяснить, откуда берется необычайная стабильность лимончелло. С этой целью мы исследовали ликер в различных условиях: при добавлении воды к спиртовому экстракту; при разных температурах; и при разных концентрациях сахарозы (Chiappisi & Grillo, 2018).Нейтроны чувствительны к изотопному составу системы и очень по-разному взаимодействуют с двумя стабильными изотопами водорода: протием, 1 H (нормальный водород), и гораздо более редким дейтерием, 2 H. эфирное масло было извлечено из лимона, купленного на местном рынке (таким образом, содержащего в основном ядра протия), в то время как этанол и вода были сильно обогащены ядрами дейтерия, как контраст.

Анализ показал, что в лимончелло размер богатых маслом доменов всегда составляет около 100 нанометров в диаметре, независимо от содержания воды, сахара или температуры.Эти результаты удивительны: типичный размер богатых нефтью доменов в узо-системах обычно намного больше, в несколько сотен или даже тысяч нанометров (Grillo, 2003). Кроме того, их размер обычно очень чувствителен к составу или температуре системы — в отличие от лимончелло.

Это делает лимончелло очень интересной с научной точки зрения жидкостью. Небольшой размер капель масла, по-видимому, обеспечивает его исключительную стабильность по отношению к изменениям температуры и состава, а также во времени.На самом деле лимончелло можно хранить в бутылке годами: неплохо для метастабильной системы! Напротив, такие напитки, как пастис или узо, имеют тенденцию к разделению фаз в течение нескольких часов после приготовления (поэтому пастис всегда разбавляют водой в стакане непосредственно перед употреблением).

Итак, хотя мы еще не до конца понимаем, почему лимончелло ведет себя так иначе, чем другие напитки типа узо, теперь мы лучше понимаем науку о самоэмульгирующихся системах и о том, как их разработать для использования в будущих продуктах и ​​процессах.

Фазовые диаграммы и стабильность лимончелло

Фазовые диаграммы — удобный способ представить изменяющиеся физические состояния систем из двух или более компонентов в различных условиях. Распространенный тип фазовой диаграммы показывает, как одно вещество (например, вода) будет менять свое состояние между твердым, жидким и газообразным при различных комбинациях температуры и давления (рис. 2).


Рис. 2: Диаграмма, показывающая фазы воды (лед, вода, пар) при различных комбинациях температуры и давления.Три фазы могут сосуществовать только в тройной точке.
Никола Граф / Леонардо Чиаписи

В таких системах, как лимончелло, который сам состоит из трех компонентов (воды, этанола и эфирного масла), фазовые диаграммы позволяют нам представить возможные составы внутри системы и физические характеристики (такие как растворимость и стабильность), связанные с каждым из них. сочинение. Типичная тройная фазовая диаграмма показана на рисунке 3. Здесь каждый из чистых компонентов представлен вершиной главного треугольника, где прилегающие шкалы показывают 100% и 0% для двух различных компонентов.


Рисунок 3: Трехкомпонентная фазовая диаграмма
, представляющая узо-систему

Никола Граф / Леонардо Чиаппизи

Как показано в примере, состав точки на фазовой диаграмме можно определить, нарисовав три линии, начинающиеся от точки и заканчивающиеся на каждой оси (обратите внимание на треугольную сетку, используемую для рисования линий). В этом случае образец, обозначенный красной точкой P, будет иметь состав из 20% воды, 70% этанола и 10% эфирного масла (мас. / Мас.).

Из этой фазовой диаграммы мы можем видеть, что вода и этанол полностью смешиваются, как этанол и эфирное масло. Однако растворимость эфирного масла в воде составляет всего 5% мас. / Мас., А растворимость воды в эфирном масле составляет менее 10%. На диаграмме также показана область, в которой компоненты разделяются по крайней мере на две фазы и не смешиваются (область разделения фаз). Небольшая «метастабильная область узо» — это то место, где композиция обеспечивает спонтанное образование эмульсии, как в системах узо.В конечном итоге в этой области произойдет разделение фаз, но временной масштаб может быть очень большим, поскольку для преодоления метастабильного состояния требуется энергия.

Приготовление наночастиц путем вытеснения растворителя для доставки лекарств: сдвиг в «области узо» при загрузке лекарственного средства

Abstract

Поскольку биоразлагаемые наночастицы вызывают растущий интерес для приложений доставки лекарств, была проведена серия исследований, чтобы понять механизм формирования наночастиц, нагруженных лекарственным средством, с использованием метода вытеснения растворителя. Хотя в предыдущих объяснениях конвекция Марангони упоминалась как движущая сила для нанопреципитации, недавние публикации, описывающие так называемый «эффект узо», вызвали настоящие исследования с использованием нового отрицательно заряженного полимера, поли (винилсульфонат- co -виниловый спирт) —. трансплантат -поли (d, l-лактид- co -гликолид) (P (VS-VA) -g-PLGA) и положительно заряженное модельное лекарственное средство, сальбутамол. Межфазное натяжение не влияло на формирование наночастиц, как можно было бы ожидать, если бы оно регулировалось конвекцией Марангони, но тройные фазовые диаграммы очертили так называемые «узо-области», определяющие концентрации полимера и растворителя, ведущие к стабильным суспензиям наночастиц как для этого нового полимера, так и для немодифицированного полимера. (d, l-лактид- co -гликолид) (PLGA).Были проанализированы физико-химические свойства, морфология и лекарственная нагрузка наночастиц, и стабильные наночастицы P (VS-VA) -g-PLGA с сальбутамолом и без него имели размер 59–191 нм. Границы фазовой диаграммы «узо-область» значительно смещались при загрузке лекарственного средства, что можно объяснить повышенной растворимостью комплекса полимер – лекарство. Такое поведение потребовало существенной корректировки концентраций полимера, необходимых для получения наночастиц, содержащих лекарство, с характеристиками, сопоставимыми с холостыми наночастицами.В заключение, использование «диаграмм узо» является полезным инструментом для производства наночастиц с заданными физико-химическими свойствами методом замещения растворителя.

Ключевые слова

Наночастицы

Вытеснение растворителя

«эффект узо»

Биоразлагаемые полиэфиры

Сальбутамол

Легочная доставка лекарств

Рекомендуемые статьи Цитирующие статьи (0)

Все права защищены.

Рекомендуемые статьи

Ссылки на статьи

Заменители алкоголя — Практические советы

Заменители спирта для приготовления пищи
Тип спирта Заменитель
Амаретто Экстракт миндаля (1/2 чайной ложки экстракта на 2 столовые ложки Амаретто) или итальянский содовый сироп.
Анисетт Анис Итальянский содовый сироп или фенхель.
Яблочный бренди Яблочный сок, несладкий концентрат яблочного сока, яблочный сидр или яблочное масло.
Абрикосовый бренди Сироп из банки абрикосов в густом сиропе или абрикосовых консервов.
Пиво или эль Крепкий куриный, говяжий или грибной бульон или безалкогольное пиво.
Пиво или эль (светлое) Куриный бульон, сок белого винограда или имбирный эль.
Бурбон От 1 1/2 до 2 чайных ложек ванильного экстракта.
Бренди От 1/2 до 1 чайной ложки бренди или экстракта рома на 2 столовые ложки бренди.Когда количество жидкости имеет решающее значение для рецепта, используйте воду или фруктовые соки, соответствующие вкусу бренди (используйте то же количество жидкости, которое указано в рецепте для бренди),
Кальвадос Яблочный сок, несладкий концентрат яблочного сока, яблочный сидр или яблочное масло.
Шамбор Малиновый сок, сироп или экстракт.
Шампанское Имбирный эль, игристый яблочный сидр, игристый клюквенный сок или игристый сок белого винограда.
Вишневый ликер или вишневый бренди Сироп из банки вишни в густом сиропе, вишневой итальянской содовой Сирии или вишневого варенья.
бордовый безалкогольное вино, разбавленный виноградный сок или сироп вишневого сидра.
Кофейный ликер Чтобы заменить 2 столовые ложки ликера, используйте от 1/2 до 1 чайной ложки шоколадного экстракта, смешанного с 1 чайной ложкой растворимого кофе, смешанного с 2 столовыми ложками воды.Может также заменить эспрессо, безалкогольный кофейный экстракт или кофейный сироп.
Коньяк Абрикосовый, персиковый или грушевый сок.
Куантро Чтобы заменить 2 столовые ложки ликера, используйте 2 столовые ложки концентрата апельсинового сока или 2 столовые ложки апельсинового сока с 1/2 чайной ложкой апельсинового экстракта.
Крем де какао Сухой белый шоколад в сочетании с водой или безалкогольным ванильным экстрактом и сахарной пудрой.
Crème de cassis Черная смородина Итальянский содовый сироп или варенье из черной смородины.
Crème de menthe безалкогольный экстракт мяты, итальянский содовый сироп мяты, экстракт мяты курчавой или масло мяты курчавой с небольшим добавлением воды. Если нужен зеленый цвет, добавьте каплю зеленого пищевого красителя.
Кюрасао Чтобы заменить 2 столовые ложки ликера, используйте 2 столовые ложки концентрата апельсинового сока или 2 столовые ложки апельсинового сока с 1/2 чайной ложкой апельсинового экстракта.
Фрамбуаз Малиновый сок или малиновый сироп.
Frangelico Экстракт фундука или миндаля.
Гальяно Экстракт солодки.
Gewurztraminer Белый виноградный сок в сочетании с лимонным соком.
Гран Марнье Чтобы заменить 2 столовые ложки ликера, используйте 2 столовые ложки концентрата апельсинового сока или 2 столовые ложки апельсинового сока с 1/2 чайной ложкой апельсинового экстракта.
Граппа Виноградный сок.
Гренадин безалкогольный гренадин или гранатовый сироп.
Крепкий сидр Яблочный сок или яблочный сидр.
Кирш Вишневый сидр или черная вишня, малина, бойзеновая ягода, смородина или виноградный сок или сироп. Замените такое же количество жидкости, как указано в рецепте.
Ликер из солодки или аниса Анис Итальянский содовый сироп или фенхель.
Мирин Белый виноградный сок в сочетании с лимонным соком или цедрой лимона.
Маскат Белый виноградный сок в сочетании с сахарной пудрой.
Узо Анис Итальянский содовый сироп или фенхель.
Апельсиновый ликер Концентрат апельсинового сока, апельсиновый сок, цедра апельсина или апельсиновый мармелад.
Персиковый бренди Сироп из банки персиков в густом сиропе или персиковых консервов.
Мятный шнапс безалкогольный экстракт мяты или мяты перечной, мятный итальянский содовый сироп или листья мяты.
Порт Виноградный сок Конкорд с добавлением цедры лайма, клюквенный сок с добавлением лимонного сока или концентрат виноградного сока. Замените апельсиновый или яблочный сок более легкими портами.
Красный бордовый Красный винный уксус, виноградный сок или безалкогольное вино.
Красное вино, сладкое или сухое безалкогольное вино с добавлением столовой ложки уксуса для уменьшения сладости, виноградного сока, клюквенного сока, виноградного желе, томатного сока, говяжьего бульона, слитой из овощей жидкости или воды. Используйте равное количество жидкости, как указано в рецепте.
Рислинг Белый виноградный сок с добавлением щепотки сахарной пудры.
Ром Сок белого винограда, ананасовый или яблочный сок в равных количествах жидкости, как указано в рецепте. Можно также использовать эти соки с добавлением от 1/2 до 1 чайной ложки безалкогольного рома, миндаля или экстракта ванили.
Саке Рисовый уксус.
Самбука Анис Итальянский содовый сироп или фенхель.
Шнапс Чтобы заменить 2 столовые ложки шнапса, добавьте 1 чайную ложку соответствующего ароматизированного экстракта.
Шерри Яблочный сок, апельсиновый сок, ананасовый сок или безалкогольный ванильный экстракт.
Южный Комфорт Нектар со вкусом персика в сочетании с небольшим количеством яблочного уксуса.
Игристое вино Имбирный эль, игристый яблочный сидр, игристый клюквенный сок или игристый сок белого винограда.
Текила Кактусовый сок или нектар.
Triple Sec Концентрат апельсинового сока, апельсиновый сок, цедра апельсина или апельсиновый мармелад.
Вермут сухой Белый виноградный сок, белый винный уксус или белое безалкогольное вино.
Вермут сладкий Яблочный сок, виноградный сок, бальзамический уксус, безалкогольное сладкое вино или вода с лимонным соком.
Виски Если требуется небольшая сумма, ее можно исключить.
Водка Белый виноградный сок или яблочный сидр в сочетании с соком лайма или используйте простую воду вместо водки.
Пикантный Тимьян, майоран или шалфей
Белый бордовый Вино безалкогольное, сок белого винограда в сочетании с белым винным уксусом.
Белое вино, сладкое или сухое безалкогольное вино с добавлением столовой ложки уксуса для уменьшения сладости, белого виноградного сока, яблочного сока, яблочного сидра, томатного сока, куриного бульона, слитой из овощей жидкости, имбирного эля или воды. Используйте равное количество жидкости, как указано в рецепте.

Биолого-спиртовой эталонный напиток

0,05 и эталонный напиток

Ваш BAC (концентрация алкоголя в крови) является мерой количества алкоголя в вашей крови. Измерение — это количество граммов алкоголя в 100 миллилитрах крови.

Например, BAC 0,05 означает 0,05 грамма или 50 миллиграммов алкоголя на каждые 100 миллилитров крови.

При BAC 0,05 навыки вождения ухудшаются.

Стандартный напиток — это напиток, содержащий 10,0 г алкоголя (этанола). Сейчас не всегда легко рассчитать объем алкогольного напитка, в котором содержится 10,0 грамма этанола.

Обратите внимание на пиво разной крепости, показанное справа. Употребление 425-миллилитрового стакана крепкого пива эквивалентно выпивке 1.6 стандартных напитков. Однако потребление такого же объема пива низкой крепости составляет чуть меньше одного стандартного напитка.

На диаграмме справа сравниваются разные вина.

Расчет количества алкогольных напитков, эквивалентных одному стандартному напитку, не всегда возможно на вечеринке.Однако вы должны иметь возможность визуально оценить, что вы пьете.

Рассчитайте объем вина с содержанием алкоголя 13% об. / Об., Который эквивалентен одному стандартному напитку, учитывая, что плотность этанола составляет 0,8 г / мл.

Решение дано справа.

Налейте это количество жидкости в стакан и визуально сравните количество необходимого вина.

Ouzo имеет концентрацию спирта 46% об. / Об.Какой объем узо в миллилитрах соответствует одному стандартному напитку? 2717750
Концентрация спирта в конкретном столовом вине составляет 8,5% об. / Об. Какой объем вина в миллилитрах соответствует одному стандартному напитку? 22117014750
Концентрация спирта в конкретном порте составляет 22% об. / Об. Какой объем портвейна в миллилитрах соответствует одному стандартному напитку? 805727150
Что такое BAC?
Что такое стандартный напиток?

Индуцированный температурой обратимый фазовый переход в микроэмульсии без ПАВ., Ленгмюр

Индуцированный температурой обратимый фазовый переход в микроэмульсии без ПАВ.
Langmuir ( ЕСЛИ 3. 557 ) Дата публикации: 2019-10-22 , DOI: 10.1021 / acs.langmuir.9b02842 Юнминь Чжан, Сюэлянь Чен, Сюэфэн Лю

Микроэмульсия представляет собой важный класс коллоидной системы, хотя разработка микроэмульсии, реагирующей на раздражители, все еще находится в зачаточном состоянии. Здесь мы впервые продемонстрировали температурную чувствительность обычной микроэмульсии без поверхностно-активного вещества, состоящей из н-октанола в качестве неполярной фазы, этанола в качестве амфорастворителя и воды в качестве полярной фазы. В однофазной области фазовой диаграммы зона предузо была подтверждена динамическим светорассеянием (DLS), а тип микроэмульсии был подтвержден методами зонда проводимости и полярности. Влияние температуры на фазовое поведение и размер капель микроэмульсии н-октанол-вода-этанол систематически оценивали с помощью трехкомпонентной фазовой диаграммы и методов DLS.Результаты показали, что площадь однофазности увеличивается с увеличением температуры, но площадь предузо зоны уменьшается, что сопровождается уменьшением размера капель. Более того, с повышением температуры критическая точка постепенно приближается к углу н-октанола. Когда один состав находится далеко от границы расслоения, размер капель можно обратимо и точно регулировать путем изменения температуры. Когда один состав расположен вблизи границы, незначительное изменение температуры может привести к заметному фазовому переходу между Winsor IV (высокая температура) и Winsor II (низкая температура).Такая чувствительная к температуре микроэмульсия может использоваться в качестве микрореактора для конденсации Кневенагеля. Реакцию проводили при 35 ° C, и продукт собирали из водной фазы простой фильтрацией при 25 ° C.

更新 日期 : 2019-10-23 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *