Турбины паровые – Паровая турбина

Содержание

Паровые турбины

Паровые турбины — принцип работы

Паровые турбины работают следующим образом: пар, образующийся в паровом котле, под высоким давлением, поступает на лопатки турбины. Турбина совершает обороты и вырабатывает механическую энергию, используемую генератором. Генератор производит электричество.

Электрическая мощность паровых турбин зависит от перепада давления пара на входе и выходе установки. Мощность паровых турбин единичной установки достигает 1000 МВт.

В зависимости от характера теплового процесса паровые турбины подразделяются на три группы: конденсационные, теплофикационные и турбины специального назначения. По типу ступеней турбин они классифицируются как активные и реактивные.

Конденсационные паровые турбины

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум (отсюда возникло наименование). Конденсационные турбины бывают стационарными и транспортными.

Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций — электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Частота вращения ротора стационарного турбогенератора связана с частотой электрического тока 50 Герц. То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока вырабатываемой энергии является одним из главных показателей качества отпускаемой электроэнергии. Современные технологии позволяют поддерживать частоту вращения с точностью до трёх оборотов. Резкое падение электрической частоты влечёт за собой отключение от сети и аварийный останов энергоблока, в котором наблюдается подобный сбой.

В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых — возможность быстрого пуска и включения в работу, от турбин собственных нужд — особая надёжность в работе. Все паровые турбины для электростанций рассчитываются на 100 тыс. ч работы (до капитального ремонта).

 

Схема работы конденсационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) попадает на рабочие лопатки паровой турбины (3). При расширении, кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу (4) с электрическим генератором (5). Отработанный пар из турбины направляется в конденсатор (6), в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой (7) пруда-охладителя, градирни или водохранилища по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть полученной энергии используется для генерации электрического тока.

Теплофикационные паровые турбины

Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Но основной конечный продукт таких турбин — тепло. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). К теплофикационным паровым турбинам относятся турбины с противодавлением, с регулируемым отбором пара, а также с отбором и противодавлением.

У турбин с противодавлением весь отработавший пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.

В турбинах с регулируемым отбором часть пара отводится из 1 или 2 промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования. Место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара.

У турбин с отбором и противодавлением часть пара отводится из 1 или 2 промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.

Схема работы теплофикационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) направляется на рабочие лопатки цилиндра высокого давления (ЦВД) паровой турбины (3). При расширении, кинетическая энергия пара преобразуется в механическую энергию вращения ротора турбины, который соединен с валом (4) электрического генератора (5). В процессе расширения пара из цилиндров среднего давления производятся теплофикационные отборы, и из них пар направляется в подогреватели (6) сетевой воды (7). Отработанный пар из последней ступени попадает в конденсатор, где и происходит его конденсация, а затем по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть тепла, полученного в котле используется для подогрева сетевой воды.

Паровые турбины специального назначения

Паровые турбины специального назначения обычно работают на технологическом тепле металлургических, машиностроительных, и химических предприятий. К ним относятся турбины мятого (дросселированного) пара, турбины двух давлений и предвключённые (форшальт).

  • Турбины мятого пара используют отработавший пар поршневых машин, паровых молотов и прессов, имеющих давление немного выше атмосферного.
  • Турбины двух давлений работают как на свежем, так и на отработавшем паре паровых механизмов, подводимом в одну из промежуточных ступеней.
  • Предвключённые турбины представляют собой агрегаты с высоким начальным давлением и высоким противодавлением; весь отработавший пар этих турбин направляют в другие с более низким начальным давлением пара. Необходимость в предвключённых турбинах возникает при модернизации электростанций, связанной с установкой паровых котлов более высокого давления, на которое не рассчитаны ранее установленные на электростанции турбоагрегаты.
  • Также к турбинам специального назначения относятся и приводные турбины различных агрегатов, требующих высокой мощности привода. Например, питательные насосы мощных энергоблоков электростанций, нагнетатели и компрессоры газокомпрессорных станций и т. д.

Обычно стационарные паровые турбины имеют нерегулируемые отборы пара из ступеней давления для регенеративного подогрева питательной воды. Паровые турбины специального назначения не строят сериями, как конденсационные и теплофикационные, а в большинстве случаев изготовляют по отдельным заказам.

Паровые турбины — преимущества

  • работа паровых турбин возможна на различных видах топлива: газообразное, жидкое, твердое
  • высокая единичная мощность
  • свободный выбор теплоносителя
  • широкий диапазон мощностей
  • внушительный ресурс паровых турбин

Паровые турбины — недостатки

  • высокая инерционность паровых установок (долгое время пуска и останова)
  • дороговизна паровых турбин
  • низкий объем производимого электричества, в соотношении с объемом тепловой энергии
  • дорогостоящий ремонт паровых турбин
  • снижение экологических показателей, в случае использования тяжелых мазутов и твердого топлива

manbw.ru

Типы паровых турбин и их назначение

Паровая турбина — это механизм, осуществляющий переработку тепловой энергии, полученной от пара, в энергию вращения

Турбины работают при наличии в них нагретого пара, который является источником энергии. Поступает такой пар в турбины из специального котла. Температура пара, поступившего в турбину, может различаться. Но основные показатели находятся в пределах 490-580 градусов Цельсия. Давление также отличается. Основные его показатели — 90 атмосфер, 140 атмосфер, 230 атмосфер.

Классифицируются паровые турбины следующим образом: противодавленческие, теплофикационные с отбором пара на производство, конденсационные, теплофикационные.

Все эти турбины отличаются количеством пара, использованного в работе и количеством пара, не участвовавшего в производстdе, а использующийся для других нужд.

Конденсационные турбины

Является самым распространенным в производстве типом паровых турбин. Обычно, с такой турбиной в комплекте идет конденсатор-устройство, предназначенной для сбора использованного пара. Абсолютно весь отработавший пар поступает в конденсатор.

Основной задачей конденсационных паровых турбин является выработка электричества. Соответственно, подобного типа турбины используются на электростанциях. На ТЭЦ также можно поставить, но обычно они там не используются. Пар из котла поступает в турбину и совершает работу, необходимую для получения электроэнергии. Возможность получения тепловой энергии с таких турбин присутствует, но обычно не используется.

В Советское время производством таких труб занимался Ленинградский металлический завод. Сейчас же это ОАО «Силовые машины».

Теплофикационные турбины

Представляют собой турбины типа «Т». Широко используются на тепловых электростанциях, так как с их помощью имеется возможность вырабатывать не только электричество но и тепловую энергию.

Турбина способна отбирать пар с помощью поворотной диафрагмы. Данный процесс является контролируемым. Отобранный пар затем поступает в определенные обогреватели, с которых энергия тепла уже передается воде.

В летнее время теплофикационные турбины способны работать в конденсационном режиме. В данном случае пар до сетевых подогревателей не доходит, а в полном объеме используется для выработки электричества.

Производством теплофикационных турбин занимается Уральский турбинный завод.

Теплофикационные турбины с промышленным отбором пара

Турбины с маркировкой «ПТ»

Название данных турбин дает понять, что определенная часть пара в процессе производства энергии уходит на промышленные нужды( к примеру для работы самого завода и т.п). После пар возвращается в виде жидкости, то есть конденсата, либо же полностью испаряется.

На данный момент теплофикационные турбины на производстве практически не используются, за редким исключением. В СССР они пользовались популярность для установки на тепловые электростанции недалеко от промышленных предприятий, заводов и т.д.

Противодавленческие турбины

Маркирова противодавленческих турбин «P».

Особенность противодавленческих турбин является отсутствия конденсатора, куда бы поступал использованный пар. Поэтому последний в свою очередь поступает на использование стороннему потребителю, что немного схоже с теплофикационными турбинами промышленного типа.

На данный момент противодавленческие турбины также как и турбины с маркировкой «ПТ» не используются в производстве, если не брать во внимание отдельные случаи. В Советское время данная модель еще находила себе применение, но после распада союза надобность в таких типах турбин отпала, так как возникла проблема в нахождении внешнего потребителя. При отсутствии последнего невозможно использование противодавленческих турбин для осуществления выработки энергии, соответственно они пришли в ненадобность.

Но затем инженеры нашли отличное решение для усовершенствования противодавленческих турбин. В придачу к ним устанавливались турбины с маркировкой «К», то есть конденсационные, рассчитанные на работу с паром, имеющим низкое давление. Как известно, турбинам типа «Р» необходимо наличие стороннего потребителя, что решается с помощью конденсационных турбин. После того как пар отработал в противодавленческих турбинах, он поступает в турбины типа К, где уже окончательно завершает свою работу и переходит в конденсат.

uralenergomash.ru

Турбины. Паровые турбины

Одним из важнейших этапов в проектировании объектов промышленности является детальный расчет оборудования. Данный процесс отличается высокой трудоемкостью и требует проведения значительного количества вычислений. Также для проведения правильного расчета необходимо использовать справочные данные и данные, которые были получены опытным путем при проведении экспериментов. В ходе расчета выясняются и уточняются все параметры, необходимые для осуществления технологического процесса.

Задача расчета состоит в правильном определении оптимального варианта турбинного агрегата, который соответствует технологическим параметрам процесса и обладает наибольшей экономичностью. Расчет турбины ведется на основании заданных условий пара на входе и выходе из нее.

При расчете турбин наиболее важную позицию занимает тепловой расчет, в ходе которого определяются такие параметры как: общий теплоперепад, расход пара, КПД, мощность установки и т.д. Тепловой расчет начинают с построения процесса расширения пара на I-S диаграмме (диаграмма состояния воды и водяного пара) для определения начальных и конечных параметров процесса. С помощью полученных графическим методом данных производят вычисление эффективности, экономичности и конструктивных показателей турбины.

Для понимания принципов расчета паровых турбин ниже будут приведены основные расчетные зависимости для наиболее простого варианта турбины – одноступенчатой активного действия. В турбине данного типа пар единожды будет подвержен адиабатическому расширению. Зная теплосодержание (энтальпию) пара на входе в турбину и теплосодержание пара после прохождения сопел, найдем общий теплоперепад:

Hоб = i0 — iр

где:

Hоб – общий теплоперепад, кДж/кг
i0 – энтальпия пара на входе в турбину, кДж/кг
iр – энтальпия пара посте адиабатического расширения в соплах, кДж/кг

Далее, если известен расход этого пара, то становится возможным нахождение мощности турбины. Однако важно отметить, что это полная мощность, в которой не учитываются потери:

Nт = (G·Hоб)/3600

где:

Nт – общая мощность турбины, кВт
Hоб – общий теплоперепад, кДж/кг
G – расход пара, кг/час

Поскольку процесс совершения работы на лопатках совершается не в полном объеме, как и не происходит полной передачи энергии к вращающемуся валу, то эффективная мощность турбины оказывается меньше её полного значения:

Nэф

= (G·Hоб)/3600·ηот

где:

Nэф – эффективная мощность турбины, кВт
Hоб – общий теплоперепад, кДж/кг
G – расход пара, кг/час
ηот – относительный эффективный КПД турбины

Если паровая турбина используется для выработки электрической энергии, то вводится характеристика – электрическая мощность, отражающая количество работы, идущей непосредственно на выработку электроэнергии. Она связана с эффективной мощностью через следующее уравнение:

Nэл = Nэф·ηэг·ηр

Где:

Nэл – электрическая мощность на клеммах генератора, кВт
Nэф – эффективная мощность турбины, кВт
ηэг –КПД электрогенератора
ηр –КПД понижающего редуктора (ηрберется равным 1 если вал турбины напрямую соединен с валом генератора)

Если из уравнения для эффективной мощности турбины N

эф выразить переменную расхода пара G, то получится расчетная формула для рассмотренной величины. С помощью данной формулы можно оценивать необходимый расчет пара для обеспечения выработки предварительно заданной мощности.

G = (Nэф·3600)/(ηт·Hоб)

Если проделать операцию, аналогичную описанной выше, то получится уравнение, с помощью которого становится возможной оценка необходимого количества пара уже для создания предварительно заданной мощности на клеммах электрогенератора:

G = (Nэф·3600)/(Hоб·ηот·ηэг·ηр)

Важным параметром в турбине является угол наклона лопатки к плоскости вращения диска, несущего эти лопатки. Эта величина находится в зависимости от окружной скорости лопаток и скорости потока пара, падающего на лопатки, и выражается следующим уравнением:

u/c = cos(⁡α)/2

где:

u – окружная скорость лопаток, м/с
c – скорость потока пара, м/с

α – угол наклона лопаток а оси несущего их диска

Максимальное использование энергии пара было бы при угле α=0, но добиться такого значения практически невозможно, поэтому данный параметр обычно берут из промежутка от 12 до 220, что соответствует значениям скоростей u/c из промежутка от 0,465 до 0,49.

В одноступенчатой турбине скорость потока пара, падающего на лопатки, совпадает со скоростью истечения пара из входных сопел, которая может быть рассчитана по формуле:

Сис = 44,75·φ·√[(H0 + (с²вх)/2003)]

где:

Cис – скорость истечения пара из сопла, м/с
φ – скоростной коэффициент, учитывающий потери (берется из промежутка от 0,93 до 0,98 в зависимости от степени обработки сопел)
H0 – адиабатический теплоперепад на сопле, кДж/кг
Свх – скорость входа пара в сопло, м/с

Зная окружную скорость лопаток, можно определить число оборотов ротора турбины:

n = (60·u) / (π·d)

где:

n – скорость вращения ротора, об/мин
u – окружная скорость лопаток, м/с
d – средний диаметр венца лопаток, м

Для наглядности приведем решения несложных задач:

Задача 1

Одноступенчатая турбина активного действия соединена с электрогенератором через понижающий редуктор. В турбину продается пар с температурой t0=280°C под давлением P0=1,6 МПа. Противодавление турбины составляет Pпр=0,12 МПа. Электрогенератор развивает на клеммах мощность Nэ=90 кВт. Необходимо рассчитать требуемый расход пара. КПД турбины принять равным ηт=0,7, КПД редуктора — ηр=0,95, КПД генератора — ηг=0,94.

Решение:

Воспользуемся диаграммой состояния воды и водяного пара и определим энтальпию пара на входе в турбину. Энтальпия пара при t0=280°C0 и P

0=1,6 МПа приблизительно равна:

i0 = 2990 кДж/кг

Поскольку пар подвергается адиабатическому расширению только в сопле, а на лопатках активной турбины изменения давления не происходит, то противодавление турбины можно принять равным давлению пара после прохождения сопел. Исходя из этого, вновь воспользуемся диаграммой состояния воды и водяного пара и определим его теплосодержание после адиабатического расширения:

i1 = 2420 кДж/кг

Далее мы можем найти общий теплоперепад на турбине:

H0 = i0 — i1 = 2990 — 2420 = 570 кДж/кг

Теперь можно воспользоваться формулой связи расхода пара и мощности на клеммах электрогенератора и найти искомую величину:

G = (Nэ·3600) / (H0·ηт·ηр·ηг) = (90·3600) / (570·0,7·0,95·0,94) = 909,33 кг/час

Также можно определить удельный расход пара на выработку одного кВт мощности:

Gу = G / Nэ = 909,33 / 90 = 10,1 кг/(кВт·час)

Задача 2

Основываясь на данных предыдущей задачи, определить скорость вращения вала турбины и необходимое передаточное отношение редуктора, связывающего турбину и двухполюсной электрогенератор. Средний диаметр венца лопаток составляет d=0,7 м. Угол наклона сопла α=200. Скоростной коэффициент принять равным φ=0,96.

Решение:

Определим оптимальное соотношение окружной скорости лопаток и скорости потока пара по формуле:

u/c = cos(⁡α)/2 = cos(⁡20)/2 = 0,47

Перед тем как найти окружную скорость лопаток, необходимо рассчитать действительную скорость пара на выходе из сопел. Для этого воспользуемся формулой (входной скоростью пара на сопла пренебрегаем и полагаем ее равной 0), взяв из прошлой задачи значение H0=570 кДж/кг:

с = 44,75·φ·√(H0) = 44,75·0,96·√570 = 1025,66 м/сек

Теперь, используя полученное значение скорости потока пара, определим окружную скорость лопаток турбины:

u = [(cos⁡(α))/2]*c = 0,47*1025,66 = 482,06 м/сек

Далее становится возможным определение числа оборотов вала турбины:

n = (60*u)/(π*d) = (60*482,06)/(3,14*0,7) = 13159 об/мин

В нашем случае электрогенератор двухполюсной, поэтому его число оборотов ротора должно равняться 3000 в минуту. Исходя из этого, найдем необходимое передаточное число редуктора:

i = 3000/13159 ≈ 1/4,4

Далее рассмотрим тепловой расчет простого турбинного агрегата (вычисление основных параметров) путем решения несложных задач.

Задача 1.

На турбину подается пар с давлением P0 = 4 МПа и температурой T0 = 380 °C. После прохождения турбины пар расширяется и его давление снижается до P1 = 0,7 МПа. Необходимо определить общий теплоперепад турбины Hоб.

Решение:

Для решения данной задачи воспользуемся диаграммой состояния воды и водяного пара (I-S диаграммой). Отметив на диаграмме точки с начальными и конечными значениями пара, мы определим энтальпии пара i0 и i1 , которые соответствуют следующим показателям:

i0 = 3185 кДж/кг
i1 = 2835 кДж/кг

Зная значения энтальпии, определим общий теплоперепад в турбине следующим образом:

Hоб = i0-i1 = 3185-2835 = 350 кДж/кг

Задача 2.

Необходимо установить мощность Nэ одноступенчатой конденсационной турбины, рассчитанной на следующие параметры свежего пара: расход G = 1675 кг/час, давление P0 = 1,5 МПа, температура T0 = 210 °C, давление в конденсаторе Pk = 0,3 МПа. КПД  турбины ŋоt = 0,8.

Решение:

Первоначально построим процесс расширения пара на диаграмме I-S и определим общий теплоперепад на турбине.

Hоб = i0-ik = 2823-2196 = 627 кДж/кг

Затем найдем мощность турбины, преобразовав формулу для нахождения расхода пара:

Nэ = (G·Hоб)/(3600·ŋоt) = (1675·627)/(3600·0,8) = 365 кВт.

Задача 3.

Необходимо определить относительный эффективный КПД (ŋоt) и расход пара турбины, зная следующие параметры ее работы: давление и температура на входе P0 = 8 МПа, T0 = 450 °C; конечное давление пара Pk = 1,6 МПа. Мощность турбины принять Nэ = 2200 кВт. Механический КПД турбины принять равным ŋм = 0,98, а относительный внутренний КПД ŋвн = 0,8.

Решение:

Обратившись к диаграмме состояния воды и водяного пара, мы сможем построить процесс расширения пара в турбине и определить параметры на входе и выходе из нее. Значения энтальпии пара на входе и выходе равны соответственно:

i0 = 3275 кДж/кг
ik = 2859 кДж/кг

Искомую величину КПД можно определить согласно следующему соотношению:

ŋоt = ŋт·ŋвн·ŋм = 0,86·0,8·0,98 = 0,67

Где:

ŋт – теоретический КПД, определяемый следующим образом:

ŋт = (i0-ik)/(i0-i’k) = (3275-2859)/(3275-2791,7) = 0,86·100 = 86 %

где:
i’k – энтальпия пара при давлении Pk =1,6 МПа (определяется по таблице), кДж/кг.

Для расчета расхода пара необходимо найти общий теплоперепад на турбине:

Hоб = i0-i1 = 3275-2859 = 416 кДж/кг

Теперь найдем расход пара на турбине, используя формулу:

G = Nэ/(Hоб·ŋоt) = 2200/(416·0,67) = 7,9 кг/с

Задача 4.

Для получения одновременно тепловой и электрической энергии на теплоэлектростанции эксплуатируются два типа паровых турбин: с противодавлением и конденсационная, общей производимой  электрической мощностью Nэ = 7500 кВт. На турбины подается пар с давлением P0 = 4,5 МПа и температурой Т0 = 400 °C. Расход пара на турбину с противодавлением составляет Gп = 8,3 кг/с, а давление на выходе из турбины Pп = 0,16 МПа. На выходе из конденсационной турбины значение давления пара имеет следующее значение Pk = 0,07 МПа. Необходимо определить мощность каждой турбины и расход пара на конденсационной турбине. Относительный эффективный КПД турбины принять ŋоt = 0,75.

Решение:

По диаграмме состояния воды и водяного пара найдем общий теплоперепад на каждой из турбин, аналогично приведенным выше задачам.

Hобп = i0-iп = 3210-2512 = 698 кДж/кг

Hоб к = i0-iк = 3210-2388 = 822 кДж/кг

Определим электрическую мощность турбины с противодавлением, выразив ее из формулы расхода пара:

Nэп = Gп·Hоб·ŋоt = 8,3·698·0,75 = 4345 кВт.

Теперь вычислим мощность конденсационной паровой турбины вычтя из общей электрической мощности электрическую мощность турбины с противодавлением:

Nэк = Nэоб-Nэп = 7500-4345= 3155 кВт

Также определим расход пара на конденсационной турбине:

Gк = Nэк/(Hобк·ŋоt) = 3155/(822·0,75) = 5,12 кг/с.

Задача 5.

Известно, что отдельная ступень турбины имеет относительный КПД ηoi = 0.85, а теплоперепад на ней составляет H0ст =100 кДж/кг. Нужно определить необходимое количество таких ступеней для турбины, работающей в области перегретого пара, общий теплоперепад которой составляет H0=1000 кДж/кг. Принять, что все ступени идентичны и обладают идентичными параметрами.

Решение:

Проведем ориентировочный расчет коэффициента возврата теплоты qt. Учитывая, что число ступеней нас не известно, предварительно примем их число z равное 10:

qt = kt · (1-ηoi) · H0 · [(z-1)/z]

Где kt –расчетный коэффициент, для турбины, работающей на перегретом пару, равный 5,8·10-4. После преобразований получим:

qt = 5,8 · 10-4 · (1-0,85) · 1000 · [(10-1)/10] = 0,0783

Теперь, зная предварительное значение коэффициента возврата теплоты, можно определить уточненное значение числа ступеней по формуле:

z = [H0 · (1+qt)] / H0ср = [1000·(1+0,0783)] / 100 = 10,783

Полученное значение z округляем в большую сторону и получаем искомую величину z равную 11.

Задача 6.

Диафрагма промежуточной ступени турбины оснащена лабиринтным уплотнением со следующими характеристиками: диаметр уплотнения dу=0,2 м, зазор уплотнения составляет δу=0,4 мм, а количество гребней Z=7. Пар перед ступенью имеет температуру Т1=400°C и давление P1=1,6 МПа, которое после ступени падает до P2=1,4 МПа. Необходимо рассчитать величину потерь G через уплотнение, при этом коэффициент расхода μу принять равным 0,91.

Решение:

Достаточно больше число гребешков z=7 позволяет использовать упрощенную формулу расчета величины потерь:

G = μy · Fy · √(1-ϵy²)/z · √p1/v1

Где:
Fу – площадь зазора уплотнения, м2
εу – отношение давлений по разные стороны от уплотнения p2/p1 = 1,4/1,6 = 0,875;
v1 – удельный объем, м3/кг.

Площадь зазора уплотнения можно определить исходя из имеющихся геометрических параметров уплотнения, указанных в условии задачи, по формуле:

Fy = π · dy · δy = 3,14·0,2·0,4· 10-3 = 0,2512·10-3 [м²]

Величину удельного объема можно определить по i-s диаграмме, и для P1=1,6 МПа и T1=400°C удельный объем составит v1=0,19 м3/кг.

Рассчитаем искомую величину потерь:

G = 0,91 · 0,2512· 10-3 · √(1-0,875²)/7 · √(1,6·106)/0,19 = 0,121 кг/с

Задача 7.

Дана турбина, номинальному режиму работы которой соответствуют следующие параметры: температура на входе Tн0=800 °C, давление на входе Pн0=1 МПа, расход пара G0=200 кг/сек, а давление пара на выходе Pк0=0,1 МПа. Вследствие реорганизации производства были изменены рабочие параметры турбины, так расход увеличился до G1=210 кг/сек., а температура упала до Тн1=750°C. Какое давление пара на входе Pн1 необходимо обеспечить при изменившихся условиях, чтобы обеспечить неизменное давление пара выходе, то есть Pк1=Pк0.

Решение:

Искомую величину можно определить, воспользовавшись следующим соотношением:

G1/G0 = √(Pн1²-Pк1²)/(Pн0²-Pк0²) · √Tн0/Tн1

Выразим из данного выражения давление на входе  Pн1 и рассчитаем его:

Pн1 = √(G1/G0)² · (Pн0²-Pк0²) · Tн1/Tн0 + Pк1² = √(210/200)²·(1²-0,1²) · (750+273)/(800+273) + 0,1² = 1,025 МПа

intech-gmbh.ru

Паровая турбина — Википедия

Материал из Википедии — свободной энциклопедии

Монтаж ротора паровой турбины, производства компании Siemens, Германия

Парова́я турби́на — тепловой двигатель, в котором энергия пара преобразуется в механическую работу.

В лопаточном аппарате паровой турбины потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую, которая в свою очередь преобразуется в механическую работу — вращение вала турбины.

Пар от парокотельного агрегата поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и воздействуя на них, приводит ротор во вращение.

Паровая турбина является одним из элементов паротурбинной установки (ПТУ).

Паровая турбина и электрогенератор составляют турбоагрегат.

Основные конструкции паровых турбин

Модель одной ступени паровой турбины

Паровая турбина состоит из двух основных частей. Ротор с лопатками — подвижная часть турбины. Статор с соплами — неподвижная часть.

По направлению движения потока пара различают аксиальные паровые турбины, у которых поток пара движется вдоль оси турбины, и радиальные, направление потока пара в которых перпендикулярно, а рабочие лопатки расположены параллельно оси вращения.

По числу цилиндров турбины подразделяют на одноцилиндровые и двух—трёх-, четырёх-пятицилиндровые. Многоцилиндровая турбина позволяет использовать бо́льшие располагаемые тепловые перепады энтальпии, разместив большое число ступеней давления, применить высококачественные материалы в частях высокого давления и раздвоение потока пара в частях среднего и низкого давления. Такая турбина получается более дорогой, тяжёлой и сложной. Поэтому многокорпусные турбины используются в мощных паротурбинных установках.

По числу валов различают одновальные, двувальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как соосным, так и параллельным — с независимым расположением осей валов.

  • Неподвижную часть — корпус (статор) — выполняют разъёмной в горизонтальной плоскости для возможности выемки или монтажа ротора. В корпусе имеются выточки для установки диафрагм, разъём которых совпадает с плоскостью разъёма корпуса турбины. По периферии диафрагм размещены сопловые каналы (решётки), образованные криволинейными лопатками, залитыми в тело диафрагм или приваренными к нему.
  • В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек пара наружу (со стороны высокого давления) и засасывания воздуха в корпус (со стороны низкого). Уплотнения устанавливают в местах прохода ротора сквозь диафрагмы во избежание перетечек пара из ступени в ступень в обход сопел.

На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающи

wiki2.red

Паровые турбины малой мощности от 100 до 1 000 кВт

Главная → Каталог → Производство паровых турбин → Паровые турбины малой мощности 100 – 20 000 кВт

ГК ТУРБОПАР производит паровые турбины малой мощности от 100 кВт до 1000 кВт, предназначенных для утилизации избыточной энергии пара от паровых котлов. Внедрение паровых турбин малой мощности является эффективным мероприятием по энергосбережению. 

Паровые турбины ТУРБОПАР. Изготовлено в России

турбопар siemens woodward

Паровые турбины малой мощности

Вертикальные приводные турбины 100-200 кВт

Паровая турбина 100 – 250 кВт

Номинальная мощность турбины: 100 — 200кВт 

Номинальное давление свежего пара: до 3,9МПа 

Расход пара на турбину: 2,5-7т/ч

Номинальная мощность турбины: 100 — 250кВт

Номинальное давление свежего пара: до 3,9МПа

Расход пара на турбину: 3-6,5т/ч

Паровая турбина 250 – 400 кВт

Противодавленческие турбины 400-800кВт

Номинальная мощность турбины: 250 — 400кВт

Номинальное давление свежего пара: до 3,9МПа

Расход пара на турбину: 4-12т/ч

Номинальная мощность турбины:400 — 800кВт

Номинальное давление свежего пара: до 3,9МПа

Расход пара на турбину: 8-25т/ч

 Противодавленческие турбины 800-1000кВт

 Конденсационные турбины 100-1000кВт

Номинальная мощность турбины:800 — 1000кВт

Номинальное давление свежего пара: до 3,9МПа

Расход пара на турбину: 14-36т/ч

Номинальная мощность турбины:100 — 1000кВт

Номинальное давление свежего пара: до 3,9МПа

Расход пара на турбину: 3-6,5т/ч

 

Основные технические характеристики паровой микро турбины TURBOPAR (паровые микротурбины) от 100кВт до 1 000кВт:

Мощность, кВт

100 – 1000

Частота вращения ротора:

-турбины, об/мин

-генератора, об/мин


3000
3000

Давление пара перед стопорным клапаном турбины, МПа

0,7 – 3,43

Температура пара перед стопорным клапаном турбины, °С

170 – 435

Давление пара в отборе, МПа
(поставляется с отбором или без отбора на выбор Заказчика)

0,2 – 0,8

Давление пара за турбиной, МПа

0,006 – 0,8

Расход пара, т/ч

2,5 – 35

Тип генератора

Асинхронный/Синхронный

Напряжение генератора, В

400/6300 (-5%+10%)

Тип охлаждения генератора

Воздушное, по разомкнутому контуру

Срок службы, не менее лет

25

Гарантийный срок эксплуатации, мес

18


Отправить ЗАПРОС на ПАРОВУЮ ТУРБИНУ прямо сейчас!
(заполните данные формы и мы сделаем подбор подходящего оборудования)

 

Пришлите заполненный опросный лист на e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Или подберите паровую турбину по телефону: +7 (495) 518-94-16

При использовании данной технологии (паровой турбины низкого давления), получение пара требуемых параметров на технологию происходит не путем дросселирования пара после котла (или снижением рабочего давления котла), как делают в большинстве котельных, а при помощи срабатывания пара в турбине с получением дополнительной энергии (тепло и электричество).

Таким образом, если Ваше предприятие приняло решение приобретать паровые котлы на давлении 10бар, 12бар, 16бар, 18бар и выше, целесообразно одновременно устанавливать паровую микро турбину и вырабатывать бесплатно до 1МВт электрической энергии. В большинстве Европейских стран такой политики придерживаются уже много лет. В том, числе и паровая турбина 200 кВт.

Паровую микро турбину все равно когда устанавливать: или когда только выбирают паровые котлы или в уже работающую котельную. Габариты турбины очень малы, поэтому ее можно ставить на любой свободной площадке размером 3х3м непосредственно возле котла.

Окупаемость внедрения мероприятия «паровая турбина низкого давления» зависит от тарифа на электроэнергию в вашем регионе и составляет 2-3 года. Паровая турбина цена от производителя.

 


Примеры паровых турбин низкого давления TURBOPAR установленных на промышленных предприятиях

Паровая турбина 310кВт установленная на сельхозперерабатывающем предприятии, в г. Дворец, вид топлива солома, костра.  Паровая турбина 150кВт установленная на перерабатывающем предприятии, в г. Дубровно, вид топлива солома, костра.  Паровая турбина 700кВт установленная на химическом заводе, в г. Чирчик, вид топлива газ.  Паровая турбина 250кВт установленная на заводе в г. Слоним, вид топлива газ.  Паровая турбина 150кВт установленная на спиртовом заводе в г. Чашники, вид топлива газ.

Энергосберегающая Турбина экономит 30 000 – 50 000$ в год!

ЭНЕРГОСБЕРЕЖЕНИЕ! По данным технико-экономических расчетов Энергосберегающая Турбина 250 кВт (паровые турбины низкого давления или паровые микротурбины) экономит 30 000 – 50 000$ в год на внедряемых предприятиях.

Пример подбора паровой турбины малой мощности

Если на Вашем предприятии установлен котел производства БИКЗ или другой, Viessman, Wartsila, Ferroli, ICI Caldaie, Bderus и т.п. (главное, чтобы котел был паровой), который, к примеру, работает с параметрами свежего пара на выходе 13 атм. и расходом 10 т/час, а для технологии требуется давление пара 2 -4 атм., то устанавливается редукционная установка (РУ), которая снижает давление с 13 атм. до 2 -4 атм. При этом бесполезно теряется потенциальная энергия пара. Если вместо РУ установить паровую микро турбину, то будет получен источник электроэнергии мощностью около 250 кВт, что покроет собственные нужды котельной. Стоимость такой электроэнергии в 2-3 раза меньше, чем покупаемая у энергосистемы. Потребление газа на таких мини-ТЭЦ возрастает в сравнении с исходным режимом работы котельной ориентировочно на 4-7 %. Паровая турбина 160 кВт.

Если в здании котельной не достаточно места для размещения можно использовать вертикальную паровую турбину. Вертикальная паровая турбина изготавливается только на мощности от 100кВт до 200кВт. Паровая турбина 180 кВт.

Малые паровые турбины  TURBOPAR производства ООО «Ютрон производство» предназначены для привода насосов, вентиляторов и других механизмов вместо электропривода, а также электрогенераторов для собственного производства электроэнергии (мини-ТЭЦ). Малые паровые турбины «Ютрон – Паровые турбины» можно использовать вместо РОУ.

Отработавший в турбине пар используется для технологических нужд и теплоснабжения.

Паровая турбина низкого давления имеет следующие показатели надежности:

  • срок службы между капитальными ремонтами – не менее 5 лет;
  • средняя наработка на отказ — не менее 7000 ч;
  • коэффициент готовности — не менее 0,98;
  • полный установленный срок службы — не менее 25 лет, за исключением быстроизнашивающихся деталей.

C чего начать подбор паровой турбины >>

Система управления. Шкаф управления и защит

Система управления паровой турбины осуществляет измерение технологических параметров установки и параметров пара для обеспечения автоматического управления технологическим процессом и безопасных условий работы.


Паровая турбина низкого давления, примеры габаритных размеров далее:

 


Наши достижения:

Энергосберегающая паровая турбина 750 кВт и паровая турбина 850 ЮТРОН выиграла конкурс «ЛУЧШИЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ В ОБЛАСТИ ЭНЕРОЭФФЕКТИВНОСТИ И ЭНЕРГОСБЕРЕЖЕНИЯ — 2009 » учрежденный Государственным комитетом Республики Карелия по энергетике и регулированию тарифов. Подробнее… >>  Продукция ГК ТУРБОПАР рекомендована Комитетом по энергетике и Инженерному обеспечению при Правительстве Санкт-Петербурга, для применения при проектировании и строительстве энергетических объектов. Подробнее … >>

Полезная информация: 

Скачать опросный лист для подбора паровой турбины >> 

Энергосберегающая турбина вместо редукционно-охладительного устройства (РОУ, РУ) >>

Паровая турбина вместо электродвигателя >>

Турбопривод для насосов, вентиляторов и других механизмов >>

www.turbopar.ru

История изобретения паровой турбины | Великие открытия человечества

Паровая турбина — это тепловой двигатель, тепловая энергия пара в котором преобразуется в механическую работу. Вместе с гидротурбинами огромное значение для развития мировой энергетики имело изобретение и широкое применение паровых турбин, которые являются основным двигателем тепловых (ТЭС) и атомных электростанций (АЭС). Принцип действия паровых турбин схож с гидравлическими, разница лишь в том, что в первом случае турбину приводила в действие струя разогретого пара, во втором — струя воды. Паровая турбина оказалась проще, экономичнее и удобнее, чем паровая машина Уатта. Изобретатели давно пытались создать машину (паровую турбину), где струя пара напрямую бы вращала рабочее колесо. При этом, скорость вращения колеса должна быть очень высокой за счет большой скорости струи пара.

В 1883 году Лавалю удалось создать первую паровую машину, которая представляла легкое колесо с лопатками. Через поставленные под углом сопла на лопатки направляли пар, который давил на них и раскручивал колесо. В 1889 году Лаваль усовершенствовал конструкцию, применив сопло, которое расширялось на выходе. Благодаря этому увеличилась скорость пара и, соответственно, скорость вращения ротора. Полученная струя направлялась на один ряд лопаток, которые были насажены на диск. Давление пара и число сопел определяли мощность турбины, работающей по активному принципу. Если отработанный пар не попадал в воздух, а направлялся в конденсатор, где при пониженном давлении сжижался, то мощность турбины оказывалась наивысшей. Турбина Лаваля получила всеобщее признание, она давала большие выгоды при соединении с машинами, имеющими высокую скорость (сепараторы, пилы, центробежные насосы). Использовали ее и в качестве привода для электрогенератора, правда, только через редуктор (из-за ее высокой скорости).

В 1884 году английский изобретатель Парсонс запатентовал многоступенчатую реактивную турбину, специально созданную им для приведения в действие электрогенератора. При меньшей скорости вращения энергия пара здесь использовалась максимально благодаря тому, что пар, проходя через 15 ступеней, расширялся постепенно. Каждая ступень имела пару венцов лопаток. Неподвижным был один венец с направляющими лопатками, которые крепились на корпусе турбины. Второй — подвижный с рабочими лопатками на диске, который был насажен на вращающийся вал. Лопатки венцов (неподвижных и подвижных) сориентированы в противоположных направлениях. Это была первая паровая турбина, которая начала с успехом применяться в промышленности.

В 1889 году уже 300 турбин применяли для получения электроэнергии, в 1899 году появилась первая электростанция с турбинами Парсонса. В 1894 году был спущен на воду первый пароход «Turbinia» с приводом от паровой турбины. Вскоре паровые турбины начали устанавливать на быстроходных судах. Французский ученый Рато вывел комплексную теорию турбомашин на основе имевшегося опыта. Со временем турбина Парсонса уступила место компактным активно-реактивным турбинам. Хотя и сегодня паровые турбины в основном сохранили черты турбины Парсонса.

mirnovogo.ru

паровая турбина — это… Что такое паровая турбина?


паровая турбина
парова́я турби́на
турбина, преобразующая тепловую энергию водяного пара в механическую работу. Паровые турбины делятся на активные и реактивные. В активной турбине потенциальная энергия водяного пара преобразуется в кинетическую в неподвижных сопловых устройствах и используется для создания полезной работы на рабочих лопатках турбины. Первую активную паровую турбину построил шведский инженер К. Лаваль в 1889 г. Турбина Лаваля представляла собой колесо с укреплёнными по ободу лопатками. Струя пара, выходя из сопел статора, давит на лопатки и вращает колесо (ротор). В реактивной турбине значительная часть потенциальной энергии водяного пара преобразуется в механическую работу в лопаточных каналах рабочего колеса (ротора), имеющих конфигурацию реактивного сопла. Реактивную паровую турбину изобрёл английский инженер Ч. Парсонс в 1884 г. Каждый ряд направляющих и рабочих лопаток называется ступенью турбины. В одноступенчатой турбине не удаётся достаточно полно использовать энергию пара, поэтому современные турбины строят многоступенчатыми. Проходя через многочисленные ряды лопаток, пар расширяется постепенно, и его кинетическая энергия переходит в механическую энергию вращения ротора более полно. При этом чем ниже давление, тем длиннее лопатки ротора. Как и в паровой машине, пар из турбины направляется в конденсатор. Кроме конденсационных паровых турбин применяют теплофикационные турбины с промежуточным отбором пара для целей отопления.

Схема многоступенчатой паровой турбины:

1 – входной паропровод; 2 – направляющие лопатки турбины; 3 – рабочее колесо турбины; 4 – вал; 5 – выходной паропровод

Коэффициент полезного действия современных паровых турбин достигает 40–42 %. Паровые турбины являются основными двигателями для генераторов электрического тока на тепловых и атомных электростанциях; изготовляют их мощностью от нескольких киловатт до 1200 МВт и более. Паровые турбины работают на многих судах в качестве главных судовых двигателей.

Энциклопедия «Техника». — М.: Росмэн. 2006.

.

  • паровая машина
  • паровоз

Смотреть что такое «паровая турбина» в других словарях:

  • ПАРОВАЯ ТУРБИНА — турбина, в к рой потенц. энергия пара превращается в кинетич., а затем в механич. работу вращающегося вала. П. т. осн. двигатель для привода электрогенераторов на ТЭС. Различают активные турбины и реактивные турбины. Габариты П. т. сравнительно… …   Большой энциклопедический политехнический словарь

  • Паровая турбина — Паровая турбина: машина, которая преобразует тепловую энергию в механическую работу. Примечание Паровая турбина состоит из одного или нескольких цилиндров, системы управления и необходимого вспомогательного оборудования… Источник:… …   Официальная терминология

  • ПАРОВАЯ ТУРБИНА — турбина, преобразующая тепловую энергию водяного пара в механическую работу. Подразделяются на стационарные (напр., на теплоэлектростанции) и транспортные (судовые). Выполняются одно и многокорпусными (обычно не более 4 корпусов), одновальными… …   Большой Энциклопедический словарь

  • ПАРОВАЯ ТУРБИНА — ПАРОВАЯ ТУРБИНА, ПАРОВОЙ ДВИГАТЕЛЬ, снабженный вращающимся ротором с лопатками, который служит для приведения в действие различных механизмов и для получения электроэнергии. см. также ТУРБИНА …   Научно-технический энциклопедический словарь

  • ПАРОВАЯ ТУРБИНА — ПАРОВАЯ ТУРБИНА, преобразует тепловую энергию водяного пара при его расширении в механическую работу. Различают стационарные (например, на тепловых электростанциях) и транспортные (судовые) паровые машины, однои многокорпусные (обычно не более 4) …   Современная энциклопедия

  • паровая турбина — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN vapor prime moversteam turbine …   Справочник технического переводчика

  • Паровая турбина — ПАРОВАЯ ТУРБИНА, преобразует тепловую энергию водяного пара при его расширении в механическую работу. Различают стационарные (например, на тепловых электростанциях) и транспортные (судовые) паровые машины, одно и многокорпусные (обычно не более… …   Иллюстрированный энциклопедический словарь

  • Паровая турбина — Монтаж ротора паровой турбины, производства компании Siemens, Германия …   Википедия

  • паровая турбина — турбина, преобразующая тепловую энергию водяного пара в механическую работу. Подразделяются на стационарные (например, на ТЭС) и транспортные (судовые). Выполняются одно и многокорпусными (обычно не более 4 корпусов), одновальными (валы всех… …   Энциклопедический словарь

  • Паровая турбина —         первичный паровой двигатель с вращательным движением рабочего органа ротора и непрерывным рабочим процессом; служит для преобразования тепловой энергии пара водяного (См. Пар водяной) в механическую работу. Поток водяного пара поступает… …   Большая советская энциклопедия

  • паровая турбина — 3.16 паровая турбина: Машина, которая преобразует тепловую энергию в механическую работу. Примечание Паровая турбина состоит из одного или нескольких цилиндров, системы управления и необходимого вспомогательного оборудования. Источник: ГОСТ 30848 …   Словарь-справочник терминов нормативно-технической документации

Книги

  • Книга юного конструктора. Том 1, Абрамов А.. В книге собраны описания различных моделей и приборов: летающие модели самолетов, фотоаппараты, фотоувеличители, кинопроекционный аппарат, электромоторы, паровыемашины, паровая турбина,… Подробнее  Купить за 1612 грн (только Украина)
  • Книга юного конструктора. Том 1, Абрамов А.. В книге собраны описания различных моделей и приборов: летающие модели самолетов, фотоаппараты, фотоувеличители, кинопроекционный аппарат, электромоторы, паровые машины, паровая турбина,… Подробнее  Купить за 1433 руб
  • Самодельная паровая турбина (печать по требованию), Е. Л. Букш. Воспроизведено в оригинальной авторской орфографии издания 1972 года (издательство`ДОСААФ`). В… Подробнее  Купить за 982 грн (только Украина)
Другие книги по запросу «паровая турбина» >>

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *