Турбина в разрезе фото: Обои для рабочего стола Еще не остывшая турбина в разрезе фото

Обои для рабочего стола Еще не остывшая турбина в разрезе фото

НАВИГАЦИЯ: ОБОИ ДЛЯ РАБОЧЕГО СТОЛА >> ОБОИ Разное >> Обои Еще не остывшая турбина в разрезе

Картинку добавил(а): mitisman (посмотреть обои)

Разрешение: 2157 x 1535

Раздел обоев: Разное

Скачать похожие обои на Еще не остывшая турбина в разрезе

Порекомендовать картинку другу:

Ваше имя:     
E-mail друга:

Похожие обои на Еще не остывшая турбина в разрезе:

Семена еще в домикахЛистья и трава

Совсем еще щенокСобаки и кошки

Еще жива любовьЛюбовь

Мир ещё не умерГотичные

Еще не испеченный пирог с ягодамиЕда и напитки

Еще не запеченная пиццаЕда и напитки

Разряд, ещё разрядНебо

Ещё одна красивая девушка из Последняя фантазияИгры

Совсем еще маленькийДети

Ещё туманностьКосмос

Ещё один мёртвый ангелГотичные

Ещё одна раскраска Messerschimtt Bf-109 под небоРисованные

Это ещё не всё на что способен Индийский океанРеки, моря и озера

Еще АМАТОРИМузыка

Еще один прекрасный закатНебо

Еще одна девушка BellДевушки

Ещё один омертвевший, каменный ангелочекФэнтези

Клубника, клубника и еще раз клубника!!Еда и напитки

Серебрянные шарики ещё не повешанные на елкуНовый год и рождество

Еще яблочкоРазное

Еще одна гейша, а на земле во мраке поздравление8 марта

Еще одна картинка в стиле картины масломФэнтези

Ещё непроснулсяЦветы

Много чистой прозрачной воды и еще с лилиямиРеки, моря и озера

ХОЧУ ЕЩЕ ТАКИХ ЖЕ ОБОЕВ! >>

Мнения и комментарии к данной картинке

Комментариев к данной картинке пока нет.

Совет по выбору обоев — Самовыражение:

Обои для рабочего стола могут стать отличным полем для самовыражения, причем, это поле достаточно просторное, даже, для самых креативных индивидов. Экранный фон может говорить о предпочтениях или взглядах человека, который установил этот фон. Обои рабочего стола помогут вам выразить свои музыкальные предпочтения или, например, социально-политические взгляды. Также, это может быть шутливая или забавная картинка, которая подчеркивает ваше оптимистичное отношение к жизни. Может быть, вы ждете премьеру какого-нибудь фильма с любимым актером? Разместите постер к фильму на рабочий стол вашего ПК, пусть все узнают о новом фильме! Изображение на рабочем столе поможет вам проявить себя и открыться окружающим.

НОВЫЕ ОБОИ НА САЙТЕ

Букетик с чашечкамиЦветы

Белый кот на деревеСобаки и кошки

у стены двоу с оружиемРисованные

кости красныe в линиюАзартные игры

вертолет и солнце в небeАвиация

кошка прикрыта светлым полотeнцемСобаки и кошки

белая собака в вeчeрних бликахСобаки и кошки

знaк из металлaЛоготипы

NEW!   БАНК ОБОЕВ. МИКС

Представляем Вашему вниманию Банк Обоев.Микс — удобная возможность выбрать понравившуюся картинку из списка, который составляется случайным образом!

Турбокомпрессор: сердце системы наддува воздуха

12.07.2017 #Турбокомпрессор

Турбокомпрессор: сердце системы наддува воздуха

Для повышения мощности двигателей внутреннего сгорания широкое применение находят специальные агрегаты — турбокомпрессоры. О том, что такое турбокомпрессор, каких типов бывают эти агрегаты, как они устроены и на каких принципах основана их работа, а также об их обслуживании и ремонте читайте в статье.


Что такое турбокомпрессор?

Турбокомпрессор — основной компонент системы агрегатного наддува двигателей внутреннего сгорания, агрегат для повышения давления во впускном тракте двигателя за счет энергии отработавших газов.

Турбокомпрессор применяется для повышения мощности двигателя внутреннего сгорания без коренного вмешательства в его конструкцию. Данный агрегат повышает давление во впускном тракте двигателя, обеспечивая подачу в камеры сгорания увеличенного количества топливно-воздушной смеси. В этом случае сгорание происходит при более высокой температуре с образованием большего объема газов, что приводит к повышению давления на поршень и, как следствие, к росту крутящего момента и мощностных характеристик двигателя.

Применение турбокомпрессора позволяет увеличить мощность двигателя на 20-50% с минимальным увеличением его стоимости (а при более значительных доработках рост мощности может достигать 100-120%). Благодаря своей простоте, надежности и эффективности системы наддува на основе турбокомпрессоров находят самое широкое применение на всех типах транспортных средств с ДВС.


Типы и характеристики турбокомпрессоров

Сегодня существует большое разнообразие турбокомпрессоров, но их можно разделить на группы по назначению и применимости, типу используемой турбины и дополнительному функционалу.

По назначению турбокомпрессоры можно разделить на несколько типов:

  • Для одноступенчатых систем наддува — один турбокомпрессор на двигатель, либо два и более агрегатов, работающих на несколько цилиндров;
  • Для последовательных и последовательно-параллельных систем надува (различные варианты Twin Turbo) — два одинаковых или разных по характеристикам агрегата, работающих на общую группу цилиндров;
  • Для двухступенчатых систем наддува — два турбокомпрессора с различными характеристиками, которые работают в паре (последовательно друг за другом) на одну группу цилиндров.

Наиболее широкое применение находят одноступенчатые системы наддува, построенные на основе одного турбокомпрессора. Однако такой системе может присутствовать два или четыре одинаковых агрегата — например, в V-образных двигателях используются отдельные турбокомпрессоры на каждый ряд цилиндров, в многоцилиндровых моторах (более 8) могут применяться четыре турбокомпрессора, каждый из которых работает на 2, 4 или более цилиндров. Меньшее распространение получили двухступенчатые системы наддува и различные вариации Twin-Turbo, в них используется два турбокомпрессора с различными характеристиками, которые могут работать только в паре.

По применимости турбокомпрессоры можно условно разделить на несколько групп:

  • По типу двигателя — для бензиновых, дизельных и газовых силовых агрегатов;
  • По объему и мощности двигателя — для силовых агрегатов малой, средней и большой мощности; для высокооборотистых двигателей, и т.д.

Турбокомпрессоры могут оснащаться турбиной одного из двух типов:

  • Радиальной (радиально-осевой, центростремительной) — поток отработавших газов подается на периферию крыльчатки турбины, движется к ее центру и выводится в осевом направлении;
  • Осевой — поток отработавших газов подается вдоль оси (к центру) крыльчатки турбины и выводится с ее периферии.

Сегодня применяются обе схемы, но на двигателях небольшого объема чаще можно встретить турбокомпрессоры с радиально-осевой турбиной, а на мощных силовых агрегатах предпочтение отдается осевым турбинам (хотя это и не является правилом). Независимо от типа турбины, все турбокомпрессоры оснащаются центробежным компрессором — в нем воздух подается к центру крыльчатки и отводится от ее периферии.

Современные турбокомпрессоры могут иметь различный функционал:

  • Двойной вход — турбина имеет два входа, на каждый из них поступают отработавшие газы от одной группы цилиндров, такое решение снижает перепады давления в системе и улучшает стабильность наддува;
  • Изменяемая геометрия — турбина имеет подвижные лопасти или скользящее кольцо, посредством которых можно изменять поток отработавших газов на рабочее колесо, это позволяет изменять характеристики турбокомпрессора в зависимости от режима работы двигателя.

Наконец, турбокомпрессоры отличаются основными эксплуатационными характеристиками и возможностями. Из основных характеристик этих агрегатов следует выделить:

  • Степень повышения давления — отношение давления воздуха на выходе компрессора к давлению воздуха на входе, лежит в пределах 1,5-3;
  • Подача компрессора (расход воздуха через компрессор) — масса воздуха, проходящая через компрессор за единицу времени (секунду), лежит в пределах 0,5-2 кг/с;
  • Рабочий диапазон оборотов — лежит в пределах от нескольких сотен (для мощных тепловозных, промышленных и иных дизелей) до десятков тысяч (для современных форсированных двигателей) оборотов в секунду. Максимальная скорость ограничена прочностью рабочих колес турбины и компрессора, при слишком высокой скорости вращения за счет центробежных сил колесо может разрушиться. В современных турбокомпрессорах периферийные точки колес могут вращаться со скоростями 500-600 и более м/с, то есть — в 1,5-2 раза быстрее скорости звука, это и обуславливает возникновение характерного свиста турбины;
  • Рабочая/максимальная температура отработавших газов на входе в турбину — лежит в пределах 650-700°С, в отдельных случаях достигает 1000°С;
  • КПД турбины/компрессора — обычно составляет 0,7-0,8, в одном агрегате КПД турбины обычно меньше КПД компрессора.

Типовая схема системы агрегатного наддува воздуха ДВС

Также агрегаты отличаются размерами, типом монтажа, необходимостью применять вспомогательные компоненты и т.д.


Конструкция турбокомпрессора

В общем случае турбокомпрессор состоит из трех основных узлов:

  1. Турбина;
  2. Компрессор;
  3. Корпус подшипников (центральный корпус).

Турбина — агрегат, преобразующий кинетическую энергию отработавших газов в механическую энергию (в крутящий момент колеса), которая обеспечивает работу компрессора. Компрессор — агрегат для нагнетания воздуха. Корпус подшипников связывает оба агрегата в единую конструкцию, а расположенный в нем вал ротора обеспечивает передачу крутящего момента от колеса турбины на колесо компрессора.

Разрез турбокомпрессора

Турбина и компрессор имеют схожую конструкцию. Основой каждого из этих агрегатов выступает корпус-улитка, в периферийной и центральной части которого расположены патрубки для соединения с системой наддува. У компрессора впускной патрубок всегда находится в центре, выпускной (нагнетательный) — на периферии. Такое же расположение патрубков у осевых турбин, у радиально-осевых турбин расположение патрубков обратное (на периферии — впускной, в центре — выпускной).

Внутри корпуса располагается колесо с лопатками специальной формы. Оба колеса — турбинное и компрессорное — удерживаются общим валом, который проходит через корпус подшипников. Колеса — цельнолитые или составные, форма лопаток турбинного колеса обеспечивает максимально эффективное использование энергии отработавших газов, форма лопаток компрессорного колеса обеспечивает максимальный центробежный эффект. В современных турбинах высокого класса могут использоваться составные колеса с керамическими лопатками, которые имеют низкую массу и обладают лучшими характеристиками. Размер колес турбокомпрессоров автомобильных двигателей — 50-180 мм, мощных тепловозных, промышленных и иных дизелей — 220-500 и более мм.

Оба корпуса монтируются на корпус подшипников с помощью болтов через уплотнения. Здесь располагаются подшипники скольжения (реже — подшипники качения специальной конструкции) и уплотнительные кольца. Также в центральном корпусе выполняются масляные каналы для смазки подшипников и вала, а в некоторых турбокомпрессорах и полости водяной рубашки охлаждения. При монтаже агрегат соединяется с системами смазки и охлаждения двигателя.

В конструкции турбокомпрессора могут быть предусмотрены и различные вспомогательные компоненты, в том числе детали системы рециркуляции отработавших газов, масляные клапаны, элементы для улучшения смазки деталей и их охлаждения, регулировочные клапаны и т.д.

Детали турбокомпрессора изготавливаются из специальных марок стали, для колеса турбины применяются жаропрочные стали. Материалы тщательно подбираются по коэффициенту температурного расширения, что обеспечивает надежность конструкции на различных режимах работы.

Турбокомпрессор включается в систему наддува воздуха, в которую также входят впускной и выпускной коллекторы, а в более сложных системах — интеркулер (радиатор охлаждения наддувного воздуха), различные клапаны, датчики, заслонки и трубопроводы.


Принцип работы турбокомпрессора

Принцип работы турбокомпрессора

Функционирование турбокомпрессора сводится к простым принципам. Турбина агрегата внедряется в выпускную систему двигателя, компрессор — во впускной тракт. Во время работы мотора выхлопные газы поступают в турбину, ударяются о лопатки колеса, отдавая ему часть своей кинетической энергии и заставляя ее вращаться. Крутящий момент от турбины посредством вала напрямую передается на колеса компрессора. При вращении колесо компрессора отбрасывает воздух на периферию, повышая его давление — этот воздух подается во впускной коллектор.

Одиночный турбокомпрессор имеет ряд недостатков, основной из которых — турбозадержка или турбояма. Колеса агрегата имеют массу и некоторую инерцию, поэтому не могут мгновенно раскручиваться при повышении оборотов силового агрегата. Поэтому при резком нажатии на педаль газа турбированный двигатель разгоняется не сразу — возникает короткая пауза, провал мощности. Решением этой проблемы служат специальные системы управления турбиной, турбокомпрессоры с изменяемой геометрией, последовательно-параллельные и двухступенчатые системы наддува, и другие.


Вопросы обслуживания и ремонта турбокомпрессоров

Турбокомпрессор нуждается в минимальном техническом обслуживании. Главное — вовремя производить замену масла и масляного фильтра двигателя. Если мотор еще может какое-то время работать на старом масле, то для турбокомпрессора оно может стать смертельно опасным — даже незначительное ухудшение качества смазочного материала на высоких нагрузках может привести к заклиниванию и разрушению агрегата. Также рекомендуется периодически очищать детали турбины от нагара, что требует ее разбора, однако эту работу следует выполнять только с применением специального инструмента и оборудования.

Неисправный турбокомпрессор в большинстве случаев проще заменить, чем ремонтировать. Для замены необходимо использовать агрегат того же типа и модели, что был установлен на двигателе ранее. Монтаж турбокомпрессора с иными характеристиками может нарушить работу силового агрегата. Подбор, монтаж и настройку агрегата лучше доверять специалистам — это гарантирует правильное выполнение работ и нормальную работу двигателя. При правильной замене турбокомпрессора двигатель снова обретет высокую мощность и сможет решать самые сложные задачи.

Другие статьи

#Планка генератора

Планка генератора: фиксация и регулировка генератора автомобиля

14.09.2022 | Статьи о запасных частях

В автомобилях, тракторах, автобусах и иной технике электрические генераторы монтируются к двигателю посредством кронштейна и натяжной планки, обеспечивающей регулировку натяжения ремня. О планках генератора, их существующих типах и конструкции, а также выборе и замене этих деталей — читайте в статье.

#Переходник для компрессора

Переходник для компрессора: надежные соединения пневмосистем

31.08.2022 | Статьи о запасных частях

Даже простая пневматическая система содержит несколько соединительных деталей — фитингов, или переходников для компрессора. О том, что такое переходник для компрессора, каких типов он бывает, зачем необходим и как устроен, а также о верном подборе фитингов для той или иной системы — читайте в статье.

#Стойка стабилизатора Nissan

Стойка стабилизатора Nissan: основа поперечной устойчивости «японцев»

22.06.2022 | Статьи о запасных частях

Ходовая часть многих японских автомобилей Nissan оснащается стабилизатором поперечной устойчивости раздельного типа, соединенным с деталями подвески двумя отдельными стойками (тягами). Все о стойках стабилизатора Nissan, их типах и конструкции, а также о подборе и ремонте — читайте в данной статье.

#Ремень приводной клиновой

Ремень приводной клиновой: надежный привод агрегатов и оборудования

15.06.2022 | Статьи о запасных частях

Для привода агрегатов двигателя и в трансмиссиях различного оборудования широко применяются передачи на основе резиновых клиновых ремней. Все о приводных клиновых ремнях, их существующих типах, особенностях конструкции и характеристиках, а также о правильном выборе и замене ремней — читайте в статье.

Вернуться к списку статей

Крупномасштабная информация о выбросах химических веществ, предназначенная для помощи в разработке более экологичных авиационных двигателей и видов топлива — ScienceDaily

Исследователи использовали новый метод визуализации в ближнем инфракрасном диапазоне для получения первых изображений поперечного сечения углекислого газа в выхлопных газах. шлейф коммерческого реактивного двигателя. Эта новая передовая технология может помочь ускорить исследования в области сгорания топлива в турбинах, направленные на разработку двигателей и авиационного топлива, более безопасных для окружающей среды.

«Этот подход, который мы называем томографией химических видов, позволяет получать в режиме реального времени пространственно разрешенную информацию о выбросах углекислого газа из крупномасштабного коммерческого двигателя», — сказал руководитель исследовательской группы Майкл Ленгден из Университета Стратклайда в Великобритании. «Эта информация не был доступен ранее в таком промышленном масштабе и является большим улучшением по сравнению с текущим стандартом измерения выбросов, который включает в себя подачу газа из выхлопных газов в систему газоанализатора в другом месте».

Исследователи сообщают о новом исследовании в журнале Optica Publishing Group Applied Optics . Химическая видовая томография работает так же, как компьютерная томография на основе рентгеновских лучей, используемая в медицине, за исключением того, что она использует лазерный свет ближнего инфракрасного диапазона, настроенный на длину волны поглощения молекулы-мишени, и требует очень высокой скорости визуализации для захвата динамических процессов горения.

«Авиационная промышленность вносит основной вклад в глобальные выбросы двуокиси углерода, поэтому необходимо радикально улучшить турбинные и топливные технологии», — сказал Ленгден. «Предоставляя полностью проверенные измерения выбросов, наш новый метод может помочь отрасли разработать новую технологию, которая снижает воздействие авиации на окружающую среду».

Визуализация выбросов авиационных двигателей

До сих пор было невозможно визуализировать горение турбины на испытательных стендах, содержащих большой авиационный двигатель. Чтобы решить эту проблему, четыре исследовательские группы по приборостроению в Великобритании объединили свои знания в области измерения содержания газов в суровых условиях, томографии химических соединений и разработки оптических источников. Эти команды работали с промышленными партнерами над разработкой технологий, которые могли бы быть полезны для промышленных исследований и разработок 9.0003

«Команды увидели возможность разработать ведущие в мире приборы для аэрокосмической промышленности, а также понять улучшения выбросов и производительности крупномасштабных двигателей», — сказал Ленгден. «Благодаря томографии химических веществ мы теперь можем «видеть» химические детали сгорания в реальном серийном двигателе самолета».

После многих лет работы по точной настройке отношения сигнал-шум, методов сбора данных, методов визуализации и оптических источников исследователи создали первую установку, способную проводить измерения промышленных выбросов в больших масштабах для двигателей коммерческих самолетов.

Чтобы выполнить томографию химических веществ, 126 лучей ближнего инфракрасного лазерного излучения освещают газ со всех сторон под разными углами таким образом, чтобы не мешать газовому потоку. Для адекватного захвата выхлопных газов двигателя коммерческого самолета требуется визуализация области диаметром до 1,8 м. Чтобы зафиксировать это, компоненты визуализации были установлены на раме диаметром 7 м, расположенной всего в 3 м от выходного сопла двигателя. Исследователи использовали 126 оптических лучей для достижения пространственного разрешения около 60 мм в центральной области выхлопа двигателя.

«Очень совершенная методология измерений, которую мы использовали, требовала глубоких знаний в области спектроскопии углекислого газа и электронных систем, которые обеспечивают очень точные данные», — сказал Ленгден. «Кроме того, необходимо было разработать очень сложный математический метод для вычисления изображения каждого химического вещества на основе измеренного поглощения 126 различных лучей, которые мы использовали».

Захват горения в больших масштабах

Исследователи использовали эту крупномасштабную установку для выполнения томографии химических видов углекислого газа, образующегося при сгорании в турбине современного газового двигателя Rolls-Royce Trent. Эти двигатели обычно используются на дальнемагистральных самолетах и ​​содержат камеру сгорания с 18 топливными форсунками, расположенными по кругу. Для испытаний исследователи записывали данные с частотой кадров 1,25 Гц и 0,3125 Гц, когда двигатель работал во всем диапазоне тяги.

Полученные изображения показали, что при всех уровнях тяги в центральной области двигателя присутствовала кольцевая структура с высокой концентрацией углекислого газа. В середине шлейфа также была выпуклость, вероятно, из-за формы двигателя.

В настоящее время исследователи работают над адаптацией нового прибора для количественного измерения и визуализации других химических веществ, образующихся при сгорании в турбинах как в аэрокосмической, так и в промышленной энергетике, а также для получения изображений температуры. Это позволит инженерам и ученым, разрабатывающим новые турбины и виды топлива, лучше понять процесс сгорания для современных и будущих технологий.

В команду проекта входят университеты Стратклайда, Эдинбурга, Манчестера, Саутгемптона, Лафборо и Шеффилда; производитель авиадвигателей Rolls-Royce; производитель промышленных газотурбинных двигателей Siemens; производитель лазерного оборудования OptoSci Ltd.; и производители систем визуализации M Squared Lasers и Tracerco.

Проект ветряной турбины для системы ветряных турбин

В основе любой системы производства возобновляемой энергии ветра лежит ветровая турбина . Конструкция ветряной турбины обычно состоит из ротора, генератора постоянного тока (DC) или генератора переменного тока (AC), который установлен на башне высоко над землей.

Итак, как ветряные турбины предназначены для производства электроэнергии. Проще говоря, ветряная турбина — это противоположность домашнему или настольному вентилятору. Вентилятор использует электричество из сети для вращения и циркуляции воздуха, создавая ветер.

С другой стороны, конструкции ветряных турбин используют силу ветра для выработки электроэнергии. Движение ветра вращает лопасти турбины, которые улавливают кинетическую энергию ветра и преобразуют эту энергию во вращательное движение через вал для привода электрического генератора и выработки электроэнергии, как показано на рисунке. 9. Ветряная турбина извлекает кинетическую энергию из ветра, замедляя его и передавая эту энергию вращающемуся валу, поэтому важно иметь хорошую конструкцию. Доступная мощность ветра, доступная для сбора урожая, зависит как от скорости ветра, так и от площади, охватываемой вращающимися лопастями турбины.

Таким образом, чем выше скорость ветра или больше лопасти ротора, тем больше энергии можно извлечь из ветра. Таким образом, мы можем сказать, что производство энергии ветровой турбиной зависит от взаимодействия между лопастями ротора и ветром, и именно это взаимодействие важно для конструкции ветряной турбины .

Чтобы помочь улучшить это взаимодействие и, следовательно, повысить эффективность, доступны два типа конструкции ветряной турбины. Общая горизонтальная ось и конструкция ветряной турбины с вертикальной осью. Конструкция ветряной турбины с горизонтальной осью улавливает больше ветра, поэтому выходная мощность выше, чем у конструкции ветряной турбины с вертикальной осью. Недостатком конструкции с горизонтальной осью является то, что башня, необходимая для поддержки ветряной турбины, намного выше, а конструкция лопастей ротора должна быть намного лучше.

Типовая конструкция ветряной турбины

Турбина с вертикальной осью или VAWT проще в проектировании и обслуживании, но обеспечивает более низкую производительность, чем типы с горизонтальной осью, из-за высокого сопротивления простой конструкции лопастей ротора. Большинство ветряных турбин, вырабатывающих электроэнергию сегодня, как в коммерческих, так и в домашних условиях, представляют собой машины с горизонтальной осью, поэтому именно эти типы ветряных турбин конструкции мы рассмотрим в этом учебном пособии по ветряным турбинам.

Ротор — это основная часть конструкции современной ветровой турбины, которая собирает энергию ветра и преобразует ее в механическую энергию в форме вращения. Ротор состоит из двух или более лопастей из ламинированного дерева, стекловолокна или металла и защитной втулки, которая вращается (отсюда и название) вокруг центральной оси.

Подобно крылу самолета, лопасти ветряной турбины благодаря своей изогнутой форме создают подъемную силу. Лопасти несущего винта извлекают часть кинетической энергии из движущихся воздушных масс по принципу подъемной силы со скоростью, определяемой скоростью ветра и формой лопастей. Конечным результатом является подъемная сила, перпендикулярная направлению потока воздуха. Затем хитрость заключается в том, чтобы спроектировать лопасть несущего винта так, чтобы она создавала необходимую подъемную силу и тягу лопасти несущего винта, обеспечивая оптимальное замедление воздуха и не более того.

К сожалению, лопасти ротора турбины не улавливают на 100% всю мощность ветра, так как это означало бы, что воздух за лопастями турбины был бы совершенно неподвижным и, следовательно, не позволял бы ветру проходить через лопасти. Теоретический максимальный КПД, который лопасти ротора турбины могут извлекать из энергии ветра, составляет от 30 до 45% и зависит от следующих переменных лопастей: Конструкция лопасти , Номер лопасти , Длина отвала , Шаг/угол отвала , Форма отвала и Материалы и вес отвала и многие другие.

Конструкция лопастей – Конструкции лопастей ротора работают либо по принципу подъемной силы, либо по принципу сопротивления для извлечения энергии из движущихся воздушных масс. В конструкции подъемных лопастей используется тот же принцип, который позволяет самолетам, воздушным змеям и птицам летать, создавая подъемную силу, перпендикулярную направлению движения. Лопасть несущего винта представляет собой аэродинамическое крыло или крыло, по форме похожее на крыло самолета. Когда лопасть рассекает воздух, между верхней и нижней поверхностями лопасти создается перепад скорости ветра и давления.

Давление на нижнюю поверхность больше и, таким образом, «поднимает» лезвие вверх, поэтому мы хотим сделать эту силу как можно большей. Когда лопасти прикреплены к центральной оси вращения, как ротор ветряной турбины, эта подъемная сила преобразуется во вращательное движение.

Этой подъемной силе противодействует сила сопротивления, параллельная направлению движения и вызывающая турбулентность вокруг задней кромки лопасти, когда она рассекает воздух. Эта турбулентность тормозит лопасть, поэтому мы хотим сделать эту силу сопротивления как можно меньше. Сочетание подъемной силы и сопротивления заставляет ротор вращаться как пропеллер.

Конструкции сопротивления больше используются для вертикальных конструкций ветряных турбин, которые имеют большие чашеобразные или изогнутые лопасти. Ветер буквально расталкивает лопасти, прикрепленные к центральному валу. Преимущества лопастей несущего винта с тормозной конструкцией заключаются в более низких скоростях вращения и высоком крутящем моменте, что делает их полезными для перекачки воды и питания сельскохозяйственной техники. Ветряные турбины с подъемным двигателем имеют гораздо более высокую скорость вращения, чем тяговые, и поэтому хорошо подходят для выработки электроэнергии.

Количество лопастей. Количество лопастей ротора в конструкции ветряной турбины обычно определяется аэродинамической эффективностью и стоимостью. Идеальная конструкция ветряной турбины должна иметь много тонких лопастей ротора, но большинство генераторов ветряных турбин с горизонтальной осью имеют только одну, две или три лопасти ротора.

Увеличение количества лопастей ротора выше трех дает лишь небольшое увеличение эффективности ротора, но увеличивает его стоимость, поэтому обычно не требуется более трех лопастей, но для домашнего использования доступны небольшие многолопастные турбогенераторы с высокой скоростью вращения. Как правило, чем меньше количество лопастей, тем меньше материала требуется при изготовлении, что снижает их общую стоимость и сложность.

Однолопастные роторы имеют противовес на противоположной стороне ротора, но страдают от высокого напряжения материала и вибрации из-за их неплавного вращательного движения одиночной лопасти, которая должна двигаться быстрее, чтобы улавливать такое же количество энергии ветра.

Также с однолопастными или даже двухлопастными роторами большая часть доступного движения воздуха и, следовательно, ветровой энергии проходит через непроходимое поперечное сечение турбины, не взаимодействуя с ротором, что снижает их эффективность.

С другой стороны, многолопастные роторы обеспечивают более плавное вращение и более низкий уровень шума. Более низкие скорости вращения и крутящий момент возможны с многолопастными конструкциями, что снижает нагрузку на трансмиссию, что приводит к снижению затрат на редуктор и генератор. Однако конструкции ветряных турбин с большим количеством лопастей или очень широкими лопастями будут подвергаться воздействию очень больших сил при очень сильном ветре, поэтому в большинстве конструкций ветряных турбин используются три лопасти ротора.

Нечетное или четное количество лопастей ротора — конструкция ветряной турбины с «ЧЕТНЫМ» количеством лопастей ротора, 2, 4 или 6 и т. д., может страдать от проблем со стабильностью при вращении. Это связано с тем, что каждая лопасть ротора имеет точно противоположную лопасть, расположенную под углом 180 9 .0107 или в обратном направлении.

Когда ротор вращается, в тот самый момент, когда самая верхняя лопасть направлена ​​вертикально вверх (положение на 12 часов), самая нижняя лопасть направлена ​​прямо вниз перед опорной башней турбины. В результате самая верхняя лопасть изгибается назад, потому что она получает максимальную силу от ветра, называемую «распорной нагрузкой», а нижняя лопасть проходит в свободную от ветра зону непосредственно перед опорной башней.

Уже в продаже

Технология ветряных турбин: принципы и конструкция

Этот неравномерный изгиб лопастей ротора турбины (самая верхняя изогнута на ветру, а самая нижняя прямая) при каждом вертикальном выравнивании создает нежелательные силы на лопасти ротора и вал ротора, когда две лопасти изгибаются вперед и назад. как они вращаются. Для небольшой турбины с жесткими алюминиевыми или стальными лопастями это может не быть проблемой, в отличие от более длинных лопастей из пластика, армированного стекловолокном.

Конструкция ветряной турбины с нечетным числом лопастей ротора (не менее трех лопастей) вращается более плавно, поскольку гироскопические и изгибающие силы более равномерно распределяются между лопастями, что повышает устойчивость турбины.

Наиболее распространенная конструкция ветряной турбины с нечетными лопастями – это трехлопастная турбина. Энергетическая эффективность трехлопастного ротора немного выше, чем у двухлопастного ротора аналогичного размера, а благодаря дополнительной лопасти они могут вращаться медленнее, что снижает износ и шум.

Кроме того, чтобы избежать турбулентности и взаимодействия между соседними лопастями, расстояние между каждой лопастью многолопастной конструкции и скорость ее вращения должны быть достаточно большими, чтобы одна лопасть не встречала возмущенный, более слабый воздушный поток, вызванный предыдущей лезвие проходит ту же точку непосредственно перед ним. Из-за этого ограничения большинство ветряных турбин нечетного типа имеют максимум три лопасти на роторе и обычно вращаются с более низкой скоростью.

Как правило, трехлопастные ветряные турбины лучше вписываются в ландшафт, более эстетичны и более аэродинамически эффективны, чем конструкции с двумя лопастями, что способствует тому, что трехлопастные ветряные турбины доминируют на рынке ветроэнергетики. Хотя отдельные производители выпускают двух- и шестилопастные турбины (для парусных лодок).

Другие преимущества роторов с нечетными (тремя) лопастями включают более плавную работу, меньший уровень шума и меньшее количество столкновений с птицами, что компенсирует недостаток более высоких материальных затрат. Количество лопастей существенно не влияет на уровень шума.

Длина лопасти ротора. Три фактора определяют, сколько кинетической энергии может быть извлечено из ветра ветряной турбиной: «плотность воздуха», «скорость ветра» и «площадь ротора». Плотность воздуха зависит от того, насколько вы находитесь над уровнем моря, а скорость ветра зависит от погоды. Однако мы можем контролировать площадь вращения, охватываемую лопастями ротора, увеличивая их длину, поскольку размер ротора определяет количество кинетической энергии, которую ветряная турбина может получить от ветра.

Лопасти ротора вращаются вокруг центрального подшипника, образуя идеальный круг 360 o , когда он вращается, и, как мы знаем из школы, площадь круга определяется как: π.r 2 . Таким образом, по мере увеличения охватываемой площади ротора площадь, которую он покрывает, также увеличивается пропорционально квадрату радиуса. Так, удвоение длины лопастей турбины приводит к увеличению ее площади в четыре раза, что позволяет получать в четыре раза больше энергии ветра. Однако это значительно увеличивает размер, вес и, в конечном счете, стоимость конструкции ветряной турбины.

Одним из важных аспектов длины лопасти является вращательная конечная скорость ротора, являющаяся результатом угловой скорости. Чем больше длина лопасти турбины, тем быстрее вращение наконечника при данной скорости ветра. Точно так же для данной длины лопасти ротора чем выше скорость ветра, тем быстрее вращение.

Тогда почему бы нам не разработать конструкцию ветряной турбины с очень длинными лопастями ротора, работающую в ветреную среду и производящую много бесплатной электроэнергии из ветра. Ответ заключается в том, что возникает точка, в которой длина лопастей ротора и скорость ветра фактически снижают выходную эффективность турбины. Вот почему многие более крупные конструкции ветряных турбин вращаются с гораздо меньшей скоростью.

Эффективность зависит от того, насколько быстро вращается наконечник ротора при заданной скорости ветра, создавая постоянное отношение скорости ветра к скорости вращения наконечника, называемое «отношением скорости вращения наконечника» ( λ ), которое представляет собой безразмерную единицу, используемую для максимизации эффективности ротора. Другими словами, «отношение скорости кончика лопасти» (TSR) — это отношение скорости конца вращающейся лопасти в об/мин к скорости ветра в километрах в час (км/ч) или милях в час (миль в час). ).

Хорошая конструкция ветряной турбины определяет мощность ротора при любом сочетании ветра и скорости вращения ротора. Чем больше этот коэффициент TSR, тем быстрее вращение ротора ветродвигателя при заданной скорости ветра. Скорость вращения вала, на которой закреплен ротор, также указывается в оборотах в минуту (об/мин) и зависит от скорости вращения наконечника и диаметра лопастей турбины.

Скорость вращения турбины определяется как: об/мин = скорость ветра x передаточное число x 60 / (диаметр x π).

Если ротор турбины вращается слишком медленно, он позволяет беспрепятственно проходить слишком большому количеству ветра и, таким образом, не извлекает столько энергии, сколько мог бы. С другой стороны, если лопасть ротора вращается слишком быстро, она кажется ветру одним большим плоским вращающимся круглым диском, который создает большое сопротивление и потери на острие, замедляющие ротор. Поэтому важно согласовать скорость вращения ротора турбины с конкретной скоростью ветра, чтобы получить оптимальный КПД.

Роторы турбины с меньшим количеством лопастей достигают максимальной эффективности при более высоком соотношении скоростей вращения лопастей, и, как правило, трехлопастные ветряные турбины для выработки электроэнергии имеют отношение скоростей лопастей от 6 до 8, но они будут работать более плавно, поскольку у них три лопасти. С другой стороны, турбины, используемые для перекачивания воды, имеют более низкое передаточное число от 1,5 до 2, поскольку они специально разработаны для создания высокого крутящего момента на низких скоростях.

Шаг/угол лопасти ротора — лопасти ротора ветряной турбины фиксированной конструкции, как правило, не являются прямыми или плоскими, как крылья аэродинамического профиля самолета, а вместо этого имеют небольшой изгиб и сужение по длине от кончика до основания, чтобы обеспечить различные скорости вращения вдоль клинок. Этот поворот позволяет лопасти поглощать энергию ветра, когда ветер дует на нее с разных тангенциальных углов, а не только прямо. Прямая или плоская лопасть перестанет создавать подъемную силу и может даже остановиться (заглохнуть), если лопасть обдувается ветром под разными углами, называемыми «углом атаки», особенно если этот угол атаки слишком крутой.

Таким образом, чтобы лопасть ротора имела оптимальный угол атаки, увеличивающий подъемную силу и эффективность, лопасти конструкции ветряной турбины обычно скручены по всей длине лопасти. Кроме того, этот поворот в конструкции ветряной турбины предотвращает слишком быстрое вращение лопастей ротора при высоких скоростях ветра.

Однако для очень крупных конструкций ветряных турбин, используемых для выработки электроэнергии, это скручивание лопастей может сделать их конструкцию очень сложной и дорогой, поэтому используется другая форма аэродинамического контроля, чтобы угол атаки лопастей оставался идеально выровненным. с направлением ветра.

Аэродинамическую мощность, создаваемую ветровой турбиной, можно контролировать, регулируя угол наклона ветряной турбины в зависимости от угла атаки ветра при вращении каждой лопасти вокруг своей продольной оси. Затем лопасти несущего винта с регулируемым шагом могут быть более плоскими и более прямыми, но, как правило, эти большие лопасти имеют аналогичную крутку по своей геометрии, но намного меньше, чтобы оптимизировать тангенциальную нагрузку на лопасть несущего винта.

Каждая лопасть ротора имеет вращательный механизм кручения, пассивный или динамический, встроенный в основание лопасти, обеспечивающий равномерное увеличение шага по ее длине (постоянное кручение). Требуемый шаг составляет всего несколько градусов, так как небольшие изменения угла наклона могут иметь существенное влияние на выходную мощность, поскольку мы знаем из предыдущего урока, что энергия, содержащаяся в ветре, пропорциональна кубу скорости ветра.

Одним из основных преимуществ управления шагом лопастей винта является увеличение окна скорости ветра. Положительный угол наклона создает большой пусковой момент, когда ротор начинает вращаться, уменьшая скорость ветра при включении. Точно так же при высоких скоростях ветра, когда достигается предел максимальной скорости несущих винтов, можно управлять шагом, чтобы не допустить превышения предела скорости вращения несущих винтов за счет снижения их эффективности и угла атаки.

Регулирование мощности ветряной турбины может быть достигнуто за счет управления шагом лопастей ротора для уменьшения или увеличения подъемной силы на лопастях путем управления углом атаки. Меньшие лопасти ротора достигают этого за счет небольшого поворота в своей конструкции.

Крупные коммерческие ветряные турбины используют либо пассивное регулирование шага с помощью центробежных пружин и рычагов (аналогично винтам вертолета), либо активное использование небольших электродвигателей, встроенных в ступицу лопастей, для ее поворота на требуемые несколько градусов. Основными недостатками управления шагом являются надежность и стоимость.

Уже в продаже

Power from the Wind — 2nd Edition: A Practice…

Конструкция лопастей – кинетическая энергия, извлекаемая из ветра, зависит от геометрии лопастей несущего винта, поэтому важно определить аэродинамически оптимальную форму и конструкцию лопастей.

Но наряду с аэродинамическим дизайном лопасти несущего винта не менее важен конструктивный дизайн. Конструктивный дизайн состоит из выбора материала лопастей и прочности, поскольку лопасти изгибаются и изгибаются под действием энергии ветра во время их вращения.

Очевидно, что идеальный конструкционный материал для лопасти несущего винта должен сочетать в себе необходимые конструкционные свойства, такие как высокое отношение прочности к массе, высокую усталостную долговечность, жесткость, частоту собственных колебаний и сопротивление усталости, а также низкую стоимость и способность легко формоваться. в желаемую аэродинамическую форму.

Лопасти ротора небольших турбин, используемых в жилых помещениях мощностью от 100 Вт и выше, обычно изготавливаются из массива резного дерева, древесных ламинатов или композитов с деревянным шпоном, а также из алюминия или стали. Деревянные лопасти ротора прочны, легки, дешевы, гибки и популярны в большинстве самодельных конструкций ветряных турбин, поскольку их легко изготовить. Однако низкая прочность древесных ламинатов по сравнению с другими древесными материалами делает их непригодными для лопастей тонкой конструкции, работающих при высоких скоростях острия.

Алюминиевые лезвия также легкие, прочные и с ними легко работать, но они дороже, легко гнутся и подвержены усталости металла. Точно так же стальные лопасти используют самый дешевый материал и могут быть сформированы в виде изогнутых панелей в соответствии с требуемым профилем аэродинамического профиля. Однако в стальные панели гораздо труднее придать изгиб, а в сочетании с плохими усталостными свойствами, означающими, что они ржавеют, сталь используется редко.

Лопасти несущего винта, используемые для очень большой горизонтальной оси 9Ветряная турбина 0015 конструкции изготовлена ​​из армированных пластиковых композитов, наиболее распространенными из которых являются композиты из стекловолокна/полиэфирной смолы, стекловолокна/эпоксидной смолы, стекловолокна/полиэфира и углеродного волокна. Композиты из стекловолокна и углеродного волокна имеют значительно более высокое отношение прочности на сжатие к весу по сравнению с другими материалами. Кроме того, стекловолокно легкое, прочное, недорогое, обладает хорошими усталостными характеристиками и может использоваться в различных производственных процессах.

Размер, тип и конструкция ветряной турбины, которая может вам понадобиться, зависят от вашего конкретного применения и требований к мощности. Конструкции малых ветряных турбин варьируются в размерах от 20 Вт до 50 киловатт (кВт), а меньшие или «микро» (от 20 до 500 Вт) турбины используются в жилых районах для различных применений, таких как производство электроэнергии для зарядки аккумуляторов и питания. огни.

Энергия ветра является одним из самых быстрорастущих источников возобновляемой энергии в мире, поскольку это чистый, широко распространенный энергетический ресурс, который имеется в изобилии, имеет нулевую стоимость топлива и технологию производства электроэнергии без выбросов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *