Турбина генератор – : , ,

Турбогенератор

В зависимости от конструкции первичного двигателя существует два основных типа синхронных генераторов:быстроходные и тихоходные.

Быстроходные генераторы на 3000 и 1500 об/мин предназначаются для непосредственного соединения с паровыми турбинами и называются турбогенераторами.

С увеличением числа оборотов размеры и вес паровой турбины и генератора уменьшаются, что дает ряд экономических преимуществ. В связи с этим в настоящее время широко применяют двухполюсные турбогенераторы на 3000 об/мин.

Синхронизация и принятие нагрузки турбогенератора

После того как турбина развернута до номинального числа оборотов, нужно проверить действие приспособления для изменения числа оборотов (синхронизатора). Убедившись, что оно работает исправно, можно включать генератор на сеть, помня, что работать длительное время без нагрузки турбина не должна во избежание чрезмерного нагрева части низкого давления. Если на данную сеть не работает какой-либо другой генератор, то включение осуществляется очень просто. Включают возбуждение генератора, доводят его напряжение до нормального и включают главный масляный выключатель, после чего поочередно включают масляные выключатели фидеров, передающих энергию к потребителям.

Иначе обстоит дело, когда генератор приключается к сети, на которую уже работают другие генераторы. Включение на параллельную или, как говорят, синхронную работу с другими генераторами должно быть произведено в момент, когда напряжение приключаемого генератора равно напряжению в сети, число периодов в секунду (частота) приключаемого генератора одинаково с частотой уже работающих на сеть генераторов (то есть с частотой сети) и имеет место совпадение фаз напряжения в сети и напряжения приключаемого генератора.

Равенство напряжений определяется по показаниям вольтметров, установленных на распределительном щите и указывающих действительные значения напряжений приключаемого генератора и сети. В случае, если показания вольтметров различны, то напряжение генератора подгоняют к напряжению сети, соответствующим образом регулируя возбуждение генератора.

Как известно, напряжение на зажимах (выводах) генератора переменного тока непрерывно изменяется; оно увеличивается от нуля до некоторого максимального положительного значения, затем уменьшается до нуля, после чего принимает отрицательное значение и, достигнув определенной величины, опять падает до нуля и так далее. Графически эти изменения изобразятся кривой, по форме близкой к синусоиде (рис. 8). Время, в течение которого напряжение проходит все свои положительные и отрицательные значения, называется периодом, а число периодов в секунду- частотой. Обычно применяется частота, равная 50 пер/сек.

Частота определяется выражением

pn/60

где р- число пар полюсов генератора;
      n- число оборотов в минуту;
     60- число секунд в минуте.
Следовательно, равенство частот работающего и приключаемого генераторов будет иметь место при условии, что

 

pn/60=p1n1/60.

 

Это значит, что при равном числе полюсов работающего и приключаемого генераторов, то есть р= p1, должны быть равны и числа их оборотов n= n1. Таким образом, для получения близкого совпадения частот число оборотов приключаемого генератора должно быть возможно точно доведено до числа оборотов работающего генератора.

При большем числе полюсов у работающего генератора число оборотов приклчаемого должно быть соответственно больше, и наоборот.

После того как равенство напряжений и близость частот достигнуты, нужно уловить момент совпадения фаз напряжения в сети и напряжения приключаемого генератора и включить генератор именно в этот момент. Это условие требует некоторого пояснения.

Известно, что напряжение в сети, к которой мы должны приключить генератор, изменяется по кривой, аналогичной изображенной на (рис. 8) Практически почти неизбежно, что напряжение генератора, уже работающего на сеть, и напряжение приключаемого генератора, даже имея равные амплитуды, окажутся сдвинутыми по фазе, то есть будут достигать каждого из своих мгновенных одинаковых значений разновременно (рис.9) Если мы при этом условии соединим в момент М генераторы для параллельной работы, то между зажимами генераторов окажется разность потенциалов, равная (b — a), и через обмотки пойдет ток, который может оказаться даже больше тока короткого замыкания. Указанная разность потенциалов будет изменяться по величине примерно так, как показано на (рис. 10) На этой фигуре кривая е1 изображает напряжение работающего на сеть генератора, кривая

— напряжение приключаемого генератора, а кривая ер— равнодействующую напряжений, которое получается от взаимодействия е1 и е2.

Задача состоит в том, чтобы приключить генератор в такой момент, когда его напряжение и напряжение уже работающего на сеть генератора достигнут своих максимальных значений одновременно, будучи при этом равными и взаимно противоположными(будучи взаимно противоположными в внутренней цепи (в обмотках машины), совпадут по фазе по отношению к внешней цепи тока (сборным шинам)).

В этот момент результирующее напряжение ер будет равно нулю, и включение может быть произведено совершенно безопасно.

Рассматривая диаграмму, представленную на (рис. 10), мы видим, что кривые е1 и е2 имея равные амплитуды, постепенно сдвигаются одна относительно другой. Этот сдвиг вызывается некоторой разностью в числе оборотов генератора, которая практически всегда имеет место до включения на параллельную работу. Соответственно изменяется и амплитуда кривой ер, которая достигает своего максимального значения в момент совпадения одноименных максимальных значений е1 и е2 (точки А и В).

Своего нулевого значения ер достигает в моменты одновременности равных, но взаимно противоположных значений е1 и е2 (точка D) или одновременности нулевых значений (точка С).

Таким образом, приключать генератор можно в моменты, соответствующие точкам С и D. Для определения этих моментов между соединяемыми шинами включают электрические лампы, называемые фазовыми лампами (рис. 11). Ток, проходящий в этих лампах, вызывается равнодействующим напряжением ер. Очевидно, что в соответствии с изменениями ер будет изменяться накал фазовых ламп, которые будут ярко светиться в моменты, соответствующие точкам А и В, и постепенно погасать с уменьшением ер. При этом, чем ближе совпадают скорости вращения генераторов, тем продолжительнее будут периоды вспыхивания и затухания фазовых ламп, так как тем реже будет иметь место совпадение фаз е1 и е2. Схема параллельного соединения двух трехфазных генераторов с включением фазовых ламп показана на (рис. 12). Как видно из этой схемы, обе фазовые лампы при включении выключателей В3 и В4 будут вспыхивать одновременно.

Фазовые лампы не дают возможности точно уловить момент, когда ер становится равным нулю, так как они перестают светиться уже с того момента, когда ер становится недостаточным для их накала, но имеет еще существенную величину. Поэтому в параллель к фазовым лампам обычно приключают вольтметр, по которому можно более точно наблюдать разность потенциалов между соединяемыми шинами. В таком случае включение генератора производят в момент, когда вслед за потуханием фазовой лампы стрелка вольтметра займет нулевое положение. Предварительно добиваются возможно более продолжительных периодов загорания и потухания фазовых ламп, регулируя от руки или со щита число приключаемого генератора посредством приспособления для изменения числа оборотов турбины (синхронизатора).

Эксплуатация турбогенератора

Величина длительно допускаемой (без ограничения времени) нагрузки генератора зависит: 1)температуры охлаждающего воздуха; 2)коэффициента мощности с которым работает генератор; 3)длительно допускаемой температуры нагрева обмоток и стали статора, а также обмоток ротора.

Большинство генераторов, установленных на электростанциях, рассчитано на отдачу номинальной мощности при температуре входящего охлаждающего воздуха +35 или +400 С . При этом нагрев воздуха в генераторе (температурный перепад) в зависимости от типа генератора обычно составляет не более 25-300 С, соответственно чему температура выходящего из генератора воздуха обычно не превышает +60-700 С.

Длительно допускаемые температуры нагрева обмоток и стали различны для генераторов различного типа и зависят от рода их изоляции. Точные значения температур указывают в станционных инструкциях для каждого генератора, однако в большинстве случаев они не должны превышать 100-120 0 С для статорных обмоток и 120-145 0 С для роторных обмоток. Температура стали в месте расположения обмотки не должна быть больше допускаемой температуры последней. При этом предполагается, что температура нагрева обмоток и стали статора измеряются термодетекторами (термометрами сопротивления), заложенными между стержнями обмоток и на дно пазов статора, а температура нагрева обмоток ротора определяется по методу изменения сопротивления при нагреве.

Изоляция генераторов постепенно изнашивается или, как принято говорить, стареет. Старение изоляции происходит в следствии воздействия на нее электрического поля, под действием различных механических нагрузок (вибрации машины, электродинамических действий токов к. з., трения струи охлаждающего воздуха и т. д.). В следствии ее загрязнения, увлажнения, окисления кислородом воздуха и ряда других причин. Особенно большое влияние на старение изоляции оказывает ее нагрев — чем выше температура нагрева изоляции, тем быстрее она разрушается, тем меньше ее срок службы. Например, если взять наиболее распространенную для статорных и роторных обмоток изоляцию класса В (изделия из слюды, асбеста и других минеральный материалов со связующими материалами на шеллаке), то оказывается, что если при нагреве до температуры 1200 С срок службы ее составляет около 15 лет, то при нагреве до 1400 С срок службы ее резко уменьшается почти до 2 лет. Значительный нагрев изоляции приводит к уменьшению ее эластичности, она становиться хрупкой, электрическая прочность ее резко уменьшается. Так же изоляция класса В при температуре нагрева порядка 1050 С стареет медленно и срок службы ее становится более 25-30 лет.
Из сказанного следует, что в эксплуатации при любых режимах работы генераторов нельзя допускать нагрева их изоляции свыше установленных для них предельно допустимых температур.

Если температура входящего в генератор воздуха меньше номинальной (соответственно +35 или +400 С), то условия охлаждения генератора улучшаются и его мощность может быть несколько увеличена по сравнению с номинальной. Наоборот, если температура входящего воздуха выше номинальной, то мощность генератора должна быть несколько уменьшена. Значения допускаемых нагрузок генераторов при различных температурах входящего воздуха указываются в станционных и типовых инструкциях на генераторы.

Наибольшая допускаемая температура входящего в генератор воздуха +500 С, а выходящего (горячего) +750 С.

 

Для большинства генераторов номинальный коэффициент мощности cos f составляет от 0,8 до 0,9. От величины коэффициента мощности, с которым работает генератор, зависит величина тока возбуждения генератора. При одной и той же нагрузке генератора в киловольтамперах, чем меньше коэффициент мощности, тем больше ток возбуждения, тем больше загрузка ротора. Работа генератора с коэффициентом мощности меньше номинального приводит к неполному использованию мощности агрегата.

 

Если напряжение на зажимах генератора отличается от номинального не более чем на 5%, то генератор может быть загружен на номинальную мощность. Допускаются следующие предельные повышения напряжения на зажимах: для генераторов 6,6 кв — 10%, а для генераторов 10,5 кв и выше — 5%. В случае увеличения напряжения на зажимах генераторов до 6,6 кв и ниже более чем на 5% нагрузка их должна быть несколько уменьшена. Объясняется это тем,что в следствии недопустимости перегрузки ротора повышенное напряжение на зажимах генератора может быть получено только за счет уменьшения его нагрузки Наоборот, в случае уменьшения напряжения на зажимах тех же генераторов более чем на 5%, нагрузка их может быть несколько увеличена.

Несимметричная нагрузка фаз приводит к наведению токов в демпферных обмотках и к перегреву последних. Поэтому следует стремиться обеспечить равномерную нагрузку фаз генератора. Если турбогенераторы имеют роторы с капами, то наибольшая не симметрия нагрузки не должна превышать 10%; при роторах с проволочными бандажами не симметричная нагрузка не допускается.

Генераторы, присоединенные к сети с незаземленными нейтралями или к компенсированной сети (с дугогасящими катушками в нейтралях), могут продолжать работу при однофазных замыканиях на землю в сети. При этом длительность такого режима не должна превышать: для генераторов напряжением 6,6 кв и ниже — 2 часа; а для генераторов напряжением 10,5 кв — 1 часа. Ток замыкания на землю должен быть не более 50 А.

         Далее  ► ► ►                              Наверх                               Главная страница

par-turbina.ucoz.net

Домашняя ТЭЦ на микротурбине | Инженерный Дом

Возможно ли дома иметь собственную надежную, компактную систему генерации тепла и электричества? Компания MTT Micro Turbine Technology BV (Нидерланды) на этот вопрос ответила утвердительно, создав установку EnerTwin  на основе микротурбины, одновременно генерирующей 3 кВт электричества  и 15 кВт  тепла.  Микро-ТЭЦ EnerTwin разработана для замены отопительных котлов для малого бизнеса и домашних хозяйств. Основное внимание уделяется низкой себестоимости, надежности, снижению уровня шума и низким эксплуатационным расходам.

Выглядит МикроТЭЦ как обычный бытовой прибор

Микро-ТЭЦ одновременно генерирует (когенерирует) тепловую и электрическую энергию в местах, где они обе востребованы. Как правило, основным   потребителем энергии микро-ТЭЦ является система отопления. Электричество, в этом случае, становится побочным продуктом, производимым по очень низкой себестоимости. Основное преимущество микро-ТЭЦ в том, что энергия топлива используется практически полностью. В этом состоит основное отличие от обычных электростанций, где значительное количество тепла теряется в атмосферу. Кроме того, микро-ТЭЦ экономит на передаче электроэнергии от электростанций до конечных пользователей, за счет уменьшения потерь.  Любое превышение выработки электроэнергии от микро-ТЭЦ можно экспортировать в электрическую сеть (в Европе, США и др.). Существуют специальные программы стимулирования для поставщиков электроэнергии. Например в Германии, для тех кто поставляет излишки генерируемой электроэнергии в сеть, дополнительно предоставляются льготы. Это делает преимущества когенерации еще большими.

Распределенная система генерации энергии на базе микро-ТЭЦ EnerTwin

Технология

EnerTwin система микро-ТЭЦ построена на основе микротурбины. Принцип работы заключается в следующем:

Основная схема рабочих узлов микро-ТЭЦ

  1. Окружающий воздух поступает и сжимается в компрессоре.
  2. Сжатый воздух предварительно нагревают в рекуператоре. 
  3. В камере сгорания, добавляется тепло при сгорании топлива. 
  4. Горячий сжатый газ расширяется в турбине, что обеспечивает механическую энергию для компрессора и генератора. «Инвертер» преобразует энергию, подаваемую генератором в напряжение и частоту электросети (23050 Гц).
  5. Расширенный газ после турбины нагревает воздух, сжатый компрессором в рекуператоре (см.2). 
  6. Остаточное тепло, оставшееся в выходном газе после рекуператора,  поглощается в теплообменнике с водой. 
  7. Горячая вода используется для центрального отопления и /или горячего водоснабжения.

Внутреннее устройство EnerTwin

Турбина

Газовые турбины известны своей высокой мощностью, низким весом и эксплуатационными расходами. Использование технологии турбонаддува, разработка которой финансировалась государством, приводит к низкой себестоимости производства. Газотурбинные компоненты оптимизировались для применения в турбогенераторе. Высокоскоростной турбогенератор при частоте вращения 240 тысяч оборотов в минуту  имеет чистый электрический к.п.д. 15% (19% эффективность мощности на валу). Вместе с низкими затратами, это обеспечивает большой потенциал для экономически эффективных микро-ТЭЦ систем.

Новая концепция

При создании EverTwin компания применила нетрадиционный подход для разработки эффективного, очень малого газотурбинного двигателя. Этот проект основан на вращающейся камере сгорания в сочетании с эффективным компрессором.

Эффективность газовой турбины  в значительной степени зависит от потерь из-за утечек потока, тепловых потерь и трения. Эти потери становятся еще существенней при попытках создать турбины микро-мощности, масштабируя обычные газовые турбины. При уменьшении турбины соотношение зазоров и размеров лопастей турбины уменьшается. Кроме того, при уменьшении размера (снижается число Рейнольдса) вязкие потери на трение становятся больше, чем в обычных турбогенераторах. В результате , существует фундаментальное ограничение на эффективность микротурбин с обычной конфигурацией.

В концепции вращающейся камеры сгорания вышеуказанные масштабные эффекты не так заметны. Ключевой особенностью является монолитный ротор.

Монолитный ротор микротурбины

Монолитный ротор в разрезе

В основном , турбина состоит из одного ротора, в котором расположены центробежный компрессор, вращающаяся камера сгорания и реакционная турбина. У вращающейся камеры сгорания, компрессор не имеет диффузора и турбина не имеет лопаток.

Электрогенератор

Эффективный высокочастотный генератор на постоянных магнитах преобразует механическую энергию микротурбины в электроэнергию.
Генератор полностью интегрирован в ротор турбины, избегая затрат и потерь от дополнительных подшипников и муфт.

Уровень шума

Микротурбины излучают только высокочастотный шум, который может быть эффективно заглушен. По сравнению с обычными генераторами и турбинами, EnerTwin имеет очень низкий уровень шума.

Спецификация EnerTwin

  • Электрическая мощность (макс/мин) — 3,0 /1,0 кВт
  • Тепловая мощность  (макс/мин) — 14,4 /5,0 кВт
  • Электрический КПД (макс/мин) — 15 /10 %
  • Максимальный суммарный КПД — 87% (зависит от параметров системы отопления, например температуры обратного трубопровода)
  • Скорость вращения ротора (макс/ мин) — 240 / 180 тысяч об/мин
  • Потребление газа (38.5 MJ/nm3,  макс/мин) — 1,87 /0,84 nm3/h
  • Топливо — природный газ
  • Параметры системы отопления (подающая/обратная труба) — 8060 °С
  • Шум — 55 dB(A) 1m
  • Размеры  — 970 x 610 x 1120мм
  • Вес — 225 кг
  • Диаметр дымохода — 100мм
  • Электросеть — 230 В/50 Гц

Основное применение

По мнению разработчика основное применение микро-ТЭЦ:

  • Малые и средние предприятия;  
  • Отрасли с относительно небольшим устойчивым требования тепла;  
  • Конференц-залы; 
  • Большие жилые дома;
  • Дома с бассейном и /или сауной;
  • Коттеджи; 
  •  Школы, спортивные школы, спортивные залы, студии и кружки;  
  • Коммунальные здания; 
  • Автозаправочные станции;
  • Гостиницы и рестораны;
  • Магазины;
  • Оздоровительные центры;
  • Дома престарелых; 
  • Правительственные здания, такие как залы, полицейские станции, библиотеки.

Сертификация

В феврале 2013 года EnerTwin получили сертификат CE для полевых испытаний. Получение этого сертификата представляет собой важную веху в развитии EnerTwin. Сертификат был выдан по KIWA после всесторонних испытаний работы турбин на газообразном топливе и вопросам безопасности труда. Свидетельство KIWA действительно для всех стран Европейского Союза, а также в Норвегии, Хорватии, Турции и Швейцарии.

Европейский сертификат безопасности KIWA

Где посмотреть?

МТТ скоро будет участвовать на выставках:

  • Hannover Messe в Германии с 7 по 11 апреля 2014 года, павильон Holland Energy House, холл 27 G24
  • MCE в Милане с 18 по 21 марта  2014 г. в павильоне 5, стенд №. E02 10.
Читайте также:

www.joule-watt.com

Конструкция турбогенератора



Поиск Лекций




Введение

Турбогенераторы (ТГ) представляют собой основной вид генерирующего оборудования, обеспечивающего свыше 80% общего мирового объема выработки электроэнергии. Одновременно ТГ являются и наиболее сложным типом электрических машин, в которых тесно сочетаются проблемы мощности, габаритов, электромагнитных характеристик, нагрева, охлаждения, статической и динамической прочности элементов конструкции. Обеспечение максимальной эксплуатационной надежности и экономичности ТГ является центральной научно-технической проблемой. Вместе с тем, несмотря на огромное количество работ, выполненных за прошедшие десятилетия, вопросы дальнейшего развития теории, разработки более совершенных технологий и конструкций ТГ, методов расчета и исследований не теряют своей актуальности.

Турбогенератор — неявнополюсный синхронный генератор, основная функция которого состоит в конвертации механической энергии в работе от паровой или газовой турбины в электрическую при высоких скоростях вращения ротора (3000,1500об/мин). Механическая энергия от турбины конвертируется в электрическую при помощи вращающегося магнитного поля, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, что в свою очередь приводит к возникновению трехфазного переменного тока и напряжения в обмотках статора. В зависимости от систем охлаждения турбогенераторы подразделяются на несколько видов: генераторы с воздушным охлаждением, генераторы с водородным охлаждением и генераторы с водяным охлаждением. Также существуют комбинированные типы, например, генератор с водородно-водяным охлаждением (ТВВ). Турбогенератор ТВВ-320-2 предназначен для выработки электрической энергии на тепловой электростанции при непосредственном соединении с паровой турбиной К-300-240 Ленинградского металлического завода или Т-250-240 Уральского турбомоторного завода.

 

 

Задание

а) конструкция и принцип действия электрической в соответствии с заданием, сфера применения;

б) схема-развертка обмотки.

Выбор варианта

а) выбирается по таблице 1.1

Таблица 1.1

Первая
буква
фамилии
 
Варианты
С Турбогенераторы

б) выбирается по таблицам 1.2 и 1.3

Таблица 1.2

Предпоследняя
Цифра шифра
Варианты
Однослойная обмотка

 

Таблица 1.3

Последняя цифра шифра Число пар
полюсов р
Число пазов на полюс и фазу q Число параллельных ветвей а
Однослойная обмотка Двухслойная обмотка
1,3

 

Турбогенераторы



2.1 Турбогенератор — работающий в паре с турбиной синхронный генератор. Основная функция в преобразовании механической энергии вращения паровой или газовой турбины в электрическую. Скорость вращения ротора 3000, 1500 об/мин. Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновениютрёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. Напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), следовательно, имеют высокие частоты вращения и проблемы с этим связанные. По способам охлаждения обмоток турбогенератора различают: с водяным охлаждением (три воды), с воздушным и водородным (чаще применяются на АЭС).

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением. Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.




Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов — статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор — вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор — стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок — вибрационных и крутящих, а также электромагнитных, термических и высоковольтных. Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

Работа турбогенератора

Неявнополюсные роторы (рис. 10 и 11) применя­ют в синхронных машинах большой мощности, имеющих частоту вращения п = 1500÷3000 об/мин. Изготовление ма­шин большой мощности с такими частотами вращения при явнополюсной конструкции ротора невозможно по услови­ям механической прочности ротора и крепления полюсов и обмотки возбуждения.

 

Неявнополюсные роторы имеют главным образом син­хронные генераторы, предназначенные для непосредствен­ного соединения с паровыми турбинами. Такие машины на­зывают турбогенераторами. Турбогенераторы для тепловых электрических станций имеют частоту вращения 3000 об/мин и два полюса, а для атомных станций — 1500 об/мин и четыре по­люса. Ротор турбогенераторов выполняют массивным из цельной стальной поковки. Для роторов турбогенерато­ров большой мощности применяют высококачественную хромоникелевую или хромоникельмолибденовую сталь. По условиям механической прочности диаметр ротора при частоте вращения 3000 об/мин не должен превышать 1,2-1,25 м. Чтобы обеспечить необходимую меха­ническую жесткость, активная длина ротора должна быть не больше 6,5 м.

 

 

 

На рис. 10 дан общий вид, а на рис. 11 — поперечный разрез двухполюсного ротора тур­богенератора.

На наружной поверхности ротора фрезеруют пазы прямоугольной формы, в которые укладывают катушки обмотки возбуждения. Примерно на одной трети полюс­ного деления обмотку не укладывают, и эта часть образует так называемый большой зубец, через который проходит основная часть магнитного потока генератора. Иногда в большом зубце выполняют пазы, которые образуют вен­тиляционные каналы. Из-за больших центробежных сил, действующих на об­мотку возбуждения, ее крепление в пазах производят с по­мощью немагнитных металлических клиньев. Немагнитные клинья ослабляют магнитные потоки пазового рассеяния, которые могут вызывать насыщение зубцов и приводить к уменьшению полезного потока. Пазы большого зубца за­крывают магнитными клиньями. Лобовые части обмотки закрепляют роторными бандажами. Обмотка ротора имеет изоляцию класса В или F. Выводы от обмотки возбуждения подсоединяют к контактным кольцам на роторе. Вдоль оси ротора по всей его длине просверливают цент­ральное отверстие, которое служит для исследования ма­териала центральной части поковки и для разгрузки по­ковки от опасных внутренних напряжений. На рис. 12 дан общий вид турбогенератора. В турбогенераторах функ­цию демпферной обмотки выполняют массивное тело рото­ра и клинья.

Кроме турбогенераторов с неявнополюсным ротором вы­пускают быстроходные синхронные двигатели большой мощности — турбодвигатели.





Рекомендуемые страницы:

Поиск по сайту







poisk-ru.ru

 

Турбина-генератор относится к области гидроэнергетического строительства и может быть использована для преобразования энергии течения реки в энергию для бытовых и производственных нужд. Турбина- генератор, содержащая установленное в русле реки сооружение с электрогенератором, редуктором, лопастями, укрепленными на вертикальной оси вращения она имеет колесо (колеса) турбины со складывающимися лопастями, изогнутыми по форме колеса, спереди и сбоку и, укрепленные к колесу пальцами со штопорами и имеющие упоры сзади, а также генератор, укрепленный на вертикальной оси с уплотнителем и смонтированный в бетонной плите. Турбина-генератор может содержать два колеса, насаженные на одну ось, причем расстояние между ними 30 см. Колеса турбины выполнены с диаметром 4 м, а шириной 14 см. По сравнению с известными техническими решениями турбина-генератор не нуждается в плотине ГЭС, топливе ТЭЦ, АЭС, способна работать под водой летом и зимой подо льдом. Бетонная плита исключает необходимость вести разведки дна. Собранную турбину легко можно привезти на буксире и притопить на выбранном участке дна. Колесо турбины имеет много отверстий для установки лопастей, что позволяет менять их количество, размеры и форму. Благодаря легкой конструкции скошенных оперений с боков, лопасти открываются мгновенно по ходу вращения колеса и турбина может работать в любом положении(вертикально, под углом, вверх дном).

Приложение 1 к решению о выдаче патента

к заявке 2010134032/06(048357)

Турбина-генератор

Полезная модель относится к получению электрической энергии и может быть использована для получения электрической энергии для бытовых и производственных нужд.

Известно устройство для использования энергии текучей среды (см. RU 2046208 C1, 20.10.1995, F03B17/06), содержащее колесо с лопастями, установленными с возможностью поворота относительно их осей, при этом каждая лопасть разделена осью на две части с неравными площадями. Устройство снабжено корпусом и валом, установленным в нем. Кроме того, лопасти колеса шарнирно установлены в корпусе и снабжены рычагами, закрепленными одними своими концами на осях лопастей у корневой их части, а на других концах рычагов установлены катки. Устройство снабжено кулачковым диском, взаимодействующим с катками и шарнирно установленным на валу, и флюгером, жестко закрепленным на диске.

Известен русловой генератор (см. SU 1634812 A1, 15.03.1991, F03B7/00), содержащий роторную гидротурбину с лопастями и валом и электрогенератор, кинематически связанный с последним. Гидроагрегат снабжен поперечной гидротурбиной, которая размещена на валу роторной гидротурбины и соединена с ним при помощи обгонной муфты.

Известна волно-поточная энергетическая установка (RU 2351793 C1, 10.04.2009, F03B13/22), содержащая две турбины с лопастями гидродинамического профиля, горизонтально-соосно установленные в конфузорно-диффузорном водоводе, и электрогенератор, при этом турбины выполнены ортогональными, их валы ориентированы поперек водовода установки и один из концов валов каждой ортогональной турбины закреплен в стенке водовода, электрогенератор расположен между ортогональными турбинами, кинематически связан с валами ортогональных турбин и размещен в полости. Она снабжена поплавком, водовод установлен под поплавком на кронштейне, снабженном шарниром с возможностью поворота водовода для ориентации осей ортогональных турбин перпендикулярно потоку, лопасти одной ортогональной турбины ориентированы в противоположном направлении по отношению к лопастям второй ортогональной турбины для вращения ортогональных турбин в противоположных, неизменных направлениях, независимо от направления течения потока через ортогональные турбины, индуктор электрогенератора выполнен неподвижным, двустороннего действия и расположен между соединенными каждый со своим валом ортогональной турбины роторами, вращающимися в противоположных направлениях и установленными с малым зазором относительно индуктора, фиксированными прокладками из материала с низким трения скольжения.

Известна гидроэлектростанция (см. RU 2171910 C1, 10.08.2001, F03B13/00, прототип), содержащая установленное в русле реки сооружение с направляющим устройством потока воды, электрогенератором, редуктором, расположенным над водной поверхностью гидроколеса с неподвижными лопастями и вертикальной осью вращения, расположенного под водой и кинематически связанного через редуктор с электрогенератором. Сооружение гидроэлектростанции занимает часть центрального сечения реки и состоит из фундаментной плиты, боковых стен и перекрытия с помещением для редуктора с электрогенератором над местом установки гидроколеса. Сооружение перед водозабором имеет ледорезную опору и бетонные сети, а стены со стороны входа воды и ее выхода имеют расширения, образующие соответственно конфузорный, рабочий и диффузорный каналы. Одна из боковых стен имеет в рабочем канале секторный, полукруглый вырез под гидроколесо, которое установлено выше дна реки и ниже нижней кромки возможного ледяного покрова в подшипниковых узлах, соответственно, нижнем — в фундаментной плите и верхнем — в перекрытии, причем гидроколесо выполнено полым, состоящим из жестко установленных на вертикальном валу двух параллельных дисков, по периферии которых и между ними равномерно установлены лопасти с длиной не более 2/3 его радиуса под углом к нему от 0 до 180°.

Недостатком описанных технических решений является ненадежность работы в зимнее время при наличии ледяного покрова (30-40°С), на лопастях будет наращиваться лед, что будет вызывать торможение и постепенную остановку двигателя.

Задачей данного технического решения является создание мобильной, экологически чистой, экономичной турбины-генератора, обеспечивающей ее работоспособность при любых погодных условиях.

Задача решена в турбине-генераторе, содержащей установленное в русле реки сооружение с электрогенератором, редуктором, лопастями, укрепленными на вертикальной оси вращения, согласно полезной модели, она имеет колесо (колеса) турбины со складывающимися лопастями, изогнутыми по форме колеса, спереди и сбоку и, укрепленными к колесу пальцами со штопорами и имеющими упоры сзади, а также генератор, укрепленный на вертикальной оси с уплотнителем и смонтированный в бетонной плите.

Кроме того, турбина-генератор содержит два колеса, насаженные на одну ось, причем расстояние между ними 30 см.

Кроме того, колеса турбины выполнены с диаметром 4 м, а ширина их не превышает 14 см.

На Фиг.1 представлена турбина-генератор, вмонтированная в бетонную плиту 1, содержащая генератор 2, вертикальную ось 3, выполненную с уплотнителем 4, подшипниками 5, горизонтальными колесами 6 со складывающимися лопастями 7, изогнутыми по форме колеса турбины и имеющими упоры.

На фиг.2 представлена складывающаяся лопасть (вид спереди).

На фиг.3 — складывающаяся лопасть (вид сзади).

На фиг.4 — складывающаяся лопасть (вид сбоку) с упором.

На фиг.5 — палец крепления лопасти со штопором.

На фиг.6 — колесо турбины с закрытыми лопастями.

На фиг.7 — колесо турбины с открывающими навстречу течению реки лопастями.

Описанное устройство работает следующим образом: естественный поток воды в реке воздействует на лопасти турбины. Благодаря легкой конструкции скошенных оперений с боков лопасти открываются мгновенно по ходу вращения колеса турбины, скор

poleznayamodel.ru

Турбогенератор — это… Что такое Турбогенератор?

Турбогенератор — работающий в паре с турбиной синхронный генератор. Основная функция в преобразовании механической энергии вращения паровой или газовой турбины в электрическую. Скорость вращения ротора 3000, 1500 об/мин. Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. Напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), следовательно, имеют высокие частоты вращения и проблемы с этим связанные. По способам охлаждения обмоток турбогенератора различают: с водяным охлаждением (три воды), с воздушным и водородным (чаще применяются на АЭС). По качеству, надежности и долговечности производимых турбогенераторов — Россия занимает передовые позиции в мире.

История

Один из основателей компании «ABB» Чарльз Браун построил первый турбогенератор в 1901 году[1]. Это был 6-ти полюсный генератор мощностью 100 кВА[2].

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них — небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Типы турбогенераторов

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатом воздухе, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов — статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор — вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор — стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок — вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединен упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от не соединенного с ротором генератора возбудителя. Такие возбудители переменного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора через щетки и контактные кольца! Появляется основной магнитный поток и при подключении нагрузки в генераторе будет наводиться ЭДС(~I)

Литература

  • Вольдек А. И. Электрические машины. Энергия. Л. 1978
  • Operation and Maintenance of Large Turbo Generators, by Geoff Klempner and Isidor Kerszenbaum, ISBN 0-471-61447-5, 2004

Примечания

  1. The Growth of Turbogenerators, by K. Abegg, 1973, The Royal Society.
  2. The Evolution of the Synchronous Machine, by Proffesor Gerhard Neidhofer, Engineering Science and Education Journal, October 1992.

dic.academic.ru

Турбогенератор — это… Что такое Турбогенератор?

        генератор электрической энергии, приводимый во вращение паровой или газовой турбиной. Обычно Т. — это Синхронный генератор, непосредственно соединённый с турбиной тепловой электростанции (См. Тепловая электростанция) (ТЭС). Так как турбины, используемые на ТЭС, работающих на органическом топливе, имеют наилучшие технико-экономические показатели при больших частотах вращения, то Т., находящиеся на одном валу с турбинами, должны быть быстроходными. Частота вращения n Т. определяется из условия f = р (n) где f — частота переменного тока, р — число пар полюсов Т. В СССР промышленная частота тока f = 50 гц, поэтому наивысшая частота вращения Т. составляет 50 сек— –1(при р = 1).
         Т. — электромашина горизонтального исполнения (рис.). Обмотка возбуждения Т. расположена на Роторе с неявно выраженными полюсами, трёхфазная рабочая обмотка — на Статоре. Ротор, испытывающий наиболее сильные механические напряжения, выполняют из целых поковок высококачественных сталей. По условиям прочности линейная скорость точек ротора v не должна превышать 170—190 м/сек, что ограничивает его диаметр при n = 50 сек –1 величиной D = v/πn = 1,2—1,3 м. Относительно малый диаметр ротора обусловливает его сравнительно большую длину, которая, однако, ограничена допустимым прогибом вала и не превышает 7,5—8,5 м. На поверхности ротора профрезерованы продольные пазы, в которые укладывают витки обмотки возбуждения. Обмотку крепят клиньями, закрывающими пазы, и массивными бандажами из немагнитной стали, охватывающими лобовые (торцевые) части обмотки.

Питается обмотка от возбудителя электрических машин (См. Возбудитель электрических машин).

         Статор Т. состоит из корпуса и сердечника с пазами для обмотки. Сердечник изготовляют из нескольких пакетов, набираемых из листов электротехнической стали толщиной 0,35—0,5 мм, покрытых слоем лака. Между отдельными пакетами оставляют вентиляционные каналы шириной 5—10 мм. В пазах обмотку крепят клиньями, а её лобовые части укрепляют на специальных кольцах, расположенных в торцевой части статора. Сердечник помещают в стальной сварной корпус, закрываемый с торцов щитами.

         Т. атомных электростанций обладают некоторыми особенностями, связанными с тем, что пар, вырабатываемый в ядерном реакторе, имеет относительно низкие параметры, обусловливающие экономическую целесообразность применения турбин с частотой вращения 25 сек –1. Такая частота требует наличия двух пар полюсов на роторе Т. и позволяет выполнять сам ротор с большим диаметром (до 1,8 м). При этом размер поковки ротора ограничивается технологическими возможностями её изготовления (максимальная масса поковки достигает 140—180 т).

         Т. мощностью до 30 Мвт имеют замкнутую систему воздушного охлаждения; при мощности свыше 30 Мвт воздушную среду заменяют водородной (с избыточным давлением около 5 кн/м2). Использование водорода в качестве теплоносителя позволяет увеличить съём тепла с охлаждаемых поверхностей (так как теплоёмкость водорода в несколько раз превышает теплоёмкость воздуха) и соответственно повысить мощность Т. при заданных размерах. Циркуляция теплоносителя обеспечивается вентиляторами, расположенными на одном валу с Т. Тепло снимается с поверхностей изолированных проводников и стальных сердечников. Нагревшийся теплоноситель поступает в специальный охладитель (при водородном охлаждении он встраивается в Т. и вся система охлаждения тщательно герметизируется). Для интенсификации охлаждения при мощности Т. свыше 150 Мвт давление водорода в системе повышают до 300—500 кн/м2, а при мощности свыше 300 Мвт используют внутреннее охлаждение проводников обмотки водородом или дистиллированной водой. При водородном охлаждении проводники обмотки делают с боковыми вырезами-каналами, а при водяном охлаждении применяют полые проводники. В крупных Т. охлаждение обычно комбинированное: например, обмотки статора и ротора охлаждаются водой, а сердечник статора — водородом.

         Повышение мощности Т. приводит к снижению удельного расхода материалов и в конечном счёте к снижению затрат на его изготовление (в расчёте на квт мощности). Так, у Т. мощностью 30 Мвт расход материала на каждый квт мощности составляет 2,75 кг, а у Т. мощностью 200, 500, 800 и 1200 Мвм — соответственно 1,53, 0,69, 0,58 и 0,457 кг. Таблица иллюстрирует рост мощности Т., выпускаемых в СССР

        Рост максимальной мощности турбогенераторов, производимых в СССР.

        —————————————————————————————————————————————-

        | Мощность,   | 1925       | 1931       | 1937       | 1945       | 1964       | 1969       | 1975        |

        | Мвт             |—————————————————————————————————————— |

        |                    | 5            | 24           | 100         | 200         | 500         | 800         | 1200        |

        —————————————————————————————————————————————-

        

         Кпд Т. 98—99%, напряжение на зажимах — до нескольких десятков кв.

        

         Лит.: Вольдек А. И., Электрические машины, Л., 1974.

         М. Д. Находкин.

        

        Турбогенератор мощностью 1200 Мвт (напряжение 24 кв, частота вращения ротора 50 сек —1, кпд 99%).

dic.academic.ru

Турбогенератор — Википедия

Материал из Википедии — свободной энциклопедии

Снятый наружный щит и опорный подшипник генератора турбоагрегата Балаковской АЭС

Турбогенератор — устройство, состоящее из синхронного генератора и паровой или газовой турбины, выполняющей роль привода. Термин «турбогенератор» намеренно включён в название ГОСТ 533, чтобы отличать данные типы генераторов от генераторов вертикального исполнения, используемых в паре с гидротурбинами ГОСТ 5616 (использование терминов «турбогенератор» и «гидрогенератор» для описания отдельно взятых электрических генераторов является неправильным). В случае электростанций применяется термин турбоагрегат.

Основная функция в преобразовании внутренней энергии рабочего тела в электрическую, посредством вращения паровой или газовой турбины. Скорость вращения ротора определяется по параметрам используемого генератора, от десятков тысяч оборотов в минуту (для синхронных генераторов с возбуждением от постоянных магнитов «НПК «Энергодвижение») до 3000, 1500 об/мин (у синхронных генераторов с возбуждением обмоток ротора). Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается либо установленными на ротор постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу основного генератора.
В составе турбогенераторов применяются генераторы, имеющие цилиндрический ротор, установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), и многополюсные машины, в зависимости от мест эксплуатации и технологических требований. Для охлаждения таких генераторов используются следующие способы охлаждения обмоток: жидкостное — через рубашку статора; жидкостное — с непосредственным охлаждением обмоток; воздушное; водородное (чаще применяются на АЭС).

История

Один из основателей компании «ABB» Чарльз Браун построил первый турбогенератор в 1901 году[1]. Это был 6-ти полюсный генератор мощностью 100 кВА[2].

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них — небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Видео по теме

Типы турбогенераторов

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Также были разработаны сверхмощные турбогенераторы КГТ-20 и КГТ-1000 на основе сверхпроводимости [3].

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов — статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор — вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор — стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок — вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

Литература

  • Вольдек А. И. Электрические машины. Энергия. Л. 1978
  • Operation and Maintenance of Large Turbo Generators, by Geoff Klempner and Isidor Kerszenbaum, ISBN 0-471-61447-5, 2004
  • Толковый словарь русского языка / Под ред. Д.Н. Ушакова. — М.: Гос. ин-т «Сов. энцикл.»; ОГИЗ; Гос. изд-во иностр. и нац. слов., 1935-1940. (4 т.)
  • Трухний А.Д. Стационарные паровые турбины — 2-е изд., перераб. и доп. — М. Энергоатомиздат, ISBN 5-283-00069-9, 1990
  • Глебов И. А. Турбогенераторы с использованием сверхпроводимости. — Л.: Наука : Ленингр. отд-ние, 1981. — 231 с.

Примечания

  1. ↑ The Growth of Turbogenerators, by K. Abegg, 1973, The Royal Society.
  2. ↑ The Evolution of the Synchronous Machine, by Proffesor Gerhard Neidhofer, Engineering Science and Education Journal, October 1992.
  3. ↑ Глебов, 1981.

Ссылки

wiki2.red

Отправить ответ

avatar
  Подписаться  
Уведомление о