- Время-токовые характеристики автоматических выключателей.
- Какими бывают автоматические выключатели? Виды расцепителей автоматических выключателей
- — OMICRON
- Определение значений короткого замыкания для автоматических выключателей
Время-токовые характеристики автоматических выключателей.
Как известно автоматические выключатели могут иметь следующие виды расцепителей обеспечивающих защиту электрической цепи от сверхтоков: электромагнитный — защищающий сеть от коротких замыканий, тепловой — обеспечивающий защиту от токов перегрузки и комбинированный представляющий собой совокупность электромагнитного и теплового расцепителя (подробнее читайте статью «автоматические выключатели«).
Примечание: Современные автоматические выключатели предназначенные для защиты электрических сетей до 1000 Вольт имеют, как правило, комбинированные расцепители.
Расцепители автоматических выключателей — это исполнительные механизмы которые обеспечивают отключение (расцепление) электрической цепи при возникновении в ней тока выше допустимого, причем чем больше это превышение тем быстрее должно произойти расцепление.
Зависимость времени расцепления автоматического выключателя от величины проходящего через него тока и называется время-токовой характеристикой или сокращенно — ВТХ.
Условия и значения ВТХ
ВТХ автоматов определяются следующими значениями:
1) Ток мгновенного расцепления — минимальное значение тока, вызывающее автоматическое срабатывание выключателя без преднамеренной выдержки времени. (ГОСТ Р 50345-2010, п. 3.5.17)
Примечание: срабатывание без преднамеренной выдержки времени обеспечивается электромагнитным расцепителем автомата.
Ток мгновенного расцепления определяется так называемой «характеристикой расцепления» или как ее еще называют — характеристика срабатывания.
Согласно ГОСТ Р 50345-2010 существуют следующие типы характеристик срабатывания автоматических выключателей:
Примечание: существуют так же и другие, нестандартные типы характеристик, о них мы говорили в статье «автоматические выключатели«.
Как видно из таблицы выше ток мгновенного расцепления указывается в виде диапазона значений, например характеристика «B» предполагает, что автомат обеспечит мгновенное расцепление при протекании через него тока в 3 — 5 раз превышающего его номинальный ток, т. е. если автоматический выключатель с данной характеристикой имеет номинальный ток 16 Ампер, то он обеспечит мгновенное расцепление при токе от 48 до 80 Ампер.
Определить характеристику срабатывания автоматического выключателя, как правило, можно по маркировке нанесенной на его корпусе.
2) Условный ток нерасцепления — установленное значение тока, который автоматический выключатель способен проводить, не срабатывая, в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.15) Согласно пункту 8.6.2.2 ГОСТ Р 50345-2010 условный ток нерасцепления равен 1,13 номинального тока автомата.
3) Условный ток расцепления — установленное значение тока, которое вызывает срабатывание автоматического выключателя в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.16) Согласно пункту 8.6.2.3 ГОСТ Р 50345-2010 условный ток расцепления равен 1,45 номинального тока автомата.
* Условное время равно 1 ч для выключателей с номинальным током до 63 А включительно и 2 ч с номинальным током свыше 63 А. (ГОСТ Р 50345-2010, п.8.6.2.1)
Время-токовая характеристика автоматического выключателя определяется условиями и значениями приведенными в таблице 7 ГОСТ Р 50345-2010:
In — номинальный ток автоматического выключателя
Графики ВТХ
Для удобства производителями в паспортах на автоматические выключатели время-токовые характеристики указываются в виде графика где по оси X откладывается кратность тока электрической цепи к номинальному току автомата (I/In), а по оси Y время срабатывания расцепителя.
Для подробного рассмотрения в качестве примера возьмем график ВТХ для автоматического выключателя с характеристикой «B»
ПРИМЕЧАНИЕ: Все приведенные ниже графики предоставлены в качестве примера. У различных производителей графики ВТХ могут отличаться (смотрите в паспорте автомата), однако они в любом случае должны соответствовать требованиям ГОСТ Р 50345-2010 и в частности значениям указанным в таблице 7 приведенной выше.
Как видно график ВТХ представлен двумя кривыми: первая кривая (красная) — это характеристика автомата в так называемом «горячем» состоянии, т.е. автомата находящегося в работе, вторая (синяя) — характеристика автомата в «холодном» состоянии, т.е. автомата через который только начал протекать электрический ток.
При этом синяя кривая имеет дополнительно штриховую линию, эта линия показывает характеристику автомата (его теплового расцепителя) с номинальным током до 32 Ампер, это различие в характеристиках автоматов с номиналами до и выше 32 Ампер обусловлено тем, что в автоматах с большим номинальным током биметаллическая пластина теплового расцепителя имеет большее сечение и соответственно ей необходимо больше времени что бы разогреться.
Кроме того каждая кривая имеет два участка: первый — показывающий плавное изменение времени срабатывания в зависимости от тока электрической цепи является характеристикой теплового расцепителя, второй — показывающий резкое снижение времени срабатывания (при токе от 3 In в горячем состоянии и от 5 In в холодном состоянии ), является характеристикой электромагнитного расцепителя автоматического выключателя.
Как видно, на графике ВТХ отмечены основные значения характеристик автомата согласно ГОСТ Р 50345-2010 при 1.13In (Условный ток нерасцепления) автомат не сработает в течении 1-2 часов, а при токе в 1,45 In (Условный ток расцепления) автомат отключит цепь за время менее 50 секунд (из горячего состояния).
Как уже было сказано выше ток мгновенного расцепления определяется характеристикой срабатывания автомата, у автоматических выключателей с характеристикой «B» он составляет от 3In до 5In, при этом согласно вышеуказанному ГОСТу (таблице 7) при 3In автомат не должен сработать за время менее 0,1 секунды из холодного состояния, но должен отключиться за время менее 0,1 секунды из холодного состояния при токе в цепи 5In и как мы можем увидеть из графика выше данное условие выполняется.
Так же по время-токовой характеристике можно определить время срабатывания автомата при любых других значениях тока, например: в цепи установлен автомат с характеристикой «B» и номинальным током 16 Ампер, при работе в данной цепи произошла перегрузка и ток вырос до 32 ампер, определяем время срабатывания автомата следующим образом:
Делим ток протекающий в цепи на номинальный ток автомата 32А/16А=2
Определив что ток в цепи в два раза больше номинала автомата, т. е. составляет 2In откладываем данное значение по оси X графика и поднимая от нее условную линию вверх смотрим где она пересекается с кривыми графика:
Как мы видим из графика при токе 32 Ампера автомат с номинальным током 16 Ампер разомкнет цепь за время менее 10 секунд — из горячего состояния и за время менее 5 минут — из холодного состояния.
Приведем примеры ВТХ автоматических выключателей всех стандартных характеристик срабатывания (B, C, D):
ПРИМЕЧАНИЕ: Время-токовые характеристики согласно ГОСТ Р 50345-2010 указываются для автоматов работающих при температуре +30+5 оC смонтированных в соответствии с определенными условиями.
Условия испытания. Поправочные коэффициенты
Согласно ГОСТ Р 50345-2010 При испытаниях выключатели устанавливают отдельно, вертикально, на открытом воздухе в месте, защищенном от чрезмерного внешнего нагрева или охлаждения.
испытания автоматических выключателей проводят при любой температуре воздуха, а результаты корректируют по температуре +30 °С на основании поправочных коэффициентов, предоставленных изготовителем.
При этом в любом случае отклонение испытательного тока от указанного в таблице 7 не должно превышать 1,2% на 1 °С изменения температуры калибровки.
Изготовитель должен подготовить данные по изменению характеристики расцепления для температур калибровки, отличных от контрольного значения.
Таким образом, что бы точно узнать время отключения автоматических выключателей, эксплуатируемых при условиях отличающихся от условий испытания необходимо воспользоваться поправочными коэффициентами которые должен предоставить изготовитель данных выключателей.
Приведем пример таких поправочных коэффициентов (обычно их всего 2):
- Температурный коэффициент (Кt)
Температурный коэффициент учитывает отличие температуры окружающей среды при которой автоматический выключатель испытывался от фактической температуры окружающей среды при которой он эксплуатируется:
Как видно из графика, чем ниже температура окружающей среды тем выше данный коэффициент. Объясняется это просто — чем ниже температура окружающей среды, тем больший ток должен протекать через автоматический выключатель что бы нагреть расцепитель до температуры необходимой для его срабатывания.
- Коэффициент, учитывающий количество установленных рядом автоматов (Кn)
Как было сказано выше, автоматические выключатели при их испытании устанавливаются отдельно, однако на практике они устанавливаются в электрических щитах в один ряд с другими автоматами, что соответственно ухудшает их охлаждение за счет ухудшения циркуляции воздуха и тепла от установленных рядом выключателей:
Соответственно, как и можно увидеть из графика, чем больше рядом установлено автоматов, тем меньше данный коэффициент.
Зная поправочные коэффициенты можно скорректировать номинальный ток автомата в зависимости от условий его эксплуатации.
Например: имеется автоматический выключатель с номинальным током 16 Ампер установленный в щитке с 5 другими автоматами при температуре окружающего воздуха +10оC.
- По графикам выше найдем поправочные коэффициенты:
- К
- Кn=0,8
- Зная поправочные коэффициенты скорректируем номинальный ток автомата:
In/= In* Кt* Кn=16*1.05*0.8=13.44 Ампер
Соответственно при эксплуатации автоматического выключателя в вышеуказанных условиях для определения времени его срабатывания необходимо принимать ток не 16 Ампер, а 13,44 Ампера.
Какими бывают автоматические выключатели? Виды расцепителей автоматических выключателей
Для того чтобы вся техника в доме или на производстве была защищена от перепадов напряжения электрического тока нужно установить специальные автоматические выключатели. Они смогут зафиксировать скачок и быстро на него среагировать, отключив всю систему от подачи электричества. Человек самостоятельно сделать этого не сможет, а вот автомат определенного типа справить за несколько секунд.
Типы автоматов
Чувствительность аппарата
Перед тем как ознакомится с видами автоматов нужно узнать с какой чувствительностью приборы подойдут для домашнего использования, а какие будут неуместны. Такой показатель будет указывать на то, насколько быстро будет реагировать прибор на скачок напряжения. Он имеет несколько маркировок:
Классификация автоматов
Выделяют различные виды автоматов по отношению к типу тока, номинальному напряжению или показателю тока и другим техническим характеристикам. Поэтому нужно конкретно разбираться по каждому пункту отдельно.
Тип тока
По отношению к этой характеристике автоматы разделяют на:
- Для работы в сети переменного тока;
- Для работы в сети постоянного тока;
- Универсальные модели.
Тут все ясно и дополнительных пояснений не нужно.
По показателю номинального тока
От значения данной характеристики будет зависеть в сети с каким максимальным значением может работать автоматический выключатель. Есть приборы, которые способны работать от 1 А до 100 А и больше. Минимальное значение, с которым можно найти в продаже автоматы составляет 0,5 А.
Показатель номинального напряжения
Данная характеристика указывает с каким напряжением может работать данный вид автоматических выключателей. Одни могут работать в сети с напряжением 220 или 380 Вольт — это самые распространенные варианты для бытового применения. Но есть автоматы, которые будут прекрасно справляться и с более высокими показателями.
По способности ограничить приток электричества
По данной характеристике выделяют:
Другие характеристики
Количество полюсов может быть от одного до четырех. Соответственно их называют однополюсные, двухполюсные и так далее.
Автоматы по количеству полюсов
По строению различают:
По скорости сбрасывания производят быстродействующие, нормальные и селективные приборы. В них может быть установлена функция выдержки времени, которая может обратно зависеть от тока или не зависеть от него. Выдержку времени могут и не устанавливать.
Есть у автоматов и привод, который может быть ручной, подключаться к двигателю или пружине. Рознятся выключатели и наличию свободных контактов, и способу подключения проводников.
Важной характеристикой будет защита от воздействия окружающей среды. Тут можно выделить:
- IP-защиту;
- От механического воздействия;
- Ток проводимость материала.
Все характеристики могут сочетаться в различных комбинациях. Все зависит от модели и производителя.
Типы выключателей
Автомат внутри содержит расцепитель, который с помощью рычага, защелки, пружины или коромысла способен мгновенно отключить сеть от подачи электричества. Типы автоматических выключателей и различают по типу расцепителя. Бывают:
Автоматические выключатели гораздо выгоднее плавких предохранителей. Это потому что после остывания автомат уже можно включать, и он будет работать как надо, если причина перегрузки устранена. Плавки предохранитель нужно заменить. Его может не оказаться под рукой и замена может занять много времени.
Они могут снабжаться следующими встроенными в них расцепителями:
Электромагнитным или электронным расцепителем максимального тока мгновенного или замедленного действия с практически независимой от тока выдержкой времени;
Электротермическим или электронным инерционным расцепителем максимального тока с зависимой от тока выдержкой времени;
Расцепителем тока утечки;
Асцепителем минимального напряжения;
Расцепителем обратного тока или обратной мощности;
Независимый расцепитель (дистанционное отключение выключателя).
Первые два типа устанавливаются во всех трех полюсах, остальные — по одному на выключатель. Токи уставки, а также выдержки времени токовых расцепителей могут быть регулируемыми. В одном выключателе могут применять один или несколько типов токовых расцепителей и дополнительно к ним расцепитель минимального напряжения, независимый расцепитель и электромагнит включения.
По времени срабатывания электромагнитные и аналогичные им электронные расцепители имеют четыре разновидности:
Расцепители, обеспечивающие срабатывание АВ за время намного меньше 0,01с, и отключение тока КЗ раньше, чем он достигнет своего ударного значения. Такие АВ называют токоогораничивающие.
Расцепители, обеспечивающие отключение тока КЗ при первом прохождении тока черехз нулевое значение tc=0,01с.
Нерегулируемые расцепители, время срабатывания которых превышает 0,01с;
Расцепители м регулируемой выдержкой времени (0,1-0,7с), позволяющие добиться замедленной работы относительно других АВ той же сети, называют селективными.
Расцепители тока утечки применяют для быстрого отключения участков сети, в которых из-за нарушения изоляции или прикосновения людей к проводникам возник ток утечки на землю. При этом ток уставки расцепителя выбирают в пределах от 10 до30 мА, а время зависимости от напяжения в пределах от 10 до100мс. Эту защиту в наст время считают более эффективной от защиты людей от поражения электрическим током.
Расцепители минимального напряжения применяют в целях отключения источников питания при прекращении ими питании сети (еред АВР)_, а также в целях отключения электроприемников, самозапуск которых при автоматическом восстановлении напряжения нежелателен. Напряжение сраьатывания расцепителя выбирают в пределах от 0,8 до0,9 Uном, время срабатывания – в соответствии с требованиями систем автоматического восстановления питания сети.
Независимые расцепители примеяют для местного дистанционного и автоматического отключения АВ при срабатывании внешних защитных устройств.
Расцепители обратного тока или обратной мощности применяют для защиты генереаторов, работающих на электрическую систему от выпадения синхронихма.
17. Максимальная токовая направленная защита (принцип действия, принципиальная электрическая схема, расчет выдержек времени).
Направленные токовые защиты линии МТНЗ
T 1 > t → 2 > t 3
I p = I` кз I p = I` кз
U p = U в U p = U в
φ p = 180 — φ а φ p = φ а t 4 > t ← 3 > t 2
I p = I« кз I p = I` кз
U p = U в U p = U в
φ p = φ а φ p = 180 — φ а
В выключателях Q1 — Q3 стоят МТЗ направленного действия. Она отличается от обычной МТЗ тем, что вводится дополнительный орган, определяющий направление мощности КЗ — реле направления мощности, который реагирует на фазу тока КЗ относительно напряжения на шинах подстанции в месте установки комплекта защиты, то «-» знак мощности и реле направления мощности блокирует комплект защиты. Если направление мощности КЗ от шин к линии, то это «+» знак мощности КЗ и реле направления мощности, закрывая свои контакт, разрешает комплекту МТНЗ действовать.
В результате действия направленной защиты 2 и 3 комплект не нужно согласовывать, т.к. они развязаны с помощью направленного действия реле.Эта страница нарушает авторские права
Привет, друзья. Тема поста – типы и виды автоматических выключателей (автоматов, АВ). Также хочу итоги турнира по разгадыванию кроссвордов.
Виды автоматов:
Можно разделить на выключатели переменного тока, постоянного тока и универсальные, работающие при любом токе.
Конструкция — бывают воздушные, модульные, в литом корпусе.
Показатель номинального тока. Минимальный ток срабатывания модульного автомата составляет 0,5 Ампер, например. Скоро напишу о том, как правильно выбрать номинальный ток для автоматического выключателя, подписывайтесь на новости блога , чтобы не пропустить.
Номинальное напряжение, еще одно различие. В большинстве случаев АВ работают в сетях с напряжением 220 или 380 Вольт.
Бывают токоограничивающие и нетокоограничивающие.
Все модели выключателей классифицируются по количеству полюсов. Делятся на однополюсные, двухполюсные, трехполюсные и четырехполюсные автоматы.
Виды расцепителей — максимальный расцепитель тока, независимый расцепитель, минимальный или нулевой расцепитель напряжения.
Скорость срабатывания автоматических выключателей. Выделяют быстродействующие, нормальные и селективные автоматы. Бывают с выдержкой времени, без нее, независимой или обратно зависимой от тока выдержкой времени срабатывания. Характеристики могут сочетаться.
Отличаются по степени защиты от окружающей среды — IP, механических воздействий, токопроводимости материала. По виду привода — ручной, двигатель, пружина.
По наличию свободных контактов и способу присоединения проводников.
Типы автоматов:
Что означает тип АВ?
Автоматические выключатели содержат внутри себя два вида размыкателей – тепловой и магнитный.
Магнитный быстродействующий размыкатель предназначен для защиты при коротком замыкании. Срабатывание размыкателя может происходить за время от 0,005 до нескольких секунд.
Тепловой размыкатель значительно медленнее, предназначен для защиты от перегрузки. Работает с помощью биметаллической пластины, нагревающейся при перегрузке цепи. Время срабатывания от нескольких секунд до минут.
Совместная характеристика срабатывания зависит от вида подключаемой нагрузки.
Существует несколько типов отключения АВ. Их еще называют — типы время-токовых характеристик отключения.
A, B, C, D, K, Z.
A – применяется для размыкания цепей с большой длинной электропроводки, служит хорошей защитой для полупроводниковых устройств. Срабатывают при 2-3 номинальных токах.
B – для осветительной сети общего назначения. Срабатывают при 3-5 номинальных токах.
C – осветительные цепи, электроустановки с умеренными пусковыми токами. Это могут быть двигатели, трансформаторы. Перегрузочная способность магнитного размыкателя выше, чем у выключателей типа B. Срабатывают при 5-10 номинальных токах.
D – применяются в цепях с активно-индуктивной нагрузкой. Для электродвигателей с большими пусковыми токами, например. При 10-20 номинальных токах.
K – индуктивные нагрузки.
Z – для электронных устройств.
Данные о срабатывании выключателей типов K, Z лучше смотреть в таблицах конкретно по каждому производителю.
Вроде все, если есть, что дополнить, оставь комментарий .
В любом автоматическом выключателе есть важная составная часть устройства: расцепитель, который служит для размыкания или замыкания коммутационного устройства. По сути расцепитель размыкает контакты автомата при появлении сверхтоков, снижении напряжения. ГОСТ Р 50030.1 (5) определяет понятие расцепителя, как «Устройство, механически связанное с контактным коммутационным аппаратом, которое освобождает удерживающие приспособления и тем самым допускает размыкание или замыкание коммутационного аппарата». Стандарт МЭК 61992‑1 (6) дополняет данное определение расцепителя автоматического выключателя — расцепитель может состоять из механических, электронных или электромагнитных компонентов; относится к любому устройству с механическим действием, которые применяется для расцепляющего оперирования в случае, когда во входной цепи встречаются определенные условия; в автомате может быть несколько расцепителей.
Виды расцепителей
В бытовых автоматических выключателях чаще всего встречаются следующие виды расцепителей: тепловой, электронный и электромагнитный. Они быстро распознают критическую ситуацию (появление сверхтоков, перегрузки и перепады напряжения) и размыкают контакты автоматического выключателя, предотвращая порчу электрического оборудования и защищая проводку. Помимо этих видов, существуют еще и расцепители нулевого напряжения, минимального напряжения, независимые, полупроводниковые, механические.
Сверхтоки — увеличение силы тока в электрической сети, превышающей номинальный ток автомата. Это токи перегрузки, замыкания.
Ток перегрузки — сверхток в функциональной сети.
Ток короткого замыкания — сверхток, появляющийся в результате замыкания двух составляющих сети при крайне низком сопротивлении между этими элементами.
Тепловой расцепитель
Тепловой расцепитель размыкает контакты автоматического выключателя при небольших превышениях номинального тока, отличается увеличенным временем срабатывания. При кратковременных превышениях токовой нагрузки он не срабатывает, это удобно в сетях, где часты именно кратковременные превышения номинального тока автомата.
Тепловой расцепитель является биметаллической пластиной, один конец которой расположен рядом со спусковым механизмом расцепления. В случае увеличения силы тока пластина начинает изгибаться и приближаться к спусковому механизму, касается планки, а та, в свою очередь, размыкает контакты автоматического выключатели. Принцип работы построен на физических свойствах металла, расширяющегося при нагревании, поэтому такой расцепитель и называется тепловым.
К достоинствам теплового расцепителя можно отнести отсутствие трущихся друг о друга поверхностей, устойчивость к вибрациям, низкая стоимость в силу простой конструкции. Но нужно обратить внимание и на недостатки — работа теплового расцепителя сильно зависит от температуры окружающей среды, их следует размещать в местах со стабильным температурным режимом вдали от источников тепла, в противном случае возможны многочисленные ложные срабатывания.
Электронный расцепитель
В состав электронного расцепителя входят измерительные устройства (датчики тока), блок управления и исполнительный электромагнит. Электронные расцепители предназначены для подачи команды на автоматическое отключения автомата с заданной программой при возникновении в электрической цепи сверхтоков перегрузки или замыкания. При превышении силы тока через автомат в блоке электронного расцепителя начинается отсчет времени срабатывания в соответствии с время-токовой характеристикой. Если за время срабатывания ток снизится до величины, ниже пороговой, то автоматического срабатывания не произойдет.
К плюсам электронных расцепителей относятся: широкий выбор настроек, четкое следование прибора заданной программе, наличие индикаторов. Основной недостаток — довольно высокая стоимость, а также чувствительность расцепителя к воздействию электромагнитного излучения.
Электромагнитный расцепитель
Электромагнитный расцепитель (отсечка) срабатывает мгновенно, не допуская ни малейшей вероятности повреждения составных частей электроцепи. Это соленоид с подвижным сердечником, который воздействует на механизм расцепления. В процессе протекания тока по обмотке соленоида, в случае превышения токовой нагрузки, происходит втягивание сердечника под воздействием электромагнитного поля.
Электромагнитный расцепитель срабатывает при превышении тока короткого замыкания. Он обладает достаточной прочностью, устойчив к вибрации, однако создает магнитное поле.
Ток расцепителя автоматического выключателя
Ток расцепителя автоматического выключателя имеет конкретное значение (номинал), означающий величину тока, при котором автомат разомкнет цепь. Ток в тепловом расцепителе всегда равен или меньше номинального тока автоматического выключателя. При любом превышении токовой нагрузки на расцепитель будет происходить отключения автомата. При этом время, через которое произойдет размыкание контактов, зависит от времени протекания тока превышенной нагрузки. Время отключения теплового расцепителя можно рассчитать, используя время-токовые характеристики.
Ток электромагнитного расцепителя отключает автомат мгновенно при превышении номинального тока автоматического выключателя, чаще всего это происходит при коротком замыкании. Перед КЗ в сети очень быстро нарастает величина тока, которую учитывает устройство электромагнитного расцепителя, в результате происходит очень быстрое воздействие на механизм расцепления. Скорость срабатывания в этом случае составляет доли секунды.
Тест расцепителя максимального тока— OMICRON
JavaScript не активен
Вы отключили JavaScript. Пожалуйста, включите JavaScript, чтобы использовать все функции, которые мы предлагаем.
Тест расцепителя максимального тока используется для определения тока, который отключает выключатель. Расцепители максимального тока обычно используются вместе с реле максимальной токовой защиты с автономным питанием.
Расцепители трансформатора тока используются на выключателях на подстанциях, где нет независимого от сети напряжения питания. Довольно часто выключатели не имеют замкнутой катушки. Расцепители максимального тока активируются током, поступающим от отключающего трансформатора, с типичным номинальным значением 0,5, 1,0 или 5 А переменного тока. Реле максимального тока подает ток от отключающего трансформатора к выключателю. Отключающий трансформатор и реле максимального тока обычно питаются от вторичной обмотки трансформаторов тока. В случае сверхтока реле переключает ток отключающего трансформатора на выключатель и, таким образом, заставляет его размыкать главные контакты и изолировать неисправную часть сети.
Во время проверки, когда выключатель находится во включенном положении, ток увеличивается ступенчато до тех пор, пока выключатель не сработает. Это ток отключения. Затем рампа заканчивается.
Эксперт рекомендует
CIBANO 500
Пакет среднего напряжения CIBANO 500 включает испытания на пониженное напряжение и испытание на перегрузку по току, во время которых тестовое устройство использует встроенный источник питания для вывода линейного изменения напряжения или линейного импульса тока соответственно.
CIBANO 500
Система тестирования 3-в-1 для автоматических выключателей среднего и высокого напряжения
Запросить информацию
Преимущества этого решения
Все важные испытания выключателей
CIBANO 500 сочетает в себе микроомметр, анализатор времени, а также катушку и источник питания двигателя. Все важные тесты CB на всех типах CB могут быть выполнены даже при отсутствии аккумуляторной батареи станции.
Мощный встроенный источник питания
Встроенный источник питания может выдавать высокоточный цифровой выходной сигнал мощностью до 2,4 кВт.
Проверка выключателей без замыкающей катушки
Для автоматических выключателей без катушки включения расчет времени включения в соответствии со стандартом МЭК невозможен. Поэтому необходимо использовать альтернативный подход. Время включения может быть временем, когда главные контакты автоматического выключателя начинают двигаться до тех пор, пока контакты не коснутся всех полюсов. CIBANO 500 может использовать ход контакта в качестве исходного значения для этого измерения.
Литература
Видео
Изменить настройки файлов cookie для загрузки видео. Разрешить маркетинговые файлы cookie.
Изменить настройки файлов cookie для загрузки видео. Разрешить маркетинговые файлы cookie.
Изменить настройки файлов cookie для загрузки видео. Разрешить маркетинговые файлы cookie.
Изменить настройки файлов cookie для загрузки видео. Разрешить маркетинговые файлы cookie.
Изменить настройки файлов cookie для загрузки видео. Разрешить маркетинговые файлы cookie.
Изменить настройки файлов cookie для загрузки видео. Разрешить маркетинговые файлы cookie.
Свяжитесь с нами
Нужны подробности? Получить цитату?
Запросить демонстрацию?
Свяжитесь с нами сейчас
Определение значений короткого замыкания для автоматических выключателей
Автоматические выключатели защищают электрооборудование от повреждений, которые могут возникнуть в результате токов короткого замыкания. Однако «ток короткого замыкания» может варьироваться в зависимости от применения. Как стандарты IEC и EN помогают разработчикам правильно определить защиту от перегрузки по току в электрооборудовании?
Йоахим Беккер ABB Stotz-Kontakt GmbH, Гейдельберг, Германия, joachim. [email protected]
В любом современном обществе постоянная доступность электроэнергии жизненно важна. Без электричества большинство жилых домов, коммерческих предприятий и промышленных предприятий были бы парализованы. Эта электроэнергия должна быть безопасно и надежно доставлена конечному потребителю, и именно здесь распределительное распределительное устройство играет главную роль. Из-за очевидных опасностей такое распределительное устройство или местный распределительный щит должны быть спроектированы таким образом, чтобы защитить установку от неисправностей путем отключения неисправной цепи и одновременно гарантировать непрерывную работу неповрежденных цепей.
Типы автоматических выключателей
Короткое замыкание подвергает оборудование большой нагрузке. Поэтому при проектировании распределительного устройства или распределительного щита необходимо учитывать тепловые и динамические нагрузки, вызванные максимальным током короткого замыкания в точке подключения на месте. Для предотвращения повреждения установки (или персонала) используются устройства защиты от короткого замыкания, отключающие ток короткого замыкания в точке подключения →1.
Чаще всего для этой коммутационной задачи используются автоматические выключатели в литом корпусе (MCCB) →2, миниатюрные автоматические выключатели (MCB), автоматические выключатели, управляемые дифференциальным током (RCCB), и автоматические выключатели дифференциального тока с защитой от перегрузки по току (RCBO). Эти устройства имеют маркировку максимальной способности к короткому замыканию, чтобы изготовитель панели мог выбрать правильный продукт для применения. Такие выключатели подходят для разъединения, но обычно также устанавливаются выключатели-разъединители, чтобы оборудование можно было полностью обесточить для обслуживания или ремонта.
02 Низковольтный автоматический выключатель в литом корпусе типоразмера ABB A1 (соответствует IEC/EN 60947-2). Непрерывный ток короткого замыкания
Низковольтные установки обычно питаются от трансформаторов. В такой низковольтной сети непрерывный ток короткого замыкания (I к ) рассчитывается по номинальному напряжению и сопротивлению переменному току (импедансу) короткого замыкания. Также существует наложенная постоянная составляющая, которая медленно спадает до нуля →3. Пиковое значение I k — важное значение для определения короткого замыкания в стандартах.
Стандарты, относящиеся к автоматическим выключателям
В зависимости от конкретного применения, при выборе разработчиком автоматических выключателей или сопутствующего оборудования для защиты электросети могут использоваться разные стандарты:
• Стандарт IEC/EN 60898-1 применяется к автоматическим выключателям. для защиты от перегрузки по току в домашних хозяйствах и подобных установках, например, в магазинах, офисах, школах и небольших коммерческих зданиях. Эти выключатели предназначены для эксплуатации непроинструктированными людьми и не требуют технического обслуживания.
• Стандарт IEC/EN 60947-2 применяется к автоматическим выключателям, используемым в основном в промышленности, где доступ есть только у проинструктированных лиц.
• Выключатели-разъединители испытаны на соответствие стандарту IEC/EN 60947-3.
• Распределительные устройства или распределительные щиты тестируются на соответствие стандарту IEC/EN 61439.
Из-за разного охвата стандартов в некоторых случаях для одного и того же электрического процесса используются разные определения. Поэтому инженер должен убедиться, что он полностью понимает, какое конкретное определение, скажем, емкости короткого замыкания, применимо к проекту, над которым он работает.
Автоматические выключатели и IEC/EN 60898-1
IEC/EN 60898-1 определяет номинальную мощность короткого замыкания (I cn ) как отключающую способность в соответствии с заданной последовательностью испытаний. Эта последовательность испытаний не включает в себя способность автоматического выключателя выдерживать 85 % своего неотключающего тока в течение заданного условного времени. Эксплуатационная отключающая способность при коротком замыкании (I cs ) — это отключающая способность в соответствии с определенной последовательностью испытаний, которая не включает способность автоматического выключателя выдерживать 85 % неотключающего тока в течение заданного времени.
IEC/EN 60898-1 определяет фиксированные значения отношения I cs к I cn . Значения I cs и I cn выражаются как среднеквадратичные значения ожидаемых токов короткого замыкания.
Чтобы соответствовать требованиям стандарта для обеих этих характеристик короткого замыкания, необходимо проверить операции отключения/включения каждого из трех автоматических выключателей. Для работы в разомкнутом состоянии ток короткого замыкания инициируется при заданном фазовом угле по отношению к форме волны напряжения. Три автоматических выключателя испытываются под разными углами. Последовательность испытаний для I cn — «O — t — CO», где «O» — операция размыкания, а «CO» — операция включения-выключения, что означает, что испытуемый автоматический выключатель включен и подвергается воздействию тока короткого замыкания в течение определенной продолжительности. Время «t» между операциями 3 мин. Для I cs последовательность испытаний следующая: «O-t-O-t-CO» для однополюсных и двухполюсных автоматических выключателей и «O-t-CO-t-CO» для трехполюсных и четырехполюсных выключателей. -полюсные автоматические выключатели. Способ срабатывания тока короткого замыкания, указанный в стандарте, означает, что, по крайней мере, один испытуемый автоматический выключатель должен отключиться при наиболее серьезном фазовом сдвиге напряжения.
Автоматические выключатели и IEC/EN 60947-2
IEC/EN 60947-2 определяет предельную отключающую способность при коротком замыкании (I cu ), также известную как отключающая способность, в соответствии с заданной последовательностью испытаний. Эта последовательность испытаний включает проверку расцепителя перегрузки автоматического выключателя. В IEC/EN 60947-2 I cs — это отключающая способность в соответствии с определенной последовательностью испытаний, которая включает проверку работоспособности выключателя при номинальном токе, испытание на повышение температуры и проверку расцепителя при перегрузке. МЭК/ЕН 60947-2 определяет значения от 25 до 100 процентов для отношения I cs к I cn . Опять же, значения I cs и I cn выражаются как среднеквадратичные значения предполагаемых токов короткого замыкания. Чтобы соответствовать требованиям стандарта, каждый из двух автоматических выключателей должен быть испытан на обе мощности короткого замыкания. Как и в IEC/EN 60898-1, ток короткого замыкания инициируется при заданном фазовом угле по отношению к форме волны напряжения для отключения, но здесь два автоматических выключателя испытываются под одним и тем же углом. Последовательность испытаний для I cu — это «O-t-CO» и «O-t-CO-t-CO» для I cs . Время «t» между операциями снова составляет 3 минуты, и для размыкания ток короткого замыкания инициируется при определенном фазовом угле напряжения, определяемом как угол, при котором достигается пиковый ток. Этот пиковый ток одновременно представляет собой номинальную включающую способность при коротком замыкании (I см ) и выражается как номинальная предельная отключающая способность при коротком замыкании, умноженная на коэффициент, определенный в IEC 60947-2.
Выключатели-разъединители и IEC/EN 60947-3
Если в конструкцию включены выключатели, разъединители, выключатели-разъединители или блоки предохранителей, используется стандарт IEC/EN 60947-3. Выключатель-разъединитель способен включать и выключать ток при заданных условиях. В разомкнутом положении выключатель-разъединитель выполняет функцию отключения.
Поскольку выключатель нагрузки не оборудован расцепителем максимального тока, он должен быть защищен автоматическим выключателем, автоматическим выключателем или предохранителем. Допустимая мощность короткого замыкания комбинации выключателя и автоматического выключателя определяется как номинальный условный ток короткого замыкания. Он выражается как значение предполагаемого тока короткого замыкания, которое может выдержать выключатель-разъединитель, защищенный устройством защиты от короткого замыкания (УЗКЗ). Важно иметь в виду, что выключатель-разъединитель должен выдерживать ток, ограниченный УЗКЗ.
Этот подход также действителен для ВДТ, т. е. ток короткого замыкания, указанный на устройстве, является номинальным условным током короткого замыкания комбинации ВДТ с УЗКЗ.
Еще одним значением тока короткого замыкания, определенным как в IEC/EN 60947-3, так и в IEC/EN 60947-2, является номинальный выдерживаемый кратковременный ток (I cw ). Это значение может относиться к выключателям (например, к выключателю-разъединителю), автоматическим выключателям, таким как MCCB или воздушный автоматический выключатель (ACB), и сборным шинам. я чв — это значение тока, которое оборудование может выдержать в течение определенного времени без повреждения. IEC/EN 60947-2 определяет предпочтительные значения этого времени 0,05, 0,1, 0,25, 0,5 и 1 с; IEC/EN 60947-3 определяет 1 с. Для переменного тока I cw является среднеквадратичным значением тока.
Значение I cw важно для распределительных устройств с последовательно включенным оборудованием, где селективность между защитными устройствами реализуется за счет выдержки времени. Например, если фидерная цепь оборудована автоматическим выключателем, а нисходящие ответвления защищены автоматическими выключателями, то для достижения селективности устанавливается временная задержка для отключения автоматического выключателя. Установка между автоматическим выключателем и автоматическим выключателем должна выдерживать указанный ток короткого замыкания в течение времени выдержки времени автоматического выключателя.
Низковольтное распределительное устройство и IEC/EN 61439-1
IEC/EN 61439-1 применяется к низковольтным распределительным устройствам и устройствам управления. Для сборок с УЗКЗ в вводном блоке изготовитель должен указывать максимальный предполагаемый ток короткого замыкания на входном зажиме сборки. Для защиты сборки ток короткого замыкания I cu или I cn УЗКЗ должен быть равен или выше ожидаемого тока короткого замыкания. Если в качестве УЗКЗ используется автоматический выключатель с выдержкой времени или в сборку не включено УЗКЗ, I cw с максимальной задержкой по времени.
Пример применения: завод по производству меди и медных сплавов
Предположим, что медный завод питается от сети среднего напряжения 20 кВ с помощью понижающего трансформатора 20 кВ/400 В. Номинальная мощность трансформатора S r составляет 1600 кВА, а номинальное полное сопротивление напряжения u kr составляет 6 процентов. Для распределительных трансформаторов мощностью до 3150 кВА импедансом сети обычно можно пренебречь. Сопротивление короткого замыкания трансформатора ограничивает ток короткого замыкания, который выражается как:
→4 показана принципиальная схема блока питания.
04 Пример конфигурации защитного устройства для такого применения, как медный завод.Для входного питания используется выключатель ABB Emax E2 с номинальным током 2500 А. Уровень распределения защищен автоматическим выключателем ABB 250 A Tmax XT4S. Конечные цепи оснащены автоматическими выключателями ABB S800C и S200P.
Для обеспечения правильного каскадирования выполняются следующие расчеты: I cw Emax E2 (версия B) составляет 42 кА. Временная задержка установлена на 0,1 с. Следовательно, Emax может выдерживать ток короткого замыкания. На уровне дистрибуции I у.е. Tmax XT4S составляет 50 кА. Кабель между Tmax и сборной шиной для ответвления имеет поперечное сечение 95 мм 2 и длину 15 м. Сопротивление кабеля можно найти в технических справочниках как 0,246 Ом/км.
Сопротивление трансформатора 0,00597 Ом. Тогда ток короткого замыкания в подраспределительной линии составит:
При использовании автоматических выключателей S800C и S200P резервная защита не требуется, так как предельная мощность короткого замыкания этих устройств составляет 25 кА. Суммарная селективность между Tmax XT4S и S800C, S200P указана.
Пример применения: распределение электроэнергии в большом офисном здании
Если офисное здание питается от сети среднего напряжения 20 кВ с помощью трансформатора 20 кВ/400 В, с S r мощностью 630 кВА и kr 4 процента, сопротивление короткого замыкания трансформатора еще раз ограничивает ток короткого замыкания, который составляет:
→5 показана принципиальная схема источника питания.
05 Пример схемы защиты для большого офисного здания.I cu выключателя Tmax XT4 (версия N) 36 кА. I cu селективного главного автоматического выключателя ABB S750DR составляет 25 кА. Следовательно, Tmax и S750DR способны отключать ток короткого замыкания. Кабель между S750DR и распределительной сетью имеет сечение 16 мм2 и длину 10 м. Сопротивление кабеля можно найти в технических справочниках и оно равно 1,32 Ом/км. Сопротивление трансформатора 0,01012 Ом.
Ток короткого замыкания на уровне подраспределения можно рассчитать как:
При использовании автоматического выключателя S200M резервная защита не требуется, так как предельная мощность короткого замыкания составляет 15 кА. Указана общая селективность между S750DR и S200M.
Для автоматического выключателя SD200, показанного на →5, важен номинальный условный ток короткого замыкания. Значение для комбинации SD200/S750DR составляет 10 кА. Следовательно, SD200 защищен S750DR, так как максимальный ток короткого замыкания в этой точке составляет 9,9 кА.
Приведенные выше примеры показывают, что правильная конфигурация защитных устройств может обеспечить безопасную и надежную работу распределительного устройства в условиях короткого замыкания. Различные упомянутые стандарты IEC/EN помогают разработчикам в выборе правильных номиналов для используемых ими продуктов и, таким образом, гарантируют, что электроэнергия продолжает поступать в приложение независимо от того, какие электрические неисправности возникают.