Ток отключения автоматического выключателя: Ток Отключения и «Неотключения» Автоматического Выключателя

Содержание

Ток Отключения и «Неотключения» Автоматического Выключателя

Понятие ток неотключения автоматического выключателя мало кому знакомо. Люди ошибочно полагают что, установив автомат на 16 Ампер он обязательно сработает при 16-ти Амперной нагрузке. На самом деле это не так.

Все это связано с ВТХ – время-токовыми характеристиками. В данной статье уважаемые читатели сайта «Электрик в доме» я постараюсь пояснить, почему так важно учитывать этот параметр при выборе автоматов.

Электрический ток протекает только по замкнутой цепи. Если её разорвать, действие тока будет прекращено. На этом свойстве строится защита электрических линий с помощью автоматических выключателей. При аварийном режиме в электрической цепи возникает ток срабатывания автомата, на который реагируют тепловой или электромагнитный расцепители, разрывая контролируемую цепь.

ток срабатывания автомата

Для бесперебойного и надёжного питания потребителей, подбирают выключатели, длительно выдерживающие номинальный ток или ток отключения автомата.

Токи не отключения автомата могут привести к аварийной ситуации, например, к возгоранию электрической проводки в вашем доме. Поэтому, для безопасности, помимо правильного определения сечения кабеля, важен точный расчёт номинала автомата, выбор которого проводят, учитывая ток не отключения автоматического выключателя.

О чем говорят время-токовые характеристики

О работе автоматических выключателей судят по время-токовым характеристикам (ВТХ), определяющим точный период срабатывания защитного устройства. Наверняка, вы сталкивались с тем, что в маркировке автоматов участвуют буквенные обозначения: B, C, D.

Это ВТХ автоматических выключателей, ток мгновенного их срабатывания. Другими словами, это наименьший ток, при котором автоматический выключатель разорвет цепь без задержки времени (ГОСТ 50345-2010, п. 3.5.17). Так работает его электромагнитная защита (реагирующая на ток короткого замыкания).

Рассмотрим время-токовую характеристику С. На графике видно, как зависит от тока, проходящего через автомат, время его срабатывания. Вертикально расположенная ось У (ординат) показывает время (секунды).

 время токовая характеристика C

Горизонтальная ось Х (абсцисс) – отражает отношение тока в цепи к номинальному току коммутационного аппарата (I/In). Простыми словами это параметр показывает загруженность (перегруз) автоматического выключателя.

ток неотключения автоматического выключателя

График представлен в виде двух кривых, показывающих временной диапазон действия теплового и электромагнитного расцепителя автомата.

характеристика срабатывания автомата

Расположенная сверху кривая определяет холодное состояние, когда автомат предварительно не включался. Кривая, расположенная ниже, характеризует горячее состояние, когда автомат уже был включен в сеть и (или) произошло его защитное срабатывание.

Ток условного «неотключения» автомата — 1,13•In

Ток не отключения автоматического выключателя. Что это такое и откуда он берётся? Рассмотрим ВТХ защитного устройства — автомата. На оси Х (абсцисс), отражающей кратность тока нагрузки в цепи к номинальному току (I/In), находим цифру — 1,13.

Из этой точки вверх проводим вертикальную линию. (На рисунке, расположенном ниже, линия выделена красным цветом.)

ток неотключения 1.13In

Ищем точки пересечения этой линии с кривой времени срабатывания автомата. Видим, что таких точек нет. Делаем вывод, что автомат не сработает, если в цепи будет ток, превышающий номинальный в 1,13 раз.

Автоматические выключатели, пропуская через себя ток, превышающий их номинальный в 1,13 раз, должны поддерживать работу цепи на протяжении целого часа (ГОСТ 50345). При невыполнении этого условия, устройства автоматической защиты бракуются.

Условный ток не расцепления любого автомата составляет 1,13•In. При такой токовой нагрузке устройство защиты не отключается:

  1. 1 час у автоматов с номиналом менее 63 А;
  2. 2 часа у автоматов с номиналом более 63 А.

На графиках времятоковых характеристик автоматических выключателей производителями отмечается точка условного не расцепления (1,13•In).

Если через эту точку провести вертикальную прямую, становится видно место её пересечения с нижней кривой на участке 60-120 минут. К примеру, при прохождении тока 1,13•In = 11,3 (А) через автомат, номинал которого составляет 10 А, его тепловой расцепитель не разомкнёт цепь на протяжении 1 часа.

Так же, при прохождении тока 1,13•In = 18,08 (А) через автомат номиналом 16 А в течение 1 часа не сработает его тепловой расцепитель.

Ниже приведены значения токов условного не расцепления для автоматических выключателей различного номинала:

Номинальный ток автомата (Ампер)
Ток неотключения (перегруз 13 %)
6 6,78
10 11,3
16 18,08
20 22,6
25 28,25
32 36,16
40 45,2

В соответствии с времятоковыми характеристиками, автоматы не будут срабатывать при прохождении через них токов, указанных в правом столбце. Это особенно важно, если в вашей сети возможно подключение большой нагрузки, а электропроводка устарела, изоляция проводов нарушена, монтажные работы были проведены некачественно.

Тогда ток не отключения автомата возрастёт, а сечение отходящего кабеля может оказаться недостаточным для создавшейся нагрузки. Поэтому, старайтесь выбрать защитное оборудование и сечение проводников с оправданным запасом. Чтобы не заниматься каждый раз расчетами, обращайтесь к представленной ниже информации.

Ток условного расцепления (отключения) — 1,45•In

Какой же ток отключения автомата? Продолжим анализировать время-токовую характеристику. На горизонтальной оси, находим следующее за 1,13 значение. Это число 1,45. Из этой точки проводим вертикаль, видим её пересечение с графиком в 2 местах.

На кривой, расположенной ниже, место пересечения — 40 секунд. На кривой, расположенной сверху – 60-120 минут, в зависимости от номинала автомата. Для защитных устройств с номинальным током менее 63 А на отключение уйдёт не более 1 часа. А для устройств с номинальным током выше 63 А для этого потребуется 2 часа.

ток условного расцепления 1.45In

Автоматический выключатель номиналом 10 А способен, не срабатывая в продолжение 1 часа, выдерживать нагрузку 14,5 А. Автомат номиналом 16 А на протяжении этого же времени способен удерживать нагрузку 23,2 А. Это при условии холодного их состояния в начале работы. Если защитное устройство было горячим, на его отключение потребуется от 40 секунд до 1 часа.

Ниже приведены токи условного расцепления для автоматических выключателей разного номинала:

Номинальный ток автомата (Ампер) Ток отключения в течении 1 часа (перегруз 45 %)
6 8,7
10 14,5
16
23,2
20 29
25 36,25
32 46,4
40 58

О чём нельзя забывать при расчете сечения кабеля для электропроводки (смотри выше).

Представим, что в сети нашего дома необходимо защитить проводку сечением 2,5 кв. мм. Многие пользователи идут на поводу у неграмотных электриков и устанавливают для этого 25 А автомат (аргумент у них как правило один – «чтобы не выбивало»).

Если посмотреть по таблицам ГОСТ 31996—2012 допустимый ток для такого сечения кабеля с ПВХ изоляцией то он составляет 27 Ампер.

В случае увеличения нагрузки на 45 % (36.25А), автомат может не срабатывать в течение 1 часа. Всё это время по проводнику будет протекать ток, значительно превышающий длительно допустимый (25 А). Это может привести к нагреванию и

разрушению изоляции провода, возникновению пожароопасной ситуации или к короткому замыканию.

Ситуация усугубляется тем, что недобросовестные производители в последнее время занижают сечение жил.

Вывод

Из представленного выше видно, как много нужно времени для того, чтобы сработал ток отключения автомата, даже если он будет намного больше номинального. При неправильном выборе сечения провода, его изоляция за это время может расплавиться.

Это приведёт к возникновению аварийной ситуации.

при каком токе отключается автомат

Я еще раз об этом напомнил, чтобы подчеркнуть насколько важно, при каком токе отключается автомат

в вашем доме и правильно выбрать номинал этого защитного устройства. Не менее важно провести грамотный расчет сечения проводов (кабеля) и сделать выбор с достаточным запасом.

Хочу еще отметить низкое качество современной электротехнической продукции. Повсеместно продаются китайские изделия. Такой товар лучше не покупать. Приобретайте автоматические выключатели у добросовестных производителей.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

ток отключения и виды расцепителей

На вводе в любую квартиру в обязательном порядке устанавливается устройство для защиты от перегрузки и токов короткого замыкания. Как правило, эти задачи выполняют автоматические выключатели. Для правильной их установки необходимо уметь отличать номиналы автоматических выключателей.

Где и как применяются автоматические выключатели

Автоматические выключатели предназначены для защиты электрических сетей от перегрузок и токов короткого замыкания. За счет надежности и простоты подключения они получили широкое распространение в бытовых электросетях.

Автоматы для защиты электросетиАвтоматы для защиты электросетиАвтоматы для защиты электросети

Автоматы присутствуют практически в каждом квартирном электрощите. Не реже они встречаются в щитах защиты промышленного оборудования, электрических двигателей и различных передвижных установках.

к содержанию ↑

Номинальный ток автомата

У разных электроприборов потребляемая мощность способна отличаться в тысячи раз. Соответственно неодинаков и рабочий ток. К примеру, обычная квартира в жилом доме потребляет до 16-32 А. Поэтому автомат защиты квартирной сети подбирается на аналогичный номинал. Мощные промышленные печи способны потреблять от энергосистемы сотни ампер. Соответственно автомат для них требуется на больший номинал.

Номиналы автоматических выключателейНоминалы автоматических выключателейНоминалы автоматических выключателей к содержанию ↑

Маркировка автомата

Согласно ПУЭ каждый аппарат защиты должен иметь надпись, указывающую значение номинального тока. Чтобы узнать номинал автомата, достаточно посмотреть на его корпус. На данных устройствах защиты используется стандартная маркировка, состоящая из одной буквы (B, C или D) и числа.

Буква указывает на временную характеристику. Ее еще называют временем срабатывания. Об этом параметре речь пойдет ниже. Число обозначает номинальный ток прибора. Например:

  • C25 — временная характеристика C, номинальный ток 25 А;
  • B32 — характеристика B, 32 А.

Расшифровка маркировки автомата ABBРасшифровка маркировки автомата ABB

В быту обычно применяют выключатели с временными характеристиками B и C. В промышленности встречаются защитные устройства из ряда L, Z и K.

Дополнительная информация. В маркировке скрыта и другая информация об устройстве. Например, номер серии, номинальное рабочее напряжение, отключающая способность и количество полюсов.

к содержанию ↑

Временная характеристика автоматических выключателей

В автоматических выключателях используется 2 вида расцепителей:

  1. Электромагнитный. Обладает мгновенным срабатыванием. При превышении тока электромагнитного расцепителя устройство защиты отключается без каких-либо временных задержек. Этот узел приводит к срабатыванию автомата при КЗ.
  2. Тепловой расцепитель. Срабатывает через некоторое время. Применяется для защиты от перегрузок. Причем, чем сильнее превышена допустимая мощность потребителя, тем быстрее сработает защита.

Устройство автоматических выключателей Устройство автоматических выключателей

В некоторых автоматах применяется 1 расцепитель, в других оба. Различные комбинации этих узлов наделяют выключатель одной из вышеописанных характеристик B, C или D.

Ниже приведена таблица с временными характеристиками автоматов, их током отключения и сферой применения. In — номинальный ток, который указан на корпусе после буквы (16, 25, 32).

Временная характеристика При каком токе произойдет отключение Где применяются автоматы с данными характеристиками
B 3-5 In Сети освещения и линии с большой длиной
C 5-10 In Розетки и потребители с малыми пусковыми токами
D 10-20 In Потребители с большими пусковыми токами (двигатели, трансформаторы)
L, Z, K свыше 8-12 In Промышленность, редко
к содержанию ↑

Примеры использования автоматов

Если заглянуть в квартирный электрощит, там наиболее вероятно будут установлены автоматы C16 или C25. В старых домах предусмотрена отдельная линия питания мощной электроплиты на кухне. Для нее предусмотрен автомат на 25 А.

Автоматы C16 в щитеАвтоматы C16 в щите

к содержанию ↑

Разновидности модульных устройств защиты

Помимо обычных автоматов в быту и промышленности часто встречаются и другие, родственные устройства. Они обладают определенными достоинствами перед простыми автоматическими выключателями.

Мини модели

Линейка устройств защиты широкого потребления. Устанавливаются в квартирные электрощиты. Данные приборы рассчитаны на малые номиналы 25-32 А. Обладают минимальным функционалом. Стоят дешево и не имеют возможности ручной подстройки тока срабатывания. При некорректной работе их целесообразней заменить новыми, нежели перенастроить.

Мини-автомат TPN-32Мини-автомат TPN-32

Дополнительная информация. В дорогих моделях предусмотрен регулятор для корректировки тока срабатывания. Данная процедура проводится в электротехнических лабораториях. Автомат подключается к специальному стенду. Затем ток плавно повышается. Это необходимо, чтобы выяснить при каком значении тока отключается каждое конкретное устройство защиты. А далее, внести корректировки в электромагнитный расцепитель.

к содержанию ↑

Воздушные (силовые или открытые) автоматы

Главные особенности этих устройств — большие размеры, открытое негерметичное исполнение и повышенная номинальная мощность в сравнении с мини моделями. Силовые автоматы широко используются не только для защиты электрических сетей и агрегатов, но и для их включения и выключения.

Воздушный выключатель-разъединительВоздушный выключатель-разъединительВоздушный выключатель-разъединитель

Такие выключатели устанавливаются на промышленных распределительных щитах для питания мощных установок на десятки киловатт. Их номиналы достигают значений в 400 А и выше.

к содержанию ↑

Закрытые выключатели

Рассчитаны на повышенную мощность. Применяются для защиты силовых потребителей. Приборы данного класса обладают закрытым герметичным исполнением и сравнительно малыми габаритами. Пригодны в сетях до 3,2 кА и отключаются при КЗ до 35 кА.

Герметичный автоматГерметичный автомат

Достоинство закрытых устройств защиты заключается в их герметичности. Это свойство допускает их применение в экстремальных условиях тропического климата.

к содержанию ↑

Устройства защитного отключения

В большинстве случаев встречаются в бытовых электросетях. Используются для защиты квартирной проводки от повреждения изоляции, а жильцов от опасного прикосновения к токоведущим частям.

УЗО не предназначено для защиты кабелей от коротких замыканий. Вместо этого оно сравнивает токи, протекающие в фазном и нулевом проводах. Если разница превышает определенное значение, значит, где-то нарушена изоляция или человек коснулся фазного провода. В таком случае электропитание квартиры аварийно отключается.

Конструкция автомата защитыКонструкция автомата защиты

к содержанию ↑

Дифференциальный автоматический выключатель

Гибридное устройство, обладающее свойствами обычного автомата и полноценного УЗО. Диф автомат одновременно используется для защиты проводки от токов утечки и перегрузок. Такие функциональные возможности позволяют установить в щит вместо двух отдельных устройств защиты одно общее. В результате проводка упрощается и занимает меньше пространства.

Трехфазный дифавтоматТрехфазный дифавтоматТрехфазный дифавтомат к содержанию ↑

Количество полюсов

Бытовым электроприборам для работы необходимо однофазное питание. Достаточно фазного и нулевого провода. Мощные промышленные потребители (станки, печи) работают от трехфазной электросети. Им необходимы 4 провода: 3 фазы и 1 нулевой.

По этой причине и автоматические выключатели производятся в различном форм-факторе. Модели на 1 полюс устанавливают для защиты отдельных однофазных линий. На 2 применяются в качестве вводного устройства защиты квартирных электрощитов. Трехполюсные используются как силовые выключатели в трехфазных сетях. А четырехполюсные — это те же автоматы на 3 полюса, но они имеют дополнительный (4-й) модуль для нулевого провода.

Четырехполюсный выключатель IEKЧетырехполюсный выключатель IEK

Дополнительная информация. Если под рукой нет двухполюсного автомата, допустимо собрать его из 2 однополюсных. Устройства должны обладать одинаковыми временными и нагрузочными характеристиками. Аналогичным способом собираются выключатели на 3 и 4 полюса.

к содержанию ↑

Выбор провода и автомата по току

Главный критерий выбора проводки и выключателя для защиты — это максимальный допустимый ток в линии. Он определяется поперечным сечением жилы питающего кабеля.

Для медного провода сечением 6 кв. мм длительный допустимый ток равен 46 А. Автоматический выключатель для защиты такой линии выбирается на меньший номинал. Например, 32 или 40 А. Если установить автомат на больший ток, то скорее сгорят провода, чем сработает защита. Поэтому устройство защиты подбирается на меньший ампераж, чем способна выдержать линия.

Другие распространенные номиналы автоматических выключателей по току указаны в таблице.

Сечение провода, кв. мм Наибольший допустимый ток, А Ток автоматического выключателя, А
1,5 19 10-16
2,5 27 16-20
4 38 25-32
6 46 32-40
10 70 50-63

Номинал автомата защиты — это самое важное, что учитывается при его подборе. Если поставить устройство на слишком малый ток, то оно будет постоянно выключаться без перегрузок проводки. Если на слишком большой, то отключится уже после того, как на проводах обгорит изоляция.

Номинал выключателя указан в его маркировке (C25). Его значение подбирается из расчета на 1-2 порядка меньше, чем предельный допустимый ампераж в линии. Это правило свойственно и для других защитных устройств (УЗО, дифференциальный автомат).

Номиналы автоматических выключателей: ток отключения и виды расцепителей

Время-токовые характеристики (ВТХ) автоматических выключателей

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Вы наверное замечали, что на корпусах модульных автоматов изображены латинские буквы: B, C или D. Так вот они обозначают время-токовую характеристику этого автомата, или другими словами, ток мгновенного расцепления.

Согласно ГОСТа Р 50345-99, п.3.5.17 — это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. это его электромагнитная защита.

В этом же ГОСТе Р 50345-99, п.5.3.5, говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):

  • B — электромагнитный расцепитель (ЭР) срабатывает в пределах от 3 до 5-кратного тока от номинального (3·In до 5·In)
  • C — (ЭР) срабатывает в пределах от 5 до 10-кратного тока от номинального (5·In до 10·In)
  • D — (ЭР) срабатывает в пределах от 10 до 20-кратного тока от номинального (10·In до 20·In, но встречаются иногда и 10·In до 50·In)

In – номинальный ток автоматического выключателя.

Помимо характеристик типа В, С и D, существуют и не стандартные характеристики типа А, К и Z, но о них я расскажу Вам в следующий раз. Чтобы не пропустить выход новых статей, подписывайтесь на рассылку сайта.

Рассмотрим каждый вид характеристики более подробно на примере модульных автоматических выключателей ВМ63-1 серии OptiDin и Optima от производителя КЭАЗ (Курский Электроаппаратный завод).

 

Время-токовая характеристика типа В

Рассмотрим время-токовую характеристику В на примере автоматических выключателей ВМ63-1 от КЭАЗ. Один автомат с номинальным током 10 (А), а другой — 16 (А).

Обратите внимание, что оба автомата имеют характеристику В, что отчетливо видно по маркировке на их корпусе: В10 и В16.

Для наглядности с помощью, уже известного Вам, испытательного прибора РЕТОМ-21 проверим заявленные характеристики данных автоматов.

Но сначала несколько слов о графике.

Вот график время-токовой характеристики (сокращенно, ВТХ) типа В:

На нем показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах.

Запомните!!! Время-токовые характеристики практически всех автоматов изображаются при температуре +30°С. 

График разделен двумя линиями, которые и определяют разброс времени срабатывания зон теплового и электромагнитного расцепителей автомата. Верхняя линия — это холодное состояние, т.е. без предварительного пропускания тока через автомат, а нижняя линия — это горячее состояние автомата, который только что был в работе или сразу же после его срабатывания.

Пунктирная линия на графике — это верхняя граница (предел) для автоматов с номинальным током менее 32 (А).

1. Токи условного нерасцепления (1,13·In)

У каждого автомата есть такое понятие, как «условный ток нерасцепления» и он всегда равен 1,13·In. При таком токе автомат не отключится в течение 1 часа (для автоматов с номинальным током менее 63А) и в течение 2 часов (для автоматов с номинальным током более 63А).

Точку условного нерасцепления автомата (1,13·In) всегда отображают на графике. Если провести прямую, то видно, что прямая уходит как бы в бесконечность и с нижней линией графика пересекается в точке 60-120 минут.

Например, автомат с номинальным током 10 (А). При протекании через него тока 1,13·In = 11,3 (А) его тепловой расцепитель не сработает в течение 1 часа.

Еще пример, автомат с номинальным током 16 (А). При протекании через него тока 1,13·In = 18,08 (А) его тепловой расцепитель не сработает в течение 1 часа.

Вот значения «токов условного нерасцепления» для различных номиналов:

  • 10 (А) — 11,3 (А)
  • 16 (А) — 18,08 (А)
  • 20 (А) — 22,6 (А)
  • 25 (А) — 28,25 (А)
  • 32 (А) — 36,16 (А)
  • 40 (А) — 45,2 (А)
  • 50 (А) — 56,5 (А)

2. Токи условного расцепления (1,45·In)

Есть еще понятие, как «условный ток расцепления» автомата и он всегда равен 1,45·In. При таком токе автомат отключится за время не более 1 часа (для автоматов с номинальным током менее 63А) и за время не более 2 часов (для автоматов с номинальным током более 63А).

Кстати, точку условного расцепления автомата (1,45·In) практически всегда отображают на графике. Если провести прямую, то видно, что прямая пересекает график в двух точках: нижнюю линию в точке 40 секунд, а верхнюю — в точке 60-120 минут (в зависимости от номинала автомата).

Таким образом, автомат с номинальным током 10 (А) в течение часа, не отключаясь, может держать нагрузку порядка 14,5 (А), а автомат с номинальным током 16 (А) — порядка 23,2 (А). Но это при условии, что автоматы изначально были в холодном состоянии, в ином случае время их отключения будет находиться в пределах от 40 секунд до одного часа.

Вот значения «токов условного расцепления» для различных номиналов:

  • 10 (А) — 14,5 (А)
  • 16 (А) — 23,2 (А)
  • 20 (А) — 29 (А)
  • 25 (А) — 36,25 (А)
  • 32 (А) — 46,4 (А)
  • 40 (А) — 58(А)
  • 50 (А) — 72,5 (А)

Вот об этом не стоит забывать при выборе сечения проводов и кабелей для электропроводки (вот Вам таблица в помощь).

Вот представьте себе, что кабель сечением 2,5 кв.мм Вы защищаете автоматом на 20 (А). Вдруг по некоторым причинам Вы перегрузили линию до 29 (А). Автомат 20 (А) может не отключаться в течение целого часа, а по кабелю будет идти ток, который в значительной мере превышает его длительно-допустимый ток (25 А). За это время кабель сильно нагреется и расплавится, что может привести к пожару или короткому замыканию. А если еще учесть то, что в последнее время производители кабельной продукции преднамеренно занижают сечения жил, то ситуация тем более усугубляется.

В принципе, выбор номиналов автоматических выключателей это отдельная тема для статьи. Я лишь привел здесь одну из наиболее распространенных ошибок. Если интересно, то почитайте мою статью, где я подробно разбирал ошибки одного горе-электрика и переделывал за ним его «творчество».

Лично я рекомендую защищать кабели следующим образом:

  • 1,5 кв.мм — защищаем автоматом на 10 (А)
  • 2,5 кв.мм —  защищаем автоматом на 16 (А)
  • 4 кв.мм —  защищаем автоматом на 20 (А) и 25 (А)
  • 6 кв.мм —  защищаем автоматом на 25 (А) и 32 (А)
  • 10 кв.мм — защищаем автоматом 40 (А)
  • 16 кв.мм — защищаем автоматом 50 (А)

Для удобства все данные я свел в одну таблицу:

Проверить рассмотренные автоматы на токи условного нерасцепления и условного расцепления у меня нет времени, поэтому перейдем к их дальнейшей проверке — это форсированный режим проверки при токе, равном 2,55·In.

3. Проверка теплового расцепителя при токе 2,55·In

Согласно ГОСТа Р 50345-99, п.9.10.1.2 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния (для автоматов с номинальным током менее 32А) и не более 120 секунд из холодного состояния (для автоматов с номинальным током более 32А).

На графике ниже Вы можете видеть, что нижний предел по отключению взят с небольшим запасом, т.е. не 1 секунду, а 4 секунды. На то есть право у производителей автоматов. Вот поэтому они всегда к каждому автомату прикладывают свою ВТХ, которая, естественно, что удовлетворяет всем требованиям ГОСТа Р 50345-99.

Проверим!

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 25,5 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния.

Первый раз автомат отключился за время 14,41 (сек.), а второй раз — 11,91 (сек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 40,8 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния.

Первый раз автомат отключился за время 13,51 (сек.), а второй раз — 7,89 (сек.).

Дополнительно можно проверить тепловой расцепитель, например, при двухкратном токе от номинального, но в рамках данной статьи я этого делать не буду. На сайте имеется уже достаточно статей про прогрузку различных автоматических выключателей, как бытового, так и промышленного исполнения. Вот знакомьтесь:

4. Проверка электромагнитного расцепителя при токе 3·In

Согласно ГОСТа Р 50345-99, п.9.10.2.1 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени ГОСТом Р 50345-99 не определен, и у автоматов разных производителей здесь может наблюдаться не большой разброс в пределах от 1 до 10 секунд.

Странно, конечно, ведь речь идет об электромагнитном расцепителе и он должен срабатывать без выдержки времени. Но тем не менее, при токе 3·In электромагнитный расцепитель еще не срабатывает и по факту автомат отключается от теплового расцепителя. Вот именно поэтому измеренное значение петли фаза-ноль

сравнивают с током не 3·In, а с 5·In, учитывая коэффициент 1,1.

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 30 (А) должен отключиться за время не менее 0,1 секунды.

Первый раз автомат отключился за время 8,71 (сек.), а второй раз — 8,11 (сек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 48 (А) должен отключиться за время не менее 0,1 секунды.

Первый раз автомат отключился за время 8,16 (сек.), а второй раз — 6,25 (сек.).

5. Проверка электромагнитного расцепителя при токе 5·In

Согласно ГОСТа Р 50345-99, п.9.10.2.1 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время менее 0,1 секунды.

Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 50 (А) должен отключиться за время менее 0,1 секунды.

Первый раз автомат отключился за время 7,8 (мсек.), а второй раз — 7,7 (мсек.).

Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 80 (А) должен отключиться за время менее 0,1 секунды.

Первый раз автомат отключился за время 8,5 (мсек.), а второй раз — 8,4 (мсек.).

Как видите, оба автомата полностью соответствуют требованиям ГОСТа Р 50345-99 и заявленным характеристикам завода-изготовителя КЭАЗ.

Кому интересно, как проходила прогрузка автоматов, то смотрите видеоролик:

Автоматы с характеристикой В применяются для защиты распределительных и групповых цепей с большими длинами кабелей и малыми токами короткого замыкания преимущественно с активной нагрузкой, например, электрические печи, электрические нагреватели, цепи освещения.

Но почему-то в магазинах их количество всегда ограничено, т.к. по мнению продавцов наиболее распространенными являются автоматы с характеристикой С. С чего это вдруг?! Вполне логично и целесообразно для групповых линий цепей освещения и розеток применять именно автоматы с характеристикой типа В, а в качестве вводного автомата устанавливать автомат с характеристикой С (это один из вариантов). Так хоть каким-то образом будет соблюдена селективность, и при коротком замыкании где-нибудь в линии вместе с отходящим автоматом не будет отключаться вводной автомат и «гасить» всю квартиру. Но о селективности я еще расскажу Вам более подробно в другой раз.

 

Время-токовая характеристика типа С

Вот ее график:

Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Нашли они достаточно широкое распространение в жилом фонде, хотя свое мнение об этом я высказал чуть выше.

Внимание! Более подробнее про время-токовую характеристику С читайте в моей отдельной статье.

Время-токовая характеристика типа D

График:

По графику видно следующее:

1. Токи условного нерасцепления (1,13·In) и токи условного расцепления (1,45·In), но о них я расскажу чуть ниже.

2. Если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды в горячем состоянии и не более 60 секунд в холодном состоянии (для автоматов с номинальным током менее 32А) и не более 120 секунд в холодном состоянии (для автоматов с номинальным током более 32А).

3. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время не менее 0,1 секунды.

4. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за время менее 0,1 секунды.

Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).

 

Изменение характеристик расцепления автоматов

Как я уже говорил в начале статьи, все характеристики изображаются при температуре окружающего воздуха +30°С. Поэтому, чтобы узнать время отключения автоматов при других температурах, необходимо учитывать следующие поправочные коэффициенты:

1. Температурный коэффициент окружающего воздуха — Кt.

Думаю тут все понятно из графика. Чем ниже температура воздуха, тем значение коэффициента больше, а значит и увеличивается номинальный ток автомата, другими словами, его нагрузочная способность. Или, наоборот, чем жарче, тем нагрузочная способность автомата становится меньше. Ведь не зря, в жарких помещениях или летнюю жару многие замечают частые отключения автоматов, хотя нагрузка вовсе не изменялась. Ответ кроется в этом графике.

2. Коэффициент, учитывающий количество рядом установленных автоматов — Кn.

Здесь тоже никаких премудростей нет. Когда в одном ряду установлено несколько автоматов, то они передают свое тепло рядом стоящим автоматам. Этот график учитывает конвекцию тепла и выдает корректирующий коэффициент, учитывающий этот фактор.

Логика проста. Чем больше в ряду автоматов, тем больше уменьшается их нагрузочная способность.

Далее необходимо найти ток, приведенный к условиям нашего окружающего воздуха и монтажа:

In* = In · Кt · Кn

Как эти два коэффициента применить на практике?

Для этого рассмотрим пример. Щиток стоит на улице, в нем установлены 4 автомата — один вводной (ВА47-29 С40) и три групповых (ВА47-29 С16). Температура окружающего воздуха составляет -10°С.

Найдем поправочные коэффициенты для группового автомата ВА47-29 С16:

Найдем ток, приведенный к нашим условиям:

In* = In · Кt · Кn = 16 · 1,1  · 0,82 = 14,43 (А)

Таким образом, при определении времени срабатывания автомата по характеристике С кратность тока нужно брать не как отношение I/In (I/16), а как I/In* (I/14,43).

 

Заключение

Все вышесказанное в данной статье я представлю в виде общей таблицы (можете смело копировать ее и пользоваться):

Если Вы заметили, то разницей между время-токовыми характеристиками В, С и D являются только значения срабатывания электромагнитного расцепителя. По тепловой защите они работают в одних интервалах времени.

P.S. Надеюсь, что после прочтения данной статьи Вы сможете самостоятельно определять пределы времени срабатывания любых автоматических выключателей, а также правильно рассчитывать сечения проводов под номиналы автоматов.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Основные характеристики автоматического выключателя — Руководство по устройству электроустановок


Основными характеристиками автоматического выключателя являются:

  • номинальное напряжение Ue;
  • номинальный ток In;
  • диапазоны регулировки уровней тока отключения для защиты от перегрузки Ir [1] или Irth [1] и защиты от короткого замыкания
    Im [1] ;
  • отключающая способность при коротком замыкании (Icu – для промышленных автоматических выключателей и Icn – для бытовых автоматических выключателей).

Номинальное рабочее напряжение (Ue)

Это то напряжение, при котором данный выключатель работает в нормальных условиях.

Для автоматического выключателя устанавливаются и другие значения напряжения, соответствующие импульсным перенапряжениям (см. подраздел Другие характеристики автоматического выключателя).

Номинальный ток (In)

Это – максимальная величина тока, который автоматический выключатель, снабженный специальным отключающим реле максимального тока, может проводить бесконечно долго при температуре окружающей среды, оговоренной изготовителем, без превышения установленных значений максимальной температуры токоведущих частей.

Пример
Автоматический выключатель с номинальным током In = 125 А при температуре окружающей среды 40 °C, оснащенный отключающим реле максимального тока, откалиброванного соответствующим образом (настроенным на ток 125 А). Этот же автоматический выключатель может использоваться при более высоких температурах окружающей среды, но за счет занижения номинальных параметров. Например, при окружающей температуре 50 °C этот выключатель сможет проводить бесконечно долго 117 А, а при 60 °C – лишь 109 А при соблюдении установленных требований по допустимой температуре.

Уменьшение номинального тока автоматического выключателя производится путем уменьшения уставки его теплового реле. Использование электронного расцепителя, который может работать при высоких температурах, обеспечивают возможность эксплуатации автоматических выключателей (с пониженными уставками по току) при окружающей температуре 60 °С
или даже 70 °С.

Примечание: в автоматических выключателях, соответствующих стандарту МЭК 60947-2, ток In равен обычно Iu для всего распределительного устройства, где Iu обозначает номинальный длительный ток.

Номинальный ток выключателя при использовании расцепителей с разными диапазонами уставок

Автоматическому выключателю, который может быть оборудован расцепителями, имеющими различные диапазоны уставок по току, присваивается номинальное значение, соответствующее номинальному значению расцепителя с наивысшим уровнем уставки по току отключения.

Пример:
Автоматический выключатель NS630N может быть оснащен четырьмя электронными расцепителями с номинальными токами от 150 до 630 А. В таком случае номинальный ток данного автоматического выключателя составит 630 А.

Уставка реле перегрузки по току отключения (Irth или Ir)

За исключением небольших автоматических выключателей, которые легко заменяются, промышленные автоматические выключатели оснащаются сменными, т.е. заменяемыми реле отключения максимального тока. Для того чтобы приспособить автоматический выключатель к требованиям цепи, которой он управляет, и избежать необходимости устанавливать кабели большего размера, отключающие реле обычно являются регулируемыми. Уставка по току отключения Ir или Irth (оба обозначения широко используются) представляет собой ток, при превышении которого данный автоматический выключатель отключит цепь. Кроме того, это максимальный ток, который может проходить через автоматический выключатель без отключения цепи. Это значение должно быть обязательно больше максимального тока нагрузки Iв, но меньше максимально допустимого тока в данной цепи Iz (см. Практические значения для схемы защиты).

Термореле обычно регулируются в диапазоне 0,7-1,0 In, но в случае использования электронных устройств этот диапазон больше и обычно составляет 0,4-1,0 In.

Пример (рис. h40):
Автоматический выключатель NS630N, оснащенный расцепителем STR23SE на 400 А, который отрегулирован на 0,9 In, будет иметь уставку тока отключения:
Ir = 400 x 0,9 = 360 А.

Примечание: для цепей, оборудованных нерегулируемыми расцепителями, Ir = In.
Пример: для автоматического выключателя C60N на 20 А Ir = In = 20 А.

Рис. h40: Пример автоматического выключателя NS630N с расцепителем STR23SE, отрегулированным на 0,9In (Ir = 360 А)

Уставка по току отключения при коротком замыкании (Im)

Расцепители мгновенного действия или срабатывающие с небольшой выдержкой времени предназначены для быстрого выключения автоматического выключателя в случае возникновения больших токов короткого замыкания. Порог их срабатывания Im:

  • для бытовых автоматических выключателей регламентируется стандартами, например МЭК 60898;
  • для промышленных автоматических выключателей указывается изготовителем согласно действующим стандартам, в частности МЭК 60947-2.

Для промышленных выключателей имеется большой выбор расцепителей, что позволяет пользователю адаптировать защитные функции автоматического выключателя к конкретным требованиям нагрузки (см. рис. h41, h42 и h43).

  Тип расцепителя Защита от перегрузки Защита от короткого замыкания
Бытовые автоматические
выключатели (МЭК 60898)
Термомагнитный (комбинирован.) Ir = In Нижняя уставка Тип B
3 In ≤ Im ≤ 5 In
Стандартная уставка
Тип C
5 In ≤ Im ≤ 10 In
Верхняя уставка
Тип D
10 In ≤ Im ≤ 20 In [2]
Модульные промышленные авт. выключатели [3] Термомагнитный (комбинирован.) Ir = In
(не регулируется)
Нижняя уставка Тип B или Z
3,2 In ≤ постоянная ≤ 4,8 In
Стандартная уставка
Тип C
7 In ≤ постоянная ≤ 10 In
Верхняя уставка Тип D или K
10 In ≤ постоянная ≤ 14 In
Промышленные автоматические выключатели (МЭК 60947-2) [3] Термомагнитный (комбинирован.) Ir = In (не регул.) Постоянная: Im = 7 — 10 In
Регулируется:
0,7 In ≤ Ir ≤ In
Регулируемая:

— нижняя уставка: 2 — 5 In
— стандартная уставка: 5 — 10 In

Электронный Большая выдержка времени
0,4 In ≤ Ir ≤ In
Короткая выдержка времени, регулируемая:

1,5 Ir ≤ Im ≤ 10 Ir
Мгновенное срабатывание (I), время не регулируется:
I = 12 — 15 In

[2] 50 In в стандарте МЭК 60898, что по мнению большинства европейских изготовителей является нереально большим значением (M-G = 10-14 In).

[3] Для промышленного использования значения не регламентируются стандартами МЭК. Указанные выше значения соответствуют тем, которые обычно используются.


Рис. h41: Диапазоны токов отключения устройств защиты от перегрузки и короткого замыкания для низковольтных автоматических выключателей

Рис. h42: Кривая срабатывания термомагнитного комбинированного расцепителя автоматического выключателя

Ir: уставка по току отключения при перегрузке (тепловое реле или реле с большой выдержкой времени)
Im: уставка по току отключения при коротком замыкании (магнитное реле или реле с малой выдержкой времени)
Ii: уставка расцепителя мгновенного действия по току отключения при коротком замыкании
Icu: отключающая способность


Рис. h43: Кривая срабатывания электронного расцепителя автоматического выключателя

Гарантированное разъединение

Автоматический выключатель пригоден для гарантированного разъединения цепи, если он удовлетворяет всем требованиям, предъявляемым к разъединителю (при его номинальном напряжении) в соответствующем стандарте (см. Функции низковольтной аппаратуры: изолирование (отключение)). В таком случае его называют автоматическим выключателем-разъединителем и на его фронтальной поверхности наносят маркировку в виде символа

К этой категории относятся все низковольтные коммутационные аппараты компании Schneider Electric: Multi 9, Compact NS и Masterpact.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного автоматического выключателя связана с коэффициентом мощности (cos φ) поврежденного участка цепи. В ряде стандартов приводятся типовые значения такого соотношения.

Отключающая способность автоматического выключателя – максимальный (ожидаемый) ток, который данный автоматический выключатель способен отключить и остаться в работоспособном состоянии. Упоминаемая в стандартах величина тока представляет собой действующее значение периодической составляющей тока замыкания, т.е. при расчете этой стандартной величины предполагается, что апериодическая составляющая тока в переходном процессе (которая всегда присутствует в наихудшем возможном случае короткого замыкания) равна нулю. Эта номинальная величина (Icu) для промышленных автоматических выключателей и (Icn) для бытовых автоматических выключателей обычно указывается в кА.

Icu (номинальная предельная отключающая способность) и Ics (номинальная эксплуатационная отключающая способность) определены в стандарте МЭК 60947-2 вместе с соотношением Ics и Icu для различных категорий использования A (мгновенное отключение) и B (отключение с выдержкой времени), рассмотренных в подразделе Другие характеристики автоматического выключателя.

Проверки для подтверждения номинальных отключающих способностей автоматических выключателей регламентируются стандартами и включают в себя:

  • коммутационные циклы, состоящие из последовательности операций, т.е. включения и отключения при коротком замыкании;
  • фазовый сдвиг между током и напряжением. Когда ток в цепи находится в фазе с напряжением питания (cos φ = 1), отключение тока осуществить легче, чем при любом другом коэффициенте мощности. Гораздо труднее осуществлять отключение тока при низких отстающих величинах cos φ,при этом отключение тока в цепи с нулевым коэффициентом мощности является самым трудным случаем.

На практике все токи короткого замыкания в системах электроснабжения возникают обычно при отстающих коэффициентах мощности, и стандарты основаны на значениях, которые обычно считаются типовыми для большинства силовых систем. В целом, чем больше ток короткого замыкания (при данном напряжении), тем ниже коэффициент мощности цепи короткого замыкания, например, рядом с генераторами или большими трансформаторами.

В таблице, приведенной на рис. h44 и взятой из стандарта МЭК 60947-2, указано соотношение между стандартными величинами cos φ для промышленных автоматических выключателей и их предельной отключающей способностью Icu.

  • после проведения цикла «отключение – выдержка времени — включение/ отключение» для проверки предельной отключающей способности (Icu) автоматического выключателя выполняются дополнительные испытания, имеющие целью убедиться в том, что в результате проведения этого испытания не ухудшились:

  —  электрическая прочность изоляции;
  —  разъединяющая способность;
  —  правильное срабатывание защиты от перегрузки.

Icu cosφ
6 kA < Icu ≤ 10 kA 0,5
10 kA < Icu ≤ 20 kA 0,3
20 kA < Icu ≤ 50 kA 0,25
50 kA < Icu 0,2

Рис. h44: Соотношение между Icu и коэффициентом мощности (cos φ) цепи короткого замыкания (МЭК 60947-2)

Примечания

[1] Величины уставок, которые относятся к термомагнитным (комбинированным) расцепителям для защиты от перегрузки и короткого замыкания.zh:断路器的基本特性

Что такое время токовые характеристики автоматических выключателей

При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.

Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.

Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.

Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.

В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.

При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.

По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.

Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».

Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой

Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.

Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.

Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.

Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.

Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.

автомат с характеристикой С

Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.

Автоматы имеют несколько характеристик, самыми распространенными из которых являются:

  • — B — от 3 до 5 ×In;
  • — C — от 5 до 10 ×In;
  • — D — от 10 до 20 ×In.

Что означают цифры указанные выше?

Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.

Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3…5)=48…80А. Для С16 диапазон токов мгновенного срабатывания 16*(5…10)=80…160А.

При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).

В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.

Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.

время токовая характеристика типа В

время токовая характеристика типа С

время токовая характеристика типа D

Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.

Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.

Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.

Что показано на графике время токовой характеристики

На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.

время токовые характеристики автоматических выключателей

На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.

Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).

Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.

характеристика срабатывания автоматического выключателя

На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.

При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).

Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.

К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.

Автоматы с какими характеристиками предпочтительнее использовать дома

В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.

Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.

Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.

Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.

В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

A, B, C и D

Категории автоматических выключателей

Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции. Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Сработал автоматический выключатель

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Тепловой расцепитель (биметаллическая пластина)

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Характеристика автоматических выключателей классов B,C и D

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Автоматический выключатель класса А

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматический выключатель класса B

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Автоматический выключатель класса D

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Характеристики автоматических выключателей K и Z

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Заключение

В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.

Как выбрать автомат защиты – советы по самостоятельному ремонту от Леруа Мерлен в Москве

Автомат защиты – это автоматический выключатель, обеспечивающий защиту человека от поражения электрическим током. В обычных условиях электрический ток проходит через автомат защиты к потребителю. При нарушении нормального режима (включении большого количества бытовых электроприборов или неисправности некоторых из них) срабатывают расцепители автоматического выключателя, обесточивая цепь питания. Чрезмерный электрический ток может привести к выходу из строя всех бытовых электроприборов, к перегреву электропроводки, возгоранию и пожару. Поэтому основная задача – разорвать цепь до того, как чрезмерный ток сможет нанести какие-либо повреждения, и тем самым защитить электропроводку и приборы от электрических ударов.

Типы автоматов защиты

  • Устройства защитного отключения (УЗО)
  • Дифференциальный автомат

Основное отличие УЗО от дифференциального автомата заключается в том, что в УЗО отсутствует защита от короткого замыкания. Как правило, для нормальной и безопасной работы УЗО требуется защитить его от сверхтока, подключив автомат защиты перед самим устройством.

Устройство защитного отключения отключает цепь при появлении тока утечки, вызванного, например, прикосновением человека к токоведущему проводу или повреждением изоляции. Ток утечки, при котором срабатывают УЗО, определяется конструкцией и для современных приборов составляет 10 мА, 30 мА и 300 мА. В жилых и общественных помещениях, как правило, применяются УЗО с током отсечки 30 мА.

Основная задача УЗО – защита человека от поражения электрическим током 10 мА, 30 мА и от возникновения пожара 10 мА, 30 мА, 300 мА.

Дифференциальный автомат – это устройство, которое объединяет функции УЗО и автоматического выключателя.

Его работа основана на высоком быстродействии. Дифференциальные автоматы обеспечивают эффективную защиту человека от поражения электрическим током в случае прикосновения к токоведущим частям или деталям, оказавшимся под напряжением в результате повреждения изоляции нетоковедущих частей. Дифференциальный автомат срабатывает в обоих случаях – и при утечке тока на землю, и при коротких замыканиях в момент перегрузки сети. Дифференциальные автоматы имеют те же токи отсечки, что и УЗО, и те же номиналы, что и автоматы. Но их стоимость, как правило, выше, чем суммарная стоимость автомата и УЗО.

Обычно используют однофазные (однополюсные) автоматы для размыкания фазного проводника. Реже применяют двухфазные, или двухполюсные, автоматы и автоматы типа «фаза + нейтраль», одновременно размыкающие фазный (L) и нулевой (N) провода.

Трехфазные (трехполюсные) и четырехфазные (четырехполюсные) автоматы используются в сетях с напряжением 380 вольт. 

Важные характеристики автоматов

Номинальный ток характеризует значение рабочей силы тока (измеряется в амперах). При превышении этой величины автомат срабатывает и размыкает цепь. Автоматы выпускаются со стандартными значениями номинального тока: 6, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100 А.

Класс срабатывания характеризует кратковременное допустимое значение тока, при котором автомат НЕ сработает.

  • Класс «B» применяется для сетей без больших скачков напряжения, в диапазоне от 3 до 5 значений номинального тока.
  • Класс «C» применяется в квартирах, офисах и коттеджах, где допустимы токи, превышающие значение номинального в 5–10 раз.
  • Класс «D» используют в сетях, где возможны токи, в 10–50 раз превышающие значение номинального.

Отключающая способность (кА) – это максимальный ток, который способен пропустить автомат при коротком замыкании в линии, сохранив дальнейшую работоспособность.

Ток отсечки для УЗО и АД. Эти характеристики всегда указываются на корпусе прибора, стоимость которого возрастает с ростом параметров. При построении домашней сети рекомендуется ставить общий входной автомат (УЗО, АД) и отдельный автомат (класс С) на каждую линию потребителей.

При выборе номинального тока линейного автомата следует учитывать:

  • качество проводки – определяется диаметром и материалом используемого кабеля:
  • суммарную мощность подключаемых электроприборов. 

Важно! Для медного провода диаметром 2,5 мм допустим ток менее 25 А, а если мощность подключаемых приборов при напряжении 220 вольт составляет менее 5,5 кВт, необходим автомат С25.

В качестве входного автомата необходимо использовать УЗО (АД) с током отсечки: 

  • 30 мА – для сухих помещений;
  • 10 мА – для влажных помещений. 

Номинальный ток такого прибора должен быть на ступень выше линейного (принцип ступенчатой защиты сети).

Практические рекомендации

Автоматы рассчитаны на определенное количество срабатываний. В связи с этим не рекомендуется использовать их для включения-отключения нагрузки: во-первых, изнашивается механизм, а во-вторых, подгорают контакты, что ведет к выходу из строя контактной группы. Корпуса автоматических выключателей различных производителей часто отличаются друг от друга по посадочному месту на DIN-рейку, по месту крепления проводов. Поэтому при замене вышедшего из строя автомата следует обратить внимание на его конструктивные особенности.

Что такое автоматический выключатель? Принцип работы и типы автоматических выключателей

Автоматический выключатель — это переключающее устройство, которое прерывает аномальный или аварийный ток. Это механическое устройство, которое препятствует прохождению тока большой величины (короткого замыкания) и, кроме того, выполняет функцию переключателя. Автоматический выключатель в основном предназначен для включения или отключения электрической цепи, таким образом защищая электрическую систему от повреждений.

Принцип работы автоматического выключателя

Автоматический выключатель состоит из неподвижных и подвижных контактов. Эти контакты касаются друг друга и пропускают ток при нормальных условиях, когда цепь замкнута. Когда автоматический выключатель замкнут, токоведущие контакты, называемые электродами, зацепляются друг с другом под давлением пружины.

В нормальном рабочем состоянии плечи автоматического выключателя можно размыкать или замыкать для переключения и технического обслуживания системы.Чтобы размыкать автоматический выключатель, требуется только давление на спусковой крючок.

circuit-breaker Каждый раз, когда в какой-либо части системы возникает неисправность, на катушку отключения выключателя подается питание, и подвижные контакты разъединяются друг от друга каким-то механизмом, тем самым размыкая цепь.

Типы автоматических выключателей

Автоматические выключатели в основном классифицируются на основе номинального напряжения. Автоматические выключатели ниже номинального напряжения 1000 В известны как выключатели низкого напряжения, а выключатели выше 1000 В называются выключателями высокого напряжения.

Самый общий способ классификации автоматических выключателей основан на гашении дуги. К таким типам автоматических выключателей относятся: —

  1. Масляный автоматический выключатель
  2. Автоматический выключатель минимального уровня
  3. Автоматический выключатель воздушной струи
  4. Автоматический выключатель на основе гексафторида серы
  5. Вакуумный выключатель
  6. Автоматический выключатель

Все высоковольтные выключатели можно разделить на две основные категории: i.е масляные выключатели и безмасляные выключатели.

,

Типы главных автоматических выключателей от 1000 В MCB до выключателя с глухим баком 1000 кВ

Множество различных автоматических выключателей

В этой технической статье рассматриваются две важные классификации автоматических выключателей — по уровню напряжения (от низкого до среднего и высокого напряжения) и, во-вторых, по технологии (метод пожаротушения или среда, изолирующая контакты выключателя.

Main types and technologies of circuit breakers (from 1000 V MCB to 1000 kV dead tank breaker) Основные типы и технологии автоматических выключателей (от 1000 V MCB на выключатель глухого резервуара 1000 кВ)

В комплекте:


Автоматические выключатели по уровню напряжения:


Высокое напряжение (от 50 до 1200 кВ)

1.Автоматический выключатель (DCB)
Автоматический выключатель

A (DCB) представляет собой высоковольтный автоматический выключатель, заменяющий обычную комбинацию автоматического выключателя и отдельных разъединителей . Функция отключения встроена в камеру прерывания.

Это означает, что автоматический выключатель удовлетворяет всем требованиям как к выключателю, так и к разъединителю.

Конструкция DCB обычно такая же, как и у стандартного автоматического выключателя, за исключением того, что используется более высокий класс напряжения и что имеется устройство для механической блокировки DCB в разомкнутом положении.

Преимущество DCB в том, что исключает отдельный выключатель-разъединитель , что также уменьшает размер подстанции. Одним из недостатков DCB является то, что вся шина должна быть выведена из эксплуатации при выполнении технического обслуживания DCB, поскольку одна сторона DCB всегда будет оставаться под напряжением.

A Disconnecting Circuit Breaker (DCB), replaces the conventional combination of circuit breaker and separate disconnectors A Disconnecting Circuit Breaker (DCB), replaces the conventional combination of circuit breaker and separate disconnectors A Размыкающий автоматический выключатель (DCB), заменяет обычную комбинацию автоматического выключателя и отдельных разъединителей

Вернуться к содержанию ↑


2.Автоматический выключатель под напряжением

Выключатель бака под напряжением используется на высоких уровнях напряжения. В автоматических выключателях с баком под напряжением камера прерывателя изолирована от земли изолятором , который может быть изготовлен из фарфора или композитного материала и находится под высоким потенциалом. Уровень напряжения определяет длину изоляторов камеры прерывателя и изоляционной стойки.

В автоматических выключателях под напряжением не могут возникать токи повреждения между блоком прерывателя и корпусом, поэтому необходим только один трансформатор тока на каждый полюсный узел.

Еще одной особенностью автоматических выключателей с баком под напряжением являются сравнительно небольшие газовые отсеки. Преимущество небольшого объема газа заключается в сокращении объема работ по техническому обслуживанию газа.

Live-tank circuit breaker Live-tank circuit breaker Автоматический выключатель под напряжением

Вернуться к содержанию ↑


3. Автоматический выключатель с баком

Dead-tank — высоковольтный выключатель. Отличительной особенностью технологии «мертвого бака» является то, что камера прерывателя размещена в заземленном металлическом корпусе .При такой конструкции газ SF6, заполняющий резервуар, изолирует части контактного узла под высоким напряжением от корпуса.

Наружные вводы соединяют камеру прерывателя с выводами высокого напряжения.

Такая конструкция означает повышенный риск внутреннего замыкания на землю или короткого замыкания в резервуаре, и этим риском нельзя пренебрегать. Чтобы справиться с такими ситуациями, проходные изоляторы с обеих сторон резервуара обычно оснащены трансформатором тока, который дополнительно подключается к защитным реле.

Автоматический выключатель с защитным баком имеет преимущество при землетрясениях !

Dead-tank circuit breaker Dead-tank circuit breaker Автоматический выключатель с мертвым баком

Вернуться к содержанию ↑


4. Выключатель среднего напряжения

Выключатели среднего напряжения рассчитаны на напряжение от 1000 В до 50 кВ. Термин « среднего напряжения » стал использоваться для напряжений, необходимых для регионального распределения электроэнергии, которые являются частью диапазона высокого напряжения от 1 кВ переменного тока до 52 кВ переменного тока включительно.

Большинство рабочих напряжений в системах среднего напряжения находятся в диапазоне от 3 кВ переменного тока до 40,5 кВ переменного тока .

В системах электроснабжения и распределения автоматические выключатели среднего напряжения устанавливаются по адресу:

  1. Электростанции, для генераторов и систем электроснабжения.
  2. Трансформаторные подстанции первичного уровня распределения (системы общественного питания или системы крупных промышленных предприятий), на которых мощность, подаваемая из системы высокого напряжения, преобразуется в среднее напряжение.
  3. Местные подстанции электроснабжения, трансформаторные или абонентские подстанции для крупных потребителей (уровень вторичного распределения), в которых мощность преобразуется со среднего напряжения на низкое и распределяется между потребителями.
Indoor-mounted 24 kV vacuum-type circuit breaker on a truck, type VD4 Indoor-mounted 24 kV vacuum-type circuit breaker on a truck, type VD4 Вакуумный выключатель среднего напряжения 24 кВ на грузовике, устанавливаемый внутри помещений, типа ВД4

Вернуться к содержанию ↑


5. Выключатель низковольтный

Типы выключателей

низкого напряжения распространены в бытовых, коммерческих и промышленных применениях до 1000 В переменного тока .Автоматический выключатель в литом корпусе (MCCB) может иметь номинал от до 2500 A . Они имеют термическое или термомагнитное управление. Эти выключатели часто устанавливаются в выдвижных корпусах, которые позволяют снимать и заменять без демонтажа распределительного устройства.

Некоторые большие автоматические выключатели управляются дистанционно с помощью электродвигателей, часто являющихся частью системы автоматического включения резерва для резервного питания.

Технологии автоматических выключателей


CB использование и сравнение

Автоматические выключатели в основном можно разделить на три группы в зависимости от среды, которая закрывает (изолирует) контакты выключателя .В одной группе это воздух или другой газ, во второй — вакуум, а в третьей — масло.

  • Воздух / Газ:
    • Воздушный выключатель (ACB)
    • Воздушный удар
    • SF6 выключатель
  • Вакуум
  • Масло:

Автоматические выключатели с элегазовой изоляцией сегодня являются более или менее единственным типом, устанавливаемым в сетях электропередачи, в основном из-за их относительно высокого общего номинала и характеристик по сравнению с их ценой.Однако с новыми усовершенствованиями конструкции вакуумных выключателей они также становятся все более распространенными в более низких диапазонах напряжения сетей передачи.

Сегодня они могут выдерживать напряжение до 252 кВ , но все еще очень дороги .

Вакуумные выключатели обычно устанавливаются при уровнях напряжения системы 70 кВ и ниже . Как элегазовые, так и вакуумные выключатели очень распространены в современных распределительных сетях.


Подстанции AIS или GIS?

Подстанции часто строятся как распределительные устройства с воздушной изоляцией (AIS), использующие открытый воздух в качестве изолирующей среды между различными фазами и устройствами.

Распределительные устройства с элегазовой изоляцией (GIS) спроектированы и собраны с помощью комбинации стандартизованных функциональных модулей, таких как автоматические выключатели, разъединители, заземлители, трансформаторы тока и напряжения и дополнительные модули.

Основным преимуществом установки КРУЭ на является уменьшение необходимого пространства по сравнению с подстанциями с воздушной изоляцией. Интервалы техобслуживания и проверки автоматических выключателей, установленных в КРУЭ, также больше по сравнению с АИС.

Вернуться к содержанию ↑


Воздух / газ

1.Автоматические выключатели (ACB)
Выключатели

могут использоваться как выключатели в распределительных сетях низкого напряжения , так и для защиты электрооборудования на объектах и ​​в промышленности.

Обычный принцип отключения заключается в использовании магнитного поля, создаваемого током через автоматический выключатель, чтобы направить дугу к изолирующим пластинам. По мере того, как дуга проходит дальше между пластинами, в конечном итоге расстояние для поддержания дуги превышается, и она гаснет.

Вернуться к содержанию ↑


2. Воздушные автоматические выключатели

Воздушные автоматические выключатели начали использовать в 1930-х годах и стали обычным автоматическим выключателем в системах высокого и очень высокого напряжения. Прочные конструкции были надежными и прочными, но шумными. Для высоких напряжений требуется много разрывов, и они обычно используются с размыкающими резисторами.

Воздух сжимается в резервуаре до 14 бар. Контакты размыкаются воздушным потоком при открытии клапана.Сжатый воздух выпускается и направляется к дуге с высокой скоростью. Воздух охлаждает дугу и уносит продукты дуги. Это увеличивает диэлектрическую прочность среды между контактами и предотвращает повторное возникновение дуги. .

Дуга гаснет и ток прерывается. Короткое время горения дуги по сравнению с масляным выключателем снижает воздействие на основные контакты.

Вернуться к содержанию ↑


3.SF6 автоматический выключатель

Гексафторид серы (SF6) — это инертный тяжелый газ, обладающий хорошими диэлектрическими свойствами и свойствами гашения дуги. Диэлектрическая прочность газа увеличивается с давлением. Это электроотрицательный газ, что означает, что свободные электроны притягиваются к газу и не могут двигаться.

Следствием этой характеристики является высокая диэлектрическая прочность .

Дуга может образовывать ряд более или менее токсичных побочных продуктов разложения, что предъявляет высокие требования к переработке и утилизации газа.

Выключатели

SF6 имеют меньший износ главного контакта, чем воздушные и масляные выключатели. Принцип отключения заключается в охлаждении дуги путем продувки газа под высоким давлением в направлении дугогасительных контактов .

Есть два основных типа; самовзрывной . Пульсирующий тип создает давление газа с помощью поршневого насоса, в то время как самовдувание использует давление, создаваемое теплом от дуги. Преимущество пухового типа в том, что он имеет хорошие разрушающие свойства для всех уровней тока.

Недостатком является то, что требует большего механического усилия для работы, требуя большего рабочего механизма . Преимущество самовзрывного устройства состоит в том, что для его работы требуется на 50% меньше энергии , чем для прерывателя буфера, но он имеет менее хорошие разрушающие свойства.

Вернуться к содержанию ↑


Вакуумный выключатель

Вакуумные выключатели применяются до 70 кВ. Поскольку нет газа, который мог бы ионизироваться для образования дуги, изолирующий зазор меньше, чем в других автоматических выключателях.Из испаренного контактного материала образуется дуга. Изоляционное расстояние в вакуумном выключателе составляет около 11-17 мм между пластинами . Обычно на каждую фазу приходится по одному прерыванию, но может быть два прерывателя последовательно.

Контактные пластины сформированы так, чтобы проводить ток таким образом, чтобы создать магнитное поле, которое заставляет дугу вращаться и гаснуть. Преимущество вращающейся дуги — равномерное распределение тепла и более равномерная эрозия контактов.

Другими преимуществами вакуумных прерывателей являются их относительно долгий срок службы и относительно ограниченное воздействие на окружающую среду, поскольку они разработаны без ядовитых газов и относительно небольшого количества компонентов.

Вакуумные выключатели также менее подвержены износу главного контакта, чем воздушные и масляные выключатели .

Вернуться к содержанию ↑


Выключатели масляные

Масло наливное

Прерывание тока происходит в масляном баке. Масло охлаждает и гасит дугу, а также является изолирующим. Этот тип в основном используется на уровне распределения и требует значительного обслуживания главных контактов.

Bulk oil circuit breakers Bulk oil circuit breakers Масляные автоматические выключатели

Вернуться к содержанию ↑


Минимум масла

Он используется в трансмиссии и подстанции, требует небольшого количества масла и работает очень быстро.

Вернуться к содержанию ↑

Список литературы //

  • Руководство по тестированию выключателей MEGGER
  • NRC Обучение выключателям среднего напряжения
,

Основы проектирования автоматического выключателя для защиты двигателя

Автоматический выключатель для защиты двигателя (MPCB)

Варианты MCCB для конкретных применений, эти выключатели сочетают в себе функции защиты от короткого замыкания и изоляции MCCB с максимальной токовой защитой двигателя традиционного реле перегрузки. MPCB ​​ занесены в список UL 489 как выключатели и проверены как реле перегрузки двигателя .

Learn Design Of Motor Protection Circuit Breaker Изучите конструкцию автоматического выключателя защиты двигателя (на фото: автоматический выключатель защиты двигателя Allen-Bradley 600V 140-CMN-4000)

Эти устройства традиционно используются в двухкомпонентных пускателях с контактором для управления нагрузкой двигателя.


Конструкция MPCB

Детали автоматического выключателя защиты двигателя, показанные на Рисунке 1, точно скоординированы, так что общие задачи, быстрое отключение токов короткого замыкания и надежное распознавание перегрузок, могут быть выполнены оптимальным образом.

Нормальный номинальный ток, а также ток короткого замыкания или перегрузки протекают от входной клеммы к выходной клемме автоматического выключателя через магнитный и тепловой расцепители перегрузки, включенные последовательно с главными контактами.Точно такой же ток протекает через все функциональные модули. Неравная амплитуда и длительность токов в разных расцепителях, очевидно, вызовут разные индивидуальные реакции.

Основные функциональные элементы автоматического выключателя защиты двигателя:

  1. Расцепитель максимального тока
  2. Расцепитель максимального тока электромагнитный
  3. Система главных контактов

    [Охваченные подтемы]
    • Максимальная коммутационная способность и коммутационная способность обслуживания
    • Значения пропускания
    • Срок службы автоматических выключателей
    • Оперативная коммутация
    • Вспомогательные контакты и дисплеи
    • Независимые расцепители и расцепители минимального напряжения
    • Моторные (дистанционные) приводы
  4. Положение вспомогательного переключателя
  5. Защелка переключателя
  6. Дугогасительная камера (деионные пластины)
  7. Якорь плунжерный
  8. Заслонка дифференциала
The parts of the circuit breaker in details The parts of the circuit breaker in details Рисунок 1 — Детали автоматического выключателя

В автоматических выключателях большего размера (> прибл.100 A ), все чаще используются электронные модули отключения и связи. Они предлагают высокую степень гибкости в отношении выбора параметров для конкретных приложений и поддерживают интеграцию устройств в вышестоящие системы контроля и управления.


1. Максимальный тепловой расцепитель

Термический расцепитель максимального тока автоматических выключателей действует так же, как и тепловые реле защиты двигателя (биметаллические реле перегрузки), и подпадают под те же стандарты, если они используются для защиты двигателя.Отключение обычно происходит через защелку выключателя и приводит к размыканию главных контактов.

Сброс осуществляется вручную или дистанционно переключателем после того, как биметаллы остыли ниже порога сброса .

В автоматических выключателях с термозадерживающими расцепителями перегрузки и низкими установочными токами ( примерно <20 A ) срабатывает сопротивление цепи с нагревательными обмотками биметаллических лент и катушкой электромагнитного короткого замыкания без задержки. сравнительно большой.

Он может быть настолько большим, что гасит любой размер (предполагаемого) тока короткого замыкания до значения, с которым переключатель все еще может справиться термически и динамически и, следовательно, может также отключиться. Такие автоматические выключатели искробезопасны от коротких замыканий.

Thermal overcurrent release Thermal overcurrent release Рис. 2. Ток двигателя, протекающий через биметаллическую полосу теплового расцепителя перегрузки, нагревает ее и тем самым изгибает. В зависимости от текущей настройки он прижимается к фиксатору привода.

Вернуться к элементам защиты двигателя ↑


2. Расцепитель максимального тока электромагнитный

В автоматических выключателях с защитой двигателя Характерные максимальные токи от значения в 10… 16 раз превышающего верхнюю уставку шкалы немедленно вызывают срабатывание электромагнитного расцепителя максимального тока. Для двигателей с высоким КПД могут потребоваться более высокие уровни магнитного отключения.

Точное значение срабатывания либо регулируется (согласование для селективности или различных пиков тока включения в случае защиты трансформатора и генератора), либо определяется конструкцией.

В автоматических выключателях для защиты оборудования и линии зона срабатывания ниже. В небольших автоматических выключателях ( обычно <100 A ) полюсный проводник имеет форму небольшой катушки. Если через эти катушки протекает высокий ток перегрузки, на якорь, заключенный в катушке, действует сила. Этот якорь открывает защелку нагруженного переключателя, которая высвобождает накопленную энергию пружины и, следовательно, размыкает главные контакты и отключает перегрузку по току.


2.1 Плунжер для силовых выключателей с ограничением тока

Токоограничивающие автоматические выключатели ограничивают ток повреждения и, следовательно, уменьшают механическое и тепловое напряжение в случае повреждения.Для предлагаются автоматические выключатели с номинальным током до 100 А, быстрое отключение тока короткого замыкания с помощью плунжерной системы, которая в случае короткого замыкания дополнительно приводит к размыканию главных контактов и, следовательно, поддерживает чрезвычайно короткий разрыв раз (см. рисунок 3).

The contacts of a high current-limiting circuit breaker The contacts of a high current-limiting circuit breaker Рисунок 3 — Контакты силового выключателя с ограничением тока

Контакты силового выключателя с ограничением тока принудительно размыкаются в случае короткого замыкания плунжером, и ток немедленно направляется в камеры горения дуги.Цепь настолько разорвана, даже когда ток все еще растет.

Альтернативой плунжерной системе при более высоких номинальных токах является щелевой двигатель , который очень быстро размыкает контакты , в основном за счет электродинамических сил.

Чем быстрее он размыкается, тем меньше энергии нужно контролировать в переключателе и тем более компактным может быть автоматический выключатель. Это означает, что это необходимое условие для изготовления автоматических выключателей с компактными внешними размерами.

Вернуться к элементам защиты двигателя ↑


3.Система главных контактов и коммутационная способность

Требования к главным контактам автоматического выключателя двигателя: : высокая включающая способность, высокая отключающая способность, низкое тепловыделение при рабочем токе, низкая эрозия контактов, малая инерция и оптимальная форма для благоприятного движения электрической дуги.

Переключающая дуга должна быстро выводиться из области между контактными поверхностями, охлаждаться, разделяться, расширяться и, таким образом, гаситься. Пластины деионов должны образовывать функциональную единицу с главным контактом в отношении формы и расположения.

Для оптимального выполнения этих высоких требований к конструкции и материалам предъявляются самые высокие требования, и не в последнюю очередь к методам моделирования и испытаний.

The main contacts of the ROCKWELL The main contacts of the ROCKWELL Рисунок 4 — Основные контакты выключателя 140-CMN ROCKWELL

Контактные системы предназначены для обеспечения оптимальной коммутационной способности при номинальном основном напряжении . Количество деионных пластин имеет решающее значение для напряжения электрической дуги при размыкании цепи и, следовательно, для коммутационной способности и ограничения тока.

Например, контактная система, рассчитанная на 400 В, имеет пониженную коммутационную способность на при напряжении питания выше 400 В (поэтому напряжения питания ниже 400 В некритичны). Поэтому использование, например, 690 В возможно только при пониженной коммутационной способности. Следует соблюдать рабочие характеристики для указанного рабочего напряжения.

Автоматические выключатели должны быть способны контролировать максимально возможный ток короткого замыкания в точке установки при заданном рабочем напряжении.

Искробезопасные автоматические выключатели могут использоваться в источниках тока короткого замыкания любой величины, поскольку их внутренний импеданс ограничивает ток короткого замыкания до коммутационной способности переключателя (или ниже).

Если коммутационная способность автоматического выключателя меньше требуемой, то должна быть предусмотрена резервная защита (плавкий предохранитель или автоматический выключатель, подключенные последовательно). Требуемая коммутационная способность должна быть обеспечена в сочетании с устройством резервной защиты.Размер резервной защиты можно узнать из документации продукта.

Вернуться к элементам защиты двигателя ↑


3.1 Максимальная коммутационная способность и коммутационная способность услуг

В IEC 60947-2 проводится различие между номинальной предельной отключающей способностью при коротком замыкании I CU и номинальной эксплуатационной отключающей способностью при коротком замыкании I CS :

Номинальная предельная отключающая способность при коротком замыкании I CU

Последовательность испытаний O-t-CO: Автоматические выключатели, сработавшие на уровне предельной отключающей способности при коротком замыкании, после этого подлежат только ограниченному обслуживанию.Возможны изменения в характеристиках отключения при перегрузке и повышенное повышение температуры в результате эрозии материала контактов.

Номинальная рабочая отключающая способность при коротком замыкании I CS

Тестовая последовательность: O-t-CO-t-CO: Автоматические выключатели, которые сработали на уровне служебной отключающей способности при коротком замыкании, после этого подлежат дальнейшему обслуживанию.

Где:

  • O — отключение КЗ из замкнутого состояния
  • т — временной интервал
  • CO — включение короткого замыкания и его размыкание

Номинальные характеристики автоматических выключателей для I CU обычно выше, чем для I CS .Поэтому большинство автоматических выключателей (по соображениям стоимости) выбирается в соответствии с I CU . На предприятиях, время простоя которых должно быть как можно короче, при выборе продукта следует руководствоваться I CS .

После того, как короткое замыкание было устранено, обычно рекомендуется проверить устройство, чтобы убедиться в его полной работоспособности.

Вернуться к элементам защиты двигателя ↑


3.2 Проходные значения

Важнейшими атрибутами качества в отношении хорошей защиты от короткого замыкания являются сквозные значения (см. Рисунок 5 ниже).Величина тока отсечки и сквозной энергии по отношению к ожидаемому току короткого замыкания I cp дает информацию о качестве ограничения тока переключателем .

Они показывают степень, в которой последующие устройства, такие как контакторы или переключатели, подвергаются нагрузке в случае короткого замыкания.

Max. cut-off current and max. forward (let-through) energy of strongly current limiting circuit breakers at a rated operational voltage of 415 V Max. cut-off current and max. forward (let-through) energy of strongly current limiting circuit breakers at a rated operational voltage of 415 V Рисунок 5 — Макс. ток отключения и макс. прямая (сквозная) энергия силовых токоограничивающих выключателей при номинальном рабочем напряжении 415 В

Значения пропускной способности напрямую влияют на размер этих последовательно соединенных устройств — например, тип координации короткого замыкания 2 без крупногабаритных контакторов — и определяют конструктивную конструкцию установки.

Вернуться к элементам защиты двигателя ↑


3.3 Срок службы автоматических выключателей

IEC 60947-2 определяет количество коммутационных операций, которые автоматический выключатель должен выполнять без нагрузки, при нормальной нагрузке, при перегрузке или при коротком замыкании. Значения варьируются между двумя отключениями (O-t-CO) для номинальной предельной отключающей способности при коротком замыкании и парой тысяч операций для чисто механического переключения без нагрузки.

Электрический срок службы (срок службы контактов) автоматического выключателя, как и контакторов, зависит от величины тока, который должен быть отключен .Малые токи порядка номинального тока или диапазона срабатывания расцепителей перегрузки с термической задержкой оказывают гораздо меньшее влияние на срок службы контактов, чем токи короткого замыкания величиной отключающей способности (см. Рисунок 6).

Контакты могут быть подвержены эрозии даже после воздействия всего нескольких сильных токов короткого замыкания , что потребуется замена автоматического выключателя.

Contacts of circuit breaker at various stages of the life span Contacts of circuit breaker at various stages of the life span Рисунок 6 — Контакты выключателя на разных этапах жизненного цикла

Где //

  • Цифры вверху: Контакты в новом состоянии.
  • Цифры в центре: Контакты прибл. 75% электрического срока службы, контактный материал частично разрушен, и контакты все еще находятся в рабочем состоянии.
  • Рисунки ниже: Контакты в конце срока службы, материал подложки виден, контактный материал разрушен до самой подложки. Дальнейшее использование приведет к контактной сварке и чрезмерному повышению температуры .

Токи короткого замыкания, которые возникают на практике, обычно намного ниже расчетных максимальных значений и коммутационной способности задействованных переключателей.Поэтому они вызывают меньшую контактную эрозию.

Вернуться к элементам защиты двигателя ↑


3.4 Оперативное переключение

В более низком диапазоне мощностей автоматические выключатели также используются для ручного управления меньшим — часто мобильным — оборудованием и устройствами (например, фрезерные станки, дисковые пилы, погружные насосы). Электрический ресурс переключателей редко используется в полной мере при небольшом количестве операций, типичных для этих приложений.

Автоматические выключатели с характеристикой защиты двигателя заменяют комбинированный предохранитель, устройство защиты двигателя и выключатель нагрузки.

Вернуться к элементам защиты двигателя ↑


3,5 Вспомогательные контакты и дисплеи

Вспомогательные контакты позволяют функционально интегрировать защитное устройство в систему управления. ON, OFF, отключение при перегрузке и / или коротком замыкании может сигнализироваться с помощью соответствующих вспомогательных контактов (см. Рисунок 7). Эти вспомогательные переключатели могут быть установлены на автоматическом выключателе или вставлены в него и подключены либо к клеммам, либо через свободные концы проводов.

Left: Auxiliary contacts of MPCB; Right: Alarm Contacts of MPCB Left: Auxiliary contacts of MPCB; Right: Alarm Contacts of MPCB Рисунок 7 — Слева: Вспомогательные контакты MPCB; Справа: контакты сигнализации MPCB

Помимо вспомогательных выключателей, автоматические выключатели часто снабжены визуальными индикаторами рабочего состояния , а также часто срабатывания выключателя и причины отключения. Это ценные вспомогательные средства для диагностики на месте во время ввода в эксплуатацию и устранения неисправностей.

Вернуться к элементам защиты двигателя ↑


3.6 Независимые расцепители и расцепители минимального напряжения
Независимые расцепители

позволяют дистанционно размыкать цепь с помощью управляющего сигнала , например, для электрической блокировки (рисунок 8).Расцепитель минимального напряжения выключает автоматический выключатель , когда напряжение падает ниже (обычно фиксированного) определенного уровня приложенного напряжения, и используется, например, для обнаружения сбоев напряжения.

Shunt trip release Shunt trip release Рисунок 8 — Независимый расцепитель для автоматического выключателя защиты двигателя

Они, в частности, используются в качестве компонентов безопасности, например, для предотвращения автоматического повторного пуска после сбоя напряжения, для цепей блокировки, для функций АВАРИЙНОГО ОСТАНОВА и для дистанционного отключения.

Вернуться к элементам защиты двигателя ↑


3.7 Моторные (дистанционные) приводы

Электродвигатель или блоки дистанционного управления (Рисунок 9) открывают возможность отдавать все команды выключателям дистанционно . Таким образом, функции, которые обычно выполняются вручную, можно активировать дистанционно. Таким образом, загрузочные фидеры можно включать и выключать без прямого вмешательства оператора на месте.

MPCB motor operation mechanism MPCB motor operation mechanism Рисунок 9 — Приводной механизм двигателя MPCB

Таким образом, сброс сработавшего выключателя возможен на дистанционно управляемых распределительных станциях .

Вернуться к элементам защиты двигателя ↑


Электронное реле перегрузки E300 (ВИДЕО)

Демонстрация подключения электронного реле перегрузки E300 к контактору 100-C и автоматическому выключателю защиты двигателя 140-U.

Ссылка // Низковольтное распределительное устройство и аппаратура управления — технический документ Аллена Брэдли

,

Основные характеристики автоматического выключателя

Fundamental characteristics of circuit breakers Fundamental characteristics of circuit breakers Основные характеристики автоматического выключателя — Schneider Electric (Compact NSX — автоматические выключатели нового поколения)

Характеристики выключателя //

Основные характеристики автоматического выключателя:

  • Его номинальное напряжение Ue
  • Его номинальный ток In
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки ( Ir или Irth ) и для защиты от короткого замыкания ( Im ).
    ПРИМЕЧАНИЕ: Значения уставки уровня тока, которые относятся к тепловому срабатыванию по току и «мгновенному» магнитному срабатыванию. устройства для защиты от перегрузки и короткого замыкания.
  • Его номинальный ток отключения при коротком замыкании ( Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях. Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям.


Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной производителем, без превышения указанных температурных пределов токоведущих частей.


Пример

Автоматический выключатель с номиналом In = 125 A для температуры окружающей среды 40 ° C будет оснащен соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен».

Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение мощности автоматического выключателя достигается за счет уменьшения уставки тока срабатывания его реле перегрузки и соответствующей маркировки выключателя. Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

ПРИМЕЧАНИЕ: In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu — это номинальный непрерывный ток.

Типоразмер корпуса

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, присваивается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

A Автоматический выключатель Compact NSX630N может быть оснащен 11 электронными расцепителями от 150 A до 630 A. Размер автоматического выключателя составляет 630 A. Уставка тока срабатывания реле перегрузки ( Irth или Ir )

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми реле максимального тока. Кроме того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) — это ток, выше которого сработает автоматический выключатель. Он также представляет собой максимальный ток, который может выдерживать автоматический выключатель без отключения.

Это значение должно быть больше максимального тока нагрузки IB, но меньше максимального тока, разрешенного в цепи Iz .

Реле теплового срабатывания обычно регулируются в пределах от 0,7 до 1,0 от In, но когда для этого режима используются электронные устройства, диапазон настройки больше; обычно 0.4 к 1 разу В.


Пример (см. Рисунок 1)

Example of a NSX630N circuit-breaker Example of a NSX630N circuit-breaker Рисунок 1 — Пример автоматического выключателя NSX630N, оборудованного расцепителем Micrologic 6.3E, настроенным на 0,9, чтобы получить Ir = 360 A

A NSX630N Выключатель , оборудованный реле максимального тока Micrologic 6.3E на 400 A, установленное на 0,9, будет иметь уставку тока отключения:

Ir = 400 x 0,9 = 360 А

ПРИМЕЧАНИЕ: Для автоматических выключателей, оснащенных нерегулируемыми реле максимального тока, Ir = In .Пример: для автоматического выключателя C60N на 20 А, Ir = In = 20A .

Уставка тока срабатывания реле короткого замыкания ( Im )

Реле отключения при коротком замыкании (мгновенного действия или с небольшой задержкой по времени) предназначены для быстрого отключения выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im составляет:

  • Либо установлено стандартами для отечественных автоматических выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки ( см. Рисунки 2, 3 и 4, ).

Tripping-current ranges of overload and short-circuit protective devices for LV circuit-breakers Tripping-current ranges of overload and short-circuit protective devices for LV circuit-breakers Рисунок 2 — Диапазоны тока отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

(1) 50 In в стандарте IEC 60898, который большинством европейских производителей считается нереально высоким (Schneider Electric = от 10 до 14 дюймов).
(2) Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Performance curve of a circuit-breaker (thermal-magnetic, electronic) Performance curve of a circuit-breaker (thermal-magnetic, electronic) Рисунок 3 (слева) — Рабочие характеристики схемы термомагнитной защиты автоматического выключателя; Рисунок 4 (справа) — График работы схемы электронной защиты автоматического выключателя

• Ir: Уставка тока срабатывания реле перегрузки (теплового или с большой задержкой)
Im: Уставка тока срабатывания реле короткого замыкания (магнитного или короткого замыкания)
Ii: Короткое замыкание установка тока срабатывания реле мгновенного действия.
Icu: Отключающая способность

Изолирующий элемент

Автоматический выключатель пригоден для отключения цепи, если он соответствует всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его передней стороне символом

.

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Номинальный ток отключения при коротком замыкании выключателя — это максимальное (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Значение тока, указанное в стандартах, является среднеквадратичным значением переменной составляющей тока повреждения, т. Е. Переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) принимается равной нулю для расчет стандартизованного значения.

Это номинальное значение ( Icu ) для промышленных выключателей и ( Icn ) для выключателей бытового типа обычно выражается в кА, действующее значение. Icu (номинальная предельная отключающая способность sc) и Ics (номинальная отключающая способность sc sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A ( мгновенное отключение ) и B (отключение с выдержкой времени).

Испытания для подтверждения номинальных характеристик н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:
  • Последовательность операций, состоящая из последовательности операций, т.е. замыкание и размыкание при коротком замыкании
  • Сдвиг фаз тока и напряжения. Когда ток находится в фазе с напряжением питания ( cos ϕ для цепи = 1 ), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cos ϕ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания энергосистемы имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются репрезентативными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

Рисунок 5 ниже извлечен из IEC 60947-2 связывает стандартизованные значения cos ϕ с промышленными автоматическими выключателями в соответствии с их номинальным значением Icu .

После последовательности размыкания — выдержки времени — замыкания / размыкания для проверки емкости Icu выключателя проводятся дальнейшие проверки, чтобы убедиться, что:

  • Устойчивость к диэлектрику
  • Отключение (разъединение) исполнения и
  • Тест не повлиял на правильную работу защиты от перегрузки.
Icu related to power factor (cos ϕ) of fault-current circuit (IEC 60947-2) Icu related to power factor (cos ϕ) of fault-current circuit (IEC 60947-2) Рисунок 5 — Icu, зависящее от коэффициента мощности (cos ϕ) цепи тока короткого замыкания (IEC 60947-2)

У автоматического выключателя есть и другие характеристики, не упомянутые в этой статье: номинальное напряжение изоляции, номинальное выдерживаемое импульсное напряжение, номинальный выдерживаемый кратковременный ток, номинальная включающая способность, номинальная рабочая отключающая способность при коротком замыкании и ток короткого замыкания. ограничение

Ресурс: Schneider Electric — Руководство по установке электрооборудования 2010

,

Отправить ответ

avatar
  Подписаться  
Уведомление о