Тиристор как проверить мультиметром: Страница не найдена — EvoSnab

Содержание

Как проверить силовой тиристор

Тиристор представляет собой особую разновидность полупроводникового прибора, изготовленного на основе монокристалла полупроводника и имеющего не менее трех p-n-переходов. Способен находиться в двух различных устойчивых состояниях: закрытый тиристор обладает низкой степенью проводимости, а в открытом состоянии проводимость становится высокой. Для осуществления проверки прибора, могут потребоваться следующие инструменты и материалы, в зависимости от выбранного метода тестирования:. Также, для тестирования правильности работы тиристора может потребоваться наличие пробника, который можно изготовить своими руками. Существует целый ряд возможных схем для изготовления пробника, выбрать можно любую, но необходимо следовать следующим рекомендациям:.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как правильно проверять тиристоры?
  • Силовые выпрямители, диоды, тиристоры
  • Как проверить тиристор
  • Проверка тиристор мультиметром – Как проверить тиристор мультиметром на примере прозвона ку202н
  • Как проверить тестером симистор BTB16-700BW
  • Как проверить тиристор мультиметром?
  • Методы проверки тиристоров на исправность
  • Электротехнический журнал
  • Как проверить симистор

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Супер-Способ проверки тиристора.

Не только прост но и нагляден!

Как правильно проверять тиристоры?


Тиристор — это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом.

Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА. Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование — протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять. Отпирающее напряжение управления Uy — это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max — это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии. Iос ср — это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Теперь можно приступать к тестированию тринистора. У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду. Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение. К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника. Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение.

Тринистор должен открыться, лампочка загореться. Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии. После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания. Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора. Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания. Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см. На нем должны быть следующие обозначения: В — означает база транзистора, С — коллектор, Е — эмиттер. Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора. Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Вторым тестером подключаются к аноду и управляющему электроду тиристора.

Второй прибор должен находиться в режиме омметра. Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен. В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование. Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

Главная Инструменты Проверки мультиметром и тестером Проверка тиристоров всех видов мультиметром Проверка тиристоров всех видов мультиметром.

Предыдущая новость. Оценка статьи:. Как проверить термопару при помощи мультиметра Проверка диодного моста мультиметром Как проверить батарейку мультиметром Как проверить ТЭН мультиметром.


Силовые выпрямители, диоды, тиристоры

Содержание: Назначение и устройство Способы проверки С помощью мультиметра С помощью батарейки с лампочкой или светодиодом Другие способы проверки. Симисторы — это полупроводниковые полууправляемые ключи, которые открываются импульсом тока через управляющий электрод. Чтобы его закрыть нужно прервать ток в цепи или приложить обратное напряжение. По принципу действия они подобны аналогичны тиристорам.

Как работает диод и тиристор. Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом.

Как проверить тиристор

Большинство тиристоров можно проверить с помощью лампочки и постоянного напряжения, способного ее засветить. Плюс подаем на анод, а лампочку минус соединяем с катодом тиристора см. Кратковременно соединив анод и управляющий вывод, открываем тиристор. Даже поссле рассоединения лампочка должна светиться. Для проверки тиристора в большинстве случаев достаточно энергии полуторавольтового питания мини-тестера в режиме «xl кОм». При кратковременном касании управляющего вывода подключенным к аноду щупом см. Возврат стрелки после снятия щупа с управляющего вывода свидетельствует о потере тиристором способности удерживать открытое состояние.

Проверка тиристор мультиметром – Как проверить тиристор мультиметром на примере прозвона ку202н

Просмотр полной версии : как проверить тиристор т Есть зарядно-пусковое ус-во,в блоке управления заменил все горелые транзисторы проверил все детали всё исправно,а ус-во не работает нашел не паяные тиристоры,установил вмесо старых,всё равно не работает. Задумался может «не паяные»тоже не исправны. Проверял мультиметром между упр элекродом и катодом сопротивление 26 ом,а у «не паяных»37 ом звонятся в обе стороны :пиво: :пиво: :пиво:.

Как проверить тиристор, если вы полный чайник?

Как проверить тестером симистор BTB16-700BW

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод — управляющий электрод. Тиристор — это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:. Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Как проверить тиристор мультиметром?

Здравствуйте дорогие читатели. Часто в своих изделиях радиолюбители используют тиристоры и часто возникает необходимость их проверки на работоспособность. Вообще проверке должен подвергаться любой элемент схемы при ее сборке. Схемы включения тиристора для его проверки приведены на рисунках. Рисунки с первого по четвертый подписаны — здесь надеюсь все понятно. Если собрать схемку, показанную на Рис.

В связи с периодической покупкой партий мощных тиристоров . но он не обеспечит максимальный ток течки, который у силовых.

Методы проверки тиристоров на исправность

Тиристорами принято называть группу полупроводниковых приборов триодов , способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями. Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Электротехнический журнал

Для проверки радиоэлементов на работоспособность, чаще всего используется мультиметр. Он хорош тем, что с его помощью, можно быстро выявить радикальные дефекты большинства радиодеталей. Минус тут в том, что не каждым мультиметром, и не каждую деталь, можно протестировать досконально. Чаще всего называемый тестером, реже — авометром Ампер-Вольт-Ом-метр и, почти никогда, непосредственно мультиметром.

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод — управляющий электрод.

Как проверить симистор

Для управления мощностью используются тиристоры. Их применяют в регуляторах света или при контроле оборотов двигателей. В процессе ремонта выявить неисправность такой радиодетали с помощью мультиметра несложно. Все тиристоры проверяются одинаково. Зная, как проверить BTBBW, можно будет определить работоспособность и других элементов тиристорного семейства.

Форум Новые сообщения. Что нового Новые сообщения Недавняя активность. Вход Регистрация. Что нового.


Как проверять тиристоры исправность не выпаивая

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

  • Применение тиристоров ↓
  • Проверка с помощью метода лампочки и батарейки ↓
  • Проверка мультиметром ↓
  • Другие варианты проверки ↓
  • Блиц-советы ↓

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости (открытое), а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • Экспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Проверка тиристора на работоспособность — Как прозвонить мультиметром?

Содержание:

Любой электронщик должен знать, как проверить тиристор своими силами. Для этого потребуется тестер. Он может быть как аналоговым, так и цифровым. Чаще используется мультиметр, так как у него намного больше режимов работы, широкий выбор настроек, огромный функционал, значительно превосходящий обычный цифровой тестер. Перед началом проверки, нужно вспомнить принцип работы тиристора, его устройство.

Тиристор является управляемым диодом, что означает, что его тестирование имеет много схожих черт с проверкой обычного диода. Эти две радиодетали основываются на полупроводниковом принципе работы. В статье будет описан весь порядок проверки, а также показано наглядно в двух видеороликах.

Проверка тиристора мультиметром.

Как проверить диод и тиристор. 3 простых способа

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.

Проверить работоспособность диода и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку. Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA. Основные характеристики тиристоров представлены в таблице ниже.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки

При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.  При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит.

Это его основное отличие в работе от обычного диода. Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

Проверка тиристора батарейкой

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода. Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания. Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему. На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода. Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Полезный материал: что такое полупроводниковый диод.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт. Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода. Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током. Качество состояния симистора можно оценить описанными выше методами проверки.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом.

Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

[stextbox id=’info’]Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.[/stextbox]

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел.
  3. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.
Силовой тиристор.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

  1. Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
  2. Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.
  3. Тиристор образует центр схемы. Лучше спаять гнезда, куда можно быстро воткнуть новый испытуемый образец. Иначе пропадает смысл городить огород. Обратите внимание, схема собрана для случая, когда тиристор управляется напряжением положительной полярности. Лучше найти отдельно источник питания. Например, батарейка, системный блок ПК, аккумулятор. Положительным полюсом стыкуются с землей схемы, отрицательный подается на базу. Причем придется убрать резистора из левой ветви.
  4. Кнопка поможет узнать гарантированно: эксперимент начался. Без нее управляющего напряжения не подается. Стоит нажать кнопку, отпустить – пронаблюдаете результат. Светодиод загорится и погаснет – ток удержания не выдержан, тиристор исправен. Иногда светодиод будет продолжать гореть, зависит от его характеристик.

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Тестовая схема проверка тиристора.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным.

Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Интересно по теме: Как проверить стабилитрон.

Где взять питание тестировщику

Адаптер телефона дает ток 100 – 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

[stextbox id=’info’]Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. [/stextbox]

Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. – 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться.

Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА.

Заключение

Рейтинг автора

Написано статей

Более подробно алгоритм проверки тиристора описан в статье Испытание тиристоров и симисторов. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки статьи:

www.electrik.info

www.vashtehnik.ru

www.electricavdome.ru

www.hardelectronics.ru

Предыдущая

ПрактикаКак проверить полевой транзистор

Следующая

ПрактикаКак сделать регулятор мощности на симисторе своими руками

Как проверить тиристор и симистор мультиметром

Устройство, принцип действия и параметры тиристоров

Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки.

Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.

Устройство тиристора

При подаче напряжения на катушку, контакты реле замыкаются и пропускают токи большой величины. Такой же принцип работы и у электронного ключа — тиристора. На управляющий электрод подаётся управляющее напряжение до 10 В, открываются p-n переходы и пропускают большие токи, которые зависят от мощности тиристоров.

По сравнению с электромеханическим реле у тиристора нет дребезга контактов. Бесшумная работа электронного ключа и хорошая совместимость с любой электронной схемой, главные достоинства тиристоров. Используется тиристоры и симисторы там, где нужна регулировка больших токов.

Тиристоры также могут работать от светового луча, если в качестве управляющего электрода использовать фотоэлемент. Такой электронный ключ называется фототиристором. Если тиристор пропускает только положительную полуволну переменного напряжения, то симистор прозрачен для токов в обоих направлениях, т. е. он рассчитан на работу с переменным напряжением. К основным параметрам электронного ключа относятся:

  1. Iоткр.max — максимально допустимый ток тиристора.
  2. Uу — напряжение открывания.
  3. Uобр.max — наибольшее обратное напряжение элемента.
  4. Iуд — ток удержания в открытом состоянии ключа.

Как проверить тиристор мультиметром

Проверить работоспособность тиристора можно батарейкой или источником питания и лампочкой. Для проверки напряжение источника питания или батарейки должны соответствовать напряжению питания лампочки. Если плюс источника приложить к аноду элемента, минус через лампочку подать на катод, а батарейку приложить плюсом к управляющему электроду, а минусом к аноду, то исправный тиристор откроется и лампочка загорится.

Схема проверки тиристора с дополнительным источником питания и батарейкой

Если убрать напряжение с управляющего электрода ключа лампочка не погаснет. Чтобы она погасла нужно снять напряжение источника питания с тиристора, или кратковременно изменить полярность управляющего напряжения. Лампочка не гаснет после снятия напряжения с управляющего электрода, потому что через тиристор протекает ток выше его тока удержания.

Определить ток удержания можно, если плавно снижать напряжение блока питания и через амперметр проконтролировать ток, при котором произойдет отключение лампочки. Таким образом, можно выбрать тиристор с наименьшим током удержания. Проверить работоспособность тиристора можно также одним мультиметром.

Прозвонка тиристора мультиметром

Переключатель режима измерения ставят в положение проверки диодов и проверяют сопротивление перехода УЭ — катод в обоих направлениях, оно должна быть в пределах от 50 до 500 ом. Электронный ключ с наибольшим сопротивлением перехода УЭ — катод будет более чувствительный, с меньшим напряжением, при котором тиристор откроется. Сопротивление катод — анод должно быть большим, на дисплее отображается 1.

Мы прозвонили тиристор мультиметром, а теперь проверим его на открытие перехода анод — катод. Плюс щупа мультиметра присоединяют к аноду, а минус к катоду. В положении X1 переключателя замыкают управляющий электрод на анод элемента. При исправном электронном ключе мультиметр показывает несколько десятков ом, т. е. тиристор открылся.

При отсоединении электрода от анода, тиристор закроется и мультиметр покажет единицу. При проверке мультиметром его ток меньше тока удержания ключа, поэтому тиристор закрывается. Удобно проверять электронные ключи на схеме ниже.

Схема проверки тиристора с дополнительным источником питания

В качестве источника используют блок питания или автомобильный аккумулятор. Подключают к схеме тиристор, подают питание на него кнопкой КН-1 и подключают УЭ кнопкой КН-2. Лампочка загорается. Отключают КН-2, лампочка продолжает гореть, т. к. ток удержание элемента ниже, чем ток источника питания. Кнопкой КН-1 отключают источник питания, лампочка гаснет. Для источника питания 25 В сопротивление резистора 270 Ом. Для других напряжений питания:

R = (0,9 — 1)Uпит/Iу.откр, где Iу.откр — ток удержания управляющим электродом (в справочнике)

Если в этой же схеме заменить источник постоянного напряжения, на трансформатор, с необходимым переменным напряжением вторичной обмотки, т. е. будем подавать переменное напряжение на тиристор, то лампочка будет гореть в половину накала, ведь этот элемент пропускает только положительную полуволну переменного напряжения. Для источника питания 25 В сопротивление резистора 270 Ом.

Если подключить симистор, то лампа загорится ярко, т. к. симистор пропускает полное переменное напряжение. Симистор проверяется по той же методике что и тиристор. Проверить тиристор и симистор мультиметром не выпаивая, не получится. Для полной проверки этих ключей нужно подавать постороннее напряжение на электронную схему, что чревато выходом ее элементом из строя.

 

 

Помогла вам статья?

тестовая схема на примере тиристора ку 202н, проверка без выпаивания

Динистор — это важный радиоэлемент в электрических цепях. Предназначен он для схем с автоматической коммутацией устройств, импульсных генераторов, высокочастотных преобразователей сигналов. Из-за невысокой стоимости и простой конструкции такая радиодеталь считается идеальной для использования в регуляторах мощности.

  • Назначение динистора
  • Принцип работы
  • Характеристики устройства
  • Диагностика прибора
    • Прозвонка без выпаивания
    • Тестовая схема

Но как и любой электронный элемент, она может выйти из строя. Поэтому крайне важно уметь правильно проверить динистор мультиметром.

Назначение динистора

Динистор — это полупроводниковый элемент, обладающий двумя устойчивыми состояниями: закрытым и открытым. Изготавливается он из полупроводникового монокристалла с несколькими p-n переходами. В общем случае его можно рассматривать как электронный ключ, когда одно его состояние (закрытое) соответствует низкой проводимости, а другое (открытое) — высокой.

Динистор относится к «тиристорному семейству» радиоэлементов и не имеет принципиальных различий с тиристором. Единственное, что его отличает — это условия смены устойчивого состояния. В отличие от тиристора, имеющего три вывода, у динистора имеется их только два, то есть у него нет управляющего входа.

Отсюда и второе его название — диодный тиристор. Выводы динистора называются анодом и катодом. Первый выводится из крайней p-области, а второй — из n-области.

Изобретение тиристоров связывают с именем английского физика Уильяма Брэдфорда Шокли. После изобретения точечного транзистора учёный посвятил свои эксперименты созданию монолитного элемента. Так, в 1949 году был представлен прототип плоскостного транзистора, а уже в следующем году Спаркс и Тил, помощники Шокли, сумели изготовить трёхслойную структуру, позволяющую выпускать высокочастотные радиоэлементы на основе p-n переходов. Исследования учёного привели к созданию полупроводникового диода, названного диодом Шокли. Его конструкция представляет собой четырехслойный элемент со структурой pnpn типа.

В современной электронике динистор чаще всего применяется в схеме запуска энергосберегающих ламп и пускорегулирующих устройств дневного света.

На схемах и в литературе элемент обозначается с помощью латинских букв VD или VS, а за его графическое обозначение принят треугольник вместе с проходящей через его середину прямой линией, символизирующей электрическую цепь. В результате образуется своего рода стрелка, указывающая направление прохождения тока. Перпендикулярно прямой линии посередине и около вершины треугольника рисуются две короткие черты. Первая обозначает базовую область, а вторая — катод.

Принцип работы

Рассматривая динистор в качестве четырёхструктурного элемента, его можно представить в виде двух взаимосвязанных транзисторов n и p типа проводимости. Для работы транзистора необходимо появление тока на переходе база-эмиттер. Если на него не подано напряжение, тогда через радиоэлемент проходить ток не будет. Связано это с тем, что открытие транзисторов контролируется друг другом. Иными словами, чтобы открыть один из этих транзисторов, необходимо перевести в открытое состояние другой.

Между выводами динистора должно присутствовать напряжение определённой величины, позволяющее перевести работу одного из двух транзисторов в режим насыщения. В результате откроется второй элемент, и динистор начнёт пропускать ток.

Для перевода структуры в режим отсечки тока понадобится понизить величину напряжения, что приведёт к пропаданию тока смещения и, соответственно, тока базы на втором транзисторе. Динистор перестанет пропускать ток.

Существенную роль играет и полярность приложенного к выводам радиодетали напряжения. Когда на анод подаётся минус, через элемент ток практически не проходит. Такое включение называют обратным. Если же полярность поменять, то через устройство начнёт протекать ток небольшой величины — ток закрытия. Напряжение, соответствующее ему, определяет наибольшее значение, при котором динистор находится в закрытом состоянии. Чтобы динистор открыть, понадобится напряжение порядка десятков вольт.

Динисторы, как и тринисторы, пропускают ток только в одном направлении. Чтобы ток проходил в обоих направлениях, они включаются по встречно-параллельной схеме. Также для этого может использоваться пятислойная структура pnpnp типа.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Диагностика прибора

Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений. При этом неважно, аналоговый или цифровой тип измерителя используется.

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера. При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить. Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

При этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

Известно, что радиоэлемент открывается только при подаче на его выводы определённого уровня напряжения, поэтому можно попытаться достичь этого порогового значения.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Как проверить тиристор мультиметром на примере прозвона ку202н

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Аналоги

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, h30T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:


  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Диагностика прибора

Проверка мультиметром втягивающего реле стартера

Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений

При этом неважно, аналоговый или цифровой тип измерителя используется

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера

При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить

Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

При этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

https://youtube.com/watch?v=pndQx1nu0PA

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Тиристор – переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Этот радиоэлемент имеет четыре кремниевых слоя типа «n» и «p» и три вывода – анод (А), катод (К) и управляющий электрод (УЭ) (рис. 1а).

Как и полупроводниковый диод, тиристор проводит ток в одном направлении, но может находиться в двух состояниях: выключено и включено. Управление осуществляется по входу УЭ (см рис. 1б). После включения для возврата тиристора в исходное (выключенное) состояние необходимо, чтобы с управляющего электрода было снято напряжение или было закорочено с катодом, как на рисунке 1в. Закрытие тиристора так же можно произвести сменой полярности, т. е. переменным питающим напряжением.

Схема прибора для проверки исправности тиристора с таблицей состояния, исходя из принципов работы тиристора, представлена на рисунке 2.

Прибор проверки тиристора питается от сети переменного тока через понижающий трансформатор Т1. Нажатием на кнопку SB1 «Контроль», определяется исправность или неисправность тиристора, в соответствии с таблицей истинности на рисунке 3.

В приборе для проверки тиристора применены резисторы МЛТ, причем резистор R1 составлен из трех резисторов МЛТ-2 сопротивлением по 150 Ом, соединенных параллельно. Диоды кремневые маломощные на рабочее напряжение более 30 вольт. В качестве понижающего трансформатора подойдет любой, мощностью более 10 ватт и напряжением на вторичной обмотке 22…27 вольт.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами и соседкой тетей Валей килограммов под двести и вы перемещаетесь с этажа на этаж. Как же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят как-то вот так:

А вот и схемотехническое обозначение тиристора

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Описание конструкции и принцип действия

Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.

Фото — Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.

Типичные тиристорные ВАХ

Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:


Фото — характеристика тиристора ВАХ
  1. Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
  2. В участке Vво осуществляется положение «ВКЛ» тиристора;
  3. Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
  4. В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
  5. Точки 0 и Vbr – это участок с запиранием тиристора;
  6. После этого следует отрезок Vbr — он обозначает режим обратного пробоя.

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.


Фото — ВАХ тиристора

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.

Как проверить SCR с помощью мультиметра

Этот сайт содержит партнерские ссылки на продукты. Мы можем получать комиссию за покупки, совершенные по этим ссылкам.

0 Share

  • Share
  • Tweet

Вы когда-нибудь видели SCR, также известный как Silicon Controlled Rectifier? Некоторые могут использовать его как альтернативу реле и переключателям.

SCR — это трехмерный полупроводниковый переключатель, который является одним из наиболее важных элементов после транзистора и диода. Разработан в 1957, это устройство можно использовать в качестве управляемого переключателя для выполнения различных функций, таких как:

  • регулирование потока мощности
  • инверсия
  • выпрямление

так как он может быть изготовлен в версиях для работы с токами до нескольких тысяч ампер и напряжениями более 1 кВ. Кроме того, тиристоры изготовлены из силикона и обычно используются для преобразования переменного тока в постоянный 9.0014 (также называемое исправлением). Эти устройства могут работать с высокими значениями напряжения и тока и поэтому используются во многих промышленных целях.

Что такое символ SCR?

Если вы не знали, символ SCR очень похож на диод и имеет клемму затвора. SCR — это однонаправленный инструмент, который позволяет току течь в одном направлении и противодействует ему в другом направлении.

Обратите также внимание на то, что SCR имеет три различных клеммы:

  1. Анод (A)
  2. Катод (K)
  3. Затвор (G)

Эти клеммы можно включать и выключать, контролируя условия смещения или вход затвора.

Помните, что символ тиристора и SCR одинаковы.

Что такое конструкция SCR?

SCR состоит из четырех слоев полупроводникового устройства, которое создает структуру PNPN или NPNP, которая создает три соединения, включая J1, J2 и J3. Анод является положительным электродом среди трех клемм SCR и будет находиться на P-слое.

Катод считается отрицательным электродом и находится на N-слое SCR. В конечном итоге Gate функционирует как терминал управления SCR.

Обратите внимание, что внешние слои N и P, где расположены два электрода, будут сильно легированы, а средние слои N и P будут легированы небрежно. Терминал ворот будет связан с P-уровнем в центре.

Кроме того, SCR разработаны вместе с тремя различными типами:

  • пресс-пакет тип
  • тип Mesa
  • плоский тип

Как это работает?

SCR преобразует опасные оксиды азота в выхлопных газах дизельных автомобилей в безвредную воду и пары азота. Раствор SCR подается в выхлопную систему перед катализатором. Мочевина гидролизуется до аммиака, который затем реагирует с оксидами азота в выхлопных газах.

Как проверить SCR с помощью мультиметра?

Прежде чем мы перейдем к шагам, которые необходимо выполнить при проверке SCR с помощью мультиметра, вот несколько важных моментов, о которых следует помнить: 

  • Не прикасайтесь к неиспользуемым клеммам, когда измеритель подключен к цепи измерения
  • Не выполняйте измерения сопротивления в цепи под напряжением
  • Всегда будьте особенно осторожны с напряжением более 60 В постоянного тока или 30 В переменного тока RMS.
  • Не выходить за предельные значения защиты, указанные в спецификациях для каждого диапазона измерений.
  • Отсоедините измерительные провода от тестируемой цепи перед вращением переключателя диапазонов для настройки функций.

Стоит также отметить, что некоторые тиристоры не будут работать только с величиной тока, подаваемой омметром, установленным на настройку R x 10K.

Если тестируемый тиристор может работать с более высоким значением тока, вы можете попробовать использовать настройку R x 100 или R x 1000 на вашем омметре.

Выполните следующие действия, чтобы проверить SCR с помощью мультиметра:

Тестирование между анодом и катодом для тиристоров и диодов

  1. Настройте мультиметр на проверку короткого замыкания и убедитесь, что щупы подключены для проверки напряжения.
  2. Проверьте оба направления SCR, подключив черный и красный щупы к контактам 2 и 1 и контактам 3 к контактам 1.
  3. Ваш SCR неисправен, если мультиметр издает звуковой сигнал, и, следовательно, имеется короткое замыкание. Отсутствие звукового сигнала измерителя указывает на то, что он работает нормально.
  4. Что касается диода, ожидайте услышать звуковой сигнал при проверке прямого направления.
  5. Тест обратного смещения с катодом на анод не должен давать никаких звуков.
  6. Диод выходит из строя, если мультиметр издает звуковой сигнал.
  7. Для SCR вы не будете получать звуковой сигнал как для проверки обратного, так и для прямого смещения.

Проверка сопротивления для определения короткого замыкания

  1. Переключите мультиметр в режим проверки Ом (сопротивление) .
  2. Измерьте отношение анода к катоду на обоих устройствах, и вы увидите значения от сотен кОм до мОм.
  3. Частичный отказ, если импеданс низкий.

Проверка сопротивления катода затвора тиристора

  1. Снова используйте тест сопротивления и проверьте контакты 5 и 2 и контакты 6 и 3. .
  2. Ошибка, если она очень высокая. Этот режим отказа, скорее всего, возникает, когда плата управления SCR или карта запуска пострадала от отказа платы. Это также может произойти из-за кратковременных скачков напряжения или ударов молнии.

Кроме того, некоторые SCRS не демонстрируют поведение фиксации при тестировании с помощью мультиметра. Сопротивление возвращается к большему значению при отсоединении перемычки. Причина этого в том, что тиристор может иметь больший ток удержания, чем то, что может поддерживать внутренняя батарея мультиметра в цепи.

Заключительные мысли

Вот оно! Просто следуйте инструкциям, упомянутым в этом посте, и все готово. Тем не менее, в любом случае, эти тесты проходят нормально, но вы все равно испытываете проблемы. Что вы должны сделать? Тогда пришло время связаться с профессионалом и узнать о поддержке, которую они могут предложить для решения ваших проблем. Они могли бы пойти еще дальше, используя специализированное тестовое оборудование, которое они используют в производстве.

Мы надеемся, что вы найдете информативные и полезные идеи, читая этот пост. Готовы ли вы самостоятельно проверить SCR с помощью мультиметра? Поделитесь с нами своими мыслями, оставив свои комментарии ниже!

Как проверить транзистор и диод » Electronics Notes

Очень быстро и легко научиться тестировать транзистор и диод с помощью аналогового мультиметра — обычно этого достаточно для большинства приложений.


Учебное пособие по мультиметру Включает:
Основы измерительного прибора Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр цифровой мультиметр Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Проверка диодов и транзисторов Поиск неисправностей транзисторных цепей


Хотя многие цифровые мультиметры в наши дни имеют специальные возможности для проверки диодов, а иногда и транзисторов, не все это делают, особенно старые аналоговые мультиметры, которые все еще широко используются. Однако по-прежнему довольно легко выполнить простой тест «годен/не годен», используя самое простое оборудование.

Эта форма тестирования позволяет определить, работает ли транзистор или диод, и, хотя она не может предоставить подробную информацию о параметрах, это редко является проблемой, поскольку эти компоненты будут проверены на заводе, и сравнительно редко производительность снижается. падают до точки, когда они не работают в цепи.

Большинство сбоев носят катастрофический характер, приводя к полной неработоспособности компонента. Эти простые тесты с помощью мультиметра позволяют очень быстро и легко обнаружить эти проблемы.

Диоды большинства типов могут быть протестированы таким образом — силовые выпрямительные диоды, сигнальные диоды, стабилитроны/диоды опорного напряжения, варакторные диоды и многие другие типы диодов.

Как проверить диод мультиметром

Основная проверка диодов выполняется очень просто. Всего два теста необходимы мультиметром, чтобы убедиться, что диод работает удовлетворительно.

Проверка диода основана на том факте, что диод проводит только в одном направлении, а не в другом. Это означает, что его сопротивление будет отличаться в одном направлении от сопротивления в другом.

Измеряя сопротивление в обоих направлениях, можно установить, исправен ли диод, а также какие соединения являются анодом и катодом.

Поскольку фактическое сопротивление в прямом направлении зависит от напряжения, невозможно указать точные значения ожидаемого прямого сопротивления, поскольку напряжение на разных счетчиках будет разным — оно даже будет разным в разных диапазонах на измерителе.


… полоса на корпусе диода обозначает катод….

Метод проверки диода аналоговым измерителем довольно прост.

Пошаговые инструкции:
  1. Установите мультиметр на его диапазон в омах – подойдет любой диапазон, но лучше всего использовать средний диапазон в омах, если доступно несколько.
  2. Подключите катодную клемму диода к клемме, отмеченной положительной на мультиметре, а анод к отрицательной или общей клемме.
  3. Установите мультиметр на показания в омах, и должно быть получено «низковатое» показание.
  4. Поменяйте местами соединения.
  5. На этот раз должно быть получено высокое значение сопротивления.

Примечания:

  • На шаге 3 фактические показания будут зависеть от ряда факторов. Главное, чтобы счетчик отклонялся, возможно, на половину или больше. Изменение зависит от многих элементов, включая батарею в измерителе и используемый диапазон. Важно отметить, что расходомер значительно отклоняется.
  • При проверке в обратном направлении кремниевые диоды вряд ли покажут какое-либо отклонение измерителя. Германиевые, которые имеют гораздо более высокий уровень обратного тока утечки, могут легко показать небольшое отклонение, если измеритель настроен на высокий диапазон сопротивления.

Этот простой тест диода аналоговым мультиметром очень полезен, потому что он дает очень быстрое определение того, работает ли диод в принципе. Однако он не может тестировать более сложные параметры, такие как обратный пробой и т. д.

Тем не менее, это важный тест для технического обслуживания и ремонта. Хотя характеристики диода могут измениться, это случается очень редко, и весьма вероятно, что произойдет полный пробой диода, и это будет сразу видно с помощью этого теста.

Соответственно, этот тип испытаний чрезвычайно полезен в ряде областей тестирования и ремонта электроники.

Проверка диода мультиметром

Как проверить транзистор мультиметром

Проверка диодов с помощью аналогового мультиметра может быть расширена, чтобы обеспечить простую и прямую проверку достоверности биполярных транзисторов. Опять же, проверка с помощью мультиметра обеспечивает только уверенность в том, что биполярный транзистор не перегорел, но она все же очень полезна.

Как и в случае с диодом, наиболее вероятные неисправности приводят к разрушению транзистора, а не к незначительному ухудшению характеристик.

Испытание основано на том факте, что биполярный транзистор можно рассматривать как состоящий из двух встречных диодов, и при выполнении испытания диодов между базой и коллектором и базой и эмиттером транзистора с использованием аналогового мультиметра большая часть основная целостность транзистора может быть установлена.

Схема замещения транзистора с диодами для проверки мультиметром.

Требуется еще один тест. Транзистор должен иметь высокое сопротивление между коллектором и эмиттером, а база должна быть разомкнута, так как есть два встречных диода. Однако возможно, что путь коллектор-эмиттер будет перегоревшим, а между коллектором и эмиттером будет создан путь проводимости, но при этом он все еще будет иметь диодную функцию по отношению к базе. Это тоже нужно тестировать.

Следует отметить, что биполярный транзистор не может быть функционально воспроизведен с использованием двух отдельных диодов, потому что работа транзистора зависит от базы, которая является соединением двух диодов, являясь одним физическим слоем и к тому же очень тонкой.

Пошаговые инструкции:

Инструкции даны в основном для NPN-транзисторов, поскольку они являются наиболее распространенными типами транзисторов. Варианты показаны для разновидностей PNP — они указаны в скобках (.. .. ..):

  1. Установите измеритель на его диапазон в омах — подойдет любой диапазон, но средний диапазон в омах, если доступно несколько, вероятно, лучше всего .
  2. Подсоедините базовую клемму транзистора к клемме с положительной маркировкой (обычно красного цвета) на мультиметре
  3. Подсоедините к коллектору клемму с маркировкой «минус» или «общий» (обычно черного цвета) и измерьте сопротивление. Он должен показывать обрыв цепи (для транзистора PNP должно быть отклонение).
  4. Когда клемма с пометкой «плюс» все еще подключена к базе, повторите измерение с положительной клеммой, подключенной к эмиттеру. Показание должно снова показать обрыв цепи (мультиметр должен отклониться для транзистора PNP).
  5. Теперь поменяйте соединение с базой транзистора, на этот раз соединив отрицательную или общую (черную) клемму аналогового измерительного прибора с базой транзистора.
  6. Сначала подключите клемму с маркировкой «плюс» к коллектору и измерьте сопротивление. Затем отнесите его к излучателю. В обоих случаях счетчик должен отклониться (указать обрыв цепи PNP-транзистора).
  7. Далее необходимо подключить отрицательный или общий провод счетчика к коллектору, а плюс счетчика к эмиттеру. Убедитесь, что счетчик показывает обрыв цепи. (Счетчик должен показывать обрыв цепи как для типов NPN, так и для PNP.
  8. Теперь поменяйте местами соединения так, чтобы минус или общий провод счетчика был подключен к эмиттеру, а плюс счетчика к коллектору. Проверьте еще раз, что счетчик показывает обрыв цепи.
  9. Если транзистор проходит все тесты, то он в основном исправен и все переходы целы.

Примечания:

  • Окончательные проверки от коллектора до эмиттера гарантируют, что база не «прогорела». Иногда возможно, что между коллектором и базой, а также между эмиттером и базой все еще присутствует диод, но коллектор и эмиттер закорочены.
  • Как и в случае с германиевым диодом, обратные показания для германиевых транзисторов будут не такими хорошими, как для кремниевых транзисторов. Небольшой уровень тока допустим, так как это связано с наличием неосновных носителей в германии.

Обзор аналогового мультиметра

Хотя большинство продаваемых сегодня мультиметров являются цифровыми, тем не менее многие аналоговые счетчики все еще используются. Хотя они могут быть не самыми последними в технологии, они по-прежнему идеальны для многих применений и могут быть легко использованы для измерений, таких как описанные выше.

Хотя описанные выше тесты предназначены для аналоговых счетчиков, аналогичные тесты можно провести и с цифровыми мультиметрами, цифровыми мультиметрами.

Часто цифровые мультиметры могут включать специальную функцию тестирования биполярных транзисторов, и это очень удобно в использовании. Общая производительность теста с помощью специальной функции тестирования биполярных транзисторов часто очень похожа на упомянутую здесь, хотя некоторые цифровые мультиметры могут давать значение усиления по току.

Использование простого теста для диодов и транзисторов очень полезно во многих сценариях обслуживания и ремонта. Очень полезно иметь хорошее представление о том, работает ли диод или транзистор. Поскольку тестеры транзисторов не продаются широко, возможность использовать любой мультиметр для обеспечения этой возможности особенно полезна. Это даже удобнее, потому что тест очень прост в выполнении.

Другие тестовые темы:
Анализатор сетей передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра LCR-метр Измеритель наклона, ГДО Логический анализатор ВЧ измеритель мощности Генератор радиочастотных сигналов Логический пробник PAT-тестирование и тестеры Рефлектометр во временной области Векторный анализатор цепей PXI ГПИБ Граничное сканирование / JTAG Получение данных
    Вернуться в меню «Тест». . .

Тиристор: все, что нужно знать

Чтобы понять, как работает схема, нужно знать действие и назначение каждого из элементов. В этой статье будет рассмотрен принцип работы тиристора, различные типы, режимы работы, характеристики и типы. Мы постараемся объяснить все максимально понятно, чтобы было понятно даже новичкам.

Что такое тиристор?

А тиристор — это полупроводниковый элемент, который имеет всего два состояния: «открыто» (течет ток) и «закрыто» (нет тока) . Причем оба состояния устойчивы, т. е. переход происходит только при определенных условиях. Само переключение очень быстрое, хоть и не мгновенное.

Принцип его работы можно сравнить с выключателем или ключом, за исключением того, что тиристор переключается при подаче напряжения и выключается при потере тока или отключении нагрузки. Поэтому легко понять, как работает тиристор.

Тиристор обычно имеет три вывода . Один управляющий и два, по которым течет ток. Можно попробовать кратко описать принцип работы. При подаче напряжения на управляющий выход цепь через анод-коллектор переключается. Так что сравнимо с транзистором . Единственное отличие состоит в том, что величина тока, протекающего через транзистор, зависит от напряжения, подаваемого на управляющий контакт. Тиристор либо полностью открыт, либо полностью закрыт.

Основные параметры тиристоров

  • Максимально допустимый прямой ток . Это максимальное значение тока открытого тиристора. У мощных устройств он достигает сотен ампер.
  • Максимально допустимый обратный ток .
  • Прямое напряжение . Это падение напряжения при максимальном токе.
  • Обратное напряжение . Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без ущерба для его работоспособности.
  • Напряжение включения . Это минимальное напряжение, подаваемое на анод. Имеется в виду минимальное напряжение, при котором тиристор вообще может работать.
  • Минимальный ток управляющего электрода . Необходимо включить тиристор.
  • Максимально допустимый управляющий ток .
  • Максимально допустимая рассеиваемая мощность .

Также есть динамический параметр – время перехода из закрытого состояния в открытое . В некоторых схемах это важно. Также можно указать тип исполнения: по времени открытия или закрытия.

Внешний вид

Внешний вид тиристора зависит от даты изготовления . Старые тиристоры выполнены из металла в форме «летающей тарелки» с тремя выводами. Два вывода – катод и управляющий электрод – находятся на «дне» или «крышке» (это смотря с какой стороны на нее смотреть). И управляющий электрод меньше по размеру. Анод может находиться с противоположной стороны от катода или торчать вбок из-под шайбы, которая находится на корпусе.

Современные тиристоры выглядят иначе . Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя ножками снизу. У современной версии есть одно неудобство: надо смотреть, какой из выводов анод, где катод и управляющий электрод. Как правило, первым идет анод, затем катод, а крайний правый электрод. Но это, как правило, то есть не всегда.

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Начальное состояние элемента закрыто. «Сигналом перехода в состояние «открыто» является напряжение между анодом и управляющим выводом. Вернуть тиристор в «закрытое» состояние можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из спецификаций).

Тиристор обычно сбрасывается вторым вариантом в цепях с переменным напряжением. Однако переменный ток в бытовой цепи имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. Поэтому необходимо либо принудительно отключить питание, либо снять нагрузку в цепях, питаемых от источников постоянного тока.

То есть тиристор по-разному работает в цепях постоянного и переменного напряжения. После кратковременного появления напряжения между анодом и управляющим выводом в цепи постоянного тока элемент переходит в «открытое» состояние. Тогда возможны два варианта развития событий:

  • Состояние «открыто» сохраняется даже после исчезновения выходного напряжения управления анодом. Это возможно, если напряжение, подаваемое на вывод управления анодом, выше, чем напряжение незапирания (эти данные есть в даташите). Это связано с тем, что протекание тока через тиристор прекращается только при разрыве цепи или отключении источника питания. А разомкнутая/разорванная цепь может быть очень недолговечной. Таким образом, после восстановления цепи ток не течет, пока на контакт управления анодом снова не подается напряжение.
  • При снятии напряжения (оно меньше напряжения отсечки) тиристор сразу переходит в «закрытое» состояние.

Итак, в цепях постоянного тока есть два способа использования тиристора – с удержанием открытого состояния и без него. Но чаще используется первый тип – когда он остается открытым.

Принцип работы тиристора в цепях переменного напряжения иной. Возврат в заблокированное состояние происходит «автоматически» — когда ток падает ниже порога удержания. Однако, если напряжение анод-катод подается непрерывно, мы получаем импульсы тока на выходе тиристора с определенной частотой. Так устроены импульсные блоки питания. Они используют тиристор для преобразования синусоиды в импульс.

Проверка работоспособности тиристора

Проверить тиристор можно мультиметром или составив простую тестовую схему. Если перед вами есть технические характеристики, вы можете одновременно проверить сопротивление перехода.

Мультиметр Прослушка

Начнем с прослушки мультиметра. Установите прибор в режим «Зондирование» .

Затем поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду прибор должен показать обрыв цепи – «1» или «OL» в зависимости от мультиметра. Тиристор пробит, если другие показания отображаются хотя бы в одном направлении.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном направлении. В обратном направлении — обрыв. Если есть обрыв или небольшое сопротивление в обоих направлениях, элемент поврежден.

Обратите внимание, что значение сопротивления варьируется от серии к серии — не обращайте на это особого внимания. Однако, если вы хотите также проверить сопротивление перехода, посмотрите спецификации.

Проверка тиристоров с помощью лампочки и источника постоянного тока

Если у вас нет мультиметра, можно проверить тиристор с лампочкой и блоком питания . Подойдет даже обычная батарея или любой другой источник постоянного напряжения. Но напряжение должно быть достаточным, чтобы зажечь лампочку. Нужно другое сопротивление или нормальный кусок провода.

  • Плюс от блока питания идет на анод.
  • Подсоедините лампочку к катоду. Второй его ведут на минус блока питания. Лампа не загорается, потому что термистор заблокирован.
  • На короткое время (отрезком провода или сопротивлением) соедините анод и управляющий штифт.
  • Лампочка загорается и горит постоянно, хотя перемычка снята. Термистор остается открытым.
  • Если выкрутить лампочку или отключить питание, лампочка естественно погаснет.
  • Если цепь/питание восстановлены, он не загорается.

Наряду с тестом эта схема позволяет понять, как работает тиристор.

Типы тиристоров и их особенности

Полупроводниковая технология все еще развивается и совершенствуется. В результате за несколько десятилетий появились новые разновидности тиристоров, имеющие некоторые отличия.

  • Динисторы или диодные тиристоры . Они отличаются тем, что имеют всего два вывода. Они открываются подачей высокого напряжения на анод и катод в виде импульса. Также называются «неуправляемыми тиристорами».
  • Тринисторы или триодные тиристоры . Имеют управляющий электрод, но управляющий импульс можно подать:
    – На управляющий выход и на катод. Название — катодно-управляемый.
    – К управляющему электроду и аноду. Соответственно, анодный контроль.

Существуют также различные типы тиристоров по способу запирания. В одном случае достаточно уменьшить ток анода ниже тока удержания. В другом случае на управляющий электрод подается запирающее напряжение.

Тиристоры по проводимости

Мы сказали, что тиристоры проводят ток только в одном направлении. Обратная проводимость отсутствует. Такие элементы называются обратнопроводящими, но их больше. Возможны и другие варианты:

  • Имеют низкое обратное напряжение, называются обратнопроводящими.
  • Непренебрежимо малая обратная проводимость. Включите цепи, где обратное напряжение не может возникнуть.
  • Триаки. Симметричные тиристоры. Проведение тока в обоих направлениях.

Тиристоры могут работать в ключевом режиме. При поступлении управляющего импульса они подают ток на нагрузку. Нагрузка в этом случае рассчитывается исходя из напряжения холостого хода. Также необходимо учитывать наибольшую рассеиваемую мощность. В этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделать радиатор — для более быстрого охлаждения.

Тиристоры по особым режимам работы

Также можно выделить следующие подтипы тиристоров:

  • Запираемый и незапираемый . Принцип работы тиристора без защелки немного другой. Он находится в открытом состоянии при подаче плюса на анод. Минус на катоде. Он переходит в закрытое состояние при изменении полярности.
  • Быстродействующий . Иметь короткое время перехода из одного состояния в другое.
  • Импульсный . Переходы из одного состояния в другое очень быстрые, используются в схемах с импульсными режимами работы.

Тиристоры в основном используются в качестве электронного переключателя, служащего для замыкания и размыкания электрической цепи. Вообще многие знакомые устройства построены на тиристорах. Например, шлейфовые ходовые огни, выпрямители, импульсные источники тока, выпрямители и многие другие.

Видео по теме: Как работает тиристор?

Заключение

Тиристор не является переключателем полного управления. При наличии тока удержания тиристор остается в открытом состоянии, даже если прекратить подачу сигнала на управляющий переход.

Спасибо, что прочитали эту статью. Если у вас остались вопросы, пишите свои комментарии!

Как проверить силовой тиристор с помощью мультиметра? – Newsbasis.com

Как проверить силовой тиристор мультиметром?

Проверка SCR с помощью мультиметра. Теперь установите переключатель мультиметра в положение высокого сопротивления. Подсоедините положительный вывод мультиметра к аноду SCR, а отрицательный вывод к катоду. Мультиметр покажет обрыв цепи. Теперь поменяйте местами соединения, и мультиметр снова покажет обрыв цепи.

Как проверить наличие SCRS?

Для проверки SCR подсоедините положительный выход омметра к аноду, а отрицательный — к катоду. Омметр должен показывать отсутствие непрерывности. Прикоснитесь затвором тринистора к аноду. Омметр должен показывать непрерывность через SCR.

Как проверить SCR с помощью фонарика?

Для проверки SCR необходимо подключить к устройству источник питания. Анод подключается к плюсу, а катод к минусу. Лампа фонарика включена последовательно и ограничивает ток через тринистор примерно до 400 миллиампер. Фонарик можно модифицировать, сделать тестер.

Как проверить силовые диоды, тиристор и силовые транзисторы?

Подключите катодную клемму диода к клемме, отмеченной положительной на мультиметре, а анод к отрицательной или общей клемме. Установите мультиметр на чтение в омах, и должны быть получены «низковатые» показания. Поменяйте местами соединения. На этот раз должно быть получено высокое значение сопротивления.

Как узнать, исправен ли мой тиристор?

Мультиметр должен показать низкий уровень электрического сопротивления. Это указывает на то, что SCR находится во включенном состоянии, и это должно продолжаться после отключения клеммы затвора. Если мультиметр проходит вышеуказанные проверки, он работает правильно.

Как запустить тиристор?

Тиристор включается за счет увеличения протекающего через него анодного тока. Увеличение анодного тока может быть достигнуто многими способами. Запуск тиристора напряжения: Здесь приложенное прямое напряжение постепенно увеличивается за пределы pt. известный как перенапряжение прямого отключения VBO, и затвор остается открытым.

Как проверить симистор с помощью мультиметра?

Сначала установите селекторный переключатель мультиметра в режим высокого сопротивления (скажем, 100 кОм), затем подключите положительный вывод мультиметра к клемме MT1 симистора, а отрицательный вывод к клемме MT2 симистора (нет проблем, если вы поменяете местами связь). Мультиметр покажет высокое сопротивление (обрыв цепи).

Как узнать, неисправен ли мой SCR?

Подсоедините отрицательный провод омметра к аноду тиристора, а положительный провод к катоду тиристора. Прочтите значение сопротивления, отображаемое на омметре. Он должен показывать очень высокое значение сопротивления. Если он показывает очень низкое значение, то SCR закорочен и его следует заменить.

Как проверить мощность тиристора?

Подсоедините анод (входной контакт) тиристора к положительному (красному) проводу мультиметра. Подсоедините катод (выходной разъем) к отрицательному (черному) проводу. Переключите счетчик в режим проверки диодов – диод (двухвыводной компонент) в данном случае является самим тиристором. Оценивать.

Как проверить силовой транзистор?

Подсоедините положительный провод мультиметра к БАЗЕ (B) транзистора. Подсоедините провод отрицательного счетчика к ИЗЛУЧАТЕЛЮ (E) транзистора. Для хорошего транзистора NPN измеритель должен показывать падение напряжения между 0,45 В и 0,9 В. Если вы тестируете PNP-транзистор, вы должны увидеть «OL» (превышение предела).

Как проверить силовой модуль?

Проверьте блок питания с помощью блока тестирования блока питания.

  1. Подсоедините блок проверки блока питания к 20/24-контактному разъему.
  2. Снова подключите блок питания к розетке и включите его.
  3. Проверьте напряжения.
  4. Убедитесь, что напряжения находятся в пределах допустимых норм.
  5. Проверьте другие разъемы.

Что такое тиристор и как он работает?

Тиристор блокирует напряжение как в прямом, так и в обратном направлении и таким образом формируется симметричная блокировка. Тиристор включается при приложении положительного тока затвора и выключается, когда анодное напряжение падает до нуля. Небольшой ток от затвора к катоду может вызвать срабатывание тиристора, изменив его цепь с разомкнутой на короткое замыкание.

Каково назначение тиристора в цепи?

Основной функцией тиристора является управление электрической мощностью и током, действуя как переключатель. Для такого небольшого и легкого компонента он обеспечивает адекватную защиту цепей с большими напряжениями и токами (до 6000 В, 4500 А).

Как работает тиристор?

В своей простейшей форме тиристор имеет три вывода: анод (положительный вывод), катод (отрицательный вывод) и затвор (управляющий вывод). Затвор управляет потоком тока между анодом и катодом. Основной функцией тиристора является управление электрической мощностью и током, действуя как переключатель.

Что такое тиристор, SCR?

Проще говоря, SCR — это своего рода тиристор. SCR или тиристор представляет собой четырехслойное полупроводниковое коммутационное устройство с тремя переходами. Он имеет три вывода: анод, катод и затвор. Тиристор также является однонаправленным устройством, как и диод, что означает, что он пропускает ток только в одном направлении.

Как проверить MOSFET с помощью цифрового мультиметра

Вы здесь: Главная / Измерители и тестеры / Как проверить MOSFET с помощью цифрового мультиметра

Последнее обновление от Swagatam 54 комментариев

В этом посте объясняется, как проверить MOSFET с помощью мультиметра с помощью набора шагов, которые помогут вам точно определить хорошее или неисправное состояние MOSFET

Содержание

МОП-транзисторы — эффективные, но сложные устройства

МОП-транзисторы — выдающиеся устройства, когда речь идет об усилении или переключении различных видов нагрузок. Хотя транзисторы также в значительной степени применяются для вышеуказанных целей, оба аналога сильно различаются по своим характеристикам.

Удивительная эффективность полевых МОП-транзисторов в значительной степени нейтрализуется одним недостатком, связанным с этими устройствами. Это сложность, которая делает эти компоненты трудными для понимания и настройки.

Даже самые простые операции, такие как проверка хорошего мосфета на плохой, никогда не бывают легкими, особенно для новичков в этой области.

Хотя для проверки состояния полевых транзисторов обычно требуется сложное оборудование, простой способ проверки с помощью мультиметра также считается эффективным в большинстве случаев.

Мы возьмем в качестве примера два типа N-канальных MOSFET, K1058 и IRFP240, и посмотрим, как эти MOSFET можно протестировать с помощью обычного цифрового мультиметра с помощью немного отличающихся процедур.

Как проверить N-канальные МОП-транзисторы

1) Установите цифровой мультиметр на диапазон диодов.

2) Держите MOSFET на сухом деревянном столе на металлическом язычке стороной с надписью к себе и выводами к себе.

3) Отверткой или измерительным щупом закоротить вентиль и слив контакты мосфета. Это изначально будет держать внутреннюю емкость устройства полностью разряженной.

4) Теперь прикоснитесь черным щупом прибора к истоку , а красным щупом к стоку прибора.

5) Вы должны увидеть индикацию «разомкнутой» цепи на счетчике.

6) Теперь, удерживая черный щуп на истоке , поднимите красный щуп со стока и на мгновение прикоснитесь им к затвору MOSFET и верните его к стоку MOSFET.

7) На этот раз прибор покажет короткое замыкание (извините, не короткое замыкание, а «обрыв»).

Результаты по пунктам 5 и 7 подтверждают, что мосфет исправен.

Повторите эту процедуру много раз в течение

Для повторения описанной выше процедуры каждый раз вам потребуется перезагрузить полевой МОП-транзистор , замкнув затвор и выводы стока с помощью измерительного щупа, как описано ранее.

0209

Для P-канала шаги тестирования будут такими же, как 1,2,3,4 и 5, но полярность измерителя изменится. Вот как это сделать.

1) Настройте цифровой мультиметр на диапазон диодов.

2) Закрепите MOSFET на сухом деревянном столе на металлическом язычке так, чтобы печатная сторона была обращена к вам, а выводы были направлены к вам.

3) С помощью любого проводника или измерительного щупа замкните затвор и сток контактов P-MOSFET. Это первоначально позволит разрядить внутреннюю емкость устройства, что необходимо для процесса тестирования.

4) Теперь прикоснитесь КРАСНЫМ щупом счетчика к источнику , а ЧЕРНЫМ щупом к стоку прибора.

5) Вы найдете на счетчике показания «разомкнутой» цепи.

6) Далее, не сдвигая КРАСНЫЙ щуп с истока , снять черный щуп со стока и прикоснуться им к затвору мосфета на секунду, и подвести обратно к стоку мосфета .

7) На этот раз счетчик покажет непрерывность или низкое значение на счетчике.

Вот и все, это подтвердит, что ваш мосфет в порядке и без проблем. Любая другая форма чтения укажет на неисправный мосфет.

Если у вас есть какие-либо сомнения относительно процедур, пожалуйста, не стесняйтесь выражать свои мысли в разделе комментариев.

Как протестировать MOSFET IRF540

Процедуры в точности аналогичны описанным выше процедурам тестирования N-канальных MOSFET. В следующем видеоролике показано и показано, как это можно реализовать с помощью обычного мультиметра.

Практическое видеоруководство

Простая схема приспособления для проверки полевых МОП-транзисторов

Если вам не подходит описанная выше процедура тестирования с использованием мультиметра, то вы можете быстро собрать следующее приспособление для эффективной проверки любого N-канального полевого МОП-транзистора.

После того, как вы сделаете это приспособление, вы можете вставить соответствующие контакты MOSFET в указанные разъемы G, D, S. После этого вам просто нужно нажать кнопку для подтверждения состояния MOSFET.

Если светодиод загорается только при нажатии кнопки, то ваш мосфет в порядке, любые другие результаты будут указывать на плохой или дефектный мосфет.

Катод светодиода пойдет на сторону слива или на сливное гнездо.

Для MOSFET p-channel вы можете просто изменить дизайн, как показано на следующем рисунке

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете ответить через комментарии, я буду очень рад помочь!

Серия учебных курсов по электротехнике и электронике ВМФ (NEETS), модуль 21, с 2-21 по 2-30

Модуль 21 – Методы и практика испытаний

Страницы i , 1−1, 1−11, 1−21, 2−1, 2−11, 2−21, 2−31, 2−41, 3−1, 3−11, 3−21, 3−31, 4−1, 4−11, 5−1, 5−11, 5−21, 5–31, от AI–1 до AI–3, индекс

 

 

разные величины и частоты. Некоторые диоды могут быть повреждены чрезмерным током, создаваемым некоторыми настройками диапазона стандарта. мультиметр. Поэтому при выполнении этого измерения следует использовать цифровой мультиметр.

 

В-14. Как показывает опыт, каково приемлемое соотношение прямого и обратного сопротивлений диода?

 

КРЕМНИЕВЫЕ ВЫПРЯМИТЕЛИ (SCR)

 

Многие морские электронные устройства используют кремниевые выпрямители (SCR) для управления мощностью. Как и другие твердотельные компоненты, тиристоры подлежат к провалу. Вы можете проверить большинство SCR с помощью стандартного омметра, но вы должны понимать, как работает SCR.

Как показано на рис. 2-12, SCR представляет собой трехэлементное полупроводниковое устройство, в котором прямое сопротивление может быть под контролем. На рисунке показаны три активных элемента: анод, катод и затвор. Хотя они могут отличаются внешним видом, все SCR работают одинаково. SCR действует как выпрямитель с очень высоким сопротивлением. в прямом и обратном направлениях, не требуя стробирующего сигнала. Однако, когда правильный стробирующий сигнал применяется, SCR проводит только в прямом направлении, так же, как любой обычный выпрямитель. Чтобы проверить SCR, вы подключаете омметр между анодом и катодом, как показано на рисунке 2-12. Начните тест с R x 10 000 и постепенно снижайте значение. Тестируемый SCR должен показать очень высокое сопротивление, независимо от показаний омметра. полярность. Анод, подключенный к положительному выводу омметра, теперь должен быть закорочен на затвор. Это приведет к срабатыванию SCR; в результате на омметре будет показано низкое сопротивление. Удаление короткого замыкания между анодом и затвором не остановит проводимость тиристора; но отключив любой из проводов омметра приведет к тому, что тиристор перестанет проводить ток, после чего показания сопротивления вернутся к своему предыдущему высокому значению. Немного SCR не будут работать при подключении омметра. Это связано с тем, что омметр не дает достаточного тока. Однако большинство тиристоров в технике ВМФ можно проверить омметрическим методом. Если SCR чувствителен, R x 1 может подать на устройство слишком большой ток и повредить его. Поэтому попробуйте протестировать его на более высоких шкалы сопротивления.

Рис. 2-12. — Проверка SCR с помощью омметра.

 

2-21

В-15. При проверке SCR с помощью омметра SCR будет проводить, если какие два элемента замкнуты накоротко. вместе?

 

TRIAC

 

Triac — торговая марка General Electric для кремния, двухполупериодный переключатель переменного тока с управляемым затвором, как показано на рис. 2-13. Устройство предназначено для переключения с блокировки состояние в проводящее состояние для любой полярности приложенного напряжения и с положительным или отрицательным затвором запуск. Как и обычный тринистор, симистор является превосходным полупроводниковым устройством для управления протеканием тока. Вы можете заставить симистор работать, используя тот же метод, что и для SCR, но симистор имеет то преимущество, что он одинаково хорошо ведет себя как в прямом, так и в обратном направлении.

Рис. 2-13. — Проверка симистора омметром.

 

Чтобы проверить симистор с помощью омметра (шкала R x 1), вы подключаете отрицательный вывод омметра к аноду 1. и положительный провод к аноду 2, как показано на рисунке 2-13. Омметр должен показывать очень высокое сопротивление. Замкните ворота на анод 2; затем удалите его. Показание сопротивления должно упасть до низкого значения и оставаться низким до тех пор, пока любой из выводов омметра отсоединен от симистора. На этом первое испытание завершено.

 

Второй испытание включает в себя перестановку выводов омметра между анодами 1 и 2 так, чтобы положительный вывод был подключен к аноду. 1, а отрицательный вывод подключен к аноду 2. Снова замкните затвор на анод 2; затем удалите его. Сопротивление показание должно снова упасть до низкого значения и оставаться низким до тех пор, пока один из выводов омметра не будет отсоединен.

 

В-16. Когда симистор правильно закрыт, каково направление (направления) тока между анодами 1 и 2?

 

ОДНОПЕРЕХОДНЫЕ ТРАНЗИСТОРЫ (UJT)

 

Однопереходный транзистор (UJT), показанный на рис. 2-14, представляет собой полупроводниковый полупроводник с тремя выводами, обладающий стабильными характеристиками отрицательного сопротивления при разомкнутой цепи. Эти характеристики позволяют UJT

 

2-22

в качестве отличного осциллятора. Тестирование UJT — относительно простая задача, если рассматривать UJT как диод, подключенный к соединению двух резисторов, как показано на рисунке 2-15. С помощью омметра измерьте сопротивление между основанием 1 и основанием 2; затем поменяйте местами выводы омметра и сделайте еще одно показание. Чтения должны показывают одно и то же высокое сопротивление независимо от полярности проводов измерителя. Подключите отрицательный провод омметра к эмиттер UJT. Используя положительный провод, измерьте сопротивление от эмиттера до базы 1, а затем от эмиттера к базе 2. Оба показания должны указывать на высокие сопротивления, примерно равные друг другу. Отсоедините отрицательный вывод от эмиттера и подключите к нему положительный вывод. Используя отрицательный вывод, измерьте сопротивление от эмиттера к базе 1, а затем от эмиттера к базе 2. Оба показания должны указывают низкие сопротивления, приблизительно равные друг другу.

Рис. 2-14. — однопереходный транзистор.

Рис. 2-15. — Эквивалентная схема однопереходного транзистора.

 

ПОЛЕВОЙ ТРАНЗИСТОР (JFET) ИСПЫТАНИЯ

 

Полевой переход Транзистор (JFET) имеет схемное применение, аналогичное электронной лампе. JFET имеет чувствительный к напряжению характеристика с высоким входным сопротивлением. Вам следует ознакомиться с двумя типами JFET: соединение p-канального и соединение n-канального типов, как показано на рисунке 2-16. Показаны их эквивалентные схемы на рисунках 2-17 и 2-18 соответственно. Единственная разница в вашем тестировании этих двух типов JFET заключается в следующем: полярность измерительных проводов.

 

2-23

Рис. 2-16. — переходные полевые транзисторы.

Рис. 2-17. — Эквивалентная схема N-канального JFET.

Рис. 2-18. — Эквивалентная схема P-канального JFET.

 

2-24

Тест N-канала

 

С помощью омметра, настроенного на шкалу R x 100, измерьте сопротивление между стоком и истоком; затем поменяйте местами выводы омметра и сделайте еще одно показание. Оба показания должны быть одинаковыми (в диапазоне от 100 до 10 000 Ом), независимо от полярности проводов измерителя. Подключить положительный счетчик ведет к воротам. Используя отрицательный провод, измерьте сопротивление между затвором и стоком; затем измерьте сопротивление между затвором и истоком. Оба показания должны указывать на низкое сопротивление и быть примерно так же. Отсоедините положительный вывод от затвора и подключите отрицательный вывод к затвору. Используя положительный провод, измерьте сопротивление между затвором и стоком; затем измерьте сопротивление между ворота и источник. Оба показания должны показывать бесконечность.

 

Тест P-канала

 

Использование омметром, настроенным на шкалу R х 100, измерить сопротивление между стоком и истоком; затем обратить вспять провода омметра и сделайте еще одно показание. Оба показания должны быть одинаковыми (от 100 до 10 000 Ом), независимо от полярность измерительного провода. Затем подключите положительный провод счетчика к затвору. Используя отрицательный провод, измерьте сопротивление между затвором и сливом; затем измерьте его между воротами и источником. Оба чтения должны показать бесконечность. Отсоедините положительный вывод от затвора и подключите отрицательный вывод к затвору. С использованием плюсовой провод, измерьте сопротивление между затвором и стоком; затем измерьте его между воротами и источник. Оба показания должны указывать на низкое сопротивление и быть примерно равными.

 

MOSFET TESTING

 

Другой тип полупроводника, с которым вам следует ознакомиться, — это металл. оксидно-полупроводниковый полевой транзистор (MOSFET), как показано на рисунках 2-19 и 2-20. Вы должны быть крайне будьте осторожны при работе с полевыми МОП-транзисторами из-за их высокой степени чувствительности к статическим напряжениям. Как раньше упомянутых в этой главе, паяльник должен быть заземлен. на верстак следует положить металлическую пластину и заземлен на корпус корабля через резистор от 250 кОм до 1 МОм. Вы также должны носить браслет с прикрепите заземляющий браслет и заземлите себя на корпус корабля через резистор от 250 кОм до 1 МОм. Вам следует не допускайте контакта полевого МОП-транзистора с одеждой, пластиком или целлофановыми материалами. вакуум плунжер (присоска для припоя) нельзя использовать из-за высокого электростатического заряда, который он может генерировать. Удаление припоя рекомендуется затеканием. Также хорошей практикой является оборачивать МОП-транзисторы в металлическую фольгу, когда они находятся вне цепи. Чтобы обеспечить безопасность тестируемого МОП-транзистора, используйте портативный вольт-ом-миллиамперметр (ВОМ), чтобы измерить сопротивление МОП-транзистора. измерения. VTVM никогда не должен использоваться при тестировании MOSFET. Вы должны знать, что при тестировании MOSFET вы привязаны к корпусу корабля или к земле станции. использование VTVM создаст определенную угрозу безопасности из-за входной мощности 115 вольт, 60 герц. Когда измерения сопротивления завершены и полевой МОП-транзистор при правильном хранении, отшлифовать как плиту на верстаке, так и себя. Вы лучше поймете тестирование MOSFET если вы представляете это как эквивалент схемы с использованием диодов и резисторов, как показано на рисунках 2-21 и 2-22.

2-25

Рис. 2-19. — MOSFET (тип истощения/усиления).

Рисунок 2-20. — МОП-транзистор (улучшенный тип).

 Рис. 2-21. — Эквивалентная схема MOSFET (тип истощения/улучшения).

 

2-26

Рисунок 2-22. — Эквивалентная схема MOSFET (улучшенный тип).

 

В-17. Почему не рекомендуется использовать припой при работе с MOSFET?

 

Тест MOSFET (тип истощения/расширения)

 

С помощью омметра, настроенного на шкалу R x 100, измерьте сопротивление между стоком MOSFET и истоком; затем поменяйте местами провода омметра и возьмите другой чтение. Показания должны быть одинаковыми, независимо от полярности проводов счетчика. Подсоедините положительный провод омметр к воротам. Используя отрицательный провод, измерьте сопротивление между затвором и стоком, а также между ворота и источник. Оба показания должны показывать бесконечность. Отсоедините положительный провод от затвора и подключите отрицательный провод к затвору. Используя положительный провод, измерьте сопротивление между затвором и осушать; затем измерьте его между воротами и источником. Оба показания должны показывать бесконечность. Отключите отрицательный вывод от затвора и подключите его к подложке. Используя положительный провод, измерьте сопротивление между субстратом и стоком и между субстратом и истоком. Оба эти показания должны указать бесконечность. Отсоедините отрицательный вывод от подложки и подключите положительный вывод к подложке. Используя отрицательный провод, измерьте сопротивление между подложкой и стоком, а также между подложкой и источник. Оба показания должны указывать на низкое сопротивление (около 1000 Ом).

 

MOSFET (расширение Тип) Тест

 

С помощью омметра, настроенного на шкалу R x 100, измерьте сопротивление между и источник; затем поменяйте местами провода и сделайте еще одно показание между стоком и истоком. Оба чтения должен показывать бесконечность, независимо от полярности измерительного провода. Подключите положительный вывод омметра к затвору. Используя отрицательный провод, измерьте сопротивление между затвором и стоком, а затем между затвором и источник. Оба показания должны указывать на бесконечность. Отсоедините положительный провод от затвора и подключите отрицательный вывод к воротам. Используя положительный провод, измерьте сопротивление между затвором и стоком, а затем между воротами и источником. Оба показания должны указывать на бесконечность. Отсоедините отрицательный провод от ворота и подключить его к подложке. С помощью положительного вывода измерьте сопротивление между подложкой и стоком и между субстратом и истоком. Оба показания должны указывать на бесконечность. Отключите отрицательный вывод от подложки и подключите положительный вывод к подложке. Используя отрицательный провод, измерьте сопротивление между подложкой и стоком и между подложкой и истоком. Оба чтения должны указывают на низкое сопротивление (около 1000 Ом).

 

2-27

ТЕСТИРОВАНИЕ ИНТЕГРАЛЬНЫХ СХЕМ (ИС)

 

Интегральные схемы (ИС) составляют область микроэлектроники, в которой многие традиционные электронные компоненты объединяются в модули высокой плотности. Интегральные схемы состоят из активных и пассивных компоненты, такие как транзисторы, диоды, резисторы и конденсаторы. Из-за их небольшого размера использование интегральные схемы могут упростить сложные системы за счет уменьшения количества отдельных компонентов и взаимосвязи. Их использование также позволяет снизить энергопотребление, уменьшить габариты оборудования и значительно снизить общую стоимость соответствующего оборудования. Многие типы интегральных схем являются ESDS устройств, и с ними следует обращаться соответствующим образом.

 

В-18. Назовите два преимущества использования ИС.

 

Ваш подход к тестированию ИС должен несколько отличаться от который используется при тестировании электронных ламп и транзисторов. Физическая конструкция ИС является основной причиной этого. другой подход. Наиболее часто используемые ИС изготавливаются с 14 или 16 выводами, каждый из которых может быть впаян прямо в схему. Для вас может оказаться непростой задачей отпаять все эти контакты, даже если специальные приспособления, предназначенные для этой цели. После отпайки всех контактов вам предстоит утомительная работа по чистка и выпрямление всех их.

 

Хотя на рынке имеется несколько тестеров интегральных схем, их приложения ограничены. Точно так же, как транзисторы должны быть удалены из тестируемой схемы, некоторые микросхемы также должны быть удалены. удалено, чтобы разрешить тестирование. Когда ИС используются в сочетании с внешними компонентами, внешние компоненты следует предварительно проверить на работоспособность. Это особенно важно в линейных приложениях, где изменение в обратной связи цепи может неблагоприятно повлиять на рабочие характеристики компонента.

 

Любой линейный (аналоговый) ИМС чувствителен к напряжению питания. Это особенно характерно для ИС, которые используют предвзятость и контроль. напряжения в дополнение к напряжению питания. Если вы подозреваете, что линейная ИС неисправна, все напряжения, ИС необходимо сверить с электрической схемой производителя оборудования на наличие каких-либо специальных примечаний по напряжения. Справочник производителя также даст вам рекомендуемые напряжения для любой конкретной ИС.

 

Когда при поиске и устранении неисправностей ИС (цифровых или линейных), вас не должно волновать, что происходит внутри ИС. Ты не может проводить замеры или ремонт внутри ИС. Поэтому вы должны рассматривать IC как черный ящик. который выполняет определенную функцию. Однако вы можете проверить микросхему, чтобы убедиться, что она может выполнять свои проектные функции. После того, как вы проверите статические напряжения и внешние компоненты, связанные с ИС, вы можете проверить ее на динамическое напряжение. операция. Если он предназначен для работы в качестве усилителя, вы можете измерить и оценить его вход и выход. Если он должен функционировать как логический вентиль или комбинация вентилей, вам относительно легко определить, что входы необходимы для достижения желаемого высокого или низкого выхода. Примеры различных типов ИС приведены в рисунок 2-23.

Рисунок 2-23. — Типы ИС.

 

2-28

В-19. Почему вы должны рассматривать IC как черный ящик?

 

Цифровые ИС относительно просты для вас для устранения неполадок и тестирования из-за ограниченного количества задействованных комбинаций ввода/вывода. При использовании положительных логика, логическое состояние входов и выходов цифровой ИС может быть представлено только как либо высокое (также называется состоянием 1) или низким (также называется состоянием 0). В большинстве цифровых схем высокий уровень устойчивый уровень 5 В постоянного тока, а низкий уровень — это уровень 0 В постоянного тока. Вы можете легко определить логическое состояние микросхемы, используя измерительные устройства с высоким входным сопротивлением, такие как осциллограф. Из-за более широкого использования ИС в последнее время лет специально для тестирования интегральных схем было разработано множество единиц испытательного оборудования. Они описаны в следующие абзацы.

 

В-20. Каковы два логических состояния IC?

 

ЛОГИЧЕСКИЕ КЛИПЫ

 

Логические зажимы, как показано на рис. 2-24, представляют собой подпружиненные устройства, предназначенные для закрепления на двухрядном пакет IC, пока IC установлен в своей схеме. Это простое устройство, которое обычно имеет 16 светодиодов. (светодиоды), установленные в верхней части зажимов. Светодиоды соответствуют отдельным контактам микросхемы, и любой горящий светодиод представляет состояние высокой логики. Негорящий светодиод указывает на низкое логическое состояние. Логические зажимы не требуют внешнего питания соединений, и они маленькие и легкие. Их способность одновременно контролировать ввод и вывод ИС очень полезна при устранении неполадок в логической схеме.

Рис. 2-24. — Логический клип.

 

Q-21. какой логический уровень представляет горящий светодиод на логическом зажиме?

 

ЛОГИЧЕСКИЕ КОМПАРАТОРЫ

 

Логический компаратор, показанный на рис. 2-25, предназначен для обнаружения дефектные, внутрисхемные DIP-ИС, сравнивая их с заведомо исправными ИС (эталонные ИС). Эталонная ИС смонтирован на небольшой печатной плате и вставлен в логический компаратор. Затем вы прикрепляете логику компаратор к тестируемой ИС щупом, который подключается к подпружиненному устройству, внешне похожему к логическому клипу. Логический компаратор предназначен для обнаружения различий в логических состояниях эталонной ИС и ИС проходит испытания. Если какая-либо разница в логических состояниях существует на каком-либо контакте, светодиод, соответствующий контакту в загорится вопрос о логическом компараторе. Логический компаратор питается от тестируемой ИС.

 

2-29

Рис. 2-25. — Логический компаратор.

 

Q-22. Что означает горящий светодиод на логическом компараторе?

ЛОГИЧЕСКИЕ ПРОБНИКИ

 

Логические пробники, как показано на рис. 2-26, чрезвычайно просты и полезны. устройства, предназначенные для

, помогают определить логическое состояние микросхемы. Логические зонды могут показать вам сразу является ли конкретная точка в цепи низким, высоким, открытым или пульсирующим. высокая индикация, когда свет на конец зонда подсвечивается, а когда индикатор гаснет, отображается низкий уровень. Некоторые зонды имеют функцию, которая обнаруживает и отображает высокоскоростные переходные импульсы длительностью до 5 наносекунд. Эти зонды обычно подключен непосредственно к источнику питания тестируемого устройства, хотя некоторые из них также имеют внутренние батареи. Поскольку большинство отказов ИС проявляется в виде точки в цепи, застрявшей либо на высоком, либо на низком уровне, эти датчики обеспечивают быстрый и недорогой способ найти неисправность. Они также могут отображать тот одиночный короткий импульс, который так сложно поймать на осциллографе. Идеальный логический пробник будет иметь следующие характеристики:

Рис. 2-26. — Логический зонд.

 

1. Уметь обнаруживать устойчивый логический уровень

 

2. Уметь обнаруживать последовательность логических уровней

 

3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *