SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.
JavaScript отключен
К сожалению Ваш браузер не поддерживает JavaScript, или JavaScript отключен в настройках браузера.
Без JavaScript и без поддержки браузером HTML5 работа ресурса невозможна. Если Вы имеете намерение воспользоваться нашим ресурсом,
включите поддержку JavaScript или обновите свой браузер.
Теплотехнический калькулятор ограждающих конструкций
Расчет утепления и точки росы для строящих свой дом
СНиП 23-02-2003
СП 23-101-2004
ГОСТ Р 54851—2011
СТО 00044807-001-2006
Старая версия калькулятора
Тепловая защита
Защита от переувлажнения
Ссылка на расчет. Отчет по результатам расчета.
Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.
При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.
Расчет основан на российской нормативной базе:
- СНиП 23-02-2003 «Тепловая защита зданий»
- СП 23-101-2004 «Проектирование тепловой защиты зданий»
- ГОСТ Р 54851—2011 «Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче»
- СТО 00044807-001-2006 «Теплозащитные свойства ограждающих конструкций зданий»
Добавьте ссылку на расчет в закладки:
Ссылка на расчет
Или скопируйте ее в буфер обмена:
Москва (Московская область, Россия)
Страна
РоссияАзербайджанАрменияБеларусьГрузияКазахстанКыргызстанМолдоваТуркменистанУзбекистанУкраинаТаджикистан
Регион
Республика АдыгеяРеспублика АлтайАлтайский крайАмурская областьАрхангельская областьАстраханская областьРеспублика БашкортостанБелгородская областьБрянская областьРеспублика БурятияВладимирская областьВолгоградская областьВологодская областьВоронежская областьРеспублика ДагестанДонецкая областьЕврейская автономная областьЗабайкальский крайЗапорожская областьИвановская областьРеспублика ИнгушетияИркутская областьКабардино-Балкарская РеспубликаКалининградская областьРеспублика КалмыкияКалужская областьКамчатский крайКарачаево-Черкесская РеспубликаРеспублика КарелияКемеровская областьКировская областьРеспублика КомиКостромская областьКраснодарский крайКрасноярский крайРеспублика КрымКурганская областьКурская областьЛенинградская областьЛипецкая областьЛуганская областьМагаданская областьРеспублика Марий ЭлРеспублика МордовияМосковская областьМурманская областьНенецкий АО (Архангельская область)Нижегородская областьНовгородская областьНовосибирская областьОмская областьОренбургская областьОрловская областьПензенская областьПермский крайПриморский крайПсковская областьРостовская областьРязанская областьСамарская областьСаратовская областьСахалинская областьСвердловская областьРеспублика Северная Осетия — АланияСмоленская областьСтавропольский крайТамбовская областьРеспублика ТатарстанТверская областьТомская областьТульская областьРеспублика ТываТюменская областьУдмуртская РеспубликаУльяновская областьХабаровский крайРеспублика ХакасияХанты-Мансийский автономный округ — ЮграХерсонская областьЧелябинская областьЧеченская РеспубликаЧувашская Республика — ЧувашияЧукотский АО (Магаданская область)Республика Саха (Якутия)Ямало-Ненецкий автономный округЯрославская область
Населенный пункт
ДмитровКашираМожайскМоскваНаро-ФоминскНовомосковский АОТроицкий АОЧерусти
Температура холодной пятидневки с обеспеченностью 0. 92 | -26 | ˚С |
Продолжительность отопительного периода | 204 | суток |
Средняя температура воздуха отопительного периода | -2.2 | ˚С |
Относительная влажность воздуха наиболее холодного месяца | 84 | % |
Условия эксплуатации помещения | ||
Количество градусо-суток отопительного периода (ГСОП) | 4528.8 | °С•сут |
Месяц | Т, ˚С | E, гПа | Месяц | Т, ˚С | E, гПа | |
---|---|---|---|---|---|---|
Январь | -7. 8 | 3.3 | Июль | 19.1 | 15.7 | |
Февраль | -6.9 | 3.3 | Август | 17.1 | 14.6 | |
Март | -1.3 | 4.3 | Сентябрь | 11.3 | 10.9 | |
Апрель | 6.5 | 6. 6 | Октябрь | 5.2 | 7.5 | |
Май | 13.3 | 10 | Ноябрь | -0.8 | 5.2 | |
Июнь | 17 | 13.3 | Декабрь | -5.2 | 3.9 | Год | 5.6 | 8.2 |
Жилое помещение (Стена)
Помещение Жилое помещениеКухняВаннаяНенормированноеТехническое помещение
Тип конструкции СтенаПерекрытие над проездомПерекрытие над холодным подвалом, сообщающимся с наружным воздухомПерекрытие над не отапливаемым подвалом со световыми проемами в стенахПерекрытие над не отапливаемым подвалом без световых проемов в стенахЧердачное перекрытиеПокрытие (утепленная кровля)
Влажность в помещении* | ϕ | % | |
Коэффициент зависимости положения наружной поверхности по отношению к наружному воздуху | n | ||
Коэффициент теплоотдачи внутренней поверхности | α(int) | ||
Коэффициент теплоотдачи наружной поверхности | α(ext) | ||
Нормируемый температурный перепад | Δt(n) | °С | |
* — параметр используется при расчете раздела «Защита от переувлажнения ограждающих конструкций» (см. закладку «Влагонакопление»). |
Слои конструкции
№ | Тип | Материалы | Толщина, мм | λ | μ (Rп) | Управление | ||||
---|---|---|---|---|---|---|---|---|---|---|
Внутри | ||||||||||
Снаружи | Наружный воздухВентилируемый зазор (фасад или кровля)Кровельное покрытие с вентилируемым зазором | |||||||||
Внутри: 20°С (55%) Снаружи: -10°С (85%)
Климатические параметры внутри помещения
Температура
Влажность
Климатические параметры снаружи помещения
Выбранные
Самый холодный месяц
Температура
Влажность
- Тепловая защита
- Влагонакопление
- Тепловые потери
Сопротивление теплопередаче: (м²•˚С)/Вт
№ | Тип | Толщина | Материал | λ | R | Тmax | Тmin |
---|---|---|---|---|---|---|---|
Термическое сопротивление Rа | |||||||
Термическое сопротивление Rб | |||||||
Термическое сопротивление ограждающей конструкции | |||||||
Сопротивление теплопередаче ограждающей конструкции [R] | |||||||
Требуемое сопротивление теплопередаче | |||||||
Санитарно-гигиенические требования [Rс] | |||||||
Нормируемое значение поэлементных требований [Rэ] | |||||||
Базовое значение поэлементных требований [Rт] |
Расчет защиты от переувлажнения методом безразмерных величин
Нахождение плоскости максимального увлажнения.
Координата плоскости максимального увлажнения | X | 0 | мм |
Сопротивление паропроницанию от внутренней поверхности конструкции до плоскости максимального увлажнения | Rп(в) | 0 | (м²•ч•Па)/мг |
Сопротивление паропроницанию от плоскости максимального увлажнения до внешней поверхности конструкции | Rп(н) | 0 | (м²•ч•Па)/мг |
Условие недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации | Rп.тр(1) | 0 | (м²•ч•Па)/мг |
Условие ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха | Rп. тр(2) | 0 | (м²•ч•Па)/мг |
Образование конденсата в проветриваемом чердачном перекрытии или вентилируемом зазоре кровли
Сопротивление паропроницанию конструкции | Rп | 0 | (м²•ч•Па)/мг |
Требуемое сопротивление паропроницанию | Rп.тр | 0 | (м²•ч•Па)/мг |
Послойный расчет защиты от переувлажнения
№ | Толщина | Материал | μ | Rп | X | Rп(в) | Rп. тр(1) | Rп.тр(2) |
---|
Тепловые потери через квадратный метр ограждающей конструкции
Сопротивление теплопередаче | R | ±R, % | Q | ±Q, Вт•ч |
---|---|---|---|---|
Санитарно-гигиенические требования [Rс] | 0 | 0 | 0 | 0 |
Нормируемое значение поэлементных требований [Rэ] | 0 | 0 | 0 | 0 |
Базовое значение поэлементных требований [Rт] | 0 | 0 | 0 | 0 |
Сопротивление теплопередаче ограждающей конструкции [R] | 0 | 0 | 0 | 0 |
R + 10% | 0 | 0 | 0 | 0 |
R + 25% | 0 | 0 | 0 | 0 |
R + 50% | 0 | 0 | 0 | 0 |
R + 100% | 0 | 0 | 0 | 0 |
Потери тепла через 1 м² за отопительный сезон
кВт•ч
Потери тепла через 1 м² за 1 час при температуре самой холодной пятидневки
Вт•ч
- Сайту 10 лет!
- 15 февраля 2013 года начала функционировать первая версия нашего калькулятора теплотехнического расчета ограждающих конструкций
- Актуализация данных климатологии (СП 131. 13330.2020)
- Внесены изменения в БД климатических параметров для России в соответствии с вступившим в действие СП 131.13330.2020 …
- Актуализация климатических параметров для Казахстана
- Внесены изменения в БД климатических параметров для Казахстана в соответствии с действующими нормативными документами …
- Актуализация в соответствии с норматиными документами
- Актуализированы изменения в СП 50.13330.2012 и СП 131.13330.2018 …
- Добавлены проекты
- Добавлены возможности хранения ссылок на расчеты и расчета тепловых потерь здания…
- Добавлен калькулятор тепловой защиты полов по грунту
- Калькулятор позволяет рассчитать уровень тепловой защиты и тепловые потери полов по грунту…
- Открыта группа «В контакте»
- В социальной сети «В контакте» открыта группа, посвященная проекту СмартКалк. ..
- Для исследователей и экспериментаторов
- Для экспериментаторов, исследователей и вообще всех, кому спокойно не сидится на месте, добавлен тип помещения: «Ненормированное» …
- Расчет каркасных конструкций
- Как рассчитать каркасную конструкцию?
Какие варианты каркасов можно использовать в калькуляторе?
Основной материал
Материал каркаса или швов
Материал:
Плотность ρ:
кг/м³
Удельная теплоемкость (c):
кДж/(кг•°С)
Коэффициент теплопроводности для условий А λ(А):
Вт/(м•°С)
Коэффициент теплопроводности для условий Б λ(Б):
Вт/(м•°С)
Коэффициент паропроницаемости μ:
мг/(м•ч•Па)
Предельно допустимое приращение расчетного массового отношения влаги в материале ограждающей конструкции Δwcp:
%
Сопротивление паропроницанию Rп:
(м²•ч•Па)/мг
Вставить после:
формула расчета тепловых потерь здания, тепловой расчет отопительных приборов, фото и видео примеры
Содержание:
1. Этапы выполнения теплового расчета помещения
2. Как правильно выполнить тепловой расчет здания
3. Формула расчета тепловой энергии
4. Коэффициенты расчета тепловых потерь здания
5. Принцип гидравлического расчета для системы отопления
Чтобы смонтировать надежную и стабильно работающую систему теплоснабжения в любом помещении, будь то офис, производственная постройка или жилое помещение, очень важно четко и грамотно выполнить тепловой расчет помещения.
Правильно произведенный тепловой расчет здания, расчет мощности и других показателей системы позволят обезопасить себя от возможных неприятностей, связанных с поломкой нагревательного оборудования и позволят сконструировать эффективную, но и экономичную отопительную систему, к которой не будет никаких претензий ни у жилищно-коммунальных служб, ни у других органов, контролирующих подобные работы.
Именно о том, как выполнить тепловой расчет помещения и какие действия потребуется выполнить для этого мероприятия, далее и пойдет речь.
Этапы выполнения теплового расчета помещения
Как известно, тепловой расчет отопительных приборов осуществляется в несколько стадий, а именно:
- Прежде всего следует узнать то, чему равны тепловые потери дома, чтобы правильно определить мощность не только отопительного котла, но и каждого из приборов нагрева, т.е. каждой батареи. Подобные вычисления должны быть произведены для каждого помещения, которое имеет в своей конструкции внешнюю стену.
Важно запомнить, что полученный результат крайне необходимо проверить на предмет правильности тепловой нагрузки на отопление. Так, итоговые цифры следует разделить на параметр площади конкретного помещения, чтобы получить размер удельных тепловых потерь, который измеряется в Вт/м². Наиболее часто этот показатель составляет 50/150 Вт/м². При условии, если результат расчета количества тепла на отопление здания слишком отличается от данного показателя, то следует все перепроверить и при необходимости заново выполнить вычисления, так как в случае использования неправильных расчетов возникает серьезная угроза нормальному функционированию всей отопительной системы в целом.
- После этого следует определиться с рабочей температурой. Правильнее всего будет принять за основу следующие параметры: 75/65/20°C, что равно температурному режиму в котле отопления, в радиаторе и в комнате соответственно.
- Далее необходимо выполнить расчет тепловой мощности системы отопления, принимая во внимание расчет тепловых потерь здания.
- Затем требуется произвести расчет гидравлики, так как система теплоснабжения не сможет нормально функционировать без него. Подобные вычисления также необходимы для определения параметров трубы, в частности, их диаметра, а также для изучения технических характеристик насоса циркуляции, входящего в конструкцию системы. При выполнении расчетов в загородном доме частного типа можно воспользоваться специальными материалами и изучить фото различных таблиц, где приведены данные о сечении труб отопления.
- Продолжаются расчеты выбором отопительного котла и определением его свойств. Так, главное – это решить, какой тип конструкции будет применяться: бытовой или промышленный.
- Завершается процесс определением объема системы теплоснабжения. Знать этот параметр важно, в первую очередь, для того, чтобы правильно выбрать бак расширения или удостовериться в том, что объема того бака, который вмонтирован в генератор тепла, будет достаточно. Для выполнения любых расчетов всегда можно воспользоваться стандартным бытовым калькулятором или строительным онлайн-калькулятором, не прибегая к сложным математическим вычислениям.
Как правильно выполнить тепловой расчет здания
Для того чтобы произвести тепловой расчет здания, требуется, в первую очередь, иметь в наличии необходимые данные, которые понадобятся для вычислений.
Этапы этой работы будут следующими:
- Для начала потребуется тщательно изучить проектный план сооружения, где обязательно должны быть отображены параметры каждого из помещений как изнутри, так и снаружи, а кроме того, должны быть информация о размерах проемов дверей и окон.
- Затем необходимо определить, как именно расположена постройка относительно световых сторон, чтобы иметь сведения о поступающих в комнату прямых солнечных лучах, а также тщательно рассмотреть условия климата в конкретном регионе.
- После этого необходимо уточнить данные о том, из какого материала состоят внешние стены, а также то, какую высоту они имеют.
- Нелишним также будет получить информацию о структуре пола непосредственно от помещения и до самой земли, а также об основе перекрытия, начиная от комнаты и заканчивая улицей.
По окончании сбора всей этой информации можно приступать к расчету объема тепловой энергии, который потребуется затратить на качественный обогрев жилища. В процессе монтажа также можно будет получить необходимые сведения, требуемые для выполнения гидравлических подсчетов.
Формула расчета тепловой энергии
Совет: Используйте наши строительные калькуляторы онлайн, и вы выполните расчеты строительных материалов или конструкций быстро и точно.
Чтобы правильно рассчитать необходимый объем тепла для отопления, обязательно важно учитывать такие параметры, как мощность, которой обладает нагревательный котел, а также потери тепла в процессе работы. Формула расчета тепловой энергии, требуемой для нагрева помещения, является следующей: Мк = 1,2 * Тп (Мк – это измеряемая в кВт мощность, которой обладает генератор тепла, Тп – это объем теплопотерь жилой конструкции, а 1,2 – это необходимый запас, который должен быть равен 20%).
Важно запомнить, что коэффициент 1,2 допускает саму возможность резкого снижения давления в системе газопровода в холодное время года, кроме того, сюда же входят и потенциальные потери тепла, причиной которых зачастую являются сильные морозы, особое влияние которых наблюдается ввиду недостаточной теплоизоляции дверей комнаты. Наличие такого запаса делает возможным значительно варьировать температурные режимы.
Нельзя не упомянуть и тот факт, что при подсчете затрачиваемой энергии тепла его потери будут проходить совсем неравномерно, поэтому следует помнить о следующих данных:
- через внешние стены теряется больше всего полезного тепла – около 40% от общего объема;
- через оконные проемы уходит примерно 20%;
- тепло покидает помещение через поле в объеме, равном 10%;
- через крышу также выходит примерно 10%;
- еще один участок тепловых потерь – дверные проемы и вентиляция, через которые способно испариться около 20% тепла.
Коэффициенты расчета тепловых потерь здания
Важно не только знать необходимую формулу, требующуюся для расчета необходимой энергии тепла для обогрева постройки, но и применять следующие коэффициенты, которые позволяют учитывать абсолютно все факторы, влияющие на такие вычисления:
- К1 – это тип окон, которыми оборудовано конкретное помещение;
- К2 – это показатели тепловой изоляции стен конструкции;
- К3 – показатель соотношения площади оконных проемов и полов;
- К4 – наименьшая температура снаружи дома;
- К5 – количество внешних стен, имеющихся в сооружении;
- К6 – количество этажей в постройке;
- К7 – параметр высоты помещения.
Если говорить о потерях тепла, осуществляемых через окна, важно помнить о коэффициентах для таких расчетов, которые являются:
- для окон со стандартным остеклением этот параметр составляет 1,27;
- для стеклопакетов двухкамерного типа – 1;
- для трехкамерных стеклопакетов – 0,85.
Не стоит забывать, что увеличение объема окон относительно полов в доме прямо пропорционально увеличению теплопотерь в постройке.
Так, соотношение оконных площадей и пола в жилище будет:
- для 10% – 0,8;
- для 10 – 19% – 0,9;
- для 20% – 1;
- для 21 – 29% – 1,1;
- для 30% – 1,2;
- для 31 – 39% – 1,3;
- для 40% – 1,4;
- для 50% – 1,5.
Выполняя расчет потребления необходимого количества энергии тепла, также важно помнить, что для материала, из которого изготовлены стены сооружения, также имеются свои коэффициенты:
- для блоков или бетонных панелей – от 1,25 до 1,5;
- для бревенчатых стен или стен из бруса – 1,25;
- для кирпичной кладки толщиной в 1,5 кирпича – 1,5;
- для 2,5 кирпичной кладки – 1,1;
- для блоков из пенобетона – 1.
Стоит учитывать и тот факт, что если температуры за пределами дома являются низкими, то и тепловые потери становятся более существенными, например:
- если температура достигает -10°C, то коэффициент будет составлять 0,7;
- если этот параметр является ниже -10°C, то коэффициент должен быть 0,8;
- если температура составляет -15°C, то цифра будет равна 0,9;
- при морозе в -20°C коэффициент должен составлять 1;
- величина коэффициента при -25°C – 1,2;
- в случае понижения температуры до -30°C коэффициент должен быть равен 1,2;
- если столбик термометра на улице достигает -35°C, то коэффициент должен составлять 1,3.
Кроме того, рассчитывая объем требуемого для обогрева дома тепла, важно учитывать непосредственно площадь комнаты, которая отображается как Пк, а также удельное значение, которое составляет теплопотери – это УДтп.
Так, высчитать объем возможных потерь тепла конкретного помещения можно, воспользовавшись следующей формулой: Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7. Параметр УДтп в этом случае должен быть равен 100 Вт/м².
Принцип гидравлического расчета для системы отопления
На этом этапе расчетов необходимо подобрать нужные параметры отопительных труб, такие как их длина и диаметр, а также осуществить балансировку всей системы посредством клапанов радиатора. Подобные вычисления также позволят определить оптимальную мощность такого функционального элемента системы, как электрический насос циркуляции.
Итоги гидравлических расчетов позволяют узнать следующие показатели: М – объем воды, который расходуется в процессе работы (измеряется в кг/с), DP1, DP2… DPn – это тот напор, который теряется при прохождении теплоносителя от котла к каждому из радиаторов. Как следствие, расход воды можно высчитать по следующей формуле: M = Q/Cp * DPt Q, где Ср – это параметр удельной теплоемкости теплоносителя, который равен в среднем 4,19 кДж, а DPt – это разница температур воды на входе в котел и на выходе из него.
Проведение всех вышеперечисленных расчетов позволит оборудовать надежную, экономичную и эффективную систему отопления и не даст механизму выйти из строя в самый неприятный момент.
Тепловой расчет помещения на видео:
Как измерить потери тепла в вашем доме | Домашние руководства
Уильям Хендерсон
Поддержание постоянной температуры в вашем доме зимой может быть проигрышной битвой, учитывая вероятные потери тепла через стены, окна и двери, когда температура снаружи ниже, чем внутри вашего дома. Вы можете легко рассчитать, сколько тепла теряет ваш дом, что измеряется в британских тепловых единицах или БТЕ в час, используя уравнение и калькулятор.
Измерение внутренней и внешней температуры поверхности, например стены. Поскольку горячий и холодный воздух будут пытаться смешаться и создать постоянную температуру, чем больше разница в температуре внутри и снаружи вашего дома, тем больше потеря тепла. Нагретый воздух внутри вашего дома будет пытаться выйти наружу, в то время как холодный наружный воздух найдет любой путь внутрь вашего дома, например, через щели и щели между окнами и косяками.
Запишите длину и высоту той же стены, где вы снимали показания температуры. Перемножьте эти два числа вместе, чтобы получить общую площадь стены. Например, если размер стены 15 на 40 футов, то общая площадь стены составляет 600 квадратных футов.
Используйте то же уравнение для расчета квадратных метров любых окон или дверей на той же стене и вычтите эти квадратные метры из общей площади стен.
Вычтите температуру снаружи вашего дома из температуры внутри вашего дома, а затем умножьте это число на площадь стены. Например, если температура внутри вашего дома составляет 70 градусов по Фаренгейту, а температура снаружи вашего дома составляет 40 градусов по Фаренгейту, вычтите 40 из 70, чтобы получить 30, а затем умножьте 30 на площадь стены, которая в нашем примере составляет 600 квадратных футов.
Умножьте полученные 18 000 на U-значение стены, которое представляет собой постоянное число, связанное с определенными строительными материалами. Например, значение U для стены с деревянным каркасом 2 на 4 с изоляцией из стекловолокна толщиной 3,5 дюйма составляет 0,07. Умножение 18 000 на 0,07 дает 1 260 — количество БТЕ, теряемое через поверхность стены каждый час. БТЕ – это количество тепла, необходимое для повышения температуры 1 фунта воды на один градус по Фаренгейту. Калифорнийская энергетическая комиссия размещает на своем веб-сайте energy.ca.gov руководство по расчету U-значений или U-факторов строительных материалов, а также U-значений обычных строительных материалов.
Повторите эти шаги, чтобы выяснить, сколько БТЕ теряется через любые окна или двери на этой стене, а также через потолок. Суммируя отдельные результаты для стен, потолка и любых окон и дверей, вы получите общие потери тепла стенами.
Используйте те же уравнения для других помещений, чтобы вычислить потери тепла в этих помещениях. Сложив эти числа вместе, вы узнаете, сколько тепла ваш дом теряет каждый час, и вы можете использовать это число, чтобы выяснить, насколько интенсивно должна работать ваша система отопления, чтобы поддерживать постоянную температуру в вашем доме.
Ссылки
- Г-н HVAC: Объяснение притока и потери тепла
- HVAC Computer Systems Ltd.: Теплопотери и приток тепла в жилых помещениях
- John R White Подрядчик: Расчет площади
- Pex Universe: Five Расчет тепловых потерь
- Калифорнийская энергетическая комиссия: данные U-фактора, C-фактора и тепловой массы
Советы
- Дважды проверьте расчеты перед использованием для измерения тепловых потерь.
- Умножив полученные БТЕ в час на 24, можно получить приблизительную оценку того, сколько тепла теряется каждый день.
Биография писателя
Уильям Хендерсон пишет для газет, журналов и журналов уже более 15 лет. Он был редактором New England Blade и в прошлом был сотрудником The Advocate. Его работы также появились в The Good Men Project, Life By Me и The Huffington Post.
Калькулятор тепловых потерь | Калькулятор БТЕ
Создано Милошем Панфилом, доктором философии
Отзыв от Bogna Szyk и Adena Benn
Последнее обновление: 11 января 2023 г.
Содержание:- Зачем нужны системы отопления?
- Что влияет на потери тепла?
- Как рассчитать потери тепла?
- Калькулятор тепловых потерь
- Калькулятор тепловых потерь БТЕ
Вы можете использовать этот калькулятор тепловых потерь для расчета мощности обогревателя, необходимого для поддержания комфортной температуры в помещении. Из текста вы узнаете, как рассчитать тепловые потери и что такое калькулятор отопления в БТЕ.
Зачем нужны системы отопления?
Все материалы проводят тепло. Вы можете прогреть свое помещение до комфортной температуры, но пока температура на улице ниже, в вашем доме будет холоднее. Поток тепла от более теплых мест к более холодным практически не остановить, независимо от того, насколько высокого качества изоляционные материалы вы выбрали. Чтобы компенсировать потери, нам нужно поставлять энергию с постоянной скоростью. Эта мощность представляет собой мощность нагревателя, которую поможет рассчитать этот калькулятор.
Что влияет на потери тепла?
Тепловые потери – это эффект теплопередачи (в ваттах) изнутри наружу. На теплопередачу влияют три фактора:
- Площадь поверхности, через которую проходит тепло.
- Материал.
- Разница температур.
Первый пункт прост, чем больше поверхность, тем больше тепла может передаваться одновременно. Второй момент касается характеристик материалов. Материалы, используемые в строительстве, должны соответствовать определенным стандартам. Помимо прочего, это означает, что они должны обладать особыми свойствами по теплопередаче (см. калькулятор теплопроводности).
Общей характеристикой является коэффициент теплопередачи, также называемый коэффициентом теплопередачи. Он определяет передачу тепла через один квадратный метр материала, деленную на разницу температур. Например, 11-дюймовая кирпичная стена может иметь U порядка 1 Вт/(м·К), тогда как стандартное окно может иметь U-значение в пять раз больше. Последним фактором является разница температур. области с разными температурами, так что если температура одинакова, то нет потока тепла.В общем, теплопередача пропорциональна разнице температур.
💡 Чтобы узнать больше о том, как различные материалы передают тепло, воспользуйтесь калькулятором коэффициента теплопередачи.
Как рассчитать потери тепла?
Чтобы рассчитать потери тепла, нам необходимо просуммировать потери тепла через все поверхности помещения и принять во внимание различные характеристики материалов, используемых в конструкции. Общие потери тепла представляют собой сумму потерь через стены, пол и потолок. Мы вычисляем потери через одну поверхность из уравнения:
Тепловые потери = Площадь × U-значение
,
где:
-
Площадь
– площадь поверхности, -
Коэффициент теплопередачи
— коэффициент теплопередачи материала.
Потери тепла через стены можно оценить следующим образом. Во-первых, мы должны указать тип изоляции. В нашем калькуляторе мы предусмотрели 3 варианта:
- без дополнительной изоляции: монолитная кирпичная стена толщиной 9 дюймов,
Коэффициент теплопередачи = 2,2 Вт/(м²·K)
- посредственная изоляция: полая стенка толщиной 11 дюймов,
Коэффициент теплопередачи = 1,0 Вт/(м²·K)
- очень хорошая изоляция: полая стена толщиной 11 дюймов с дополнительной изоляцией,
коэффициент теплопередачи = 0,6 Вт/(м²·K)
При желании в расширенном режиме вы можете установить значение U вручную.
Нам также нужно знать общую площадь стен. Однако мы должны учитывать только наружные стены. Наконец, в расширенном режиме
можно определить количество окон и внешних дверей. Через них теряется большое количество тепла. Мы установили U-значение окон на 2,5 Вт/(м²·K)
и наружные двери до 2,4 Вт/(м²·K)
.
В нашем калькуляторе мы учитываем потери тепла через пол только в том случае, если это первый этаж. Значение U равно 1 Вт/(м²·К)
. Аналогично включаем потери тепла через потолок только в том случае, если помещение находится на верхнем этаже. Значение U потолка составляет 0,7 Вт/(м²·К)
.
Калькулятор тепловых потерь
Чтобы воспользоваться калькулятором тепловых потерь и найти мощность обогревателя, нужно дать размеры вашей комнаты , укажите на каком этаже она находится, и какой утеплитель у стен. Если вы не уверены, какой тип изоляции выбрать, выбирайте худшую изоляцию. Безопаснее быть пессимистом. Наконец, вы также должны указать количество внешних стен . В расширенном режиме вы также можете указать количество окон и дверей.
Имея эту информацию, мы можем вычислить потери тепла (в ваттах, разделенных на разницу температур). Зная теплопотери, можно оценить мощность нагревателя.