- РадиоКот :: Микроволновой датчик движения.
- Микроволновый датчик движения | 2 Схемы
- Маленький микроволновый датчик движения: схема и установка СВЧ
- датчик движения для охранной сигнализации
- Схема доплеровского СВЧ датчика движения
- Радиосхемы. — СВЧ датчик движения
- Доделка микроволнового датчика RCWL-0516 для автомата освещения или охранной сигнализации.
РадиоКот :: Микроволновой датчик движения.
РадиоКот >Схемы >Аналоговые схемы >Приемники и передатчики >Микроволновой датчик движения.
Сразу признаюсь – схема и конструкция не полностью мои… Самая главная часть честно «содрана» с фирменного датчика, не помню уже какой модели, дело весьма давнее, он не польского, а весьма стабильного (что-то крутится в голове Prestige, но не уверен) и было это в начале далеких девяностых, когда в нашу серую жизнь ворвались перемены и стало вокруг все настолько спортивно что… но отбросим лирику и займемся физикой… но это был весьма удачный коммерческий проект…
Итак, микроволновый датчик, он же радарный датчик движения. Смысл его существования, фиксировать движение посторонних лиц вблизи транспортного средства или проникновение на охраняемую территорию. Но применение может быть и не таким милитариским. Я, например, использую его на кухне для включения лампы над столом, очень удобно в вечернее время, приглушенный свет включается автоматически.
Теперь о том, как это работает. В датчике используется эффект Доплера. Который заключается в изменении длинны волны, отразившейся от движущегося нарушителя. При работе датчик постоянно излучает высокочастотные колебания, и если нарушителей спокойствия нет, то излученные колебания, гуляя по округе, сохраняют свою длину волны неизменной. Но если в зоне распространения излучения появляется движущийся объект, то длина волны, отраженная от объекта, смещается в большую или меньшую сторону. Это зависит от того, приближается объект или удаляется от датчика. Собственно в данном случае это и не важно, главное это то, что что-то меняется. Далее, измененные колебания возвращаются на датчик, он по совместительству еще и приемник, и складываются с колебаниями с основной длиной волны, да он еще и смеситель, тоже по совместительству. В результате, получается разностный низкочастотный сигнал. Частота его будет зависеть от того с какой скоростью бегают нарушители спокойствия и в каком направлении. Но нас это мало волнует, главное – это амплитуда! Которая будет зависеть от мощности принимаемого, отраженного от нарушителя сигнала, а значит и от расстояния до нарушителя. И тут, появляется возможность строить датчики с двумя, и даже с тремя зонами обнаружения. В рассматриваемом датчике это не реализовано, так как радиус его стабильно прогнозируемого срабатывания всего четыре метра.
Теперь о схеме. Схема датчика проста, и условно делится на высокочастотную и низкочастотную части. Высокочастотная часть состоит из одного транзистора и загадочного рисунка на обеих сторонах печатной платы. Этот рисунок и образует все катушки, конденсаторы и дроссели высокочастотной схемы, ну и пара резисторов с диодом.
Если честно, моих познаний в СВЧ технике не достаточно, чтобы подробно описать работу этого узла схемы. Может, кто-нибудь, об этом расскажет поподробней. Я же, расскажу на свой дилетантский манер. Элемент печатной платы W1 (2) и его зеркальный брат близнец W2 (1), на другой стороне платы, по-видимому, являются так называемой щелевой антенной. По всей видимости, это резко накладывает ограничения на толщину печатной платы, которая составляет 1.25 mm. Так же, можно заметить две кривых дорожки (6, 7), по всей видимости, это неспроста, это катушки индуктивности или ВЧ дроссели L1 L2, причем углы этих катушек повернуты относительно друг друга на 45 градусов. Далее, три полигона (3, 4, 5), все разной формы и, все меж собой геометрически взаимодействуют. Один соединен с минусом (5), второй с плюсом (4), а третий W3 с коллектором транзистора (3).
С назначением этих элементов честно сказать — затрудняюсь… Тот, который соединен с коллектором транзистора W3 (3), по всей видимости — резонатор смесителя гетеродина, поскольку именно с него снимается разностный низкочастотный сигнал, а подключенная к нему полоска резонатора W1 (2) — положительная обратная связь… Вообще это называется Автодин. Радиоприёмник с положительной обратной связью, в котором одновременно происходят процессы генерирования, на частоте отличной от принимаемой, и детектирования, в результате чего выделяется разность генерируемой и принимаемой частот в виде биений. Автодин служит для приёма на слух телеграфных сигналов по методу биений и для приведения в действие автоматических устройств (вики).
Сопротивление резистора R4 знатоков может удивить, меня тоже удивляет, хоть я и незнаток, но… за что взял, за то и отдаю – в оригинале стоял именно 68 Ом. При этом, ток потребления датчиком в режиме слежения составляет 15 mA, а в момент обнаружения бросок в 32 mA. Резистором R3 чет тоже устанавливается… Наверное, режим работы каскада по постоянному току. Я крутил его всегда на глазок, просто добиваясь нормальной работы. Не нормальная работа заключалась в отсутствии таковой вовсе, или в постоянном срабатывании, наверное, в результате импульсного возбуждения или регенеративного…
Теперь о настройке. Настройку я проводил в следующем порядке: выводил потенциометр R9 в минимум сопротивления (максимум дальности обнаружения), и потенциометром R3 добивался устойчивой работы на обнаружение, скача вокруг. Чрезмерное увеличение сопротивления, этого резистора, приводило к импульсной генерации, а уменьшение, к ее полному отсутствию. То есть, надо найти «золотую середину»… После настройки, сопротивление подстрочника R3, у большинства датчиков, составляло порядка 30 Ом.
Низкочастотная часть, реализована на счетверенном операционном усилителе LM324 (ОР1). Первый кирпич, является усилителем и по совместительству фильтром. Два вторых образуют компаратор уровня и, опять же по совместительству, выпрямитель (детектор). Четвертый не задействован, и выводы висят в воздухе… Это совсем не по-феншую конечно, поэтому рекомендуется его включить по схеме «байпаса» – положительный вход посадить на минус, а отрицательный замкнуть с выходом.
Конденсаторы С3, С4, С5 на плату установлены не были, понадеялся сэкономить по незнанию и, пожалел… Без конденсаторов С3, С4 некоторые экземпляры работали не устойчиво, поэтому они припаивались с обратной стороны платы навесным способом.
Диаграмма направленности, чисто субъективно, имеет примерно такой вид и очень сильно меняется в реальных условиях.
Дальность обнаружения у некоторых экземпляров — 10-15 метров — поражала, но она была непрогнозируемой. Лужения на оригинале не наблюдалось, и поверхность медного покрытия была шершавой, а элементы W1 и W2 (1, 2) гладким. У меня подобные датчики работали и на луженых платах, и на не луженых… Разницы, признаться, большой я не заметил. Оригинальный датчик был выполнен с применением SMD компонентов. В те времена с подобной элементной базой, доступной радиолюбителю, было вообще никак, поэтому монтаж был переделан под выводные компоненты.
Датчик можно применить для автомобильной сигнализации и для охраны помещения. При установке в авто, самое выгодное место установки – это по центру крыши салона. При этом, датчик будет фиксировать посторонних вблизи машины на расстоянии метра. При применении в помещениях, опять же — по центру потолка. В комнате 15-20 кв/м, вам от него спрятаться вряд ли удастся. Датчик может срабатывать и от неодушевленных предметов. Например, датчик, который у меня стоит на кухне, иногда срабатывает от раскрученной легким сквознячком крыльчатки вытяжного вентилятора, может ложно сработать от встряхнувшегося холодильника, и от занавесок, которые колышутся в потоках теплого воздуха от батареи зимой. Также не стоит забывать про соседей этажом выше. Например, мой датчик установлен на стену смежную с лестничной клеткой, и если вдруг какой забулдыга сильно опоздает к ужину то, я об этом узнаю… Но это бывает довольно редко. За то ночью, он заблаговременно включает свет, когда в соседней комнате за стенкой, кто-то встает с постели, шоб сходить куда-нибудь.
Триггер написано с одним «G»… молодость… 🙂
Файлы:
плата
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
Микроволновый датчик движения | 2 Схемы
Датчик описанного типа является функциональным аналогом инфракрасного датчика движения, и может заменять его в системах автоматического включения освещения, открывания дверей, сигнализации и других подобных автоматических устройствах. Датчик был приобретен на Ru.aliexpress.com
Датчик представляет собой две печатные платы, соединенные проволочными перемычками. Датчик имеет размеры 37 х 23 х 10 мм. В комплект входит соединительный трех-проводной кабель длиной 10 см. Масса датчика 5,7 г вместе с кабелем.
СВЧ датчик движения — платаСхема СВЧ датчика движения
Схема принципиальная микроволнового СВЧ датчика движенияПоказана схема не этого модуля, но аналогичного детектора, для лучшего понимания принципа работы. Устройство имеет три контакта, считая сверху вниз: информационный вывод, общий вывод и питание.
Детали СВЧ детектораПринцип работы датчика основан на эффекте Доплера [1-3]. Датчик реагирует на перемещение людей в зоне действия. Датчик имеет практически круговую диаграмму направленности, и срабатывает в независимости от того, с какой стороны от устройства появилось движение. По заявлениям продавца дальность обнаружения составляет около 8 м, на такой дальности датчик не проверялся, но на расстоянии 3-4 м срабатывание надежное. На очень медленные, со скорость миллиметры в секунду, или мелкие перемещения типа движений пальца — датчик не реагирует даже с расстояния в несколько сантиметров. Но на взмах руки или перемещение с нормальной скоростью срабатывание надежное. Поэтому такие СВЧ детекторы движения часто ставят для охранной сигнализации.
Технические характеристики
- Рабочее напряжение: 3.3-20 В
- Потребление в работе: <3 мА
- Мощность передатчика: <2 мВ
- Рабочие температуры: -20 ~ +80с
- Угол обнаружения: 360 (сферический)
- Радиус обнаружения: до 8 м
- Время работы после обнаружения: 1-999 секунд.
По заявлениям продавца датчик питается постоянным напряжением в диапазоне от 3,3 до 20 В. Устройство тестировалось при напряжении питания 3,3 и 5 В, ток потребления при напряжении 3,3 В составляет 1,2-1,4 мА, а при напряжении 5В – 1,4-1,7 мА.
Следует отметить, что образец датчика, протестированный автором, выдавал очень много ложных срабатываний при напряжении питания 3,3 В. В случае питания от источника напряжением 5 В, ничего подобного не наблюдалось, устройство работало надежно.
Подключение детектора к Ардуино
Датчика отлично сопрягается с платформой Arduino, например, можно взять программу, которая зажигает светодиод, установленный на плате Arduino UNO и подключенный к 13 цифровому порту, по нажатию кнопки, подключенной к 12 цифровому порту [4], и подключить вместо кнопки описываемый датчик.
Ардуино и микроволновый датчикПо умолчанию на информационном выходе датчика присутствует сигнал логического нуля, при срабатывании он сменяется на уровень логической единицы. По заявлению продавца задержка обратного переключения по умолчанию должна составлять 30 с, но в случае протестированного датчика она не превышает 3 с.
Самым главным достоинством этого устройства, напрямую вытекающим из его принципа работы, является возможность обнаружения движения через диэлектрические преграды. Из недостатков можно отметить, что контакты разъема никак не промаркированы.
В целом интересный СВЧ датчик, более простой в установке по сравнению с функционально аналогичными инфракрасными датчиками движения. Своих денег стоит. Обзор подготовил специально для сайта «Две схемы» Denev
Источники информации
- https://mysku.ru/blog/china-stores/50012.html
- https://www.youtube.com/watch?v=ND4XxBm4Qw4
- https://www.youtube.com/watch?v=5OaYhBmLZe4
- http://robocraft.ru/blog/arduino/57.html
2shemi.ru
Маленький микроволновый датчик движения: схема и установка СВЧ
При попытке выбрать подходящий под две свои задачи (управление освещением лестничного тамбура и квартирного туалета) я пересмотрел много вариантов, и практически все — инфракрасные (Два заказал — один поселился на лестнице, второй погиб при включении). Среди менее очевидных попался этот, представляющий собой ненаправленный крошечный радар, который и заказал больше из любопытства. Ведь в квартире работа датчика сквозь стены скорее всего не к месту.Принцип действия на пальцах: излучаемые прибором радиоволны частично отражаются от проводящих препятствий, в том числе человеческого тела. Если препятствие при этом движется, то из-за эффекта Доплера частота отражённой волны меняется. На это изменение принятой волны и реагирует датчик. Также он оснащён фотоприёмником и тремя органами регулировки. Регулируются
- уровень освещения, при котором срабатывать не нужно,
- чувствительность — грубо говоря расстояние срабатывания и
- время после истечения которого и при отсутствии дальнейших движений нагрузка отключается.
Добавлю к слову, что это ещё не самый экзотический вариант. Попался прибор, который включает свет по хитрому свистку. Причём свистеть предлагается не абы как, а с использованием специального мобильного приложения 🙂 Вижу тут недоработку маркетологов. Свисток, конечно же, необходимо встроить в спинер, который и издаст кодовую трель при достижении крейсерской скорости вращения. Так что не взял — жду доработки :), а сейчас к нашим баранам.
Первый возникающий вопрос, конечно, уровень излучения. Я, конечно, на 99.99% уверен в безопасности, но лучше бы цифры привели. Хотя в комментах к соседним темам знающие камрады и приводили мнения о безопасности. Не спорю, даже беспроводная мышка у меня излучает, не говоря про телефон. Второе — рабочая частота. Может кто и подскажет цифровые данные на оба вопроса.
Упаковка
Серый стандартный ПЭ пакет, внутри ещё один запаянный, из ПЭ высокой плотности («шуршащий», но из необычно толстой плёнки).Маркировка пакета
Упаковка примитивная, но товар прочный, доставку с успехом выдержал.
Доставка
Заказано 9 июня, 18 июля получено. Трек был только вне России, SF eParcel.Внешний вид
Белый пластик. Прозрачная этикетка со схемой и китайским текстом. На корпусе отверстие для фотоэлемента, закрытое, впрочем, этой же этикеткой от пыли и пр.
Инструкция
Английская и IMHO переведена качественнее обычного китайского английского. Специально уточнено, что при настройке чувствительности (=дистанция срабатывания) изменения происходят не сразу, нужно подождать до 3 мин.
Всё понятно, кроме, разве, белого провода «Fire control line». Могу предположить, что это линия пожарной сигнализации, при подаче сигнала на которую прибор максимально обесточивается. Но такой сигнализации у меня нет, что именно подавать я не в курсе, так что не использовал.
Спецификации
Приведена в инструкции выше. Добавлю разве что массуМодель JL-083
- Угол обзора: 360° (*и это, похоже, либо сфера либо полусфера, см надпись на китайской этикетке 160х360°)
- Сетевое напряжение: 170-250V/AC
- Частота: 50/60Hz
- Рабочая нагрузка: <400W лампа накаливания, <300W люминисцентная, <100W светодиод (*реле использовано на 10A)
- Дистанция обнаружения: 3-9m, регулируемая (*при испытаниях я большого влияния не ощутил, но у меня квартира невелика
- Время отключения, настраивается: 15-300 сек. (*минимальное я измерил 8 сек)
- Внешнее освещение, при котором не срабатывает: 5-5000LUX (настраивается)
- Рабочая температура: -20 °С — 60 °С
- *Масса нетто 34г
- Габариты 78 х 30 х 23 мм
Уровень излучения и рабочая частота, как уже говорилось, к сожалению, не приведены.
Внутренний мир
Корпус легко разбирается медиатором.Сама плата сидит в корпусе плотно, не болтается.
Выглядит гораздо симпатичнее, чем прошлый образчик. Хотя вокруг 4 точкек крепления 8 угольной платы фотодатчика можно видеть полупрозрачную субстанцию. Думаю, флюс, хотя вдруг повреждённую пайкой лаковую плёнку восстанавливали?
На коричневом плёночном конденсаторе удалось прочитать маркировку CBB22 / 564J400V
На одном из электролитов Jwco 220 мкФ 16V, второй, к сожалению, не подлезть.
Спрятанная под платформой микросхема BISS0001 / YDAWL4Q. Обильно гуглится.
Рядом установлен 78L05 в SOT-89 корпусе.
Испытания
Наученый опытом и справедливыми замечаниями камрадов, макет перед включением сфотографировал. Даже фазу с нейтралью в розетке определил (конечно, на работоспособность не влияет)При подаче питания лампа зажигается. Это, кстати, отмечено в инструкции. Для освещения в спальне, скажем, уже не подойдёт. Прерывание питания — иллюминация. В целом работает хорошо. Если ходить около — то лампа не гаснет. Если погасла — то даже махнуть рукой — срабатывает. Но есть короткая, секунду губо, после отключения слепая зона. В этот момент на движение не реагирует. Регулировку по времени и освещённости не измерял.
Всё это хорошо, пошёл примерять в туалет. И, естественно, срабатывает, когда войдёшь в соседнюю ванную комнату. Что нам точно не надо. Берём фольгу, заворачиваем, оставляя только два торца, не смотрящих на соседнюю ванную. Чувствительность на минимум, пауза 3 мин как предписано.
Никаких изменений 🙂 Видит меня сквозь ту фольгу ясно и чётко. Ну то есть можно теперь пытаться фольгу заземлять. Или сетку фарадея в стену сортира встраивать 🙂 Но не стал.
Впечатления.
Устройство понравилось. Исполнение, документация. И не его вина, что в моём сценарии использования оно не подошло. И заранее примерно было понятно. Но подойдёт там, где ИК датчики не справятся. Я вот в деревне умозрительно представил лампу над крыльцом. Только подходишь к двери, даже с внутренней стороны — а тебя свет встречает 🙂 Или в сарае. Да даже деревенский же сортир. Можно в железную чашку и на стенку (пол, потолок). Контролировать, не пришёл ли соседИсполнение для внутреннего использования, отмечу. Но в пакет и залить смолой — почему нет. Тепловыделение невелико, датчик света не сильно нужен. Монтировать можно вообще скрытно в стену.
Как недостаток упомяну, то с чего начал. Нет цифири по излучению.
PS Товар куплен за свои.
mysku.ru
датчик движения для охранной сигнализации
При разработке датчика ставилась задача создания альтернативы импортным датчикам движения. Ставилась задача создать датчик буквально из «мусора», простой, надежный и дешевый, технологичный в изготовлении и почти не уступающий импортным по габарито- массовым характеристикам. Датчик реализован полностью на старой советской элементной базе, имеющейся у радиолюбителей в большом количестве. Корпусом датчика является обыкновенная мыльница c размерами полости внутренней части 54х95 мм. Если датчик установлен на диэлектрическом основании, то диаграмма направленности есть сфера с надежной чувствительностью 2-3 метра. Если датчик установлен на алюминиевом основании с размерами в полтора раза большими платы датчика, то диаграмма направленности есть конус 120 градусов, а надежная чувствительность возрастает вдвое. Датчик не чувствителен к большим перепадам температуры, а импульсы выходного реле совместимы с приемно- контрольными приборами охраны, рассчитанными на импульсные магнито- контактные датчики. Датчик опубликован в журнале Радио №12/2002г. стр. 41.
Схема датчика:
На транзисторе VT1 собран автодин — автогенератор частотой 2.4 ГГц с мягким самовозбуждением. Он же является гетеродином и смесителем для отраженного сигнала. При появлении в зоне охраны движущегося человека частота принятого сигнала изменяется на величину допплеровского смещения, которое составляет единицы герц. Этот сигнал через ФНЧ L3,C1 и конденсатор C2 поступает на вход каскада на A1, который одновременно является и усилителем и инфранизкочастотным фильтром. Далее сигнал усиливается усилителем переменного тока, что обеспечивает высокую термостабильность. Подстроечный резистор R11 — регулятор чувсвительности. Роль компаратора выполняют стабилитрон VD3 и реле К1. Так как компарация происходит на большом сигнале, то вопрос о стабильности порога компарации отпадает сам собой. Недостатком схемы является чувствительность к понижению напряжения питания- оно не должно быть ниже 11 вольт. Если охранная система питается от аккумулятора 12 вольт, то для того, чтобы при просадке напряжения аккумулятора датчик продолжал нормально работать, в состав системы можно включить Повышающий стабилизатор питания.
Печатная плата:
Изображенная в верхней части платы щелевая антенна является не деталью, а частью рисунка печати. При изготовлении платы щелевая антенна должна быть отполирована до зеркального блеска и покрыта слоем ацетонового или спиртового раствора канифоли для предотвращения ее окисления в процессе эксплуатации. Катушки L1,L2 намотаны проводом ПЭЛ-0.23 на оправке диаметром 0.8 мм. и имеют по 12 витков, растянутых на длину 10 мм. Через отверстие в середине платы винтом М3 со стороны деталей крепится втулка со сквозной резьбой М3. В крышке, мыльницы напротив стойки сверлится отверстие диаметром 3 мм. Через это отверстие крышка мыльницы винтом М3 притягивается к торцу стойки и тем самым крепится. По углам мыльницы, против угловых отверстий вложенной в мыльницу платы, сверлятся отверстия на 3 мм. для крепления платы винтами М3. И сама стойка и крепежные винты могут быть из любого материала. Отверстие в крышке мыльницы напротив светодиода VD5 можно не делать, так как его вспышки просвечивают через крышку, а в процессе регулировки чувствительности крышка все равно снимается.
Внешний вид закрытого датчика:
Внешний вид открытого датчика:
Для изготовления платы вручную можно воспользоваться материалами журнала Радио. Для изготовления платы фотоспособом или способом термопереноса с помощью лазерного принтера и утюга потребуются файлы высококачественных изображений слоев печатной платы:
Plot — файл PCAD 8.5 схемы + программа печати Plot — в Windows: sensor1.zip 268 kb
www.qrz.ru
Схема доплеровского СВЧ датчика движения
Устройства, собранные по данной схеме, при своей простоте достаточно надёжно могут работать в составе различных систем сигнализации. Лучшие импортные системы сигнализации основаны на комбинации пассивного инфракрасного и СВЧ датчиков движения.
Схема на Рис.1 является вариантом такой конструкции. С коллектора VT1 низкочастотные колебания через фильтр L3,C2 поступают на неинвертирующий вход ОУ DA1. ОУ включён как УНЧ с большим коэффициентом в диапазоне частот 1 – 100 Гц.
Подстроечным резистором R6 регулируется чувствительность устройства. К выходу DA1 подключён пиковый детектор на элементах VD3, C9, R11. Диод VD3 задаёт уровень порога для компаратора DA2 равный 0,5 В. Элементы С9, R11 определяют длительность сигнала срабатывания.
СВЧ часть устройства ( всё, что подсоединено к транзистору VT1 ) является одной из схем, где большее значение, чем принципиальная схема, имеет конструктивное исполнение изделия. Рис.2 показывает размещение СВЧ транзистора VT1 относительно рамок антенны и размеры самой антенны. Только эта часть является критичной в изготовлении. Антенна вытравливается из одностороннего фольгированного стеклотекстолита, желательно высокого качества. Контур внешней рамки из текстолита обозначена зелёным цветом (W1), внутренний – коричневым (W2).
Для защиты от влаги и окисления защищённую и отполированную антенну после размещения деталей желательно покрыть тонким слоем лака или краски. Эмиттеры транзистора VT1 загибаются на верх его корпуса, и к ним припаивается один из выводов катушки L2. Все элементы низкочастотной части могут быть расположены как угодно и соединены любым монтажом, лишь бы не было самовозбуждения схемы.
Катушки L1, L2 бескаркасные, намотаны проводом 0,2 мм на оправке ( сверле ) диаметром 0,8 мм, имеют по 12 витков, растянутых на длину 10 мм.
В. Г. Белолапотков, А. П. Семьян “ШПИОНСКИЕ ШТУЧКИ И НЕ ТОЛЬКО, 500 схем для радиолюбителей”, Наука и техника, Санкт-Петербург, 2007г, стр. 172-174
Поделиться ссылкой:
Понравилось это:
Нравится Загрузка…
Похожее
Автор: Андрей Маркелов
Родился и вырос в Тульской области. После окончания средней школы поступил и закончил «Донской Техникум Механизации учёта» по специальности «техник-электромеханик», потом учился в МИРЭА. С детства увлекаюсь радиотехникой. В данный момент работаю в одном ООО, выпускающей импульсные источники питания различного применения. Посмотреть все записи автора Андрей Маркелов
admarkelov.ru
Радиосхемы. — СВЧ датчик движения
СВЧ датчик движения
категория
Самодельное охранное оборудование
материалы в категории
А. ИСАЕВ, г. Железногорск-Илимский Иркутской обл.
Радио, 2002 год, № 12
На основе конструкции, предложенной А. Хабаровым (см. статью «Датчик движения» в «Радио», 2001, № 10), я решил сделать СВЧ датчик движения для своей охранной сигнализации. Так как питание датчика предусматривалось от источника питания системы сигнализации с 12-вольто-вым кислотным аккумулятором в буфере, сетевой выпрямитель я исключил, стабилизатор DA1 заменил параметрическим на одном транзисторе и стабилитроне, а каскады VT2, U1, DA3 заменил трехкаскадным транзисторным ключом с электромагнитным реле на выходе.
Анализ ранее скачанной из сети Интернет информации по зарубежным охранным СВЧ датчикам движения выявил следующие особенности схемотехники этих датчиков, а именно:
1. Входной усилитель всегда отделен от СВЧ автодина разделительным конденсатором, а в некоторых устройствах, наряду с разделительным конденсатором, включен и Г-образный заградительный ВЧ фильтр.
2. Входной операционный усилитель (ОУ) всегда инвертирующий.
3. Между входным усилителем и компаратором всегда есть одна, а чаще две ступени усиления, отделенные от входного усилителя разделительным конденсатором.
На основании изложенного я взял СВЧ автодин А. Хабарова за основу, а всю низкочастотную часть полностью переделал. Результатом разработки является устройство, схема которого показана на рис. 1. СВЧ автодин на транзисторе VT1 и топология его печатной платы оставлены без изменений. Входной усилитель-фильтр на ОУ DA1 — инвертирующий. Заграждающий ВЧ фильтр L3C1 предотвращает попадание СВЧ сигнала на вход ОУ DA1. По питанию входной усилитель развязан с остальными узлами устройства фильтром R18C5.
Схема устройства
Для увеличения кликните по изображению (откроется в новом окне)
Каскады на транзисторах VT2 и VT3 — две ступени усиления по НЧ. Далее следует двухкаскадный УПТ на транзисторах VT4 и VT6. Роль компаратора выполняют стабилитрон VD3 и реле К1. Компарация происходит на порогах, сопоставимых с напряжением питания, а все каскады развязаны по постоянному току разделительными конденсаторами, что обеспечивает высокую термостабильность.
Конструктивно датчик собран на двусторонней печатной плате (рис. 2). Так как плата не имеет металлизации отверстий, монтаж деталей следует вести продуманно, чтобы не закрывать доступ к точкам пайки деталями, которые можно впаять позже.
Корпус датчика — мыльница с размерами полости внутренней части 95x55x19 мм и внешними размерами наружной части 100×61 х20мм. Корпус датчика установлен на текстолитовом либо алюминиевом основании размерами 180×70 мм на стойках длиной 10 мм, сквозь которые проходят потайные винты МЗ. Стойками платы внутри мыльницы являются гайки МЗ с наложенными на них текстолитовыми шайбами. Саму плату также крепят гайками МЗ. Через отверстия по углам платы проходят винты крепления мыльницы и платы. Через отверстие в центре платы со стороны деталей крепят стойку со сквозной резьбой МЗ. По оси этой стойки в крышке мыльницы сверлят отверстие диаметром 3 мм. Через это отверстие фиксируется крышка мыльницы винтом МЗ, вкручиваемым в эту стойку. Стойка может быть из любого материала.
Проводники платы можно облудить, за исключением резонатора и щелевой антенны, которые желательно отполировать до зеркальной чистоты. Это можно сделать пастой ГОИ, разведенной в машинном масле. После сборки платы резонатор и щелевую антенну следует покрыть тонким слоем канифоли, разведенной в ацетоне или спирте для предотвращения их окисления с течением времени.
На основании, кроме корпуса с датчиком, установлена стандартная распределительная коробка УК для присоединения датчика к охранной системе. Плата датчика соединена с контактами коробки УК ленточным кабелем через прорезь в корпусе мыльницы.
Если датчик предполагается использовать с круговой диаграммой направленности, то его изготавливают на неметаллическом основании и крепят на неметаллическую поверхность охраняемого объекта. При этом чувствительность датчика нужно устанавливать с учетом движения людей в соседних неохраняемых помещениях и за пределами здания. При круговой диаграмме стойки крепления к основанию могут быть менее 10 мм, вплоть до крепления корпуса прямо на основание. Датчик крепят к стене или другому конструктиву объекта шурупами через отверстия диаметром 4 мм, которые просверлены по углам основания.
Катушки L1 и L2 содержат 10 витков провода диаметром 0,25, намотанных на оправке 0,8 мм.
В качестве DA1 не следует применять микромощные ОУ, например, КР140УД12, так как они имеют высокое выходное сопротивление и не обеспечивают требуемой нагрузочной способности по току.
Резистор R14 подбирают при регулировке датчика в зависимости от его назначения и условий применения. Чем меньше сопротивление этого резистора, тем чувствительность ниже. R14 припаивают к проволочным стойкам, забитым в отверстия печатной платы.
Реле К1 следует подобрать так, чтобы оно устойчиво срабатывало при напряжении 10 В. Можно применить реле РЭС55А на 12 В. Не следует применять сильноточные не герконовые реле РЭС10, РЭС15 и т. д., так как они могут давать большую «просадку» напряжения питания за счет падения напряжения на шлейфе и защитном резисторе в цепи питания, установленном в приемно-контрольном приборе охранной системы. Большая «просадка» напряжения питания при срабатывании реле К1 может вызвать в датчике автоколебательный процесс.
Во время испытаний датчика выяснилось, что можно легко установить чувствительность 3 м при отсутствии ложных срабатываний и круговой диаграмме направленности. Чувствительность регулируется резистором R11 в диапазоне 0,5…5 м. При чувствительности более 4 м и круговой диаграмме датчик начинает срабатывать от собственных шумов.
Импульсы, генерируемые датчиком, совместимы с приемно-контрольными приборами, рассчитанными на применение в шлейфе сигнализации импульсных магнитно-контактных и ударно-контактных датчиков.
При установке платы датчика или его пластмассового корпуса на металлическую панель размерами в 1,5 раза больше платы датчика с зазором 10 мм диаграмма направленности становится сектором в 120°, а чувствительность возрастает в 2 раза. При длительных испытаниях такого датчика с чувствительностью 5 м ложных срабатываний не обнаружено.
Термостабильность датчика проверялась его нагревом до +70°С и охлаждением до -20°С. При этом было зафиксировано лишь изменение чувствительности примерно на 20%.
Недостатком датчика является его высокая критичность к понижению напряжения питания. Оно не должно опускаться ниже 11 В, а вот повышение напряжения ограничено лишь тепловым режимом стабилизатора VT5, VD4. Если в системе нет мощных сирен, дроссель L4 можно заменить перемычкой.
Хочу обратить внимание тех, кто будет разрабатывать свою плату для датчика: СВЧ автодин обязательно должен быть отделен со стороны монтажа замкнутым контуром цепи общего провода, иначе срабатывания датчика могут сопровождаться «звоном» на фронтах импульсов частотой в сотни герц.
radio-uchebnik.ru
Доделка микроволнового датчика RCWL-0516 для автомата освещения или охранной сигнализации.
Здравствуйте муськовчане! Получил платки микроволнового датчика RCWL-0516. Датчик движения представляет собой электронный прибор для контроля движения в его зоне действия и при появлении в этой зоне движущегося объекта выдающий сигнал в виде переключения контактов реле.Осталось немного довести его до ума чтобы можно было применить его на практике.
Существуют разные виды датчиков движения. Они подразделяются по принципу действия. Наиболее распространены инфракрасные, ультразвуковые и микроволновые датчики. У каждого типа датчиков имеются свои преимущества и недостатки. Сравним инфракрасные и микроволновые датчики. Инфракрасный датчик может давать ложные сработки из-за влияния теплового потоков систем отопления и кондиционирования, по этой же причине неустойчиво работает на улице.
Микроволновый датчик имеет большую зону обнаружения и может реагировать на движение за легкими стенами, дверями и т.д. Изменение температуры помещения не влияет на работу устройства. Этот датчик может срабатывать на малое движение человека. Микроволновый датчик можно расположить скрытно — за подвесным потолком, за оконным стеклом, за легкой перегородкой и т.п.
Этот датчик движения генерирует радиоволны высокой частоты. В основу работы датчика заложен эффект Доплера — изменение частоты отражённой волны, вследствие движения излучателя, приёмника или отражателя. В данном модуле частота излучаемой им радиоволны меняется вследствие движения отражателя (препятствия). Модуль построен на базе чипа RCWL-9196 который оснащён передатчиком и приёмником. Датчик сработает если приёмник примет сигнал, частота которого незначительно отличается от частоты сигнала передатчик.
Датчик движения RCWL-0516 — способен определять движение объектов (препятствий) которые
полностью или частично отражают радиоволны (люди, животные, металлы и т.д.), даже если они
находятся за деревом (дверью), стеной (гипс, бетон), пластиками, стеклами и т.д.
ТТХ
1. Входное напряжение питания (VIN): 4… 28 В постоянного тока.
2. Потребляемый ток: до 3 мА (номинально 2,8 мА).
3. Дальность обнаружения: до 9 м (номинально до 5 м).
4. Мощность передатчика: до 30 мВт (номинально до 20 мВт).
5. Частота передатчика: 3,181 ГГц.
6. Время задержки до сброса триггера: 2 сек ±30%.
7. Выходное напряжение питания (3V3): 3,2… 3,4 В (номинально 3,3 В).
8. Максимальный ток на выходе «3V3»: до 100 мА.
9. Рабочая температура: -20… +80 °С.
10. Температура хранения: -40… +100 °С.
11.Габариты: 17,3х35,9 мм
12.Вес: 4 гр.
На базе этого радиоволнового датчика RCWL-0516 можно сделать управление освещением (или охранную сигнализацию) крыльца или перед гаражом. Не нужно будет переживать за погодные условия, т.к. сам датчик можно установить за стеной или за оконным стеклом в помещении. Так же можно установить его на улице.
Материалы:
— датчик RCWL-0516 -1шт;
— реле постоянного тока 12 Вольт -1шт;
-соединительные провода;
— выключатель питания -1шт;
— транзистор КТ815,817-1шт;
— монтажная плата;
— светодиод;
— выпрямительный диод;
— подстроечный резистор 500-1000 кОм;
— резистор 1 кОм-2 шт;
— клеммники;
— распредкоробка;
— винты;
— блок питания на 12 Вольт.
Так как сама плата датчика RCWL-0516 выдает на выходе OUT недостаточное напряжение для прямого подключения реле, то необходимо добавить ключ на транзисторе КТ815. Параллельно катушке реле подключаем светодиод для индикации срабатывания и любой выпрямительный диод для подавления импульсов.
Напряжение катушки реле будет зависеть от напряжения питания самой схемы. То есть если вам нужно питать схему напряжением 5 Вольт-то и реле ставите пятивольтовое. Если напряжение питания схемы -24 Вольта то и реле подбираем с напряжением катушки 24 Вольта.
Смонтировать схему можно как на монтажной плате так и сделать для этого свою печатную плату(в зависимости от ваших возможностей и потребностей).
Микроволновый датчик RCWL-0516 имеет дальность обнаружения объекта около пяти метров. В моем случае меня это не устраивало- нужно было иметь дальность три метра. Да и хотелось иметь возможность регулировать пределов зоны работы датчика. Для этого выпаиваем резистор R9. На его место подпаиваем подстроечный резистор от 500 до 1000 Ом. Теперь этим подстроечным резистором можно плавно регулировать дальность обнаружения объекта от 0,1 до 5 метров.
Подключаем к контактам реле лампу на 220 Вольт и настраиваем на нужную дальность срабатывания устройства.
Так как этому датчику не нужна прямая видимость, то его можно поместить в любую подходящий корпус. Я для этого применил пластмассовую распределительную монтажную коробку. Применение исполнительного реле дает возможность управлять нагрузкой в виде ламп освещения или любых других исполнительных цепей.
Данную конструкцию применил для охраны дачи -поставил датчик внутри помещения за одинарным оконным стеклом. В результате датчик контролирует уличную трехметровую зону перед окном.
Применять микроволновый датчик RCWL-0516 можно как в охранных сигнализациях, так и системе управления освещением, вентиляции, автоматического открывания дверей и в комплексе умного дома.
Нагляднее можно посмотреть в видео
Плюсами я считаю будут небольшая цена, возможность работы через легкие препятствия (перегородки, стенки), большая сфера применения, надежность, большой диапазон питающего напряжения
Минусом может стать необходимость дополнительного подключения исполнительного реле ( что впрочем легко решается как показано выше).
Всем спасибо за потраченное время. Удачи в жизни, делах и покупках!
mysku.ru