Способы добычи электричества: Как осуществляется производство (генерация) электрической энергии?

Как осуществляется производство (генерация) электрической энергии?

Производство (Генерация) электроэнергии — это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:

Тепловая электроэнергетика. В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:

Конденсационные (КЭС, также используется старая аббревиатура ГРЭС). Конденсационной называют не комбинированную выработку электрической энергии;

Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл, в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением.

Далее нагретый пар подаётся в паровую турбину, где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора — таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

Ядерная энергетика. К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе. Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;

Гидроэнергетика. К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы;

Альтернативная энергетика. К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:

Ветроэнергетика — использование кинетической энергии ветра для получения электроэнергии;

Гелиоэнергетика — получение электрической энергии из энергии солнечных лучей;

Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;

Геотермальная энергетика — использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;

Водородная энергетика — использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах;

Стоит также отметить альтернативные виды гидроэнергетики: приливную и волновую энергетику.

В этих случаях используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. Распространению этих видов электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы (и волнение моря соответственно) были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды Чёрном море в прилив и отлив минимальны.

 


Вернуться назад

 

Способы получения электроэнергии: где мир берет силы для развития: Статьи экономики ➕1, 14.04.2022

С каждым годом мировое потребление электричества растет, поэтому приходится задействовать все доступные способы его выработки. Разбираемся, какие технологии получения электроэнергии существуют и как они влияют на окружающую среду.

Тепловая электростанция

Фото: aapsky / iStock

В 2021 году с помощью тепловых электростанций (ТЭС) получено 62% мировой электроэнергии. Они работают на органическом топливе — природном газе, угле, мазуте, торфе, горючих сланцах. Нагретая в котле вода превращается в пар, который подается в паровую турбину. В результате ее вращения механическая энергия преобразуется в электрический ток.

Преимущество ТЭС — сравнительно небольшие затраты на строительство и обслуживание. Но при производстве электроэнергии в атмосферу попадают большие объемы CO2 и других парниковых газов, вызывающих изменения климата, и вредные вещества, такие как оксид углерода, оксид серы, зола, сернистый газ. Они приводят к увеличению риска развития различных заболеваний.

Влияние энергетики на экологию — насколько вредны уголь, нефть и газ

И когда планета и люди вздохнут спокойно

Опасения вызывают и стремительно уменьшающиеся запасы природных ресурсов. По оценкам Минприроды, запасы нефти в России будут исчерпаны через 16-17 лет, а природного газа — через 20. Мировые залежи нефти закончатся позже — примерно через 50 лет.

С учетом вышесказанного многие государства начали активный переход на более безопасную для природы возобновляемую энергию — солнца, ветра и т. д. По-прежнему востребованы атомная и гидроэнергетика. Обеспечение всеобщего доступа к экологически чистым источникам энергии является одной из Целей устойчивого развития (ЦУР) Организации объединенных наций (ООН).

ГЭС «Илья-Солтейра» в Бразилии

Фото: edsongrandisoli / iStock

Около 84% энергии, генерируемой на базе возобновляемых источников, вырабатывают гидроэлектростанции (ГЭС). Это одна шестая всей электроэнергии планеты. Большая часть мировой гидроэлектроэнергии производится в Бразилии, США, КНР, Канаде, России. По оценкам Международного энергетического агентства, в дальнейшем 80% ГЭС будут строиться в развивающихся странах с большим гидропотенциалом.

При работе гидроэлектростанций используется кинетическая энергия потока воды, приводящая в движение турбину. Для создания напора применяются плотины, специальные отводы, расположенные под наклоном (для горных рек), или аккумуляторные насосы, перекачивающие воду из одного резервуара в другой.

Гидроэнергетика использует возобновляемый ресурс и не дает вредных выбросов. Кроме того, мощность этого источника электроэнергии легко отрегулировать путем изменения интенсивности потока воды. С учетом этих преимуществ именно гидроэнергетику рассматривают как наиболее перспективную замену ТЭС.

Но строительство крупных ГЭС также оказывает негативное воздействие на окружающую среду. Так, из-за Иркутской ГЭС уровень воды в озере Байкал повысился на один метр, что вызвало оползни и разрушение берегов. Кроме того, строительство гидроэлектростанций приводит к ухудшению условий обитания растений и животных, в том числе к снижению концентрации кислорода в воде, нарушению путей миграции рыб.

10 причин, почему крупные ГЭС опасны для природы и человека

Что не так с большими гидроэлектростанциями

Природоохранные организации предлагают ограничиться строительством малых и средних ГЭС. Эффективность этого решения уже подтверждена мировым опытом. Так, в Китае работает более 90 тыс. малых ГЭС. Они обеспечивают 30% электроэнергии, потребляемой сельскими регионами.

Солнечная электростанция в Китае

Фото: Jenson / iStock

Согласно данным Европейской ассоциации солнечной энергетики SolarPower Europe, солнечные электростанции (СЭС) обеспечивают выработку 2,6% мировой электроэнергии. В то же время эта отрасль лидирует по объемам инвестиций. Эксперты Института энергетики НИУ ВШЭ отмечают, что в 2019 году прирост мощностей СЭС в 2,5 раза превысил введенные мощности угольных и газовых станций.

СЭС отражают лучи солнца с помощью зеркал, концентрируя их на приемнике, наполненном маслом или водой. Пар, выделяемый при нагреве жидкости, приводит в действие электрогенератор.

Солнечная энергетика обладает огромным потенциалом. Каждый квадратный метр космического пространства содержит около 1,3 тыс. Вт энергии солнца. Две трети этого количества преодолевают атмосферу и достигают поверхности нашей планеты. Ученые подсчитали, что за 18 ясных дней на Землю поступает столько энергии, сколько содержится во всех запасах нефти, угля и природного газа.

Мировыми лидерами по мощностям солнечной энергетики являются Китай, Германия, Япония и США. В нашей стране эта отрасль тоже развивается: уже построено около 80 крупных СЭС общей мощностью более 1,8 ГВт. Кроме того, государство поддерживает микрогенерацию — каждый человек может установить солнечный модуль, например за окном или на крыше, чтобы генерировать электроэнергию и продавать ее ресурсоснабжающим компаниям.

Как солнечные панели экономят плату за электричество

Пять выводов о том, как развивается частная солнечная энергетика в России

Средний срок службы солнечных батарей — 25-30 лет. Все это время обеспечиваются получение и передача электроэнергии потребителям без дополнительных затрат на обслуживание. Достаточно смывать с модулей пыль 3-4 раза в год. Передача электроэнергии осуществляется по электрическим сетям.

Ветроэнергетика развивается быстрее, чем другие технологии ВИЭ. В 2020 году ее мощности увеличились на 95,3 ГВт, в 2021-м — на 93,6 ГВт. Общая мощность ветрогенераторов в мире равна 837 ГВт. К началу 2021 года на ВЭС приходилось 0,13% генерации в России.

Ветроэнергетика не загрязняет атмосферу, но шум и вибрации, создаваемые генераторами, отпугивают животных, обитающих поблизости. Также существует опасность гибели птиц, пролетающих рядом с лопастями. Но действие этих факторов не настолько велико, чтобы всерьез задуматься об отказе от энергии ветра. Так, по данным Европейской ассоциации ветряной энергетики (EWEA), от столкновения с ВЭС гибнет в 3,5 тысячи раз меньше птиц, чем от когтей и зубов кошек. Кроме того, в США создали систему, выключающую генератор при приближении охраняемых пернатых.

Несмотря на активное развитие сектора ВЭС, динамика его роста по-прежнему недостаточна для того, чтобы достичь углеродной нейтральности к 2050 году. По оценкам специалистов из Глобального совета по ветроэнергетике (GWEC), необходимо ежегодно строить в четыре раза больше турбин.

Эксперт: Россия может перейти с угля и газа на ветер

Ветровая электроэнергия в стране уже сопоставима по стоимости с традиционной

Воды Мирового океана занимают около 70% поверхности планеты и накапливают большое количество тепловой энергии cолнца. Эту энергию преобразуют в электричество с помощью специального оборудования. Для его эффективной работы необходима разница температур между поверхностным и глубоким слоями воды не менее 20 °C.

Существует три вида океанических теплоэлектростанций (ОТЭС):

1

В системе открытого цикла прогретая солнцем океаническая вода превращается в пар в камере с низким давлением, снижающим температуру ее кипения. Пар запускает турбину, а на выходе холодная глубинная вода возвращает его в жидкое состояние.

2

В установках закрытого цикла теплая вода испаряет рабочую жидкость (пропан, фреон, аммиак), циркулирующую по замкнутой системе трубок и проходящую через теплообменник. В этом случае океаническая вода должна быть прогрета до нужной температуры.

3

В ОТЭС смешанного типа вода преобразуется в пар, который испаряет рабочую жидкость.

Описанный выше порядок получения электроэнергии при помощи ОТЭС подходит только для тропических регионов. Но планируется построить подобные станции и в Арктике, где они будут работать за счет разницы температур подледного слоя воды и воздуха, превышающей 26 °C.

Увеличение объемов использования тепловой энергии океана включено в национальные программы Индии, США, Швеции, Франции, Японии. Так, президент Франции поставил задачу: к 2030 году полностью перевести остров Реюньон на энергию ОТЭС.

Ростовская атомная электростанция

Фото: Эрик Романенко / ТАСС

В мире функционирует более 400 ядерных реакторов, и еще 475 планируется построить.  98% атомных электростанций (АЭС) сконцентрировано в Европе, Северной Америке и Азиатско-Тихоокеанском регионе. В России АЭС вырабатывают 20% всей электроэнергии страны. Сейчас госкорпорация «Росатом» строит три новых энергоблока, в том числе инновационный реактор БРЕСТ-ОД-300 с замкнутым топливным циклом. Облученное топливо будет перерабатываться и использоваться повторно, благодаря чему система станет практически безотходной.

«Замести под коврик»: как в России утилизируют радиоактивные отходы

Грамотно ли в нашей стране поступают с атомными реакторами и топливом

В недавнем заявлении Еврокомиссии говорится, что ядерная энергетика поможет увеличить долю использования возобновляемых источников энергии и перейти к климатической нейтральности, то есть минимизировать влияние электростанций на климат. Этот способ получения электричества имеет еще одно достоинство: энергоемкость ядерного топлива в 104 раз больше нефти.

Климатолог Джеймс Хансен отметил, что переход на атомную энергетику может спасти 7 млн жизней в год. Именно столько людей умирает от загрязнения воздуха, вызванного выбросами теплоэлектростанций.

У развития атомной энергетики есть одно препятствие — негативные ассоциации, связанные с катастрофами в Чернобыле и Фукусиме. Но надежность современных ядерных реакторов не оставляет поводов для опасений: согласно исследованию медицинского журнала Lancet, атомная энергия по безопасности превосходит даже солнечные панели.

Подписывайтесь на наш канал в Яндекс.Дзен.

Автор

Вера Жихарева

Центр данных по альтернативным видам топлива: производство и распределение электроэнергии

Полностью электрические транспортные средства и подключаемые гибридные электромобили (PHEV), которые в совокупности называются электромобилями (EV), хранят электроэнергию в батареях для питания одного или нескольких электродвигателей. Аккумуляторы заряжаются в основном путем подключения к внешним источникам электроэнергии, произведенным из природного газа, ядерной энергии, угля, энергии ветра, гидроэнергетики и солнечной энергии.

Полностью электрические транспортные средства, а также PHEV, работающие в полностью электрическом режиме, не производят выбросов выхлопных газов. Однако существуют выбросы, связанные с большей частью производства электроэнергии в Соединенных Штатах. Дополнительную информацию о местных источниках электроэнергии и выбросах см. в разделе «Выбросы».

Производство

По данным Управления энергетической информации США, в 2020 году большая часть электроэнергии в стране была произведена за счет природного газа, ядерной энергии и угля.

Электроэнергия также производится из возобновляемых источников, таких как ветер, гидроэнергетика, биомасса и геотермальная энергия. Вместе возобновляемые источники энергии произвели около 20% электроэнергии страны в 2020 году.

Для производства электроэнергии турбогенераторная установка преобразует механическую энергию в электрическую. В случае природного газа, угля, ядерного деления, биомассы, нефти, геотермальной и солнечной энергии производимое тепло используется для создания пара, который приводит в движение лопасти турбины. В случае ветряной и гидроэнергетики лопасти турбины приводятся в движение непосредственно потоками ветра и воды соответственно. Солнечные фотоэлектрические панели преобразуют солнечный свет непосредственно в электричество с помощью полупроводников.

Количество энергии, производимой каждым источником, зависит от сочетания видов топлива и источников энергии, используемых в вашем регионе. Чтобы узнать больше, см. раздел о выбросах. Узнайте больше о производстве электроэнергии от Управления энергетической информации Министерства энергетики США.

Передача и распределение электроэнергии

Электричество в Соединенных Штатах часто перемещается на большие расстояния от генерирующих мощностей до местных распределительных подстанций по передающей сети протяженностью почти 160 000 миль высоковольтных линий электропередачи. Генерирующие объекты обеспечивают электроэнергию в сеть при низком напряжении, от 480 вольт (В) на малых генерирующих объектах до 22 киловольт (кВ) на более крупных электростанциях. Как только электроэнергия выходит из генерирующего объекта, напряжение увеличивается или «повышается» с помощью трансформатора (типовой диапазон от 100 кВ до 1000 кВ), чтобы минимизировать потери мощности на больших расстояниях. По мере того, как электроэнергия передается по сети и поступает в районы нагрузки, напряжение понижается трансформаторами подстанции (в диапазоне от 70 кВ до 4 кВ). Чтобы подготовиться к подключению клиентов, напряжение снова снижается (бытовые потребители используют 120/240 В; коммерческие и промышленные потребители обычно используют 208/120 В или 480/277 В).

Электромобили и электроэнергетическая инфраструктура

Полностью электрические транспортные средства и подключаемые гибридные электромобили представляют собой растущий спрос на электроэнергию, что может оказать негативное воздействие на энергосистему. Хотя эти новые нагрузки вряд ли истощат большую часть наших существующих генерирующих ресурсов, высокие совпадающие пики зарядки электромобилей в концентрированных местах могут вызвать нагрузку на близлежащее распределительное оборудование. Усовершенствованное планирование сети и решения, такие как интеллектуальное управление зарядкой, будут важны для обеспечения того, чтобы существующая электрическая инфраструктура могла безопасно поддерживать районы со значительным увеличением спроса, связанного с электромобилями, в зависимости от того, когда, где и на каком уровне мощности транспортные средства заряжаются.

Спрос на электроэнергию растет и падает в зависимости от времени суток и времени года. Мощности по производству, передаче и распределению электроэнергии должны быть в состоянии удовлетворить спрос в периоды пикового использования; но большую часть времени инфраструктура электроснабжения не работает на полную мощность. В результате электромобилям вряд ли потребуется увеличение пропускной способности сети.

Согласно исследованию Тихоокеанской северо-западной национальной лаборатории, существующая электроэнергетическая инфраструктура США имеет достаточную мощность для удовлетворения около 73% энергетических потребностей легковых автомобилей страны. Согласно моделям развертывания, разработанным исследователями из Национальной лаборатории возобновляемых источников энергии (NREL), разнообразие электрических нагрузок домашних хозяйств и нагрузок электромобилей должно способствовать внедрению и росту рынка электромобилей по мере расширения сетей «умных сетей». Сети интеллектуальных сетей обеспечивают двустороннюю связь между коммунальным предприятием и его клиентами, а также наблюдение за линиями электропередачи с помощью интеллектуальных счетчиков, интеллектуальных приборов, возобновляемых источников энергии и энергосберегающих ресурсов. Сети интеллектуальных сетей могут обеспечивать возможность мониторинга и защиты жилой распределительной инфраструктуры от любых негативных воздействий из-за повышенного спроса на электроэнергию для транспортных средств, поскольку они способствуют зарядке в непиковые периоды и снижают затраты для коммунальных служб, операторов сетей и потребителей.

Анализ NREL также продемонстрировал потенциал синергии между электромобилями и распределенными источниками возобновляемой энергии. Например, маломасштабные возобновляемые источники энергии, такие как солнечные батареи на крыше, могут как обеспечивать чистую энергию для транспортных средств, так и снижать спрос на распределительную инфраструктуру за счет выработки электроэнергии рядом с точкой потребления. Чтобы коммунальные предприятия могли в полной мере реализовать преимущества этих технологий, необходимо внедрить интеллектуальное управление зарядкой, чтобы влиять на зарядку электромобилей.

Коммунальные предприятия, производители транспортных средств, производители зарядного оборудования и исследователи работают над тем, чтобы электромобили плавно интегрировались в электрическую инфраструктуру США. Некоторые коммунальные службы предлагают более низкие тарифы в непиковое время, чтобы стимулировать зарядку жилых транспортных средств, когда спрос на электроэнергию самый низкий. Транспортные средства и многие типы зарядного оборудования (также известного как оборудование для питания электромобилей или EVSE) можно запрограммировать на отсрочку зарядки до непикового времени. «Умные» модели даже способны связываться с сетью, агрегаторами нагрузки или владельцами объектов/домов, позволяя им автоматически взимать плату, когда спрос на электроэнергию и цены на нее оптимальны; например, когда цены самые низкие, соответствующие местным потребностям распределения (таким как температурные ограничения) или соответствующие возобновляемым источникам энергии.

Различные методы производства электроэнергии

Группа системного анализа ДОМ

Дополнительные сведения об энергии

Для чего мы используем энергию?

Различные методы производства электроэнергии

Для чего мы используем энергию?

Различные методы производства электроэнергии

Существуют различные методы производства электроэнергии в зависимости от видов энергии.
Среди энергетических ресурсов уголь и природный газ используются для производства электроэнергии путем сжигания (тепловая энергия), урана путем деления ядер (ядерная энергия), для использования их тепла для кипячения воды и вращения паровой турбины.
Среди возобновляемых источников энергии солнечный свет непосредственно преобразуется в электричество (фотогальваника), энергия вращения ветра преобразуется в электричество (энергия ветра), вращение водяного колеса проточной водой для выработки (гидроэлектростанции). Магматическое тепло кипит подземные воды, чтобы вращать паровую турбину для генерации (геотермальная энергия).
Продолжается непрерывное развитие технологий для преобразования энергии ресурсов или возобновляемых источников энергии в электричество с меньшими потерями. Также важно для работы электростанции проводить техническое обслуживание или обучение операторов.


Тепловая энергия

Производство электроэнергии с использованием пылеугольного топлива в настоящее время является основным методом производства электроэнергии с использованием угля. Уголь измельчается в мелкий порошок и сжигается в котле. Тепло в котле превращает воду в пар. Давление пара вращает паровую турбину, и генератор вырабатывает электричество.


Электростанция комбинированного цикла сначала вырабатывает газ путем сжигания топлива в сжатом воздухе.
Давление газа приводит во вращение газовую турбину и генератор вырабатывает электричество.
Кроме того, тепло отработавших газов газовой турбины используется для кипячения воды для производства пара, который вращает турбину для производства.


Комбинированный цикл комплексной газификации угля (IGCC) газифицирует топливный уголь в газификаторе. Газифицированное топливо сжигается в сжатом воздухе для получения газа. Давление газа вращает газовую турбину для выработки электроэнергии. Кроме того, тепло выхлопных газов газовой турбины используется для кипячения воды в пар для выработки электроэнергии.

Международное сравнение эффективности производства тепловой энергии

Международное сравнение эффективности производства тепловой энергии (ископаемое топливо). Угольные электростанции в Японии достигают наивысшей эффективности, производя больше электроэнергии при меньшем количестве топлива. Несмотря на то, что эффективность генерации может быть повышена за счет использования мощностей (или технологий) по выработке электроэнергии с новейшей и самой высокой эффективностью, важно проводить техническое обслуживание установки, а также поддерживать или повышать качество эксплуатации.


Атомная энергия

Легкая вода означает нормальную воду, противоположную тяжелой воде. Тепло вырабатывается ядерным делением в активной зоне реактора, а затем вызывает кипение воды с образованием пара. Пар используется для вращения турбины для выработки электроэнергии, затем охлаждается в конденсаторе морской водой и снова превращается в жидкую воду. Затем эта вода возвращается в активную зону реактора.


Легкая вода означает нормальную воду, противоположную тяжелой воде. Тепло вырабатывается ядерным делением в активной зоне реактора, но нагретая вода перед кипением подавляется за счет приложения высокого давления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *