Солнечные коллекторы это: Солнечный коллектор — Что такое Солнечный коллектор?

Содержание

Солнечный коллектор — Что такое Солнечный коллектор?

Солнечный коллектор – гелиоустановка (для сбора тепловой энергии Солнца), способная нагревать материал-теплоноситель.

Солнечный коллектор — гелиоустановка (для сбора тепловой энергии Солнца), способная нагревать материал-теплоноситель.

Солнечные коллекторы применяются для отапливания промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд.
Пищевая и текстильная промышленности больше остальных отраслей нуждаются в использовании солнечных коллекторов (при производственных процессах требуется вода с температурой 30-90 °C).

В Европе в 2000 г. общая площадь солнечных коллекторов составляла 14,89 млн м², а во всём мире — 71,341 млн м².

Солнечные коллекторы способны производить электроэнергию с помощью фотоэлектрических элементов или двигателя Стирлинга.

Известны 2 основных типа солнечных коллекторов:

Плоские

Плоский коллектор состоит из абсорбера, поглощающего солнечное излучение, прозрачного покрытия и термоизолирующего слоя.

В плоском коллекторе работает следующий механизм: падающая энергия передается теплоносителю в коллекторе, эффективность коллектора пропорциональна количеству падающей энергии.

При отсутствии расхода тепла плоские коллекторы способны нагреть воду до 190-200 °C.

Вакуумные

В вакуумных солнечных коллекторах нашли применение тепловые трубки, выполняющие роль теплопроводников.

При облучении установки солнечным светом, жидкость, находящаяся в нижней части трубки, нагревается и превращается в пар. Пары поднимаются в верхнюю часть трубки, где, конденсируясь, передают тепло коллектору.

В вакуумных установках возможно повышение температур теплоносителя вплоть до 250-300 °C в режиме ограничения отбора тепла.

Известен также отдельный тип солнечных коллекторов: Солнечные воздушные коллекторы.

Солнечные воздушные коллекторы — это приборы, работающие по принципу гелиоэнергетики, способные нагревать воздух.

Чаще всего солнечные воздушные коллекторы представлены простыми плоскими коллекторными конструкциями.

Они используются:

  • для отопления помещений,

  • для просушивания с/х продукции.

Солнечные коллекторы. Какие они бывают?

Классический солнечный коллектор представляет собой металлические пластины черного цвета, установленные на крыше дома. Цвет и положение коллектора предполагает максимальное поглощение и накапливание солнечной энергии. Эти металлические пластины помещаются в корпус, изготовленный из стекла или пластмассы. Наклон к южной стороне, при установке позволит увеличить количество поглощаемой радиации. Проще говоря, солнечный коллектор – это миниатюрная теплица, которая накапливает солнечную энергию под стеклянной панелью.

Солнечная радиация распределяется по поверхности равномерно, по этому, чем больше площадь коллектора, тем больше энергии будет поглощено.

На сегодняшний день солнечная энергетика развита достаточно обширно, это дает возможность устанавливать солнечные панели различных комплектаций и размеров. Этот аспект позволяет солнечным коллекторам обеспечивать хозяйственные нужды человека, такие как отопление и снабжение горячей водой.

К примеру, существует несколько отдельных видов солнечных коллекторов, которые различаются, в зависимости от температуры, до которой они способны достигать:

  • Коллекторы низких температур. Такие коллекторы дают достаточно низкие температуры – не выше 50 С. Такие коллекторы, широко применяются для подогрева воды в бассейнах, и в других случаях, когда не требуется слишком высокая температура воды.
  • Коллекторы средних температур. Такой тип коллекторов способен нагревать воду от 50 до 80 С. Зачастую, такой коллектор представляет собой плоскую остекленную пластину, в которой с помощью жидкости происходит теплопередача или же это коллекторы-концентраторы. В последних тепло концентрируется и может использоваться для нагрева воды в жилых секторах.Представлен коллектор-концентратор, в большинстве случаев, вакуумированным трубчатым коллектором
  • Коллектор высоких температур. Зачастую имеют форму параболических тарелок. Такое устройство, в большинстве случаев используется большими предприятиями, которые генерируют электричество и распределяют его для городских электросетей

Интегрированный коллектор

Накопительный интегрированный коллектор

На данный момент одним из самых простых видов солнечных коллектором является емкостной коллектор, который еще называются термосифонным коллектором. Такое название, данный генератор получил за счет того, что он одновременно может и аккумулировать тепло и хранить определенное, уже нагретое, количество воды. Такие коллекторы, зачастую используются для начального нагрева воды, которая впоследствии нагревается до необходимой температуры стандартными установками (газовыми, электрическими колонками и т. д.). Такой метод позволяет экономить на потреблении электричества, за счет того, что в бак котла поступает уже подогретая вода.

Рассмотрим основные плюсы такого вида коллекторов. Первое – это, конечно же, экономия на электричестве. Второе – это возможность использовать достаточно дешевую альтернативу солнечной водонагревательной системе. Третьим плюсом стоит отметить простоту использования коллектора – минимум технического обслуживания, за счет отсутствия в нем движущихся частей (насосов и прочего).

Такие коллекторы бывают также «Integrated Collector and Storage», или, проще говоря, интегрированными коллекторами-накопителями. Такой вид коллектора, зачастую представлен одним или несколькими баками, которые заполнены водой. Эти баки помещаются в теплоизоляционный ящик и накрываются стеклянной крышкой. Порою, в этот же ящик помещаются прибор-рефлектор, который позволяет увеличивать солнечное излучение. Принцип действия данного устройства достаточно прост – солнечный свет, проходя через стекло, нагревает воду.

Такая простота функционирования обуславливает достаточно не большую цену самого устройства. Однако стоит помнить, что в холодное время года, воду стоит защищать от замерзания, или же сливать.

Плоские коллекторы

Такие коллекторы, пожалуй, самые популярные для использования в бытовых условиях, для нагрева воды и в отопительных системах. Внешне, такое устройство выглядит как обычный металлический ящик. Однако внутри него находиться черная платина, которая поглощает солнечный свет. Крышка у этого ящика должна быть в обязательном порядке, стеклянной или пластмассовой, дабы лучше пропускать солнечную энергию.

Остекление плоского солнечного коллектора может быть прозрачным или матовым. Зачастую, все же, отдается предпочтение матовому остеклению, поскольку такое стекло позволяет пропускать только свет. А также, содержание железа в стекле должно быть очень низким, что бы позволить пропускать большую часть поступающего света, в коллектор. Принцип действия заключается в том, что солнечный свет, попадая на пластину, тепловоспринимающую пластину, которая и вырабатывает тепло.

Стекло служит теплоизоляцией, а для повышения КПД коллектора, его стенки прокладывают теплоизолятором. Такая конструкция, позволяет снизить тепловые потери до минимума.

Пластина абсорбента, или же пластина, поглощающая солнечный свет, зачастую окрашена в черный цвет, дабы увеличить количество поглощаемой солнечной энергии, ведь тот факт, то темные тела притягивают ее больше – ни для кого не секрет. Проходя через стекло, и попадая на поглощающую пластину, солнечная радиация превращается в тепловую энергию. Далее, чтобы продолжить процесс, полученное тепло передается тепловому носителю. Тепловым носителем может выступать воздух или жидкость, которые циркулируют в трубах. К сожалению, даже полностью черные поверхности, способны отражать около 10% солнечной радиации, падающей на нее. Дабы избежать этого, абсорбирующие пластины покрываются дополнительно специальным покрытием, которое призвано удерживать солнечный свет попадающие на пластину. Такое покрытие служит дольше обычной краски и позволяет повысить КПД коллектора.

В состав такого селективного покрытия входит слой аморфного полупроводника, который наноситься на металлическое основание пластины.

Абсорбирующие пластины изготавливаются из металла, который наилучшим образом проводит тепло. Высокий уровень теплопроводности металла позволит уменьшить теплопотери при передаче переработанной энергии теплоносителю. К списку таких металлов можно причислить медь и алюминий. Разница между ними заключается в том, что медная пластина способна лучше проводить тепло, и более устойчива к коррозиям, в отличии от алюминиевой пластины.


Плоские солнечные коллекторы бывают жидкостными или воздушными. А в зависимости от наличия остекления, и тот и другой вид бывает как остекленным, так и не остекленным.

Жидкостные коллекторы

В солнечных коллекторах этого типа, теплоносителем выступает жидкость. Солнечная энергия, перерабатывается в поглощающей пластине в тепло, и передается жидкости, которая течет по трубам, прикрепленным к пластине. Эти трубы могут идти параллельно друг другу, но на каждой, в обязательном порядке должно быть входное и выходное отверстие. Существует возможность расположение труб в виде змеевика. Такое положение уменьшает количество соединительных отверстий, что, в свою очередь, снижает вероятность протекания. Таким образом, змеевидное расположение обеспечивает более равномерный поток жидкости-теплоносителя. Однако, могут возникать сложности при спуске жидкости перед похолоданием, поскольку в изгибах трубы может остаться жидкость.

Простые системы жидкостных солнечных коллекторов предполагают использование обычной воды, которая сразу же, нагреваясь в коллекторе, поступает пользователю. Такие модели называют «разомкнутыми» или «прямыми» системами. Однако применение таких коллекторов неудобно в регионах с низким температурным режимом. Поскольку, при снижении температуры ниже точки замерзания – необходимо сливать воду. В этот период систему использовать невозможно. Альтернативой является использование незамерзающих жидкостей вместо воды. Этот вид системы жидкостных солнечных коллекторов использует жидкие теплоноситель, который, поглощая тепло, направляется в теплообменник. Зачастую теплообменником является водяной бак, конструкция которого предполагает передачу тепла воде. Такую систему называют «замкнутой» или «непрямой».

Остекление жидкостных коллекторов позволяет нагревать воду для бытовых нужд, и для отопления дома, поскольку их КПД выше, чем у неостекленных аналогов. Неостекленные коллекторы, зачастую используют для нагрева воды в бассейнах. В последних приборах не требуется нагревать температуру до высоких температур. Это позволяет использовать менее дорогие материалы, такие как пластмасса и резина.

Воздушные коллекторы

Теплоносителем в воздушных коллекторах выступает воздух, а он не замерзает и не кипит, в отличие от воды. Этот факт позволяет избежать проблем, которым подвержены жидкостные коллекторы. К тому же, утечка в системе воздушных коллекторов приносит намного меньше трудностей, хотя, конечно же, обнаружить ее достаточно сложно. Стоит помнить, что перед материалами, используемыми в воздушных солнечных коллекторах, не стоят особо сложные эксплуатационные задачи. По этому, в воздушных системах возможно использование более дешевых материалов.

Конструкция воздушных коллекторов, представляет собой сочетание плоских коллекторов. Такой прибор используется в основном для просушки сельскохозяйственной продукции, или же для отопления помещений. Металлические панели и многослойные неметаллические экраны могут послужить поглощающими пластинами в конструкции воздушных коллекторов. Теплоноситель проходит через стенки поглотителя с помощью естественной конвекции, или с помощью специального вентилятора.

Теплопроводимость воздуха, на порядок хуже, чем проводимость тепла, жидкостью. По этому, поглотитель получает значительно меньше тепла от воздуха, чем от жидкости. Вентилятор, присоединенный к поглощающей пластине, позволяет увеличить поток воздуха, таким образом, улучшая теплоотдачу. Однако и в этой конструкции есть свои недостатки. Для работы вентиляторов, необходимо дополнительно использовать электроэнергию, а это, в свою очередь увеличивает затраты на работу системы. В условиях холодного климата, необходимо направлять воздух между поглощающей пластиной и утепленной стенкой коллектора, это позволяет избежать потерь тепла. Но не стоит применять такою циркуляцию, если, все же, воздух в помещении, нагревается на 17 С больше, чем воздух на улице. В этом случае, воздух может спокойно циркулировать без потерь эффективности.

Поговорим о достоинствах воздушных коллекторов. В первую очередь – это простота и надежность. Воздушные коллекторы имеют достаточно простое устройство, благодаря этому снижается уровень необходимости технического обслуживания, при этом увеличивая их безусловную надежность. При достойных условиях эксплуатации, срок службы качественного воздушного коллектора колеблется от 10 до 20 лет. За счет того, что теплоносителем выступает воздух, исключается необходимость использования теплообменника и термоизоляции в холодное время года.

Однако не все так красочно, в сфере солнечных воздухонагревателей. Все дело в том, что применение таких установок распространено исключительно для отопления помещений и просушки сельскохозяйственной продукции, причем, в основном, в развивающих странах. Причиной этому стало то, что существуют некоторые ограничения, для использования в промышленных условиях. Начнем с того, что по сравнению с жидкостными, воздушные коллекторы занимают достаточно большую площадь, за счет низкого уровня удельной теплоемкости. К тому же, требуется оборудовать длинный воздуховод для эффективной работы коллектора. И самая главная трудность – это необходимость использования электроэнергии для прогонки воздуха через функциональные части коллектора. Еще иногда встречаются сложности с аккумулированием самой теплоты. Все эти проблемы, даже в регионах с достаточным количеством солнечных дней, приводит к значительному увеличению стоимости на эксплуатацию и установку воздушных коллекторов.

Принцип действия солнечных коллекторов

Элементарный воздушный коллектор

Воздушные солнечные коллекторы делятся на две группы, в зависимости от способа циркуляции воздуха. В самом простейшем случае, поток теплоносителя (воздуха) в коллекторе проходит как раз под поглотителем. Таким образом, данный коллектор позволяет повысить температуру воздуха, не больше чем на 3-5 С. Причиной такого низкого КПД является потери тепла на конвекцию и излучение.

Любой прозрачный материал, с низкой проводимостью инфракрасного излучения, позволяет снижать уровень теплопотерь, при накрывании им поглотителя. Все дело в том, что поток воздуха, образовывается или под поглотителем, или между поглотителем и данным прозрачным покрытием. Прозрачная крышка (из особого стекла или пластмассы) позволяет не на много снижать уровень излучения тепла с поглотителя. Однако, это снижение конвективных тепловых потерь, может позволить увеличить температуру до 20-50 С. Но и этот параметр будет зависеть от интенсивности солнечной энергии попадающей в коллектор и качества воздушного потока. Как плюс к этому всему, наблюдается, также снижение тепловых потерь на излучение, за счет снижения температуры поглотителя. Но стоит помнит, что при этом происходит еще и снижение возможности абсорбента поглощать энергию, за счет его запыления, в том случае, если поток воздуха проходит с обеих сторон.

Накрытый поглотитель в воздушном коллекторе

Отказ от остекления металлического ящика и теплоизоляции, в некоторых случаях, позволяет существенно снижать затраты. Дело в том, что изготовляется такой коллектор из перфорированного металла черно цвета. Такой материал позволяет улучшать качество теплообмена. Принцип этого процесса заключается в том, что этот металл нагревается достаточно быстро, а вмонтированный вентилятор втягивает теплый воздух, через отверстия в металлических листах. Коллекторы такого типа, достаточно часто используются в жилых домах. Зачастую размеры такого прибора составляют 2,4 м?0,8 м, при этом скорость нагрева воздуха составляет 0,002 м3/с. Даже в солнечный зимний день, температура воздуха, который нагревается в коллекторе, может достигать разницы в 28 ?С по сравнению с наружным. К тому же, стоит учесть, что в значительной мере улучшается качество воздуха, поскольку нагревается непосредственно воздух, поступающий снаружи.

Одним из главных плюсов подобных коллекторов, является тот факт, что они достаточно эффективны. КПД некоторых промышленных моделей может достигать 70%. А их стоимость снижается, за счет уменьшается количество используемых материалов.

Вакуумированный солнечный коллектор

Плоские солнечные коллекторы, изначально создавались для использования в местах с большим количеством солнечной энергии. При плохой погоде, их эффективность достаточно не значительна. Холодная, ветреная, пасмурная погода – не позволяют работать таким коллекторам в полную мощь. Но и это не все – повышенная влажность в значительной мере неблагоприятно сказывается на состоянии внутренних деталей такого коллектора. А это влечет за собой уменьшение срока службы коллектора, а также ухудшение эффективности его работы. Дабы устранить такие недостатки были созданы вакуумированные солнечные коллекторы.

Современные вакуумированные солнечные коллекторы способны нагревать воду, для обеспечения хозяйственных нужд. Принцип действия такого прибора заключается в следующем: солнечная энергия, проходя через наружную трубку, попадает в поглощающую трубку, где и происходит превращение солнечной энергии в тепло. А далее, переработанное тепло передается теплоносителю (жидкости). Сам коллектор представляет собой сочетание определенного количества параллельных рядов стеклянных трубок. К каждой из этих трубок прикрепляется трубчатый поглотитель с селективным покрытием (аналог пластины-поглатителя в вышеописанных плоских коллекторах). Нагретая в коллекторе жидкость поступает в бак накопитель, и уже там отдает все полученное тепло воде.

Трубки в вакуумированном коллекторе можно менять. Добавлять или даже убирать, в зависимости от необходимости. Это позволяет называть такие коллекторы модульными. Но стоит помнить, что между трубками коллектора должен быть вакуум, что бы уменьшить потери тепла в процессе конвекции. Однако, радиационная потеря тепла остается. Уточним, что радиационная потеря тепла – это то тепло, которое идет на нагревание поверхностей рабочих частей коллектора. Но не стоит думать, что эти потери существенно повлияют на эффективность работы коллектора. Радиационная потеря достаточно мала, по этому можно уверенно считать, что рабочие характеристики вакуумированного коллектора достаточно велики.

На данный момент, создано большое количество вакуумированных коллекторов, которые имеют различные комплектации, а, следовательно, и разные эксплуатационные характеристики и особенности.

Создание вакуумированного коллектора – это достаточно сложный и трудоемкий процесс. Особенные трудности вызывает запайка оболочки коллектора. Проблема заключается в том, что по сей день не найдено достаточно эффективного метода создания эффективной высоковакуумной системы, при не больших затратах.

Стоит помнить, что такие вакуумированные коллекторы достаточно эффективны, по сравнению с обычными плоскими коллекторами. Все дело в том, что эффективность работы вакуумированного коллектора не зависит от качества радиации, т.е. как в условиях прямой, так и рассеянной радиации, данный коллектор работает одинаково эффективно. К тому же, вакуумное строение коллектора позволяет свести к минимуму потери тепла. Помимо всего вышесказанного, такие приборы достаточно долго и качественно служат, полностью обеспечивая все хозяйственные нужды человека.

Концентраторы

Фокусирующий солнечный коллектор

Концентраторы или же коллекторы отличаются от предыдущих описанных коллекторов тем, что их принцип действия заключается в концентрации солнечных лучей. Делается это за счет зеркальных поверхностей, которые направляют солнечную энергию конкретно на поглотители. Температура, которая обеспечивается концентраторами значительно выше, чем максимальная температура плоских коллекторов. Но стоит помнить, что концентраторы могут воспринимать исключительно прямую солнечную радиацию, по этому. В пасмурную погоду их использование не возможно. Такой тип коллекторов-концентраторов, особенно эффективен в регионах близких к экватору и в пустынных районах с большим количеством солнечных дней.

Для более эффективной работы концентратора, используется специальный прибор, который отслеживает направление солнечных лучей и поворачивает прибор к солнцу. В зависимости от оси, по которой может вращаться, такой коллектор различают одноосные и двуосные следящие устройства. Первые предполагают вращение устройства с востока на запад, а вторые, предполагают поворот устройства во все четыре стороны света, для того что бы точно отслеживать направление солнца в течение всего года. Данные коллекторы-концентраторы, в основном используются в промышленных условиях. Причиной этому стала достаточно большая стоимость этого устройства, а также необходимость постоянного технического обслуживания. Для бытового применения, они просто не приемлемы.

Солнечные печи и дистилляторы.

Солнечная печь

Помимо всех вышеописанных приборов, существуют также приборы, которые имеют достаточно простую структуру, и узкую сферу применения. К примеру, такие приборы могут выступать в роли солнечной печи, для приготовления пищи, или солнечного дистиллятора – прибора достаточно дешево очищающего воду любого состояния.

Поговорим про солнечные печи. Они достаточно просты, как при эксплуатации, таки при изготовлении. Солнечные печи представляют собой достаточно хорошо теплоизолированную коробку, которая покрыта материалом, отражающим свет (фольгой, например). Эта коробка накрывается стеклом и оборудована внешним отражателем. Кастрюля черного цвета послужит поглотителем, поскольку может намного быстрее нагреваться. Такие печи, можно использовать для стерилизации воды, при кипении.

Что касается солнечных дистилляторов, то они могут в результате своей работы предоставлять дистиллированную воду достаточно дешево, притом, что брать воду, можно практически из любого источника. Принцип работы солнечного дистиллятора лежит в основе процесса испарения, а сам прибор использует солнечную энергию, с целью ускорить этот процесс. За день работы, небольшой солнечный дистиллятор может произвести около 10 литров идеально чистой воды.

На данный момент солнечная энергия используется достаточно обширно. Одним из самых эффективных примеров его использования является метод нагрева воды солнечной энергией. Несколько миллионов жителей нашей планеты, уже достаточно долго и давно используют солнечные коллекторы для обеспечения своих нужд. Такие приборы достаточно эффективны, не требуют особых затрат на эксплуатацию, к тому же не приносят вреда окружающей среде.

Описание принципов работы солнечных коллекторов, вакуумных и плоских коллекторов

Для превращения солнечной энергии в тепловую используют гелиосистемы.

Солнечный водонагреватель (солнечный коллектор) — это устройство, предназначенное для поглощения солнечной энергии, которая переносится видимым и ближним инфракрасным излучением для последующего её преобразования в тепловую энергию, пригодную для использования.

В гелиосистемах наиболее распространены два типа коллекторов: вакуумные и плоские.

Основной частью вакуумного коллектора является тепловая трубка. Такие коллекторы представляют собой ряд стеклянных трубок специальной конструкции. Трубка гелиоколлектора – это на самом деле две трубки (одна вложенная в другую), между которыми находится вакуум для наилучшей термоизоляции теплоносителя от внешней среды.

Способ передачи тепла от неё теплопроводу вакуумного солнечного коллектора: медная труба внутри пустая и содержит неорганическую и нетоксичную жидкость. При нагревании эта жидкость испаряется, а поскольку в трубке создан вакуум, то это происходит даже при температуре минус 30°С. Пар поднимается к наконечнику тепловой трубки, где отдаёт тепло теплоносителю (антифризу), который течёт по теплопроводу гелиоколлектора. Потом он конденсируется и стекает вниз, и процесс повторяется снова. Солнечный водонагреватель с вакуумными трубами показывает отличные результаты даже в пасмурные дни, потому что вакуумные трубы способны поглощать энергию инфракрасных лучей, которые проходят через тучи. Благодаря изоляционным свойствам вакуума, влияние ветра и низких температур на работу гелиосистемы также незначительно по сравнению с влиянием на плоский солнечный коллектор. Система с вакуумным солнечным коллектором успешно работает до -35°С.

Трубы установлены в солнечном водонагревателе параллельно, угол их наклона зависит от географической широты места установки системы отопления. Ориентированные с севера на юг, на протяжении дня, трубки вакуумного солнечного коллектора пассивно двигаются за солнцем. Они практически не нуждается в эксплуатационном обслуживании.

Для поддержания вакуума солнечный водонагреватель использует газопоглотитель, который в производственных условиях подвергался влиянию высоких температур, в результате чего нижний конец вакуумной трубы покрыт слоем чистого бария. Он поглощает СО, СО2, N2, O2, H2O и H2, которые выделяются из трубы в процессе хранения и эксплуатации, и является чётким визуальным индикатором состояния вакуума в трубке солнечного коллектора. Когда вакуум исчезает, бариевый слой из серебристого становится белым. Это дает возможность легко определить, целая ли труба вакуумного солнечного водонагревателя.

Вакуумные солнечные коллекторы полностью пригодны для ремонта: в случае необходимости трубку можно заменить без остановки солнечного водонагревателя. За необходимостью вакуумные трубки можно добавлять (при недостатке тепла) или частично снимать (если есть его избыток), уменьшая площадь гелиоколлектора. Обслуживание солнечного водонагревателя сводится практически к нулю. Вакуумные солнечные коллекторы отлично справляются с заданием обеспечения дома горячей водой, отоплением квартиры, подогревом бассейнов, теплиц, работают в системах вентиляции, кондиционирования и отопления зданий. Благодаря всему этому работа гелиосистемы проста, как с точки зрения эксплуатации, так и обслуживания.

Плоские гелиоколлекторы имеют иную конструкцию. Главным элементом в них является абсорбер, поглощающий солнечное излучение, сверху он имеет прозрачное покрытие. Для повышения эффективности коллектора, используют специальное оптическое покрытие из закалённого стекла с пониженным содержанием металлов. Абсорбер соединён с теплопроводящей системой.

Конструкция плоских солнечных коллекторов является довольно простой. Внешне они представляют собой простую панель, имеющую прямоугольную форму. Эта установка обладает алюминиевым корпусом, несколькими патрубками, использующимися с целью отвода и подвода жидкого теплоносителя. Кроме того, изнутри стенки коллектора покрыты теплоизоляционным слоем. На сегодняшний день производители его толщину делают равной трем-четырем сантиметрам – это предоставляет возможность добиться существенного уменьшения уровня теплопотерь.

Принцип работы плоского солнечного коллектора основывается на парниковом эффекте — солнечные лучи поступают на поверхность этого устройства и проникают сквозь стекло. Теплопоглощающее покрытие, используемое в нижней части коллектора, характеризуется коэффициентом поглощения, составляющим 91%. В конечном итоге чрезмерный нагрев приводит к тому, что покрытие начинает излучать тепловую энергию. Мощность её расположена в инфракрасном диапазоне, другими словами, имеется возможность достичь аккумулирования энергии солнца в коллекторе. Процесс отвода тепла происходит при непосредственном участии теплоносителя.

Преимущества и недостатки плоских и вакуумных коллекторов

Вакуумные трубчатые

Плоские высокоселективные

Низкие теплопотери

Способность очищаться от снега и инея

Работоспособность в холодное время года до -30С

Высокая производительность летом

Способность генерировать высокие температуры

Отличное соотношение цена/производительность для южных широт и тёплого климата

Длительный период работы в течение суток

Возможность установки под любым углом

Удобство монтажа

Меньшая начальная стоимость

Низкая парусность

 

Отличное соотношение цена/производительность для умеренных широт и холодного климата

 

минусы

минусы

Неспособность к самоочистке от снега

Высокие тепло потери

Относительно высокая начальная стоимость проекта

Низкая работоспособность в холодное время года

Рабочий угол наклона не менее 20°

Сложность монтажа, связанная с необходимостью доставки на крышу собранного коллектора

 

Высокая парусность

Если у Вас появились вопросы по выбору оборудования или необходимо подобрать солнечную или резервную станцию, вы можете обратиться за помощью к нашим специалистам.

Проконсультируйтесь у специалистов

Солнечные коллекторы. Часто задаваемые вопросы.

 

1. Могут ли солнечные водонагреватели являться конкурентоспособной альтернативой газа или электричества?

Солнечная энергия не должна рассматриваться в качестве альтернативы газа или электричества, скорее в качестве дополнения к ним. Она не может полностью заменить потребность в газе или электрическом отоплении, поскольку есть дни с недостаточным уровнем солнечного освещения. Правильный расчёт системы, солнечного нагрева воды, может обеспечить 60% -70% от потребности горячей воды.

Можно точно утверждать что, гелиосистема будет выгодна в том случае, если на объекте отсутствует газ или нагрев воды происходит за счет электричества.

 

2. В течение какого срока солнечный коллектор сможет окупить мои инвестиции?

Для семи из 3-5 человек, стоимость гелиосистемы будет схожа со стоимостью газовой или электрической системой нагрева воды. Сроки окупаемости напрямую зависят от того, в каком колличестве будет потребляться вода, нагретая солнечным коллектором и размера системы.

Эсли на объекте нагрев воды осуществляется за счет электричества, то срок окупаемости будет от 1 года до 2 лет, причем необходимо учитывать, что и работоспособность электрокотлов, электробойлеров и другого отопительного оборудование имеет не такой уж большой срок службы, в отличие от гелиосистемы, которая может проработать не менее 20-25 лет без замены главных и дорогостоящих частей системы. Работая совместно с действующей системой нагрева воды, солнечные коллектора могут экономить до 75% топлива или электроэнергии в осенне-весенний период.

 

3. Могут ли солнечные коллекторы быть использованы в холодных условиях?

Да. Наши вакуумные трубчатые коллекторы могут использоваться при очень низких температурах, в солнечных системах водонагрева, установленных в регионах России, температура в которых достигает -45°C. Удивительно, но даже при этих температурах система может производить горячую воду с хорошей эффективностью за счет вакуума в трубках коллекторов, который является идеальным теплоизолятором. В яркий солнечный день, эффективность коллектора будет примерно одинаковой как в зимний период времени, так и в летний.

 

 

4. Что произойдет, если целостность одной из вакуумных трубок нарушится?

Вакуумные трубки достаточно прочные, и их нелегко разбить, но если это всё-таки произошло, это с лёгкостью решается заменой вакуумной трубки на новую. Хотя наши солнечные коллекторы обладают способностью работать с некоторым количеством повреждённых трубок, рекомендуется повреждённые трубки немедленно заменить, чтобы удерживать эффективность солнечного коллектора на должном уровне. Запасные трубки Вы всегда можете приобрести в нашем магазине.

 

5. Будет ли вода нагреваться в пасмурный день?

Да. Несмотря на то, что тепловая мощность солнечного коллектора снижается в пасмурные дни, поглощаемой энергии хватает для нагрева воды. Если это, по большей степени, туманный день или дождь, то может потребоваться больше ресурсов газового или электрического нагрева, чтобы сохранить температуру воды оптимальной для использования. Солнечная система нагрева воды является автоматизированной, так что вам не придется беспокоиться о нехватке горячей воды в дождливый день.

За своевременным включением котлов, ТЭНов и др нагревательных приборов следит контроллер гелиосистемы.

 

6. Могу ли я использовать солнечный коллектор с системой горячего водоснабжения, которая у меня уже есть?

ДА. Клапаны попросту модернизированы, и они зачастую могут быть использованы, чтобы позволить солнечной энергии подключаться к существующей подаче холодной воды. Если ваш бак не может принять солнечную энергию напрямую, вы можете установить дополнительный накопительный бак для предварительного нагрева холодной воды перед входом в уже существующий. Любая действующая система отопления и водоснабжения может быть доработана гелиосистемой без глобальной реконструкции котельной. Действующая котельная прекрасно будет работать совместно с гелиосистемой, причем экономия топлива и электроэнергии традиционной котельной будет значительной.

 

 

7. Могут ли солнечные коллекторы быть установлены на плоской поверхности?

Да. Они могут быть установлены на плоской крыше или на земле с помощью алюминиевых опорных подставок. Для оптимальной работы солнечного коллектора, его следует установить под углом 45 градусов, чтобы гарантировать оптимальную работу тепловых трубок.

 

8. Как я могу защитить свою солнечную систему при минусовых температурах?

Если ваша солнечная система нагрева воды работает в регионах с минусовыми температурами, то Вам следует принять меры по защите от замерзания. Самым простым способом предотвращения замерзания является использование солнечного контроллера с настройками низких температур. Таким образом, когда температура падает ниже определенной заранее установленной температуры (5°C), насос будет циркулировать и нагревать коллектор водой снизу из резервуара. Насос будет работать сессионно, частота сессий которого зависит от температуры наружного воздуха. В особо холодных регионах целесообразно использовать замкнутый контур с помощью пропиленгликоля, температура замерзания которого ниже 30 градусов.

 

9. Может ли солнечный коллектор стать причиной возникновения пожара во время жаркой и засушливой погоды?

Нет. Все компоненты наших тепловых солнечных коллекторов рассчитаны на воздействие высоких температур и не воспламеняются, так что даже при сильном солнечном свете система нагрева воды не загорится и не подожжёт сухой материал. Даже самым жарким летом к вакуумным трубкам можно прикоснуться и не обжечься, т. к. вся температура находится в самой трубке, за вакуумом.

 

 

10. Может ли солнечный коллектор нагревать воду до достаточно высокой температуры?

Да, в хорошую погоду коллектор может довести воду до кипения. Как правило, это не является необходимым, поэтому система должна быть разработана грамотно. Нелогично доводить воду до кипения в домашних условиях солнечным коллектором, т. к. из за температуры близкой к кипению может произойти деформация пластиковых и резиновых уплотнителей в системе, тем самым увеличивается риск протечек. Если горячая вода не используется в течение одного дня, то на следующий день система будет сбрасывать воду через предохранительный клапан. Это пустая трата энергии и воды! Пожалуйста, используйте разумно энергию, получаемую солнечным водонагревателем, для обеспечения оптимальной производительности и минимального расхода воды.

 

11. Что требуется для обслуживания солнечного коллектора?

При нормальных обстоятельствах обслуживание не требуется. Хотя солнечные коллекторы могут работать с несколькими сломанными трубами, тепловая эффективность будет снижена незначительно. Но разбитые трубки всё же следует заменить как можно скорее.

 

12. Могут ли солнечные коллекторы быть использованы для крупномасштабного производства горячей воды?

Да. Наши солнечные тепловые коллекторы могут быть соединены последовательно или параллельно, чтобы обеспечить крупномасштабное производство горячей воды для нужд коммерческих и муниципальных организаций, таких как школы, гостиницы или офисные здания.

 

 

13. Могу ли я нагреть воду в своём бассейне или спа, используя солнечный коллектор?

Да. Вакуумные трубчатые коллекторы могут быть использованы для нагрева спа или жилого плавательного бассейна. Для любого бассейна, который необходимо нагреть, должен быть использован изолирующий защитный слой, чтобы свести к минимуму потери тепла и испарение.

 

 

14. Вакуумные трубчатые коллекторы более эффективные, чем плоские?

 

Существует небольшая разница между вакуумным трубчатым коллектором и плоским коллектором при сравнении максимальной эффективности. На самом деле, эффективность плоской пластины коллектора может быть выше трубки вакуумного коллектора, но при условиях с минимальными потерями тепла. При средних же показателях за год, вакуумный трубчатый коллектор имеет явные преимущества. Ключевыми являются следующие моменты:

 

1) Солнечные вакуумные трубки могут пассивно отслеживать положение солнца в течение дня из-за цилиндрической формы трубок. Пластина плоского солнечного коллектора обеспечивает выходной импульсной энергии в полдень, когда солнце находится в зените

2) Вакуум в трубках значительно снижает потери конвективного тепла из внутренней части трубки. Таким образом, ветра и низкие температуры оказывают намного меньшее влияние на эффективность вакуумного коллектора.

3) Вакуумные трубки прочны и долговечны, так как сделаны из сверхпрочного боросиликатного стекла. По отдельности трубки стоят недорого и сломанную легко заменить.

4) Из-за различных преимуществ вакуумной трубки коллектора над плоской пластиной коллектора, понадобится меньшее количество коллекторов, чтобы обеспечить такую же производительность нагрева. Например, в семье из 4-5 человек, как правило, потребуется резервуар с 250-300 литров воды. В зависимости от вашего местоположения, летом все 30 вакуумных трубок коллектора будут обязаны предоставлять все потребности в горячей воде и большой процент в другие сезоны.

5) Плоские солнечные коллекторы могут производить подобный выход тепла в вакуумных трубчатых коллекторах, но, как правило, исключительно в солнечных условиях. При среднем в течение всего года, тепловая мощность вакуумной трубки коллектора на квадратный метр на 25%-40% больше, чем плоской пластины коллектора.

 

Типы солнечных коллекторов | Atmosfera™. Альтернативные источники энергии. Солнце. Ветер. Вода. Земля.

Плоские солнечные коллекторы

Основным элементом плоского солнечного коллектора является абсорбер — металлическая пластина со специальным поглощающим покрытием и напаянным на нее проточным трубопроводом. Абсорбер заключен в специальный корпус, у которого лицевая стенка прозрачная (через нее в коллектор проникает солнечное излучение), а тыльная утеплена минераловатной плитой либо слоем другого утеплителя.

Внутренний трубопровод, по которому циркулирует теплоноситель, на абсорбере может располагаться по-разному. Выделяют 2 основных типа расположения: “меандр” и “арфа”. Компания Атмосфера предлагает плоские солнечные коллекторы обоих типов.

Для повышения эффективности коллектора на абсорбер может быть нанесено специальное селективное покрытие. Наличие селективного покрытия значительно увеличивает производительность плоского коллектора, но, в то же время, увеличивает его стоимость.

Для уменьшения теплопотерь в холодное время года корпус плоского коллектора делают максимально герметичным. Таким образом теплоизоляция абсорбера достигается за счет слоя воздуха или инертного газа со стороны прозрачной передней стенки, и слоя утеплителя со стороны задней стенки.

Плоские коллекторы являются более эффективными в теплое время года, однако в зимнее время их эффективность значительно снижается по причине достаточно высоких теплопотерь.

Существуют также еще один вид плоских солнечных коллекторов — вакуумный плоский коллектор. В вакуумном плоском коллекторе теплоизоляция абсорбера от окружающей среды достигается не за счет слоя теплоизоляции, а за счет создания внутри короба глубокого вакуума, предотвращающего теплопотери. Такие коллекторы обладают максимальной продуктивностью среди плоских коллекторов, однако, являются более сложными в монтаже и эксплуатации, и, что существенно, очень дорогими.

Неоспоримыми преимуществами плоских солнечных коллекторов являются их невысокая цена при высокой эффективности в теплое время года. К недостаткам можно отнести низкую производительность в зимний период, а также сравнительное неудобство их монтажа на труднодоступные кровли. Плоский коллектор являются цельной неразборной конструкцией, из-за чего поднимать и устанавливать на крышу его приходится целиком.

 

Плоский солнечного коллектора ЯSolar

  1. Главная страница
  2. Солнечный коллектор Яsolar
  3. Плоский солнечный коллектор ЯSolar

  Солнечные коллекторы ЯSolar разработаны по европейским стандартам EN 12975-1 и -2 и производятся компанией ООО »НОВЫЙ ПОЛЮС» в России по полному циклу (включая изготовление абсорбера) на уникальном оборудовании.

В конструкции солнечного коллектора ЯSolar используются:
  — самое современное поглощающее энергию покрытие TiNOX,
  — полностью медный абсорбер,
  — сверхпрозрачное антибликовое стекло,
  — максимально эффективные утеплитель (60мм) и средства герметизации.

  Специально для коллектора ЯSolar был разработаны и запатентованы технология пайки медных абсорберов с профилированным листом TiNOX для улучшенной теплопередачи, специальный корпус и прижим стекла. После улучшений оптический КПД ЯSolar составил 83%, что значительно больше всех российских и многих импортных аналогов (включая вакуумные). При низких температурах теплопотери предлагаемого солнечного коллектора почти такие же как у трубчатых солнечных коллекторов, при этом при положительных температурах КПД солнечного коллектора ЯSolar выше. Отношение эффективной поглощающей поверхности (абсорбера) к габаритам у него больше, а снег не мешает нормальной работе. Также нет проблемы заиневания как у трубчатых солнечных коллекторов и отсутствует увеличение теплопотерь со временем. Солнечные коллекторы ЯSolar имеют удобное подключение с низким гидравлическим сопротивлением и гибкие точки крепления.

КУПИТЬ СОЛНЕЧНЫЙ КОЛЛЕКТОР ЯSOLAR


  Гарантия качества. Все элементы коллектора ЯSolar изготовлены из надежных материалов (медь и алюминий) в соответствии с наивысшими нормативами качества, благодаря чему на солнечные коллекторы ЯSolar распространяется 5-ти летняя гарантия, срок службы составляет более 25 лет.

  Высокая эффективность. Солнечный коллектор ЯSolar, имеющий высокоселективное покрытие TiNOX, обеспечивает превосходную производительность. Специальное оптическое стекло и инновационное паяное соединение формованного абсорбера и медных трубок по половине их поверхности (включая коллекторные трубы Ø22мм) позволяют использовать солнечную энергию даже в пасмурную погоду. В отличие от ультразвуковой сварки покрытие не повреждается.

  Минимальные потери тепла. Целостная герметичная жесткая конструкция солнечного коллектора ЯSolar и новейшая термическая двойная теплоизоляция с низким влагопоглощением толщиной 60 мм уменьшают коэффициент теплопотерь до минимума и позволяют более эффективно использовать солнечную энергию в суровом климате при отрицательных температурах.


  Область применения и назначение солнечного водонагревателя ЯSolar

  Плоский солнечный коллектор ЯSolar представляет собой специальный теплообменник, преобразующий энергию солнечного излучения в тепловую энергию и передающий её теплоносителю — жидкости, движущейся внутри каналов поглощающей панели (абсорбера) коллектора.

  Солнечный коллектор ЯSolar можно использовать для нагрева не только воды, но и других жидких теплоносителей, совместимых с материалом его поглощающей панели и применяемых в системах отопления, кондиционирования, хладоснабжения и промышленных технологических процессах.

  Солнечный коллектор ЯSolar соответствует требованиям ГОСТ Р51595-2000 «Коллекторы солнечные. Общие технические условия» и требованиям стандартов большинства зарубежных стран.

  Солнечный коллектор ЯSolar разработан с применением современных материалов и технологий по европейским стандартам EN 12975-1 и -2. По своим характеристикам он соответствует уровню лучших зарубежных аналогов.

  Главной особенностью солнечного коллектора ЯSolar является оптическое селективное покрытие, эффективная конструкция паяного медного абсорбера с покрытием TiNOX и уникальная теплоизоляция. В отличие от «псевдо селективных» покрытий других производителей, обладает высокой степенью улавливания как видимых солнечных лучей, так и рассеянной солнечной радиации в облачную погоду. Из-за низкого коэффициента черноты обратное излучение тепла в инфракрасном спектре минимально (3-5%). Получается «солнечная ловушка» с высокими показателями эффективности в условиях низких температур и малой солнечной инсоляции. Площадь контакта медного листа с трубкой коллектора в десятки раз больше чем у лазерной сварки. Это позволяет эффективно использовать солнечную энергию в системах нагрева воды и отопления, снижает тепловые потери коллектора и увеличивает его теплопроизводительность на 25-30%.

  Мощность солнечного коллектора ЯSolar 1,5кВт при температуре 20°С и интенсивности излучения 900 Вт/м².

  При работе в составе систем солнечного теплоснабжения коллекторы ЯSolar не требуют постоянного наблюдения и регулярного обслуживания за исключением периодических внешних осмотров для контроля герметичности соединений один раз в год и периодической промывки остекления по мере его загрязнения для сохранения его светопропускания.

  Солнечные коллекторы ЯSolar размещаются на кровле зданий, располагаются на специальных опорах и площадках.

Наша продукция позволит Вам реализовать проекты по получению солнечной энергии любой сложности. Мы проектируем, комплектуем и монтируем системы для частных дом, нагрева бассейнов, гостиниц, фермерских хозяйств и промышленных объектов.

Частных домов

Нагрева бассейна

Гостиниц

Фермерских хозяйств

Промышленных объектов


Также существуют решения и проекты по получению холода и электроэнергии от тепловой солнечной энергии.

Приобретая солнечные коллекторы ЯSolar , Вы получаете:
  
— Бесплатную горячую воду и помощь системе отопления
— Надежное оборудование от российского производителя
— Заводскую гарантию 5 лет
— Расширенную клиентскую поддержка 
— Уменьшение первоначальные затраты
— Экономию на коммунальных расходах

Солнечные водонагревательные системы в зависимости от региона использования могут обеспечить до 90% Ваших потребностей в горячей воде и до 70% — в системе отопления. Благодаря экологически чистому источнику энергии Ваши расходы существенно уменьшаться, а жизнь станет более комфортной.

 

Почему выбирают нашу компанию:

Более 10 лет работы

Более 5000 изготовленных солнечных коллекторов

Более 1000  спроектированных и отправленных систем

Более 150 смонтированных установок

95% клиентов обращаются повторно при необходимости

Профессиональные инженеры и проектировщики

     

Для Вас наш инженеры разработали и просчитали надежные комплекты гелиосистем на базе плоских солнечных коллекторов ЯSolar.

С комплектацией готовых комплектов солнечных энергоустановок Вы можете ознакомиться в разделе нашего сайта «Готовые комплекты»

 

Сравнение конструкций различных солнечных коллекторов


 Площадь солнечного коллектора.
     Солнечный коллектор ЯSolar имеет площадь в 2 м². Сторона, обращенная к солнцу, покрыта специальным светопоглощающим слоем и имеет практически 95%-е поглощение тепла. Обратная (теневая сторона) имеет специальное двухслойное утепление 70мм. Подсчитаем потери тепла, происходящие на теневой стороне. Коэффициент теплопередачи утеплителя равен 0,03 Вт/м*°С. С учетом толщины и перепада температуры например в 45°C, получим потери равные 50 Вт. Торцы солнечного коллектора, трубы и пр. будут излучать меньше тепла. Из-за специального селективного покрытия и правильно подобранного расстояния между стеклом и абсорбером излучение тепла и конвекция воздуха будут минимальны. В итоге получаем теплопотери двухметрового плоского солнечного коллектора 250-450 Вт. Данные потери подтверждаются испытаниями и сертификатами солнечного коллектора.
     Для расчета будет брать поток солнечной энергии равный 1000 Вт/м², вычитаем теплопотери и получаем величину 700 Вт/м². Для плоского коллектора площадью 2м² реальная тепловая мощность при разнице температуры 45°C составляет 1300-1400Вт.
     При наличии автоматики, плоские солнечные коллекторы начинают работать при температурах, превышающих всего на несколько градусов температуру нагреваемой жидкости. Это особо актуально для нагрева бассейнов и холодных теплоносителей (например, для тепловых насосов), благодаря этому уменьшаются теплопотери и увеличивается эффективность.

     Следует иметь ввиду, что площадь абсорбера типового китайского вакуумного коллектора с 18 трубками диаметром 47 мм и длинной 1,8м составляет всего 0,047м*1,8м*18= 1,522 м². При лучшем их КПД 75%, основанном на реальных данных центров сертификации, при идеальных погодных условиях 1000 Вт/м² один солнечный коллектор с вакуумными трубками вырабатывает только 1100 Вт. Значений выше этих получить физически не возможно, энергия не берется из ни от куда.


Рабочая площадь плоского и вакуумного солнечного водонагревателя

    Отношение апертуры (рабочей поверхности) к общей площади солнечного коллектора у вакуумного водонагревателя в два раза меньше, чем у плоского солнечного коллектора. Следует иметь ввиду, что площадь абсорбера типового китайского вакуумного коллектора с 18 трубками диаметром 47 мм и длинной 1,8м составляет всего 0,047м*1,8м*18= 1,522 м².

Конструкция качественного плоского солнечного коллектора.
    Плоский коллектор состоит из элемента, поглощающего солнечное излучение, прозрачного покрытия и термоизолирующего слоя. Поглощающий элемент называется абсорбером; он связан с теплопроводящей системой. Прозрачный элемент (стекло) обычно выполняется из закалённого стекла с пониженным содержанием металлов. Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Для её повышения применяется специальные оптические покрытия, не излучающие тепло в инфракрасном спектре. Стандартным решением повышения эффективности коллектора также стало применение абсорбера из листовой меди из-за её высокой теплопроводности.

Конструкция солнечного коллектора с вакуумной трубкой
    Стеклянные вакуумные трубки по конструкции являются термосами – одна трубка расположена в другой, между ними технический вакуум. В стеклянную трубку, вставляются медные термотрубки, соединенные со стеклянные трубками тонкими листами алюминия.

   Термотрубка — это закрытая медная труба с небольшим содержанием «легкокипящей жидкости». В качестве «легкокипящей жидкости» используется обычная вода под низким давлением. Под воздействием тепла жидкость испаряется при температуре около 30°С и забирает тепло вакуумной трубки. Пары поднимаются в верхнюю часть головки, где конденсируются и передают тепло теплоносителю основного контура с незамерзающей жидкостью. Конденсат стекает вниз, и все повторяется снова. Но дальнейшем повышении температуры плотность пара будет расти, а плотность воды будет падать. В критической точке плотность станет одинаковой, и процесс конденсации и испарения прекратится, поступающая энергия передается только за счет стенки латунного стержня, при её небольшой толщине (0,5 мм), эффективность передачи будет мала.
    Приемник солнечного коллектора латунный с изоляцией, в лучшем случае, из минеральной ваты толщиной обычно всего 4 см, закрыт листом жести.


 
Реальный КПД вакуумного солнечного коллектора 70%.

    Эффективность вакуумного солнечного коллектора складывается из потерь на отражение и поглощение двойного стекла и теплопотерь, связанных с излучением тепла поглощающим слоем. Также неэффективность получается из-за того, что солнцем нагревается поверхность внутренней стеклянной колбы, от которой тепло передается через стекло (плохой теплопроводник) тонким алюминиевым пластинам на медную трубку.
    Значительны теплопотери возникают через изоляцию приемника коллектора, выполненную из минеральной ваты.

Работа зимой вакуумного и плоского солнечного коллектора

    Начальный КПД (оптический) вакуумных коллекторов ниже чем у плоских на 10-15%. Это подтверждается всеми исследованиями и сертификатами, да и продавцы вакуумных коллекторов не скрывают это. Поэтому при разнице нагреваемого теплоносителя и окружающего воздуха до 50°C эффективнее качественные плоские солнечные коллекторы. При большей разнице эффективность вакуумных по отношение к плоскими является незначительной, при этом световой день в зимний период уменьшается в разы. Поэтому общая годовая производительность тепловой энергии качественных плоских солнечных коллекторов будет выше.

  Любые солнечные коллекторы установленные под углом до 50-70° часто засыпаются снегом, после чего они не работают. Только у плоских солнечных коллекторов возможно реализовать режим принудительной оттайки, путем пропускания горячего теплоносителя несколько минут через солнечный коллектор. Выпавший снег растапливается из-за минимальных теплопотерь через стекло и соскальзывает.

  Также только плоские солнечные коллекторы могут монтироваться вертикально для получения максимум тепловой энергии в зимний период. Термосифонные системы (без электричества) с естественной циркуляцией антифриза круглогодичного использования возможны только с плоскими солнечными коллекторами.

  В зимний период вакуумные трубчатые коллекторы могут покрываться инеем на достаточно продолжительный период. Особенно это актуально для регионов с резким перепадом температур и высокой влажностью.

Улавливание и отражение солнечного света


 
Падение и отражение света от вакуумных трубок

    Благодаря цилиндрической форме трубок солнечные лучи падают на постоянную поверхность перпендикулярно к оси трубки, но при этом все остальные лучи, не перпендикулярные оси трубки, будут отражаться. Это означает что в течении дня получение энергии будет усредненное, в том числе во время прихода максимальной солнечной энергии. Плоские же солнечных коллекторы в период максимальной солнечной интенсивности 11.00-16.00 улавливают максимально возможное количество тепловой энергии. Отражение по вертикале (вдоль трубок) будет такое же как и у плоских солнечных коллекторов.


 
Реальный КПД солнечных коллекторов различных конструкций
в зависимости от разницы температуры коллектора и окружающей среды.

    При выборе солнечного коллектора любой конструкции необходимо учитывать их отличия, стоимость, реальный КПД, цели и климат использования. Идеальных конструкций нет! Доверять проектирование следует профессионалам, имеющим большой опыт монтажа и эксплуатации систем с надёжными солнечными коллекторами. Наши специалисты будут рады оказать Вам качественную помощь в решении задач солнечной энергетики и предоставить объективную консультацию.

3.1 Обзор плоских коллекторов

Плоские солнечные коллекторы, вероятно, являются наиболее фундаментальной и наиболее изученной технологией для систем горячего водоснабжения на солнечной энергии. Общая идея этой технологии довольно проста. Солнце нагревает темные плоские поверхности, которые собирают как можно больше энергии, а затем энергия передается воде, воздуху или другой жидкости для дальнейшего использования.

Это основные компоненты типичного плоского солнечного коллектора:

  • Черная поверхность — поглотитель падающей солнечной энергии
  • Стеклянное покрытие — прозрачный слой, который пропускает излучение к поглотителю, но предотвращает радиационные и конвективные потери тепла с поверхности
  • Трубки с теплоносителем для передачи тепла от коллектора
  • Опорная конструкция для защиты компонентов и удержания их на месте
  • Изоляция боковых сторон и дна коллектора для снижения тепловых потерь

Рисунок 3.1: Схема плоского солнечного коллектора с жидкой транспортной средой. Солнечное излучение поглощается черной пластиной и передает тепло жидкости в трубках. Теплоизоляция предотвращает потерю тепла при передаче жидкости; экраны уменьшают тепловые потери из-за конвекции и излучения в атмосферу

Кредит: Марк Федкин (с изменениями по Даффи и Бекман, 2013 г.)

Плоские системы обычно работают и достигают максимальной эффективности в диапазоне температур от 30 до 80 o C (Kalogirou, 2009), однако некоторые новые типы коллекторов, в которых используется вакуумная изоляция, могут достигать более высоких температур (до 100 ° C). o ° C).Благодаря введению селективных покрытий, температура застойной жидкости в плоских коллекторах достигает 200 o C.

Контрольный вопрос

— Какие типичные материалы используются для изготовления пластин-поглотителей и крышек остекления?

Мы частично обсудили выбор материалов и их свойства в Уроке 2. Тем не менее, мы рекомендуем вам взглянуть шире и ознакомиться с текущими нововведениями в конструкциях с плоскими пластинами. Для обсуждения в этом уроке вас попросят поделиться тем, что вы нашли во время поиска, и описать современные материалы, которые помогают повысить производительность коллекционеров.

Некоторые преимущества плоских коллекторов заключаются в том, что они:

  • Простота изготовления
  • Низкая стоимость
  • Улавливание как лучевого, так и рассеянного излучения
  • На постоянной основе (не требуется сложное оборудование для позиционирования или слежения)
  • Незначительное техобслуживание

Плоские коллекторы устанавливаются лицом к экватору (т. Е. На юг в северном полушарии и на север в южном полушарии).Оптимальный наклон коллекторной плиты близок к широте расположения (+/- 15 o ). Если применяется солнечное охлаждение, оптимальный угол установки составляет Широта — 10 o , чтобы солнечный луч был перпендикулярен коллектору в летнее время. Если используется солнечное отопление, оптимальный угол установки составляет Широта + 10 o . Однако было обнаружено, что для круглогодичного применения горячей воды оптимальный угол составляет Широта + 5 o , что обеспечивает несколько лучшую производительность зимой, когда горячая вода более необходима (Kalogirou, 2009)

Опции транспортной жидкости

Плоские пластинчатые коллекторы могут использовать перенос тепла жидкостью или воздухом.

Вода — один из распространенных вариантов жидкой жидкости из-за ее доступности и хороших тепловых свойств:

  • Имеет относительно высокую объемную теплоемкость
  • Несжимаемая (или почти несжимаемая)
  • Имеет высокую массовую плотность (что позволяет использовать для транспорта небольшие трубы и трубки)

Одним из недостатков воды является то, что она замерзает зимой, что может повредить коллектор или систему трубопроводов. Этого можно избежать, опустив воду из коллектора при низком потреблении солнечной энергии (ниже критического порога инсоляции).Датчики слива часто используются для контроля системы и обеспечения полного слива, поскольку замерзание воды в кармане может вызвать повреждение. Наполнение системы водой на следующее утро тоже не идеально. Возможные воздушные карманы в коллекторе могут быть проблемой, блокируя поток воды и снижая эффективность системы (Vanek and Albright, 2008).

Смеси антифризов можно использовать вместо чистой воды для решения вышеупомянутых проблем. Обычными компонентами антифриза являются этиленгликоль или пропиленгликоль.Эти химические вещества, смешанные с водой, требуют систем замкнутого цикла и надлежащей утилизации из-за токсичности. Номинальный срок службы антифриза вроде составляет около 5 лет, после чего его необходимо заменить.

Воздух может использоваться в качестве транспортной жидкости в некоторых конструкциях плоских коллекторов. Этот вариант лучше подходит для обогрева помещений или сушки сельскохозяйственных культур. Вентилятор обычно требуется для облегчения потока воздуха в системе и эффективного отвода тепла. Некоторые конструкции могут обеспечивать пассивное (без вентилятора) движение воздуха за счет тепловой плавучести.

Жидкости с фазовым переходом также можно использовать с плоскими коллекторами. Некоторые хладагенты входят в эту группу жидкостей. Они не замерзают, что устраняет проблемы, описанные выше для воды, и из-за их низкой точки кипения могут переходить от жидкости к газу при повышении температуры. Эти жидкости могут быть полезны в условиях, когда требуется быстрое реагирование на быстрые колебания температуры.

Коллекторное строительство

Ключевыми соображениями при проектировании плоского коллектора являются максимальное поглощение, минимизация потерь на отражение и излучение, а также эффективная теплопередача от пластины коллектора к жидкостям.Одним из важных вопросов является получение хорошей тепловой связи между пластиной абсорбера и заменами (трубами или каналами, содержащими теплоносители). Различные конструкции конструкции (показанные ниже) пытаются решить эту проблему.

Рисунок 3.2: Различные конструкции плоского коллектора в сборе. Цветовые коды: голубой — стеклянная крышка, синий — каналы для жидкости, черный — материал абсорбера, серый — изоляция. Некоторые конструкции (b, c) включают в себя каналы для жидкости в структуре пластины поглотителя, чтобы максимизировать теплопроводность между компонентами.Другие модификации (а, г) включают трубки и каналы, припаянные или приклеенные к пластине.

Кредит: Марк Федкин (с изменениями по Калогиру, 2009 г.)

В сборке пластина-канал могут использоваться различные методы крепления компонентов — термоцемент, припой, зажимы, зажимы, пайка, механические аппликаторы давления. Одним из факторов, влияющих на выбор метода сборки, является стоимость рабочей силы и материалов.

Далее мы рассмотрим передачу и баланс энергии внутри плоского коллектора.

Артикулы:
  • Kalogirou, S.A., Solar Energy Engineering , Elsevier, 2009
  • Ванек, Ф.М., и Олбрайт, Л.Д., Energy Systems Engineering , McGraw Hill, 2008.

3 Примеры солнечных коллекторов

Солнечные коллекторы — это устройства, улавливающие солнечное тепло для выполнения задач, в отличие от фотоэлектрических панелей, которые используют солнечный свет. Одним из распространенных способов использования солнечных коллекторов является обеспечение горячей водой жилых домов, но они также могут обеспечивать теплый воздух для отопления дома или даже перегревать материалы для выработки электроэнергии.Хотя существует множество различных конструкций солнечных коллекторов, они делятся на три большие категории.

Плоские коллекторы

Плоские солнечные коллекторы представляют собой самый простой тип, состоящий из прямоугольной коробки со стеклянной крышкой и теплопоглощающего нижнего слоя. Солнечный свет проходит через стекло, нагревая интерьер, а ряд труб или каналов позволяет воде или воздуху проходить через устройство и поглощать окружающее тепло. Неглазурованные плоские коллекторы исключают стекло и герметичную коробку и просто полагаются на солнечное тепло, нагревая сами трубы.Другой вариант — установленный на крыше резервуар для воды, окрашенный для поглощения солнечного тепла. Эти типы коллекторов лучше всего подходят для теплого климата, поскольку даже версия с герметичной коробкой позволяет собранному теплу легко уходить в холодный воздух.

Вакуумные трубчатые коллекторы

Для более холодного климата или приложений, требующих более высоких температур воды, вакуумная трубная система обеспечивает лучшую изоляцию. В этих коллекторах каждая труба проходит через герметичную стеклянную трубку без воздуха внутри.Это позволяет трубе функционировать как термос, сводя к минимуму передачу тепла от внутренней обогреваемой трубы к внешней среде. Вакуумные трубчатые коллекторы могут поддерживать температуру воды более чем на 50 градусов по Цельсию (122 градуса по Фаренгейту) выше температуры окружающей среды.

Солнечные концентраторы

Если вам нужна система, которая может постоянно обеспечивать очень горячую воду, лучше всего подойдет солнечный концентратор. В концентраторах используются зеркала для отражения и концентрации солнечной энергии на водопроводных трубах, что значительно увеличивает температуру воды внутри.Поскольку зеркала в солнечных концентраторах изгибаются для фокусировки солнечных лучей, они лучше всего работают, когда они направлены прямо на солнце, и часто включают системы слежения, чтобы следовать за солнцем по небу для максимальной экспозиции. Солнечные концентраторы распространены на крупных солнечных электростанциях, которые содержат большие поля зеркал в форме желобов, нагревающих сеть водопроводных труб для создания пара. Этот пар приводит в движение турбину, вырабатывая электричество.

Solar Towers

Одним из вариантов конструкции солнечного концентратора является солнечная башня.Вместо поля концентраторов, каждый из которых нагревает участок сети водопроводных труб, система солнечной башни использует поле зеркал, все фокусирующие свою энергию на одной центральной башне. Это повышает температуру в точке фокусировки до такой степени, что вместо воды в башне может содержаться твердое вещество, такое как соль, которая расплавляется под действием сильного тепла. Водяные трубы проходят через конструкцию, поглощая тепло от расплавленного вещества, а подаваемый пар приводит в действие турбину для выработки электроэнергии. Системы с расплавленной солью имеют значительное преимущество перед традиционными солнечными концентраторами, потому что соль остается достаточно горячей для образования пара еще долгое время после захода солнца.Это может позволить солнечной электростанции вырабатывать электричество 24 часа в сутки, а не бездействовать ночью.

В чем разница между активными и пассивными солнечными коллекторами? | Home Guides

Использование солнечного излучения для получения энергии — древняя концепция, но недавние опасения по поводу воздействия на окружающую среду сжигания ископаемого топлива сделали солнечную энергию горячей темой. Современные технологии солнечной энергетики используют тепло, генерируемое солнцем, для питания жилых и промышленных систем отопления и охлаждения за счет использования фотоэлектрических или фотоэлектрических панелей.Эти устройства, также известные как солнечные элементы, улавливают и преобразуют солнечную энергию в электрическую. То, как эта энергия собирается и распределяется, определяет разницу между активными и пассивными солнечными коллекторами.

Пассивная солнечная система

Пассивная солнечная система не требует механических устройств или использования традиционных источников энергии, кроме тех, которые необходимы для регулирования заслонок и других элементов управления, если таковые имеются. Классическими примерами базовых пассивных солнечных структур являются теплицы, солярии и солярии — когда солнечные лучи проходят через стеклянные окна, интерьер поглощает и сохраняет тепло.Моделирование этой концепции в вашем доме может сократить расходы на отопление вдвое по сравнению с отоплением того же дома традиционными способами без использования пассивной солнечной энергии (см. Ссылки 1). С точки зрения дизайна, успех пассивной солнечной системы зависит от ориентации и тепловой массы внешних стен конструкции, что означает их способность накапливать и перераспределять тепло (см. Ссылки 2).

Пассивные солнечные коллекторы

Пассивная солнечная система обычно использует окна, выходящие на юг, в качестве коллекторов для сбора солнечной энергии, хотя в некоторых системах могут также использоваться дополнительные фотоэлектрические панели.В любом случае цель состоит в том, чтобы перераспределить собранную энергию в соответствии с фундаментальным законом термодинамики, который гласит, что тепло перемещается от теплых областей и поверхностей к холодным (см. Ссылки 3). Самый простой способ передачи тепла от пассивных солнечных коллекторов — конвекция. Для иллюстрации представьте себе солярий с окнами на южной стене. Когда солнечные лучи проходят через стекло, тепло направляется в комнату. Затем он поднимается в области с более прохладным воздухом, включая другие помещения за пределами и выше.

Active Solar Design

Активные солнечные системы используют внешние источники энергии для питания воздуходувок, насосов и другого оборудования для сбора, хранения и преобразования солнечной энергии. Как только энергия солнца поглощается, она сохраняется для дальнейшего использования. Небольшие системы используются для обеспечения электроэнергией систем отопления и охлаждения в домах и других зданиях, в то время как большие системы могут обеспечивать электроэнергией целые сообщества (см. Ссылки 4).

Активные солнечные коллекторы

Солнечные коллекторы сложнее пассивных коллекторов как по конструкции, так и по механизму.Они состоят из плоских фотоэлектрических панелей, которые обычно устанавливаются и остаются неподвижными, хотя некоторые из них предназначены для отслеживания солнца в течение дня. В некоторых конструкциях несколько панелей соединяются вместе, образуя модули (см. Ссылки 4). Активные солнечные коллекторы содержат в качестве проводника воздух или жидкость. Те, которые используют воздух, называются «воздухосборниками», а жидкостные — «жидкостными коллекторами» (см. Ссылки 5). Усовершенствованная конструкция этих коллекторов делает активную солнечную систему отопления наиболее рентабельной с точки зрения снижения зависимости от традиционных источников энергии (см. Ссылки 5).

Ссылки

Биография писателя

Карин Майер — опытный обозреватель и автор очерков. С 1992 года ее работы публиковались в Mother Earth News, The Herb Quarterly, Better Nutrition и во многих других печатных и цифровых публикациях. Она также является автором пяти книг, опубликованных на шести языках.

Солнечная тепловая энергия | IPIECA

Последнее рассмотрение темы: 10 апреля 2013 г.
Сектора: Downstream, Upstream

Гелиотермическая технология может использоваться в нефтегазовой промышленности для выработки технологического тепла или пара.Коллекторы солнечной энергии передают солнечную энергию технологической жидкости (обычно воде, маслу или воздуху), которая используется напрямую (например, пар для повышения нефтеотдачи) или косвенно (например, тепло передается в теплообменнике другому технологическому потоку).

Для нагрева рабочей жидкости солнечным светом можно использовать несколько различных технологий. Коллекторы солнечной тепловой энергии различаются по своей рабочей температуре (низкая, средняя или высокая) и по их движению (неконцентрация или концентрация).Неконцентрирующие коллекторы (также называемые стационарными коллекторами) постоянно закреплены на месте и не отслеживают солнце. У них одинаковая или почти одинаковая площадь для улавливания и поглощения солнечного излучения; тогда как концентрирующие коллекторы отслеживают солнце и, как правило, имеют вогнутые отражающие поверхности, которые задерживают и фокусируют солнечное излучение на меньшей принимающей области (ссылка 1). В таблице 1 представлен обзор различных типов солнечных тепловых коллекторов.

Таблица 1: Обзор различных типов солнечных тепловых коллекторов

Движение Коллектор Тип Тип абсорбера Коэффициент концентрации Ориентировочный диапазон температур (° C)
Стационарный Плоский коллектор Квартира 1 30-90
Вакуумный трубчатый коллектор трубчатый 1 50-200
Составной параболический желоб трубчатый 1-5 60-240
Одноосный Параболический желоб трубчатый 60-90 60-390
Линейный Френель трубчатый 50-170 150-450
Двухосное слежение Блюдо параболическое Путевая точка 100-1000 100-900
Центральный ресивер Путевая точка 100-1000 300-900

Если требуется горячая вода более низкой температуры, можно использовать плоские пластинчатые коллекторы (FPC) или вакуумные трубчатые коллекторы (ETC).FPC имеют пластину с высокой абсорбционной способностью, которая отводит тепло к трубкам, по которым проходит жидкий теплоноситель. ETCs оснащены тепловыми трубками, которые поглощают солнечное излучение и передают тепло жидкости (например, метанол) внутри труб. Жидкость испаряется, и пар поднимается по трубе, где конденсируется на конце, выделяя скрытое тепло. Тепловые трубки помещены в герметичные трубки, которые уменьшают потери тепла и позволяют коллекторам работать при более высоких температурах, чем плоские пластинчатые коллекторы (Ссылка 1).

Температуры, превышающие те, которые достигаются с помощью неконцентрирующих коллекторов, могут быть достигнуты с использованием концентрирующих коллекторов, поскольку большое количество солнечной радиации концентрируется на относительно небольшой площади сбора. Коллекторы-концентраторы делятся на коллекторы с одноосным отслеживанием и двухосные коллекторы с отслеживанием (Ссылка 1). Коллекторы с параболическим желобом (PTC) и линейные отражатели Френеля (LFR) могут иметь пиковую мощность от 1 МВт до нескольких сотен МВт тепл. Если потребности в технологическом тепле превышают 450 ° C, единственными реальными технологиями являются центральная приемная система (полевой коллектор гелиостата), размер которой может варьироваться от 30 до 560 МВт тепл на градирню при пиковой мощности, или тарельчатая система (для небольших приложений). .

Рисунок 1: Изображения высокотемпературных солнечных коллекторов. Слева направо: параболический желоб в Национальном центре солнечной энергии, Израиль; Линейная рефлекторная система Френеля компании Areva Solar; и центральная приемная система eSolar. Фотографии с сайта www.wikipedia.org.

Накопитель тепла также может использоваться для каждой из этих технологий, чтобы отделить поглощение солнечной энергии от передачи тепла технологической жидкости. Для нагрева горячей воды модуль аккумулирования тепла будет состоять из резервуара для воды, очень похожего на резервуар бытового водонагревателя.Для систем с температурами до 550 ° C расплав нитратной соли можно использовать в качестве теплоносителя для хранения ощутимой энергии (Ссылка 2).

Более подробную информацию об этих технологиях можно найти по следующим адресам:

Технологическая зрелость

Имеется в продаже ?: Есть
Жизнеспособность на шельфе:
Модернизация Браунфилда ?: Есть
Многолетний опыт работы в отрасли: 5-10

Примеры проектов в отрасли

  • 21Z Solar Project, McKittrick, CA и Petroleum Development Oman — закрытый параболический желоб
  • Coalinga Project, Coalinga, CA — гелиостатическое поле

Дополнительные примечания

Коммерчески доступные технологии: стационарный коллектор; параболический желоб; линейный отражатель Френеля; и центральный ресивер

Ключевые показатели

Область применения:

Потенциально до 500+ МВт тепловой мощности
КПД: Зависит от технологии и области применения
Ориентировочные капитальные затраты: Сильно зависит от технологии и области применения (установленная солнечная тепловая энергия может варьироваться от 83 долларов США / м2 до 1200 + долларов США / м2 (затраты 2005 г.).NB: где m2 — площадь солнечной батареи.
Ориентировочные операционные расходы: Порядка 1-2% от капвложений в год
Описание типового объема работ:

Установка солнечного коллектора для выработки тепла для производства пара или нагрева воды обычно связана со следующими задачами:

  • Сбор данных о солнечных ресурсах
  • Проектирование солнечного поля
  • Подготовка земли
  • Закупка и строительство солнечного полевого оборудования
  • Полевые трубопроводы для интеграции с существующей системой распределения тепла / пара
  • Программное обеспечение системы управления
  • Чистка и обслуживание солнечного коллектора

Решение драйверов

Технический: Площадь основания: для крупногабаритной установки требуется большая площадь плоского непрерывного пространства.
Прерывистость: солнечные ресурсы непостоянны, поэтому для бесперебойной генерации пара должны быть доступны накопители или вторые средства генерации пара.
Коммерческий: Надбавка за производство пара из возобновляемых источников: могут быть доступны государственные льготы.
Стоимость топлива в значительной степени определяет стоимость пара, вырабатываемого при сгорании, по сравнению с паром, генерируемым солнечными тепловыми системами. В случаях, когда затраты на топливо высоки и где есть государственные стимулы для использования солнечной энергии, вероятно, будет больше подходить к использованию солнечной энергии.
Доступный солнечный свет (инсоляция): сильно влияет на общую стоимость пара.
Участок с высокой прямой нормальной освещенностью и большой площадью доступного пространства (например, в проекте Chevron Coalinga используются зеркала на площади более 65 акров для получения 29 мегаватт тепловой энергии (МВт тепл.) Пиковой выработки пара — см. Пример из практики ниже).
Окружающая среда: Дизайн для погодных условий: ветер, штормы / песчаные бури, зима (например, минусовая температура) и другие суровые погодные условия — это может увеличить стоимость установки и обслуживания.

Альтернативные технологии

Типичной базовой альтернативой производству пара / электроэнергии с помощью солнечной энергии является производство пара или когенерация тепла и электроэнергии путем сжигания природного газа или других ископаемых видов топлива.

Операционные проблемы / риски

Небольшие системы горячего водоснабжения обычно представляют собой установки с относительно низким уровнем риска, тогда как большие высокотемпературные системы могут нести более высокие риски в зависимости от области применения.

Некоторые общие технологические риски включают:

  • Неточные данные об освещенности или вариации местной погоды за несколько лет
  • Экстремальные погодные явления или другие условия окружающей среды (например,грамм. высокая концентрация твердых частиц во время штормов в некоторых областях применения, например, в условиях пустыни)
  • Конфликт с экологическими или культурными группами, выступающими против нарушения желаемого участка
  • Проблемы с качеством воды для систем пара и горячего водоснабжения
  • Долгосрочное влияние перемежаемости на баланс предприятия и способность резервной системы контроля тепловой нагрузки реагировать на эти колебания

Некоторые потенциальные риски, связанные с применением новых технологий, включают:

  • Непроверенная долгосрочная демонстрация технологии в успешных приложениях
  • Быстро развивающаяся технология
  • Финансирование может быть затруднено, потому что кредитные организации воспринимают более высокий риск


Примеры из практики

Демонстрационный проект солнечной тепловой энергии, Калифорния (Ссылка 16)

Проект солнечной тепловой энергии Chevron Coalinga, введенный в эксплуатацию в 2011 году, производит пар для увеличения нефтеотдачи (МУН) в Калифорнии.В проекте используется технология гелиостата от BrightSource Energy, Inc. для отражения солнечного света от 3822 гелиостатов (смонтированных зеркальных систем), сфокусированных на солнечной башне высотой 327 футов для генерации пара.

Базовый сценарий: Базовый проект по производству пара — парогенератор, работающий на природном газе, с эквивалентной мощностью.

Вид деятельности по проекту энергоэффективности: Установить проект солнечной тепловой энергии с использованием гелиостатической технологии для производства пара мощностью 29 МВт тепл. Для замещения эквивалентного количества пара, генерируемого природным газом.


Технические характеристики:

  • Пиковая выработка пара: 29 МВтт (тепловые мегаватты)
  • Коэффициент мощности 27%
  • Эквивалент электрической мощности: прибл. 13 МВт (электрическая мегаватт)
  • Высота башни: 327 футов
  • Количество гелиостатов / зеркал: 3822 гелиостата; 7644 зеркала
  • Размер помещения: 100 акров, с зеркалами, покрывающими 65 акров

Ориентировочная экономия:

  • Экономия во многом зависит от стоимости природного газа.При максимальной производительности пара в 29 МВт тепл. Экономия природного газа для производства пара оценивается примерно в 120 млн БТЕ / час или 120 млн кубических футов в час. Среднегодовая производительность будет ниже.
  • Полученный пар будет производиться без выбросов, не считая выбросов, связанных со строительством и обслуживанием оборудования. Сокращение выбросов парниковых газов (ПГ) по сравнению с производством пара на природном газе составит порядка 6 тонн эквивалента CO 2 в час.

Артикул:

  1. Калогиру, С.А. (2003). Солнечные тепловые коллекторы и их применение. В «Прогресс в области энергетики и науки о горении», 30 (2004), 231–295.
  2. Energy Alternatives India (EAI) (веб-сайт): «Концентрированная солнечная энергия».
  3. Weiss, W. et al. (2005). «Солнечное отопление во всем мире». Программа солнечного отопления и охлаждения МЭА, внутренний документ 2005 г.
  4. NREL (веб-сайт): «TroughNet» — Данные электростанции с параболическим желобом в США ».Национальная лаборатория возобновляемых источников энергии.
  5. NREL (веб-сайт): «Проекты линейных отражателей Френеля
  6. Tubosol PE2, пресс-релиз, 4 мая 2011 г .: «Крупнейшая в мире солнечная электростанция Френеля достигла финансового закрытия».
  7. Areva Group (веб-сайт): «Светлое будущее для концентрированной солнечной энергии (CSP)».
  8. NREL (веб-сайт): «Power Tower Projects».
  9. ДеЛеон, П. и Браун, К.С. (1982). Применение солнечных технологий для увеличения нефтеотдачи. В «Источниках энергии», т.6, Issue 1–2, 1982.
  10. Горман Д.Н. (1987). «Оценка центральных приемников солнечных тепловых систем повышения нефтеотдачи». База данных Energy Citations (ECD), 1 июля 1987 г.
  11. Холл, К. (2011). «Противоположности притягиваются: нефтяные скважины, работающие на солнечной энергии». EnergyDigital — Глобальный энергетический портал (веб-сайт), 1 декабря 2011 г.
  12. GlassPoint (веб-сайт): «Самая низкая стоимость Steam EOR».
  13. Хелман, К. (2011). Масло от солнца. В журнале «Форбс», 25 апреля 2011 г.
  14. Oil and Gas Journal (веб-сайт): «PDO для пилотного увеличения нефтеотдачи солнечной энергии в Омане».4 августа 2011г.
  15. Reuters (веб-сайт): «GlassPoint представляет первый коммерческий проект по повышению нефтеотдачи с помощью солнечной энергии». Пресс-релиз, 24 февраля 2011 г.
  16. Гуссенс, Э. (2011). «Chevron использует солнечно-термический пар для добычи нефти в Калифорнии». Bloomberg (веб-сайт), 3 октября 2011 г.
  17. Abengoa Solar — Солнечная энергия для устойчивого мира (веб-сайт): Промышленные приложения
  18. Areva Group (веб-сайт): «Areva и Technip работают над солнечными тепловыми системами (CSP) для нефтегазовой промышленности».Пресс-релиз, 24 апреля 2012 г.
  19. IPCC (2011). «Возобновляемые источники энергии и смягчение последствий изменения климата: специальный доклад Межправительственной группы экспертов по изменению климата». Издательство Кембриджского университета, Кембридж (Великобритания) и Нью-Йорк (США).

Солнечные коллекторы, разделяющие солнечный свет, более эффективны, исследование показало | Имперские новости

Согласно новому исследованию, солнечные коллекторы, разделяющие солнечный свет, значительно более эффективны при выработке комбинированной тепловой и электрической энергии.

Фотоэлектрические-тепловые солнечные коллекторы с разделением спектра — это новая технология, используемая для сбора солнечной энергии, которая работает, направляя различные части солнечного спектра на подходящие приемники. Затем эта энергия преобразуется одновременно в электричество и тепло.

«Наше исследование имеет большое значение, потому что оно дает основу для понимания спектрально-разделенных фотоэлектрических-тепловых коллекторов, а также дает практическое руководство по применению этих знаний.»Д-р Ган Хуанг

Солнечная энергия — один из самых распространенных возобновляемых источников энергии, и эффективные солнечные технологии обладают огромным потенциалом для решения серьезной проблемы роста глобального спроса на энергию при одновременном сокращении связанных выбросов.

В исследовании, опубликованном сегодня в Light: Science & Applications, исследователи из Лаборатории процессов чистой энергии обнаружили, что при оптимизации фотоэлектрические-тепловые солнечные коллекторы с разделением спектра преобразуют более широкий диапазон солнечного спектра в полезную энергию, которая в противном случае была бы потеряна. в окружающую среду.

Это исследование демонстрирует возросший потенциал солнечных технологий в приложениях чистой энергии и продвигает их использование в промышленности и дома.

Платформы для оптимизации эффективности

Фотоэлектрические-тепловые коллекторы с разделением по спектру представляют собой многообещающую новую технологию со значительно улучшенным потенциалом для эффективного сбора солнечной энергии. В то время как традиционные фотоэлектрические (PV) панели и солнечно-тепловые коллекторы вырабатывают электроэнергию и тепловую энергию соответственно, фотоэлектрические-тепловые солнечные коллекторы с разделением по спектру производят и доставляют оба типа энергии одновременно без снижения эффективности.

Однако в отрасли нет единого мнения относительно их оптимальной конструкции, условий эксплуатации и конечного потенциала.

Впервые исследователи Имперского колледжа Лондона создали структуру, основанную на сочетании фотоэлектрических, термодинамических и тепловых принципов для технологии. В нем содержится подробное руководство по выбору оптимальных конструкций, материалов фотоэлементов и спектрально-разделительных фильтров, которые можно использовать для прогнозирования их характеристик и определения пределов эффективности.Это позволит дизайнерам адаптировать такие коллекционеры к их предполагаемому использованию.

Команда обнаружила, что выбор фотоэлектрического материала и спектрально-разделяющего фильтра имеет наиболее значительное влияние на эффективность этих коллекторов. Более того, их работа показывает, что различные типы фотоэлементов и фильтров лучше подходят для определенных сред.

Чтобы помочь разработчикам технологий, разработчикам, установщикам и операторам, команда преобразовала свои данные в подробные карты производительности, которые можно использовать для достижения наилучшей общей производительности.

Солнечные энергетические технологии нового поколения

Ведущий автор д-р Ган Хуанг сказал: «Наше исследование имеет большое значение, потому что оно дает основу для понимания спектрально-разделенных фотоэлектрических-тепловых коллекторов, а также дает практическое руководство по применению этих знаний.

«Эти солнечные коллекторы могут направлять различные части солнечного спектра на фотоэлементы для выработки электроэнергии и на тепловой поглотитель для выработки тепла, тем самым максимизируя их общее использование солнечной энергии и эффективность преобразования.”

«Эта технология может стать более ресурсоэффективным и компактным решением для использования солнечной энергии, что будет иметь жизненно важное значение при переходе к экологически чистой энергии будущего». Профессор Христос Маркидес

Глава Лаборатории процессов чистой энергии и главный исследователь профессор Христос Маркидес добавил: «Мы продемонстрировали, что, если они спроектированы и эксплуатируются надлежащим образом, фотоэлектрические-тепловые коллекторы с разделением спектра всегда имеют более высокий КПД, чем любая комбинация обычных солнечных фотоэлектрических панелей и -тепловые коллекторы.

«Это важный вывод, поскольку он предполагает, что эта технология может стать более ресурсоэффективным и компактным решением для использования солнечной энергии, что будет иметь жизненно важное значение при переходе к будущему экологически чистой энергии, особенно в стесненные пространства ».

Следующие шаги

Используя результаты этого исследования, Лаборатория процессов чистой энергии фокусируется на разработке высокопроизводительных конструкций и современных оптических материалов для солнечных коллекторов с разделением спектра, которые предназначены для использования широким кругом пользователей в различных приложениях и в разную погоду условия в разных регионах мира.

«Пределы эффективности концентрирования гибридных фотоэлектрических-тепловых (PV-T) солнечных коллекторов и систем с разделением спектра» Ган Хуанг, Кай Ван и Христос Н. Маркидес опубликованы в Light: Science & Applications.

Эта работа была поддержана Британским исследовательским советом по инженерным и физическим наукам (EPSRC) (номера грантов EP / M025012 / 1 и EP / R045518 / 1) и Imperial College London Impact Acceleration Account (номер гранта EP / R511547 / 1). ).Авторы также выражают благодарность британской компании Solar Flow Ltd.

.

Солнечные коллекторы Вопросы и ответы

Этот набор вопросов и ответов с множественным выбором солнечной энергии посвящен теме «Солнечные коллекторы — 1».

1. Что такое солнечный коллектор?
a) Система сбора тепла путем поглощения солнечного света
b) Система сбора дождевой воды с использованием солнечного света
c) Система сбора электроэнергии с использованием солнечного света
d) Устройство для отражения солнечного света назад
Посмотреть ответ

Ответ: a
Пояснение: Солнечный коллектор — это система, собирающая тепло за счет поглощения солнечного света и использующая его для различных целей.Это не система сбора дождевой воды и электричества. Однако его можно использовать для выполнения таких процессов.

2. Какова площадь проема солнечного коллектора?
a) Площадь системы
b) Площадь приемника, которая принимает солнечное излучение
c) Площадь, занимаемая системой после установки
d) Площадь поперечного сечения приемника
Просмотр ответа

Ответ: b
Пояснение: Площадь апертуры приемника — это та область, которая принимает солнечное излучение.Он не обязательно должен быть таким же, как и весь размер приемника. Это не то же самое, что площадь, занимаемая системой после установки.

3. Площадь отверстия солнечного коллектора примерно равна _______
a) Площадь охлаждающей жидкости
b) Площадь генератора
c) Площадь абсорбера
d) Площадь системы
Просмотр ответа

Ответ: c
Пояснение: В солнечном коллекторе, площадь апертуры примерно равна площади поглотителя. Это позволяет поглощать (почти) весь солнечный свет, падающий на область апертуры.

4. Из чего состоит плоский коллектор?
a) Плоская коробка, пластина с отражающим покрытием и проходами для циркуляции жидкости, непрозрачная крышка, циркулирующая жидкость
b) Плоская коробка, темная пластина с проходами для циркуляции жидкости, непрозрачная, циркулирующая жидкость
c) Плоская коробка, пластина темного цвета с проходами для циркуляции жидкости, прозрачная крышка
d) Плоская коробка, пластина темного цвета, проходы для циркуляции жидкости, прозрачная крышка, циркулирующая жидкость
Посмотреть ответ

Ответ: d
Пояснение: плоский солнечный коллектор состоит различных компонентов.Во-первых, он состоит из плоского ящика или корпуса, в котором помещается вся установка. Пластина темного цвета снабжена проходами для циркуляции жидкости и прозрачной крышкой. Наконец, циркулирующая жидкость, протекающая через всю установку.

5. Почему в плоском коллекторе используется прозрачная крышка?
a) Чтобы максимально увеличить пропускание падающего солнечного света в коробку
b) Чтобы свести к минимуму передачу падающего солнечного света в коробку
c) Чтобы полностью отразить падающий солнечный свет обратно
d) Чтобы гарантировать частичное пропускание падающего солнечного света в короб
Посмотреть ответ

Ответ: a
Объяснение: В плоском пластинчатом коллекторе используется прозрачная крышка.Это потому, что он максимизирует передачу падающего солнечного света внутрь коробки, тем самым собирая максимальное количество солнечного света для получения тепловой энергии.

Реклама: Присоединяйтесь к Sanfoundry @ Linkedin

6. Что из следующего обычно используется в качестве циркулирующей жидкости в тропическом и субтропическом климате?
a) Смесь этиленгликоля и воды
b) Вода
c) Смесь пропиленгликоля и воды
d) Глицерин
Посмотреть ответ

Ответ: b
Пояснение: Вода используется в качестве циркулирующей жидкости в тропических и суб- тропический климат.Это потому, что он обладает хорошими охлаждающими свойствами. Смесь воды с этиленгликолем или глицерином или пропиленгликолем не используется в качестве охлаждающей жидкости в тропическом и субтропическом климате.

7. Что из перечисленного обычно используется в качестве циркулирующей жидкости в условиях холодного климата?
a) Жидкая двуокись углерода
b) Вода
c) Смесь пропиленгликоля и воды
d) Жидкий азот
Посмотреть ответ

Ответ: c
Пояснение: В условиях холодного климата раствор антифриза, как смесь воды с пропиленгликолем или этиленгликоль или глицерин используются в качестве охлаждающих жидкостей.Жидкая двуокись углерода, вода и жидкий азот не используются в качестве хладагентов в условиях холодного климата.

8. Почему антифризы (антифризы с водой) используются в качестве охлаждающих жидкостей в условиях холодного климата?
a) Для увеличения точки кипения воды
b) Для уменьшения точки кипения воды
c) Для увеличения точки замерзания воды
d) Для уменьшения точки замерзания воды
Посмотреть ответ

Ответ: d
Пояснение: используется раствор антифриза в качестве охлаждающих жидкостей в условиях холодного климата.Это связано с тем, что они снижают температуру замерзания воды, предотвращая ее затвердевание в лед.

9. Добавление антифриза в воду _________
a) увеличивает его долговечность в качестве охлаждающей жидкости
b) снижает его долговечность в качестве охлаждающей жидкости
c) превращает воду в охлаждающую жидкость
d) предотвращает действие воды в качестве охлаждающей жидкости
Просмотреть ответ

Ответ: a
Пояснение: Добавление антифриза в воду увеличивает ее стойкость в качестве охлаждающей жидкости. Это потому, что он снижает температуру замерзания воды и предотвращает ее превращение в лед.

10. Что из перечисленного является циркулирующей жидкостью в откачиваемых плоских солнечных коллекторах?
a) Вода
b) Пар
c) Азот
d) Водород
Посмотреть ответ

Ответ: b
Пояснение: Вакуумные плоские солнечные коллекторы являются более новой технологией. Он использует пар в качестве циркулирующей жидкости. Азот и водород не используются в качестве циркулирующей жидкости. Вода в основном используется в плоских коллекторах.

11. Вакуумные плоские солнечные коллекторы относятся к типу _______
a) концентрирующих коллекторов
b) фотоэлектрических технологий
c) неконцентрирующих коллекторов
d) солнечных батарей
Посмотреть ответ

Ответ: c
Объяснение: эвакуированные плоские- пластинчатые солнечные коллекторы — это разновидность неконцентрирующих коллекторов.Солнечные перегонки и фотоэлектрические технологии не являются солнечными коллекторами.

12. Что из перечисленного используется в качестве поглотителей в вакуумных солнечных коллекторах?
a) Углеродные трубки
b) Деревянные или металлические трубки
c) Пластиковые или стеклянные трубки
d) Металлические или стеклянные трубки
Посмотреть ответ

Ответ: d
Пояснение: Металлические или стеклянные трубки используются в качестве поглотителей в солнечных батареях с вакуумными трубками. коллекционеры. Дерево и пластик являются теплоизоляторами и, следовательно, не могут использоваться для создания проходов для теплоносителя циркулирующей жидкости.

13. Что такое тепловая трубка?
a) Теплопередающее устройство
b) Тепловая труба
c) Тепловая труба
d) Теплонасосное устройство
Посмотреть ответ

Ответ: a
Объяснение: Тепловая труба — это теплопровод. передаточное устройство. Он сочетает в себе принципы теплопроводности и фазового перехода для эффективного переноса тепла между двумя твердыми поверхностями.

14. Для большей эффективности солнечные коллекторы не покрывают свою прозрачную крышку антибликовым покрытием.
a) Верно
b) Неверно
Посмотреть ответ

Ответ: b
Пояснение: Для повышения эффективности солнечные коллекторы покрывают свою прозрачную крышку антибликовым покрытием. Антибликовое покрытие значительно снижает количество отражений. Таким образом увеличивается количество собираемого солнечного света.

15. В солнечных коллекторах с вакуумными трубками используется стеклянная трубка, окружающая абсорбер с высоким вакуумом.
a) Верно
b) Неверно
Посмотреть ответ

Ответ: a
Пояснение: В солнечных коллекторах с вакуумными трубками используется стеклянная трубка для окружения абсорбера с высоким вакуумом.Это используется для эффективного сопротивления атмосферному давлению и снижения кондуктивных и конвективных потерь.

Sanfoundry Global Education & Learning Series — Солнечная энергия.

Чтобы практиковать все области солнечной энергии, представляет собой полный набор из 1000+ вопросов и ответов с несколькими вариантами ответов .

Примите участие в конкурсе сертификации Sanfoundry, чтобы получить бесплатную Почетную грамоту. Присоединяйтесь к нашим социальным сетям ниже и будьте в курсе последних конкурсов, видео, стажировок и вакансий!

Как работают солнечные коллекторы с вакуумной трубкой?

Введение в вакуумный трубчатый коллектор


Вакуумный или вакуумный трубчатый коллектор состоит из ряда рядов параллельных прозрачных стеклянных трубок, подключенных к коллекторной трубе, где теплоноситель (обычно 50% пропиленгликоля) циркулирует и поглощает выделяемое тепло трубками.Эти стеклянные трубки имеют цилиндрическую форму. Следовательно, угол падения солнечного света всегда перпендикулярен теплопоглощающим трубкам, что позволяет этим коллекторам работать хорошо даже при слабом солнечном свете, например, когда он ранним утром или поздно днем, или когда он затенен облаками.
Вакуумные трубчатые коллекторы особенно полезны в регионах с холодной, пасмурной и зимней погодой (большая часть Канады и северная часть США).

Итак, как работают солнечные вакуумные трубчатые коллекторы?

Вакуумные трубчатые коллекторы состоят из одного или нескольких рядов параллельных прозрачных стеклянных трубок, поддерживаемых на раме.Каждая отдельная трубка имеет диаметр от 1 дюйма (25 мм) до 3 дюймов (75 мм) и от 5 футов (1500 мм) до 8 футов (2400 мм) в длину в зависимости от производителя. Каждая трубка состоит из толстой стеклянной внешней трубки и более тонкой внутренней стеклянной трубки (называемой «двойной стеклянной трубкой») или «трубки термоса», которая покрыта специальным покрытием, поглощающим солнечную энергию, но препятствующим потерям тепла. Трубки изготовлены из боросиликатного или натриево-кальциевого стекла, которое прочно, устойчиво к высоким температурам и имеет высокий коэффициент пропускания солнечного излучения.

Внутри каждой стеклянной трубки плоское или изогнутое алюминиевое или медное ребро прикреплено к металлической тепловой трубке, проходящей через внутреннюю трубку. Ребро покрыто селективным покрытием, которое передает тепло жидкости, циркулирующей по трубе. Эта герметичная медная тепловая трубка передает солнечное тепло посредством конвекции своего внутреннего теплоносителя к «горячей лампе», которая косвенно нагревает медный коллектор в напорном баке.

Все эти медные трубы подключены к общему коллектору, который затем подключается к резервуару для хранения, таким образом нагревая горячую воду в течение дня.Затем горячую воду можно использовать ночью или на следующий день благодаря изоляционным свойствам бака.

Изоляционные свойства вакуума настолько хороши, что, хотя температура внутренней трубки может достигать 150 ° C, внешняя трубка холоднее на ощупь. Это означает, что водонагреватели с вакуумными трубками могут работать хорошо и могут нагревать воду до довольно высоких температур даже в холодную погоду, когда плоские пластинчатые коллекторы работают плохо из-за потерь тепла.

Однако недостатком является то, что они могут быть намного дороже по сравнению со стандартными коллекторами с плоскими пластинами.Солнечные коллекторы с вакуумированными трубками хорошо подходят для коммерческого и промышленного нагрева горячей воды и могут быть эффективной альтернативой плоским пластинчатым коллекторам для отопления жилых помещений, особенно в районах, где часто бывает облачно.

Вакуумные трубчатые коллекторы в целом более современные и более эффективные по сравнению со стандартными плоскими коллекторами, поскольку они могут извлекать тепло из воздуха во влажные пасмурные дни и не нуждаются в прямом солнечном свете для работы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *