Схемы соединения обмоток: Схемы соединений обмоток трансформатора | Полезные статьи

Схемы соединений обмоток трехфазных трансформаторов

Подробности
Категория: Практика
  • трансформатор
  • схемы
  • обмотки

При соединении обмоток трехфазных трансформаторов как двухобмоточных, так и трехобмоточных применяют различные схемы соединения. Однако в силовых трансформаторах как повышающих, так и понижающих, главных образом применяются схемы соединения в звезду, треугольник и зигзаг—звезду. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН и СН— в звезду с выведенной нейтралью (Y0), а для обмоток НН — в треугольник (А).
ГОСТ 12022-66 предусматривает для трансформаторов мощностью 25, 40, 63 и 100 кВА с ПБВ (с переключением ответвлений обмотки трансформатора без возбуждения — т. е. после отключения всех обмоток трансформатора от сети) и для трансформаторов мощностью 63, 100, 160 и 250 кВА с ПБВ и РПН (с регулированием напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой при следующем сочетании напряжений па стороне ВН и НН (кВ)  на стороне обмотки низшего напряжения соединение в зигзаг—звезду.


Соединение в зигзаг — звезду дает возможность при несимметрии нагрузки на стороне НН сглаживать на стороне ВН эту неравномерность. Кроме того, схема зигзага допускает иметь три напряжения, например 127, 220 и 380 е.
Другие схемы соединений обмоток для силовых трансформаторов применяются крайне редко. Область применения таких схем ограничивается трансформаторами специального назначения (электропечными, для питания ртутных выпрямительных установок, для преобразования частоты, числа фаз переменного тока, электросварочными и др.).
а) Соединение обмоток в звезду
Если соединить концы или начала обмоток трех фаз вместе, то получится соединение в звезду. На рис. 3,а показаны обмотки НН, соединенные в звезду. В нулевой точке соединены все концы обмоток у, z, а к началам а, Ьу с— подводится напряжение от трехфазной сети или генератора. На рис. 3,6 показано то же соединение обмоток НН в звезду, но только в нулевую точку соединены другие концы обмоток, которые прежде присоединялись к сети.
При независимой друг от друга работе трансформаторов подобное «переворачивание» одной из обмоток, соединенной в звезду, не имеет значения, по параллельная работа таких трансформаторов, как это будет доказано далее, невозможна. В звезду могут быть соединены различные обмотки трансформатора как ВН и СН, так и НН. Нулевая точка звезды может быть выведена на крышку трансформатора (рис. 3,б).
По схеме звезда или звезда с выведенной нулевой точкой соединяются обычно обмотки ВН как повышающих, так и понижающих трансформаторов различной мощности.

Рис. 3. Соединение обмотки НН в звезду.
а — одна схема соединения; б — другая схема соединения; в — соединение в звезду с выведенной нулевой точкой; г — векторная диаграмма линейных э. д с.
Обмотки ВН при напряжениях 110 кВ и выше предпочтительно соединять в звезду с выведенной нулевой точкой, что дает возможность заземления нейтрали. При этом можно выполнить один конец каждой из фаз, прилегающий к нейтрали, с пониженной изоляцией.
Обмотки СН соединяются большей частью по схеме Y0.
Обмотки НН соединяются в звезду с выведенной нулевой точкой у понижающих трансформаторов тогда, когда напряжение этой обмотки 230 или 400 в при мощностях до 560 кВА. В звезду без выведения нулевой точки обмотки НН соединяются крайне редко, например, у понижающих трансформаторов мощностью 1 000—5 600 кВА при сочетании напряжений обмоток ВН и НН 10 000/6 300 е.
Обычно обмотки НН повышающих трансформаторов, а также большей части понижающих мощных соединяются в треугольник.
Векторная диаграмма линейных э. д. с. для соединения обмоток в звезду строится следующим образом. Откладываем в масштабе вектор ах (рис. 3,г). Так как мы знаем, что концы обмоток л*, //, г электрически соединены, то из точки х под углом 120° к ах откладываем в том же масштабе вектор by. Далее из точки у под углом 120° к вектору by откладываем вектор сг.
При соединении обмотки в звезду с выведенной пулевой точкой можно получить два напряжения (фазное и лилейное). Если измерять напряжение между нулем и какой-либо фазой, то получим напряжения, называемые фазными ((Уф). На рис. 3,г они изображены векторами ха, yb и гс.
Напряжения, измеренные между фазами а и ft, b и с, с и а, называются линейными (междуфазными) напряжениями (U). Эти напряжения па рис. 5-3,г изображены в масштабе ab, be и са. Так как в треугольнике abx угол между векторами ха и yb равен 120°, то зависимость между линейным и фазным напряжениям  будет U = = Uфv3 , т. е. линейное напряжение в v3 раз больше фазного. Если трансформатор, обмотки НН которого включены в звезду, имеет линейное напряжение 220 в, то фазное напряжение будет:

б) Соединение обмоток в треугольник
Если соединить конец фазы а (точку х) с началом фазы с, конец фазы с (точка z) с началом фазы b и конец фазы b (точка у) с началом фазы а, то получится соединение в треугольник (рис. 4,а). Соединение в треугольник можно осуществить (рис. 4,6) иначе, соединяя конец фазы а с началом фазы b, конец фазы b с началом фазы с и конец фазы с с началом фазы а.
Векторная диаграмма линейных э. д. с. при соединении обмоток в треугольник по схеме рис. 4,а будет равносторонним треугольником рис. 4,в и г. При соединении в треугольник фазные напряжения будут равны линейным.
В мощных трансформаторах принято одну из обмоток всегда соединять в треугольник. Делается это по следующим соображениям:
Как известно, намагничивающий ток трансформатора имеет несинусоидальную форму, т. е. содержит высшие гармонические. Наибольший удельный вес имеет третья гармоническая. Если все обмотки трансформатора соединить в звезду, то третья гармоническая в намагничивающем токе образоваться не может, так как она будет направлена во всех фазах одинаково: (3 • 120° = 360° = = 0°) и поэтому форма кривой фазного напряжения исказится, что может привести к нежелательным явлениям в эксплуатации. По этим соображениям принято одну из обмоток обязательно соединять в треугольник. Если же почему-либо требуется построить мощный двухобмоточный трансформатор или автотрансформатор с соединением обмоток звезда — звезда (например, трехфазный автотрансформатор), то он снабжается дополнительной третьей обмоткой, соединенной в треугольник, которая в некоторых случаях может даже не иметь внешних выводов.


Рис. 4. Соединение обмоток НН в треугольник.
а — первая схема соединения обмоток в треугольник, б — вторая схема соединения обмоток в треугольник; в — вектора линейных э. д. с фаз a, b и с; г —векторная диаграмма линейных э д с

Обычно в треугольник соединяется обмотка низшего напряжения.
В мощных трансформаторах номинальный ток обмотки НН часто составляет несколько тысяч ампер и конструктивно бывает легче выполнить соединение обмотки в треугольник, так как фазный ток при той же мощности получается в v 3 раз меньшим, чем при соединении в звезду.
В треугольник соединяются обмотки НН всех повышающих и понижающих двухобмоточных и трехобмоточных трехфазных трансформаторов мощностью 5 600 кВА и больше, понижающих трансформаторов мощностью до 5 600 кВА, имеющих на стороне НН напряжения 38,5; 11; 10,5; 6,6; 6,3; 3,3; 3,15 и 0,525 кВ, а также обмотки НН всех мощных однофазных двухобмоточных и трехобмоточных трансформаторов, предназначающихся для соединения в трехфазные группы.

Обмотки ВН и СН силовых повышающих и понижающих трансформаторов обычно в треугольник не соединяются.
в) Соединение обмоток в зигзаг — звезду (равноплечий и неравноплечий зигзаг)
Равноплечий зигзаг может быть получен, если соединить по одной из трех схем рис. 5,а, бив концы и начала шести полуобмоток с одинаковыми числами витков (а следовательно, и э. д. е.), расположенных по две полуобмотки на каждой фазе трансформатора.

Рис. 5. Соединение обмотки НН в равноплечий зигзаг.
а —первая схема соединения; б — вторая схема соединения; в — третья схема соединения; г — векторная диаграмма э. д. с. звезды нижних полукатушек; д — векторная диаграмма линейных э. д. с.
Построим векторную диаграмму соединений обмоток в зигзаг согласно схеме рис. 5,а. Начнем построение с нижних полуобмоток, соединенных в звезду. Векторная диаграмма для этих полуобмоток представлена на рис. 5,г. Согласно схеме рис. 5,а начало а’ нижней полуобмотки электрически соединено с концом zr верхней.
Вектор г’с должен пойти в направлении, противоположном вектору zc’, а потому из точки а’г’ (рис. 5,д) откладываем вектор zrc в направлении, противоположном вектору zc’.

Аналогичным образом строим векторы остальных частей обмоток. Обмотка при соединении в зигзаг обычно выполняется двухслойной, причем каждый слой имеет свободные начала и концы.
Один из слоев обмотки наматывают правой намоткой, другой — левой. Делается это для удобства выполнения соединений в зигзаг. При соединении обмотки в зигзаг мы можем получить три различных напряжения.

Схема равноплечего зигзага применяется для нормальных силовых понижающих трансформаторов, для мощностей 25, 40, 63, 100, 160 и 250 кВА в случае, когда при большой несимметрии нагрузок фаз необходимо на стороне питания иметь схему звезды.
Неравноплечий зигзаг получается, если по схемам а, б и в (рпс. 5-5) соединить концы и начала полуобмоток с неодинаковым числом витков. На рис. 6,а и б даны две схемы соединения в неравноплечий зигзаг при отношении числа витков в полуобмотках 1 : 2.
Схема неравноплечего зигзага применяется иногда иностранными фирмами для трансформаторов специального назначения. В нормальных силовых трансформаторах наши заводы эту схему не применяют.
г) Соединение обмоток по схеме А

Если соединить обмотки трансформатора, как показано на рис. 7,а, то получится соединение по схеме А. Схему, как это видно из векторной диаграммы

Рис. 7. Соединение обмотки по схеме А.
а — схема соединений обмоток; б — векторная диаграмма.
(рис. 7,6), можно представить как треугольник а’Ьс’, у которого две стороны а’b и cfb имеют дополнительные витки (а’а и с’с).
Для того чтобы получить соединения обмоток, отвечающих векторной диаграмме рис. 7,6, принимают соотношения числа витков на фазах трансформатора, которые должны удовлетворять следующим трем условиям:

т. е. обмотка фазы с должна иметь 2/3 числа витков обмоток фаз а и b.
Нулевой вывод берется от середины обмотки фазы с, и, кроме того, число витков дополнительных участков фаз а и b должно быть одинаково и составлять Уз общего числа витков этих фаз.

Рис. 8. Соединение обмоток в скользящий треугольник.
а — схема соединений обмоток; б—векторная диаграмма.
Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.
д) Соединение обмоток в скользящий треугольник
На рис. 8 даны схема соединения обмотки и векторная диаграмма скользящего треугольника. Из рассмотрения схемы видно, что изменяя положение концов
а’b’с’ (рис. 8,а) и «скользя» ими по обмотке из крайнего верхнего положения к нижнему, можно перейти от треугольника к звезде. При этом могут быть получены все промежуточные положения. Это дает возможность, так же как в схеме неравноплечего зигзага, иметь различные углы сдвига фаз (ф).
Схема скользящего треугольника применяется иногда для трансформаторов, питающих электрические печи. В силовых трансформаторах эта схема не применяется.

  • Назад
  • Вперёд
    org/BreadcrumbList»>
  • Вы здесь:  
  • Главная
  • Оборудование
  • Трансформаторы
  • Практика
  • Пропитка изоляции трансформаторным маслом

Еще по теме:

  • Схемы и группы соединения трансформаторов
  • Группы соединений обмоток трансформатора
  • Схемы соединений обмоток трехфазных трансформаторов
  • Схемы обмоток трансформаторов для ПБВ и РПН
  • Схемы соединения обмоток автотрансформаторов

Трансформаторы

Области применения разных схем соединения обмоток

СИЛОВЫЕ ТРАНСФОРМАТОРЫ 10(6)/0,4 КВ

ОБЛАСТИ ПРИМЕНЕНИЯ РАЗНЫХ СХЕМ СОЕДИНЕНИЯ ОБМОТОК

Отсутствие у изготовителей и заказчиков четкого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении. Причем неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьезным авариям.
Об этом напоминают нижегородские проектировщики Алевтина Ивановна Федоровская и Владимир Семенович Фишман, которые в своем материале акцентируют внимание на разнице в реакции трансформаторов на несимметричные токи, содержащие составляющую нулевой последовательности.

СХЕМЫ СОЕДИНЕНИЯ ОБМОТОК И СВОЙСТВА ТРАНСФОРМАТОРОВ

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:

«звезда/звезда» – Y/Yн;

«треугольник–звезда» – Д/Yн;

«звезда–зигзаг» – Y/Zн.

Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз. 
Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы – А, В и С. Магнитные потоки трех фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят. 
Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2]. Согласно этой теории любой несимметричный режим работы трехфазной сети представляется в виде геометрической суммы трех симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.
Рассмотрим режим максимальной однофазной несимметрии – режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток Д/Yн.  
Картина токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в поврежденной фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:

 

где Uл – линейное напряжение;
R1, R0, X1, Х0 – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

СОПРОТИВЛЕНИЯ ПРЯМОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:

Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз и Uк от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности. 
В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.

СОПРОТИВЛЕНИЯ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Рассмотрим картину векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток Д/Yн (рис. 2).
В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках. При этом токи нулевой последовательности в первичной обмотке замыкаются внутри нее и в сеть не выходят. Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора. При этом сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R0; Х1 = Х0.
В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг».  
Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 – токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;
IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 – токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Д/Yн

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн 

Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами Д/Yн.
Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.
Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п. 
Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.
Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

ПОЧЕМУ НЕОБХОДИМО ЗНАТЬ РЕАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЙ

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора. 
В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя. 
Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток Д/Yн, то получим:

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трехфазного КЗ.
Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трехфазного КЗ, то есть Iокз << I3фкз. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере. 
На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны – при вводе на щит 0,4 кВ приведены в табл. 1. Как из нее видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.

Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, Д/Yн при вводе на щит 0,4 кВ

Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ

Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн. пр = (2 ÷ 3) Iн.тр. В данном случае Iн.пр  2 ·10 А  20. Принимаем Iн.пр = 20 А.

Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.
Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию. 
В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр. 0,1с  12 Iном.тр.Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надежно защищает электрооборудование, т. к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А  55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя –55 А, что делает защиту ненадежной.
Улучшить надежность защиты можно путем применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надежной.
Если же в рассмотренном примере будет применен трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее за-груженными фазами, особенно при большой загрузке трансформатора и низком cos f нагрузки.
Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.
Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны – с помощью вводного автомата.

ВЫВОДЫ

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект дает схема Д/Yн. Схему Y/Yн для таких трансформаторов применять не следует.
Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.
Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

ЛИТЕРАТУРА

1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.
2. Ульянов С.А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1952. – 280 с.
3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний.
4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я.М., Круповича В.И., Самовера М.Л. и др. – М.: Энергия, 1975. – 696 с.
5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).
6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

По данным: http://www.news.elteh.ru/arh/2006/41/09.php

Схема соединения обмоток двигателя» Схема соединения всех обмоток двигателя

6 комментариев / Схема подключения, данные обмоток двигателя / По Admin_mwd

Содержание

Самая большая проблема, которая возникает после того, как мотоцикл является моторным подключением. Соединения выполняются по-разному в разных видах Отжимания на брусьях: зачем и как делать это упражнение программа силовой тренировки рук (бицепс/трицепс) в трисете. моторов. В них нормированы некоторые соединения двигателей, некоторые соединения обмоток двигателя выполнены в 3 СКОРОСТЬ . Соединение обмотки некоторых двигателей с тремя проводами, таким же образом, обмотка 4-проводных двигателей вынимается из многих двигателей, и вся эта игра представляет собой схему подключения.
Много раз скорость двигателя может быть уменьшена и увеличена путем изменения схемы соединения обмоток двигателя, просто и только путем ввода ТЕ ЖЕ КАТУШКИ, ТАКОЙ ЖЕ ОБОРОТ от ТАКОГО ЖЕ ПРОВОДА номер, он работает нормально с Таблица Схема соединения обмотки двигателя вентилятора

Схема подключения 4-проводного двигателя

Из 4 проводов в 4-проводном двигателе два провода относятся к рабочей обмотке и только два к пусковой обмотке.
Провод, выходящий из рабочей обмотки двигателя, обычно соединяется с проводом красного цвета . А две звезды, которые выходят из пусковой обмотки двигателя, это в основном Черный провод . Рабочая и пусковая обмотки двигателя идентифицируются с помощью самого цветового кода. Все типы двигателей имеют нагрузку на рабочую обмотку.

Подключение однофазного двигателя.


А в некоторых двигателях вставлена ​​только пусковая обмотка и только для того, чтобы запустить двигатель, как только двигатель развернется на полные обороты, чем с помощью пластины сцепления ОТСОЕДИНИТЬ пусковую обмотку от рабочей обмотки этот мотор. Он задан, а позже используется только рабочей обмоткой двигателя, который в основном находится в одностороннем двигателе мощностью от 1 до 3 л.с. Схема подключения 4-проводного двигателя

— by motorcoilwindingdata.com

Схема соединения трехпроводной обмотки двигателя .

В трехпроводном двигателе от обмотки двигателя отходят три провода. Среди них один провод ОБЩИЙ, другой провод рабочей обмотки, а третий провод протянут в пусковой обмотке.

Синий провод подключается непосредственно к НЕЙТРАЛЬНОМУ ПРОВОДУ, идущему от основного источника питания, идущего сзади, а Красный провод и Черный провод подключаются к конденсатору. Черный провод плотно соединен с конденсатором и таким же вторым проводом конденсатора соединен с красным проводом, идущим от рабочей обмотки, вместе с проводом, обращенным к блоку питания, идущим сзади.
Вы можете очень легко выполнить подключение к 3-проводному двигателю, взглянув на все провода на схеме подключения ниже.

Трехпроводное подключение двигателя с конденсатором.

ОБЩИЙ ПРОВОД в основном синего цвета.

Цвет ПРОВОДА ОБМОТКИ в основном красный.

Цвет провода пусковой обмотки в основном черный. Провод.

Вы можете сделать это соединение с этими типами двигателей.

  • Настольный вентилятор Обмотка двигателя.
  • Настенный вентилятор Обмотка двигателя.
  • Двигатель охладителя обмотки.
  • Ac Moto r Обмотка.
  • Обмотка однофазного двигателя .
  • Вытяжной вентилятор Обмотка двигателя.
  • Односкоростной Обмотка двигателя.
  • 24-слотовый двигатель охладителя Обмотка.
  • 36-слотовый охладитель Двигатель Обмотка.
motorcoilwindingdata.com

Четырехпроводное соединение двигателя с конденсатором .

Двигатель у которого обмотка выходит из 4-х проводов состоит из 2-х проводов рабочей обмотки и только два являются звездами пусковой обмотки двигателя. Красный ходовой провод часто присоединяют к рабочей обмотке двигателя и аналогично к пусковой обмотке двигателя добавляют черный провод.
Красный провод и черный провод соединяются вместе, образуя провод разума. Который подключается к нулевому проводу 220-вольтового блока питания, идущего сзади?
Оставшийся красный и черный провод подключен непосредственно к конденсатору. Черный провод прочно соединен с конденсатором, когда провод от красного провода удален и подается питание 220 вольт, идущее сзади. Связан со строкой, содержащей PHASE

motorcoilwindingdata.com

Вы также можете установить это соединение с этими типами двигателей.

  • Обмотка двигателя настольного вентилятора
  • Обмотка двигателя настенного вентилятора
  • Обмотка двигателя охладителя
  • Обмотка двигателя переменного тока
  • Обмотка однофазного двигателя
  • Обмотка двигателя вытяжного вентилятора
  • Обмотка односкоростного двигателя

3-проводное соединение двигателя с конденсатором.

В трехпроводном двигателе синий провод выполнен ОБЩИЙ ПРОВОД , который подключается к НЕЙТРАЛЬНОМУ ПРОВОДУ источника питания 220 В, идущего сзади.
А в нем нарисованы оставшиеся две звезды, одна Красная а другая черная, красный провод выходит из рабочей обмотки, а черный провод выходит из пусковой обмотки двигателей.
Красно-черный провод подключается непосредственно к конденсатору, а второй провод питания 220 ВОЛЬТ, идущий сзади, подключается к красному проводу обмотки двигателя. При этом скругление двигателя настраивается изнутри и непосредственно внутри обмотки двигателя….

Схема подключения однофазного двигателя. motorcoilwindingdata.com

Схема подключения потолочного вентилятора класса А.

Схема подключения трехпроводного потолочного вентилятора с конденсатором. motorcoilwindingdata.com

Схема подключения двигателя охладителя Видео Смотреть здесь:-

Соединение обмотки трехфазного асинхронного двигателя со схемой

Видео подключения обмотки трехфазного двигателя Смотреть здесь:-

Схема трехпроводного подключения потолочного вентилятора .

Схема подключения настольного вентилятора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *