Схема подключения котлов: Типовые схемы подключения газовых котлов от Лавка Сантехника

Содержание

Последовательная схема подключения котлов в современных котельных

 

Как нестандартное проектное решение может значительно повысить энергоэффективность котельной

 
В условиях постоянного роста тарифов на газ и другие виды топлива становятся востребованы энергоэффективные виды теплогенераторов, и в первую очередь – конденсационные котлы. Конденсационные технологии открывают широкие возможности для экономии ресурсов при отоплении объектов с любыми потребностями. Однако, чтобы использовать потенциал конденсационных котлов в полной мере, нужно выстраивать схему теплоснабжения с учётом их особенностей и в некоторых случаях отходить о тех принципов, к которым мы привыкли при использовании традиционного теплогенерирующего оборудования. И вот здесь кроется проблема для проектировщика в стремлении использовать что-то новое и боязнью в темноте неизведанного наступить на грабли. В данной статье мы рассмотрим один из примеров, когда правильно подобранная тепломеханическая схема позволила реализовать эффективную схему систему отопления на базе каскада из конденсационного и традиционного котлов Viessmann и попробуем рассмотреть вопросы как подбора котлов по мощности, так и расчета циркуляционных насосов применяемых в необычной для России схеме.
При проектировании системы теплоснабжения многоуровневого паркинга с офисными помещениями  Заказчиком была поставлена задача максимально снизить издержки на отопление, причем как в долгосрочной перспективе, так и на стартовом этапе, поэтому в качестве теплогенераторов для котельной закладывался не каскад традиционных котлов — как недорогого решения, но относительно невысоким КПД в диапазоне 92-94% (H
i), и не каскад конденсационных котлов — как высокоэффективное решение с КПД на уровне 106-109% (Hi), требующее значительных инвестиций, а компромиссное предложение из комбинации конденсационных котлов в качестве ведущих и традиционного в качестве пикового.
Теплообменник конденсационного котла, выполненных ин нержавеющей стали, устроен таким образом, чтобы протекающий через него теплоноситель обратной магистрали способствовал образованию конденсата водяных паров, содержащихся в продуктах сгорания. Как известно, в процессе конденсации пара происходит выделение тепловой энергии, и котёл получает возможность использовать её для нагрева теплоносителя системы теплоснабжения.
  В результате, за счёт дополнительного источника тепла, КПД конденсационного котла значительно превышает КПД традиционных котлов, а это приводит к снижению расхода топлива при выработке такого же количества полезного тепла. Однако конденсационные котлы требуют и иного подхода к проектированию и эксплуатации систем отопления. Попытки использовать их в устаревших тепломеханических схемах, рассчитанных на применение традиционных котлов, приводят к тому, что потенциал конденсационных моделей не раскрывается полностью, а возможная выгода от экономии топлива будет упущена. В частности, это относится к схемам с каскадами котлов. 

 

Обычно котлы в каскаде подключают по параллельной схеме, которая для традиционных котлов, как правило, подразумевает использование подмешивающий насосов для каждого теплогенератора, а также сетевых насосов, обслуживающих как котловой контур, так и отопительный контур. При применении котлов с требованием к минимальному протоку приходится выполнять дорогую схему с гидравлическим разделителем, котловыми и сетевыми насосами и трехходовыми клапанами в котловом контуре.
Такая схема при пиковой нагрузке диктует свои правила: оба котла должны нагревать котловую воду до максимальной температуры невзирая на то, что и у традиционных котлов происходит снижение КПД с увеличением температуры подачи, пусть и не очень значительное. А в остальное время отопительного сезона поддерживать температуру теплоносителя на относительно высоком уровне (60 – 75°С) чтобы защитить себя от образования конденсата в дымоходных каналах. Всё это ведёт к усложнению обвязки как котлов, так и отопительных контуров, и увеличению затрат на топливо и электроэнергию при эксплуатации оборудования.
В свою очередь, конденсационные котлы не только не боятся конденсата – наоборот, они используют его для увеличения тепловой мощности, и чем холоднее обратка, тем больше эффективность таких котлов. Это позволяет отойти от параллельной тепломеханической схемы и обратиться к последовательной. Именно такую схему применили для теплоснабжения данного объекта. Также эта схема применяется в котельных, где стоит задача максимальной эффективности, и работа на резервном топливе.
Если в качестве резервного применяется легкое или тяжелое жидкое топливо, то без традиционного котла не обойтись, потому что конденсационные котлы в большинстве своем работают только на природном или сжиженном газе. Рассмотрим, как работает эта схема, и какие преимущества она даёт.

Тепломеханическая схема котельной

Требуемая тепловая мощность котельной паркинга – 2000 кВт. Для её обеспечения были предложены два котла – Viessmann Vitocrossal 200 CM2 мощностью 620 кВт в конденсационном режиме работы и 575 кВт в не конденсационном режиме, и Viessmann Vitoplex 100 PV1В мощностью 1700 кВт. Таким образом установленная суммарная мощность котельной составляет от 2320 кВт до 2275 кВт в зависимости от температуры подачи теплоносителя потребителю. Температурный график отпуска тепла 95/70°С.
 
В качестве основного (ведущего) котла в системе выступает Vitocrossal 200 CM2 – современный конденсационный котёл, нормативный КПД которого достигает 109% (H
i).   Котёл оснащен инфракрасной цилиндрической горелкой Matrix из жаропрочной нержавеющей стали. Горелка поддерживает широкий диапазон модуляции пламени – от 20 до 100%, что позволяет котлу вместо частых включений и выключений работать в стабильном режиме на пониженной мощности, сберегая как топливо, так ресурс оборудования. А также обладает очень низкими показателями выбросов вредных веществ —  показатели выбросов NOx менее 55 мг/кВтч. Из нержавеющей стали выполнен и теплообменник Inox-Crossal – этот материал устойчив к влиянию кислот, образующихся при конденсации дымовых газов. У теплообменника противоточная конструкция – продукты сгорания проходят через него сверху-вниз, в то время как обратный теплоноситель движется снизу-вверх. Такое строение обеспечивает более эффективный теплообмен. Кроме того, стекающая вниз конденсатная плёнка способствует самоочищению поверхностей теплообменника. Vitocrossal 200 CM2 не нуждается в контроле протока и разности температур теплоносителя на подаче и в обратном потоке, что в полной мере было использовано при реализации системы теплоснабжения объекта.
Ведомый котёл в каскаде – Vitoplex 100 PV1В. Это классическая модель двухходового традиционного типа, требующая определённых условий эксплуатации. В частности, защиты от попадания теплоносителя слишком низкой температуры во избежание образования конденсата. Vitoplex 100 PV1В будет выполнять роль пикового котла и подключается только тогда, когда мощности основного котла становится недостаточно для обеспечения потребностей здания в тепле. Котловой контур Vitoplex 100 PV1B оснащён циркуляционным насосом. Он включается только тогда, когда автоматика, управляющая каскадом, принимает решение о включении пикового котла. А вот Vitocrossal 200 CM2, благодаря большому водонаполнению, в насосе котлового контура не нуждается – циркуляцию теплоносителя через него обеспечивают насосы отопительного контура.

До тех пор, пока производительности ведущего котла хватает для покрытия потребностей здания в тепле, нагретый им теплоноситель напрямую поступает в распределительный коллектор системы отопления, минуя второй котёл.
Однако при пиковых нагрузках, когда мощности ведущего котла становится недостаточно, каскадный контроллер включает второй, ведомый котёл. Теплоноситель, уже частично нагретый в Vitocrossal 200 CM2, поступает во второй котёл. Vitoplex 100 PV1В догревает теплоноситель до необходимой температуры, после чего тот возвращается в подающую магистраль и далее – в систему отопления.
Для котла Vitoplex 100 PV1В также требовалось предусмотреть защиту от подачи прямого и обратного теплоносителя недостаточной температуры во избежание образования в нём конденсата. В данном случае реализована двухступенчатая защита с постоянной стабилизацией температуры прямого и обратного потока. Первая ступень основана на использовании котлового насоса, который включается по команде контроллера котла на основе показаний датчика температуры обратного потока. Вторая ступень заключается в непрерывном регулировании температуры потока обратной магистрали в зависимости от показаний датчика температуры, установленного на входе в традиционный котел.
Если температура оказывается ниже допустимого значения, то с помощью установленного трехходового клапана контур котла начинает «отсекаться» от остальной системы, стабилизируя таким образом температуру обратки. Когда температура потока уже не представляет опасности для котла, контроллер возвращает трёхходовой клапан в обычное рабочее положение, и поступление теплоносителя из котлового контура в систему возобновляется. 
Для достижения максимальной эффективности работы котлов на объекте реализовали погодозависимое управление температурой подачи – эта функция уже предусмотрена в контроллере Vitotronic 300, которым оборудован котёл Vitocrossal 200 CM2. Автоматика получает данные от датчика уличной температуры и в соответствии с заданной программой регулирует температуру подачи и управляет работой горелок – с тем, чтобы снизить мощность котлов в периоды потепления климата, когда высокая производительность, и соответственно, высокий расход топлива, не требуется.

Энергоэффективность котельной

Чтобы понять, насколько выгодно использование предложенной схемы, можно произвести расчёт её энергоэффективности.
Тут важно учитывать, что КПД конденсационного котла напрямую зависит от температуры отопительной системы – его максимальных значений можно достичь при работе изделия в конденсационном режиме. КПД Vitocrossal 200 CM2 номинальной тепловой мощностью 620 кВт по низшей теплоте сгорания при температуре системы отопления 50/30°С составляет 109%, при температуре 75/60°С – 106%, при 95/70°С – 98%. КПД Vitoplex 100 PV1В, не использующего конденсационные процессы для получения тепла, составляет до 94%. Распределение мощности ведущего, конденсационного, и ведомого котла в общей необходимой мощности 2000 кВт, составляет как 28% и 72% соответственно.  Данное распределение мощности не идеально, т.к. желательно чтобы доля конденсационного котла составляла около 50%. Для оценки эффективности также необходимо принять во внимание время, когда Vitocrossal 200 CM2 работает в одиночку или с поддержкой Vitoplex 100 PV1В. Температурный график показывает, что можно выделить по меньшей мере три периода функционирования оборудования в различных режимах. Так, от начала отопительного сезона и до достижения температуры уличного воздуха -6°С, когда температура в подаче превышает точку росы продуктов сгорания, Vitocrossal 200 CM2 работает один и в полностью конденсационном режиме с КПД 109%. В регионе строительства котельной длительность этой части отопительного периода составлять около 53% всего сезона. При температуре воздуха в пределах от -6°С до -19°С, когда температура подачи уже превысила точку росы, но температура обратки котельной все еще ниже и котел работает в режиме частичной конденсации Vitocrossal 200 CM2 продолжает работать один, но уже в режиме частичной конденсации с КПД около 106%. Положительность работы в этом режиме составляет около 42% отопительного сезона. И только при снижении температуры ниже -19°С отопительная нагрузка возрастает так, что становится необходимым запуск второго ведомого котла — Vitoplex 100 PV1В, который в текущих условиях работает с КПД 94% (75/60°С, в дальнейшем принимаем, что КПД традиционного котла очень слабо зависит от температуры подачи). Нетрудно подсчитать, что второй котёл с более низким КПД эксплуатируется совсем немного времени – 4,8% от всего отопительного сезона. А КПД ведущего Vitocrossal 200 снижается до 98%.
Таким образом, расчетное значение нормативного КПД котельной можно рассчитать по следующей формуле:

 

КПДмах=((109%х53%)+(106%х42,2%)+((0,5х98%+0,5х94%)х4,8%)/100%=107,11%

 

Но предыдущий вариант не учитывает не оптимальное распределение мощности устанавливаемых котлов. Если учесть этого фактор, то увидим, что мощности конденсационного котла достаточно для обеспечения нагрузок до достижения температуры уличного воздуха в -6°С. Таким образом, ведущие котлы работают до температуры -6°С с максимальным КПД, а при температуре ниже этого значения в котельной работают все котлы. Тогда КПД котельной будет составлять:

 

КПД=((109%х53%)+((0,29х106%+0,71х94%)х42,2%+((0,29х98%+0,71х94%)х4,8%)/100%=103,46%

 

И в третьем случае три котла работают последовательно весь отопительный период (самый невероятный вариант, когда тепловые потери потребителя не зависят от уличной температуры):

 

КПДмin=0,28х106%+0,72х94%=97,36%

 

Таким образом, применив последовательную схему, мы можем значительно поднять КПД котельной и показатель может достигать значения от 103-105%, что значительно выше, чем при применении классических котлов с параллельным подключением.

Подбор котлового насоса традиционного котла в последовательной схеме

Очень важный момент при применении последовательной схемы подключения котлов — подбор циркуляционного насоса пикового котла. Рассмотрим этот в удобных относительных величинах без привязки к конкретной котельной. 
Пусть требуемая мощность котельной составляет 1000 кВт.
Перепад температур подачи и обратки 25°С (95/70°С).
Имеется два котла по 500 кВт (без учета работы котла в конденсационном режиме или без него).
Котельная работает в погодозависимом режиме. 
В технической документации Viessmann для подбора циркуляционных насосов существует рекомендация:
«При запросе теплогенерации поступающий из Vitocrossal предварительно нагретый теплоноситель перекачивается насосом котлового контура через 3-ходовой смесительный клапан в Vitoplex. Там он догревается и возвращается обратно в общую подающую магистраль. Насос котлового контура подает весь теплоноситель установки, соответствующий разности температур для расчетной точки. Напор насоса котлового контура соответствует сопротивлению водяного контура от подключения подающей магистрали, через Vitoplex и до повторного входа в подающую магистраль установки»
Поэтому, в нашем случае, формула для расчета производительности насоса будет выглядеть так:
V=W*860/∆T=(500+500)*860/25=34400 л/час=34,4 м
3/час
Гидравлическое сопротивление включает в себя сам котел, трехходовой и запорную арматуру и сопротивление трубопровода, показанного на рисунке.

А теперь рассмотрим варианты работы котельной в различные моменты отопительного сезона:
Вариант 1. Текущая мощность котельной 250 кВт. Заданная температура подачи 75°С. Ведущий конденсационный котел работает с указанной мощностью, традиционный пиковый котел выключен:

Вариант 2. Текущая мощность котельной 500 кВт. Заданная температура подачи 85°С.
Ведущий конденсационный котел работает на максимальной мощности, традиционный пиковый котел выключен:

Вариант 3. Текущая мощность котельной 750 кВт. Заданная температура подачи 90°С. Ведущий конденсационный котел работает на максимальной мощности, традиционный пиковый котел работает с частичной мощностью: 

Вариант 4. Текущая мощность котельной 1000 кВт. Заданная температура подачи 95°С. Ведущий конденсационный котел работает на максимальной мощности, традиционный пиковый котел работает на полной мощности: 
Вариант 5. Котловый насос поставлен недостаточной производительностью. Vкотл2=17,2м3/час (Vкотл2=W*860/∆T=(500)*860/25= =17200 л/час). Текущая мощность котельной 750 кВт. Заданная температура подачи 90°С. Ведущий конденсационный котел работает на максимальной мощности, традиционный пиковый котел работает с частичной мощностью: 
Условие выдачи потребителю требуемой температуры выполняется, но в связи с недостаточным протоком теплоносителя через традиционный котел на нем образуется излишний перепад температур в 6,25°С приводящий к снижению КПД данного котла.
В среднем, при повышении температуры подачи традиционного котла на 10°С, КПД данного котла падает на 0,8%.
Вариант 6. Котловый насос поставлен недостаточной производительностью. Vкотл=17,2м3/час. Текущая мощность котельной 1000 кВт. Заданная температура подачи 95°С:

Условие выдачи потребителю требуемой температуры выполняется условно, т.к. в связи с недостаточным протоком теплоносителя через традиционный котел на нем образуется излишний перепад температур в 12,5°С потенциально приводящий не только к снижению КПД данного котла, но к срабатыванию защитной автоматики по перегреву теплоносителя в нем.

Что в итоге Мы получили?

Несмотря на то, что уже не приходится доказывать эффективность применения конденсационных котлов и их сфера применения в России с каждым годом становится все шире, сдерживающим фактором пока является по стоимость оборудования. Но, как в данном случае,  на помощь может прийти автоматика и нестандартных подход к реализации проекта теплоснабжения объекта.
Для достижения высокой энергоэффективности системы необязательно, чтобы все котлы в каскаде были конденсационными. Связка из одного конденсационного котла и одного традиционного уже даёт существенную экономию на топливе по сравнению с двумя параллельно подключёнными традиционными котлами, а стартовая стоимость такого комбинированного решения будет ниже, чем при реализации схемы с двумя конденсационными моделями. В данном случае мы рассмотрели объект, на котором последовательная схема из ведущего конденсационного и ведомого традиционного котлом была применена с самого момента постройки здания. Однако эта же схема может быть с успехом использована и при модернизации уже существующих систем отопления – для замены каскадов из традиционных котлов с параллельным подключением.
Коллектив Академии Виссманн

Схема подключения твердотопливного котла – разбор нюансов

Содержание:

  1. Схемы обвязки
    • Сложные схемы
    • Устройство аварийного контура
  2. Заключение

Твердотопливные котлы в настоящее время используются для отопления дома нередко. Их эффективная работа, простая конструкция и доступность топлива сделали свое дело – котлы до сих пор популярны. Но многих потребителей сегодня интересует один очень важный вопрос: какая схема подключения твердотопливного котла лучше? Не все могут сразу понять, в чем суть поставленного вопроса, ведь, подключая котел к системе отопления, он просто подсоединяется двумя патрубками к двум контурам: подачи и обратки теплоносителя. Все правильно, но не все так просто, как может показаться на первый взгляд. Давайте разбираться.

Схемы обвязки

Начнем с того, что в конструкции твердотопливных котлов никогда не устанавливают дополнительные функциональные приборы и оборудование. В них нет ни циркуляционного насоса, ни расширительного бачка, ни блока автоматики. Все эти устройства необходимо устанавливать вне агрегата со стороны отопительной системы.

Поэтому самая простая схема обвязки и подключения твердотопливного котла – это простое соединение его патрубков с трубами отопительной системы дома. Обратите внимание на рисунок ниже, и вы сразу поймете, о чем идет речь.

Простая схема подключения

Как видите, в этой схеме установлены все необходимые приборы и устройства, которые способствуют эффективной и рациональной работе отопления в целом. И сам твердотопливный котел в ней занимает основное место. Кстати, когда встает задача монтажа твердотопливного котла своими руками, то именно эта схема, как самая простая, выбирается потребителем сразу.

Сложные схемы

Но давайте будем отталкиваться от работы твердотопливного котла, от его функциональности. Необходимо отметить, что производители этого вида отопительного оборудования всегда в инструкциях делают одну очень важную пометку. Агрегат будет работать эффективно и долго лишь в том случае, если теплоноситель на входе в прибор будет иметь температуру не меньше +60°С. Почему это так важно?

  • Этим избегается большой перепад температур в теплообменнике, что увеличивает срок его эксплуатации. Это первое.
  • Второе – таким образом можно предупредить появление процесса конденсации влажных паров внутри камеры сгорания топлива. А, значит, на стенках топки и внутри дымохода осаждающаяся на них сажа не превратиться в деготь.

Что нужно сделать, чтобы этих неблагоприятных факторов не образовалось? Вариант один – установить смесительный узел. Конечно, это громко сказано, просто необходимо около котла установить перемычку, соединяющую подающий контур системы отопления с обраткой. Если посмотреть первый рисунок, то эта трубная перемычка будет установлена между циркуляционным насосом и расширительным баком и направлена вверх до подающего контура.

Принципиальная схема подключения

Схема будет работать в обычном режиме. Но как только температура внутри обратки станет ниже +60°С, можно открыть перемычку и добавить в обратный контур небольшой объем горячего теплоносителя, тем самым, выравнивая температуру до необходимой.

И еще одна схема подключения котла на твердом топливе. Чтобы добиться полного соответствия мощности отопительного агрегата этого типа, необходимо все время подбрасывать дрова в топку прибора. И чем чаще вы это делаете, тем интенсивнее он работает. Во всяком случае, таким способом вы добиваетесь полного соответствия поддержания необходимого температурного режима внутри помещений здания.

Способ не самый удобный, потому что он вас прочно привязывает к отопительному агрегату. Что можно предложить, чтобы избежать таких неудобств? Для этого можно установить в схему обвязки буферный резервуар. С его помощью вся система отопления разделяется на две части. Резервуар отсекает твердотопливный котел от радиаторной системы отопления.

  • Во-первых, буферный резервуар – это своеобразный аккумулятор, в котором будет скапливаться теплоноситель с высокой тепловой энергией.
  • Во-вторых, на пике работы самого твердотопливного котла вода в резервуаре будет отбирать излишки температуры из теплоносителя.
  • В-третьих, при снижении работы агрегата все будет происходить наоборот.
    Вода будет отдавать свое тепло остывающему теплоносителю.

На рисунке снизу показана эта схема обвязки и монтажа твердотопливного котла. Скажем прямо, не самая простая схема, требующая внимательного подхода к реализации проводимых монтажных работ.

Схема обвязки с буферной емкостью

Все специалисты в один голос утверждают, что твердотопливные котлы – это отопительное оборудование, которое плохо поддается управлению. Добиться оптимизации температурного режима с ними очень сложно. То он работает по максимуму, поднимая температуру до +100°С, то снижается до минимума. И данная периодичность может происходить несколько раз за короткий промежуток времени.

Чтобы этого избежать, необходимо в процессе установки твердотопливного котла предусмотреть еще один смесительный узел, который будет работать на понижение температуры теплоносителя. Возьмем за основу рисунок выше, в котором сделаем одно добавление. А точнее сказать, установим еще одну трубную перемычку. Она будет установлена после буферной емкости перед радиаторами отопления, и соединять между собой обратку и подающий контур.

Трубная развязка по контурам

Устройство аварийного контура

Решая проблему перегревания теплоносителя, все производители твердотопливных котлов подходят к данной проблеме по-разному. Но принцип охлаждения у всех один – подача холодной воды в теплообменник из водопроводной сети дома. Вот некоторые решения данного вопроса:

  • В топке устанавливается рядом с основным теплообменником дополнительный, который соединен с одной стороны с водопроводом, с другой с канализацией. Соприкосновение двух приборов дает возможность снизить температуру теплоносителя в основном теплообменнике.
  • Установка небольшого теплообменника внутри основного. Подключение производится по той же схеме. По сути, малый прибор можно отнести к категории «запорной арматуры».
  • Производится простое подключение теплообменника к водопроводным и канализационным сетям. Для этого в конструкции отопительного агрегата устанавливается четырехходовой клапан и встраиваемый датчик, который контролирует температуру теплоносителя внутри теплообменника. При повышении температуры до критической клапан просто впускает холодную воду из водопровода прямо внутрь теплообменного прибора. Происходит смешивание двух типов воды с разными температурами. В теплообменнике есть и выходной патрубок, который сбрасывает часть теплоносителя в канализацию. Скажем прямо, сомнительная схема, но такие твердотопливные котлы выпускаются.

Внимание! Есть еще один очень важный момент, который касается процесса установки котлов на твердом топливе. Встроенный в систему отопления циркуляционный насос при отключении создает ситуацию, при которой теплоноситель начинает закипать. А так как отключение электроэнергии в загородных поселках – дело обычное, то данная ситуация становится проблемной. Поэтому рекомендуем устанавливать около насоса байпас, который будет переключать отопление в режим естественной циркуляции горячей воды. 

Вот такие схемы сегодня используются. Именно их разбор отвечает на вопрос, как подключить твердотопливный котел правильно? Все предлагаемые схемы не очень сложные, они требуют от производителя монтажных работ особого внимание.

Здесь важно правильно провести подключение каждого прибора в соответствии с его прямым назначением.

Установка байпаса

Кстати, в такие схемы часто вставляют дополнительные агрегаты. К примеру, для поддержания беспрерывности нагрева теплоносителя. В системе будет не один котел, а два. Чаще всего устанавливаются электрический и твердотопливный прибор, поэтому схема подключения электрокотла к твердотопливному котлу производится параллельным способом. Это важный момент.

Заключение

Из статьи вы смогли убедиться в том, что установка твердотопливного котла своими руками и его правильное подключение зависят от тех целей, которые вы ставите перед отоплением. Схем немало, выбор за вами, но при этом обязательно учитывайте наши рекомендации. Лучше пусть она будет посложнее, зато всю систему будет проще эксплуатировать.

Не забудьте оценить статью:

Страница не найдена | Запчасти Город

Похоже, в вашем браузере отключен JavaScript. В вашем браузере должен быть включен JavaScript, чтобы использовать функциональные возможности веб-сайта

. Слой 1Слой 1Монтажная область 2, копия 5клонМонтажная область 2, копия 6Монтажная область 2, копия 7Монтажная область 2, копия 4

Перейти к содержимомуПерейти к навигации

Привет, добро пожаловать в Parts Town!

Parts Town и 3Wire объединили усилия и объединились с IPC, объединив команду, которую вы знаете, с самым большим ассортиментом в отрасли и передовыми технологиями, чтобы предоставить вам абсолютно лучший опыт. Все выглядит немного по-другому, это правда, но вы действительно находитесь в правильном месте.

Привет, добро пожаловать в Город Запчастей!

Parts Town и 3Wire объединили усилия и объединились с NDCP, объединив команду, которую вы знаете, с самым большим ассортиментом в отрасли и передовыми технологиями, чтобы предоставить вам абсолютно лучший опыт. Все выглядит немного по-другому, это правда, но вы действительно находитесь в правильном месте.

Привет, добро пожаловать в Parts Town!

Parts Town и 3Wire объединили свои усилия и объединились с SMS, объединив команду, которую вы знаете, с самым большим ассортиментом в отрасли и передовыми технологиями, чтобы предоставить вам абсолютно лучший опыт. Все выглядит немного по-другому, это правда, но вы действительно находитесь в правильном месте.

Привет!

RSCS и Parts Town объединили усилия, объединив команду, которую вы знаете, с самым большим ассортиментом в отрасли и передовыми технологиями, чтобы предоставить вам абсолютно лучший опыт. Все выглядит немного по-другому, это правда, но вы действительно находитесь в правильном месте.

Привет, добро пожаловать в Parts Town!

Parts Town и 3Wire Foodservice объединили усилия. Теперь вы будете работать с отличной командой, которую вы знаете, имея при этом доступ к крупнейшему в отрасли инвентарю и передовым технологиям. Все выглядит немного по-другому, это правда, но вы действительно находитесь в правильном месте.

Что вы можете ожидать:

  • Самые доступные детали на планете — все OEM, все время
  • Отличные технологии, облегчающие поиск и покупку деталей, включая поиск серийных номеров, PartSPIN® и Smart Manuals, можно найти на сайте www.partstown.com и в нашем ведущем в отрасли мобильном приложении
  • Исключительное качество обслуживания клиентов от команды, которую вы знаете и которой доверяете, с каждым электронным письмом, чатом в реальном времени, текстовым сообщением и телефонным звонком, предоставляемым дружелюбной и знающей командой
  • В более позднее время, чем кто-либо остальное — предлагает поддержку и отгрузку всех заказов в наличии до 9PM ET

What You Can Expect:

  • Always
    Genuine OEM
  • The Most In-Stock
    Parts on the Planet
  • Breakthrough
    Innovations
  • Exceptional
    Customer Experience
  • Same Day
    Shipping

Готовы начать? Пойдем!

Ищете запчасти для оборудования для производства напитков?

Marmon Link — это новый магазин оригинальных запасных частей OEM для семейства производителей оборудования Marmon. Найдите детали и аксессуары для дозаторов напитков, а также детали для устройств Cornelius, Prince Castle, Silver King, Angelo Po и Sabre King.

Здравствуйте,

Авторизоваться или регистр

Купить по:

Бренд категория Отслеживать свой заказ Поиск по серийному номеру Заказ нескольких SKU

Запчасти Город:

Кто мы есть Нужна помощь?

Мои предпочтения:

Страна и валюта Индекс

Язык Английский

и

Главное меню

Магазин Все

Главное меню

Магазин Все

Главное меню

Главное меню

Кто мы

Главное меню

Нужна помощь?

Служба поддержки клиентов

Если у вас есть какие-либо вопросы или вам нужна помощь с вашей учетной записью, вы можете связаться с нами, чтобы помочь вам.

800.438.8898
  • Телефон: 866.344.1792
  • Живой чат

  • С понедельника по пятницу, с 8:00 до 21:00 по восточному времени

    Подписывайтесь на нас

    Главное меню

    Страна и валюта

    Главное меню

    Мое местоположение

    Давайте работать вместе, чтобы доставлять вам настоящие запчасти быстрее — пожалуйста, введите свой почтовый индекс для более персонализированного опыта!

    Почтовый индекс

    См. местный перечень

    В пределах 30 миль В радиусе 50 миль В радиусе 100 миль

    Что-то пошло не так. Пожалуйста, попробуйте еще раз.

    Главное меню

    Язык

    Английский испанский французский

    Ошибка 404

    Не можете найти то, что ищете? Позвольте одному из наших специалистов по запчастям помочь.

    Напишите нам по адресу [email protected] или позвоните по телефону 800. 438.8898.

    Перейти на домашнюю страницу

    С «Запчастями в городе» вы можете быстрее получить настоящие детали — фактически, уже сегодня. Вы в? Укажите свое местоположение и ищите логотип Parts In Town, чтобы получать настоящие запчасти еще быстрее.

    Почтовый индекс

    См. местный перечень

    В пределах 30 миль В радиусе 50 миль В пределах 100 миль

    Что-то пошло не так. Пожалуйста, попробуйте еще раз.

    Всякий раз, когда вы видите Вы можете быть уверены, что деталь всегда будет на складе и будет готова к отправке в тот же день, или доставка будет бесплатной для вашего заказа.

    Всегда в наличии Бесплатная доставка по отложенным заказам распространяется только на отправления UPS Ground. За исключением международных заказов, грузовых заказов UPS, сборных отправлений, заводских заказов на прямые поставки и полных заказов.

    Информация о программе может быть изменена в любое время.

    Мы используем файлы cookie, чтобы обеспечить вам удобство работы в Интернете. Все любят печенье! Ладно, это не то печенье, но все равно вкусно. Узнать больше

    Страница не найдена — Компания по продаже механического оборудования

    Страница не найдена — Компания по продаже механического оборудования

    Вы находитесь здесь: Главная / Ошибка 404: Страница не найдена

    Страница, которую вы ищете, больше не существует. Возможно, вы сможете вернуться на домашнюю страницу сайта и посмотреть, сможете ли вы найти то, что ищете. Или вы можете попробовать найти его, используя форму поиска ниже.

    Страницы:
    • Ресурсы
      • Котлы и водонагреватели
      • ОВКВ
      • Гидроника
    • Дом
    • Производители
      • РЕХАУ
      • Трантер
      • ТермоОмегаТек
      • Водонагреватели Bock
      • ЭКОМ Америка Лтд.
      • Прецизионные котлы
      • Дизайнерская линия
      • Плинтуса посольства
      • Стерлинг Жилой
      • Щелочные технологии JJM
      • Тепловая фабрика
      • АТН / HydroTherm
      • Хетрим
      • Сантемп
      • Маяк/Моррис
      • АМКО
      • Чугунные котлы Smith
      • Водонагреватели RBI
    • Услуги
    • Контакт
    • Новости
    • Обучение
    • Товары
      • Котлы и водонагреватели
      • ОВКВ
      • Гидроника
    • О нас
      • Карьера
      • История
      • Посох
    Категории:
    • Все продукты
      • Котлы и водонагреватели
      • ОВКВ
      • Гидравлика
    • Производители
      • АМКО
      • АТН / Гидротерм
      • Бикон/Моррис
      • Бок Водонагреватели
      • Линия дизайна
      • ЭКОМ Америка Лтд.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *