Схема подключения асинхронного двигателя через конденсаторы: устройство, принцип работы, схема подключения

Запуск трехфазного двигателя без конденсаторов: 4 цепи

Максимально вставленный резистор R7 закрывает электронный ключ.

Содержание

Подключение трехфазного двигателя к однофазной сети без конденсаторов: 4 схемы для начинающих электриков

Асинхронные двигатели просты в изготовлении, дешевы и широко используются в различных отраслях промышленности. Домашние мастера не могут обойтись без них, подключая их от 220 вольт с пусковыми и ходовыми конденсаторами.

Но есть и альтернатива. Это подключение трехфазного двигателя к однофазной сети без конденсаторов, которая также имеет право на существование.

Ниже приведены 4 схемы такой конструкции. Вы можете выбрать любой из них в соответствии с вашими личными интересами и местными условиями эксплуатации.

Впервые я столкнулся с этим в конце 1998 года, когда друг-инженер связист пришел в нашу релейную лабораторию с журналом “Радио 1996”, выпуск 6, и показал нам статью о бесконденсаторном запуске.

Мы сразу же решили попробовать, потому что у нас были все детали, включая тиристоры и подходящий двигатель. Это был просто перерыв на обед.

Для испытания мы спаяли электронный блок с помощью шарнирного узла. Это заняло у нас меньше часа. Схема работала практически без регулировок. Мы оставили его для наждака.

Меня порадовал небольшой размер блока и отсутствие необходимости в конденсаторах. Мы не заметили большой разницы в потере мощности по сравнению с конденсаторным запуском.

В однофазных конденсаторных двигателях обмотка конденсатора работает постоянно. Две обмотки – основная и вспомогательная – смещены относительно друг друга на 90°. Это позволяет изменить направление вращения на противоположное. Конденсатор в этих двигателях обычно прикреплен к корпусу, и его нетрудно определить.

Асинхронный или коммутаторный: как их отличить?

В целом, тип двигателя можно отличить по заводской табличке, на которой написаны данные и тип двигателя. Но это только в том случае, если он не был отремонтирован. В конце концов, под корпусом может быть что угодно. Поэтому, если вы не уверены, лучше определить тип самостоятельно.

Вот как выглядит новый однофазный конденсаторный двигатель

Коллекторные двигатели

По конструкции различают асинхронные и коллекторные двигатели. Коллекторный двигатель всегда имеет щетки. Они расположены вблизи коллектора. Еще одним обязательным атрибутом этого типа двигателя является наличие медного барабана, разделенного на секции.

Эти двигатели выпускаются только однофазными и часто устанавливаются в бытовых приборах, так как обеспечивают высокое число оборотов при запуске и после ускорения. Они также удобны в том смысле, что легко позволяют менять направление вращения – достаточно изменить полярность. Также легко изменить скорость, изменяя амплитуду питающего напряжения или угол отсечки. Именно поэтому такие двигатели используются в большинстве бытового и строительного оборудования.

Конструкция коллекторного двигателя

Недостатком двигателей с коммутатором является то, что они шумят на высоких скоростях. Вспомните дрель, болторез, пылесос, стиральную машину и т. д. Их работа очень шумная. Коллекторные двигатели не так сильно шумят на низких оборотах (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент заключается в том, что наличие щеток и постоянное трение делают необходимым регулярное обслуживание. Если контактное кольцо не чистить, графитовый мусор (от трущихся щеток) может привести к слиянию соседних секций в барабане, двигатель просто перестанет работать.

Асинхронный

Асинхронный двигатель имеет стартер и ротор и может быть однофазным или трехфазным. Эта статья посвящена подключению однофазных двигателей, поэтому мы обсудим только их.

Асинхронные двигатели имеют низкий уровень шума во время работы, поэтому их устанавливают в оборудовании, где уровень шума является критическим. К ним относятся кондиционеры, сплит-системы и холодильники.

Конструкция асинхронных двигателей

Существует два типа однофазных асинхронных двигателей – бифилярные (с пусковой обмоткой) и конденсаторные. Разница в том, что в однофазных бифилярных двигателях пусковая обмотка действует только до момента запуска двигателя. Затем он отключается специальным устройством – центробежным выключателем или пусковым реле (в холодильниках). Это необходимо, поскольку после ускорения он только снижает эффективность.

В однофазных конденсаторных двигателях обмотка конденсатора работает постоянно. Две обмотки – основная и вспомогательная – смещены относительно друг друга на 90°. Это позволяет изменить направление вращения на противоположное. Конденсатор в этих двигателях обычно прикреплен к корпусу, и его нетрудно определить.

Более точное определение того, имеет ли человек дело с биполярным или конденсаторным двигателем, может быть получено путем измерения обмоток. Если сопротивление вспомогательной обмотки меньше половины (разница может быть и больше), то, вероятно, вы имеете дело с двухполюсным двигателем, и эта вспомогательная обмотка является пусковой, что означает, что в цепи должен присутствовать пусковой выключатель или реле. В конденсаторных двигателях обе обмотки всегда находятся в работе, и однофазный двигатель может быть подключен с помощью простой кнопки, выключателя, автомата.

Добавлено спустя 1 минуту 37 секунд:
кстати, почему это в ремонте.

Как запустить электродвигатель без конденсатора?

220 В. Обычно для запуска используются конденсаторы. Согласно рекомендуемым расчетам, на 1 кВт мощности требуется 66 мкФ. Поэтому в моем случае 66 x 0,75 = 50 мкФ. Проблема заключалась в том, что имелся только один бумажный конденсатор 20 мкФ x 400 В. С его помощью двигатель включился, как бы нехотя, но включился. Затем что-то случилось с конденсатором – двигатель не заводился сам по себе, а крутить рукоятку вручную было не очень весело. Новые конденсаторы относительно дороги. Я начал думать об этом:
Конденсатор необходим в двигателе для сдвига фазы между пусковой и рабочей обмотками (когда запуск двигателя обязателен). Но что если тиристор сдвигает фазу! После поиска в интернете я нашел одну схему, где автор предлагает семисторонний запуск двигателя, я думаю, что он не совсем понимает, что он сделал правильно (смесь запуска с симисторным аналогом конденсаторного запуска и с короткозамкнутым стартером). Отсюда высокие потери мощности.http://www.radiopill.net/load/dlja_doma . 76-1-0-660
Не будучи полностью уверенным в работоспособности схемы, которую я придумал, я решил сделать тиристорный регулятор немного сложнее, чем требовалось. Это не сработает здесь, вы можете использовать это в другом месте, в другом месте.

JLCPCB, всего $2 за прототип печатной платы! Любой цвет!

Подпишитесь и получите два купона на $5 каждый:https://jlcpcb.com/cwc

_________________
Глобализм, нет.
Глобализация – это смерть суверенных государств.
Независимым может считаться только то государство, которое санкционировано торговцами дрянной демократией и их пособниками.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + шаблон

Модули Navigator позволяют значительно сократить время проектирования оборудования. Во время вебинара 17 ноября вы сможете узнать о новых семействах Teseo-LIV3x, Teseo-VIC3x и Teseo-LIV4F. Вы узнаете, как легко добавить функцию позиционирования с повышенной точностью с помощью двухдиапазонного приемника и навигационной функции MEMS-датчика. Работайте в Teseo Suite и смотрите результаты полевых испытаний.

_________________
Глобализм – нет.
Глобализация – это смерть суверенных государств.
Независимой может считаться только та страна, которая была санкционирована агитаторами дерьмократии и их пособниками.

Компания Infineon выпустила семейство 40-вольтовых МОП-транзисторов OptiMOS 5. Эти транзисторы относятся к категории MOSFET нормального уровня и имеют более высокое пороговое напряжение (по сравнению с другими низковольтными MOSFET) для обеспечения защиты от ложных срабатываний в условиях повышенного шума.

_________________
Я еще не думал о подписи.

Схема хороша и нужна в гараже и лесу, но щетки в заголовке статьи – это пустая трата времени. многие люди даже не посмотрят туда.
Я бы не стал строить их на Ку202н, они слишком дубовые и слишком большие для 2 трамвайных остановок. Они открыты в сифу ток THM199 транзюк для гальваноразвязки 2 тиристора хотя в этой схеме, вроде бы, это не нужно, но можно без выбора запихать любую хрень из металлолома и наплевать на симметрию 0 и сделать сифу узел 1 (хочет на 2т117 как в паромном стартере СССР) стоит симистор ТС112-40) хочет 2 инлайн cou2xx из Муморки

Добавлено спустя 1 минуту 37 секунд:
кстати, почему это в ремонте.

_________________
Мудрость (опыт и выносливость) приходит с годами.
Все ваши беды и проблемы связаны с недостатком знаний.
Мудрый человек может учиться у дурака, а дурак может учиться у …
Альберт Эйнштейн не поможет, ВВП не спасется, а МЧС опоздает.
Так что теперь Дураки и Толеранты умирают по пятницам!

_________________
Мудрость (опыт и стойкость) приходит с годами.
Все ваши беды и проблемы – от недостатка знаний.
Мудрый человек может учиться у дурака, а дурак может учиться у …
Альберт Эйнштейн не поможет, ВВП не спасет, а МЧС опоздало.
Так что теперь Дураки и Толерантные умирают по пятницам!

Последний раз редактировалось Николай Петрович Tue Sep 26, 2017 11:07:12 am, всего редактировалось 1 раз.

Часовой пояс: UTC + 3 часа

Кто в настоящее время находится на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей или гостей: 16

Электродвигатель асинхронного типа – это устройство переменного тока, в котором напряжение находится в роторе. Основной задачей тока ротора является создание крутящего момента посредством электромагнитной индукции, возникающей от магнитного поля обмотки статора.

Теория В. Голика

Данная реализация основана на запуске двигателя с помощью имеющихся цепей. Силовая часть электрического выключателя, которая используется для коммутации, состоит из следующих сильных компонентов

  • два диода: VD 1 и 2;
  • тиристоры: VS 1 и 2.

Все эти части соединены с помощью простой мостовой схемы. Однако в данной схеме эти элементы выполняют другую функцию – они реализуют шунтирование обмотки подключенного двигателя через свои “руки” из одного диода и одного транзистора. Это происходит, когда устройство достигает параметров амплитуды синусоиды, показанных на диаграмме. Эта комбинация образует электронный двунаправленный триггер, который реагирует на гармонические волны во время работы. Они бывают двух типов:

  • положительный;
  • отрицательный.

VD диоды 3 и 4 используются для реализации импульсного напряжения с двумя полупериодами. Этот сигнал передается непосредственно на схемы управления. Он ограничен и дополнительно стабилизирован резистором R1 и стабилизатором VD5.

Сигналы на открытие тиристоров электрического переключателя поступают от двухполюсных транзисторов, на рисунке обозначенных VT 1 и 2. Переменный резистор R7, номиналом 10 кОм, выполняет важную функцию регулирования момента открытия тиристора.

Когда его регулятор находится в положении начального сопротивления, электроагрегат будет работать даже при самом низкоамплитудном напряжении, которое имеет место в обмотке “В”.

Наличие на входе наибольшего резистора R7 позволяет деактивировать ключ. Схема активируется, когда положение вышеуказанного движка резистора соответствует наибольшему сдвигу фазы тока между катушками.

Запуск схемы довольно прост – ползунок R7 нужно перевести в положение, полностью соответствующее наибольшему сдвигу фаз токов между катушками. Затем контроллер изменяет режим работы, определяя таким образом наиболее стабильный режим работы, который напрямую зависит от уровня приложенной нагрузки и мощности двигателя. Приводы с различными номиналами взаимозаменяемы и широко представлены на внутреннем рынке.

Силовые компоненты системы, рассчитанные на работу с маломощными двигателями, могут быть спроектированы без радиаторов охлаждения в конструкции. Когда распределители работают на максимальной мощности, требуется теплоотвод.

Электроагрегаты питаются от сети 220 В. Отдельные компоненты должны быть тщательно изолированы и защищены от случайного контакта. Соблюдение мер безопасности – еще один важный аспект реализации соединения, который необходимо соблюдать.

Рекомендуется к использованию – установка стартера не вызовет никаких проблем. В результате при подключении двигатель запускается с максимальной мощностью и практически без потери мощности, в отличие от стандартной схемы с использованием конденсатора.

Определение схемы электропроводки

Прежде чем выбрать конкретную схему подключения электродвигателя 220 В, необходимо определить, какое у него соединение обмоток и при каких номиналах он вообще может работать. Для этого выполните следующие действия:

  • Найдите и проанализируйте паспорт двигателя.

Паспорт содержит всю важную информацию, например, обозначение типа соединения – дельта или звезда – Yмощность, количество оборотов, напряжение (220 или 380 или 220/380) и возможность подключения по определенной схеме.

  • Откройте клеммную коробку и проверьте на практике правильность схемы..

Начало и конец каждого витка подписывается в соответствии с вышеуказанной числовой номенклатурой. Пользователю остается проверить на схеме перемычек, является ли соединение звездой или треугольником.

Обратите внимание! Если на заводской табличке (информационном листе) имеется следующий знак Y и только 380 В, то при подключении двигателя в треугольник обмотка сгорит. Только профессиональные электрики могут перевести такой двигатель на 220 В. Поэтому нет никакого резона его модифицировать, тем более что сейчас существует множество агрегатов, способных работать в альтернативном режиме – как на 220, так и на 380 В.

Открытие окна терминала Источник pikabu.ru

Для двигателя мощностью 1,1 кВт достаточно конденсатора емкостью 80 мкФ. В нашем случае мы используем 4 штуки емкостью 20 мкФ. Мы соединяем их вместе с помощью паяных перемычек. Они будут выполнять функцию запуска и дальнейшей работы.

Трехфазный двигатель в однофазной цепи без конденсаторовПринципиальная схема

Принципиальная схема

Наткнувшись на эту схему в Интернете, человек будет очень рад. Кстати, это решение было впервые опубликовано в 1967 году.

Стоимость невелика, так почему бы не попробовать создать устройство, которое обеспечит бесперебойное подключение асинхронного трехфазного двигателя к однофазной сети. Но прежде чем вооружиться паяльником, следует ознакомиться с отзывами и комментариями.

Теоретически схема верна, но на практике она обычно не работает. Возможно, требуется более тщательная настройка. Невозможно утверждать это однозначно или дать гарантию. Большинство участников форума считают, что установка такого устройства – пустая трата времени, хотя некоторые утверждают обратное.

Из этого аргумента можно сделать следующие выводы:

  • схема может работать с двигателем мощностью до 2,2 кВт и скоростью вращения 1 500 об/мин
  • большие потери мощности на валу двигателя;
  • схема требует тщательной опции задающей цепи C1R7, которую нужно настроить так, чтобы напряжение на конденсаторе открывало и закрывало ключ, скорее всего перестали работать транзисторы ключа, для этого нужно заменить резистор R6 или один из R3R4;
  • Более надежными способами подключения трехфазного двигателя к однофазной сети являются конденсаторы или частотный преобразователь.

Эта схема была усовершенствована в 1999 г. Были усовершенствованы две простые схемы для работы трехфазного двигателя в однофазной сети без конденсаторов.

Оба были протестированы на электродвигателях мощностью от 0,5 до 2,2 кВт и показали неплохие результаты (время запуска немного больше, чем в трехфазном режиме).

В целях экономии средств можно подключить трехфазный двигатель с помощью современных схем.

В этих схемах используются симисторы, которые управляются импульсами разной полярности, и симметричный диод, который создает управляющие сигналы в течение каждого полупериода напряжения питания.

Цепь №1 для низкоскоростных двигателей

Он предназначен для запуска электродвигателя с номинальной скоростью вращения, равной или менее 1500 об/мин. Обмотки этих двигателей соединены в треугольник. Фазовращатель в этой схеме представляет собой специальную цепь.

Изменяя сопротивление, мы получаем напряжение на конденсаторе, смещенное от основного напряжения питания на определенный угол.

Ключевым элементом в этой схеме является симметричный диод. Когда напряжение на конденсаторе достигает уровня, при котором диод переключается, заряженный конденсатор подключается к управляющему контакту симистора.

В этот момент активируется двунаправленный переключатель питания.

Цепь № 2 для высокоскоростных электрических машин

Он необходим для пуска электродвигателей с номинальной скоростью вращения 3000 об/мин и двигателей, работающих на механизмах со значительным моментом пускового сопротивления.

В этих случаях требуется более высокий пусковой момент. По этой причине был изменен способ подключения обмотки двигателя для получения максимального пускового момента. В этой схеме фазосдвигающие конденсаторы заменены парой электронных переключателей.

Первый ключ подключается последовательно с фазной обмоткой и создает индуктивный сдвиг тока в цепи. Второй подключен параллельно фазной обмотке и создает опережающее емкостное смещение тока в фазной обмотке.

Эта схема учитывает обмотки двигателя, смещенные в пространстве относительно друг друга на 120 электрических градусов.

Регулировка заключается в определении оптимального угла сдвига тока в фазных обмотках, при котором двигатель надежно запускается.

Эта операция может быть выполнена без использования специального оборудования.

Процесс осуществляется следующим образом. Двигатель приводится в действие ручным стартером ПНВС-10, центральный полюс которого подключен к цепи сдвига фаз.

Контакты центрального полюса замыкаются только при нажатии кнопки пуска.

При нажатии этой кнопки выбирается необходимый пусковой момент путем вращения двигателя с помощью триммера. То же самое относится и к другим схемам.

Читайте далее:

  • Шаговые двигатели: свойства и практические схемы управления. Часть 2.
  • Основные параметры выпрямительных диодов; Школа для инженеров-электриков: Электротехника и электроника.
  • Принцип работы транзисторов Мосфета.
  • Как запустить однофазный двигатель в обратном направлении – несколько примеров.
  • Полупроводниковые диоды.
  • Ходовые и пусковые обмотки: как определить в однофазном двигателе, сопротивление и подключение.
  • Как найти начало и конец обмотки электродвигателя – ООО «СЗЭМО Электродвигатель».

Улучшенная схема подключения трёхфазного электродвигателя к однофазной сети 220 В. « ЭлектроХобби

Улучшенная схема подключения трёхфазного электродвигателя к однофазной сети 220 В. « ЭлектроХобби

Блог Принципиальные Cхемы

Поскольку трёхфазные асинхронные электродвигатели довольно широко распространены и имеют определённые преимущества, они очень часто используются на практике. Но, к сожалению, не всегда имеется возможность запитать его от трёхфазного источника. В этом случае поможет небольшая собранная схема. Как Вы должны знать, у трёхфазного электропитания значение напряжений его фаз относительно друг друга сдвинуты на 120 градусов и напряжение между ними равно 380 В. Если, это представить в замедленном времени, то получится нечто похожее на перетекание максимального значения между этими тремя проводами. Если подключить к таким проводам три катушки и их собрать в треугольник, то будет создаваться вращающееся электромагнитное поле. Благодаря ему, и работает электродвигатель.

В быту наиболее распространённым электропитанием является 220 В. Оно образовано между двумя проводами — фазой и нулём. Если в трёхфазном напряжение «бегало» между тремя проводами, то в однофазное питание такого эффекта не даст. Да и куда девать ещё один контакт от электродвигателя (ведь у асинхронных электродвигателей имеется 3 провода для подключения и плюс ещё земля). Вы должны помнить из основ электротехники, что конденсаторы умеют делать сдвиг по фазе. Это нам и понадобится в схеме подключения нашего трёхфазного электродвигателя к однофазной сети. Теперь давайте перейдём к самой схеме и посмотрим, как она работает.

Всю схему условно поделим на две части. Первая осуществляет включение и выключение по средствам простой схемы магнитного пускателя. Нажав на кнопку ПУСК, мы замыкаем цепь и пускатель срабатывает, становясь на самозахват (его контактом, что находится под кнопкой ПУСКА), тем самым подав напряжение на вторую часть схемы. Следовательно, кнопкой СТОП, эта схема выключается. Пр — это предохранитель (с ним будет надёжней). Вторая часть электрической схемы подключения трехфазного электродвигателя к однофазной сети представлена конденсаторами разгона (С2), работы (С1), шунтирующим резистором (R1 = 470 кОм), переключателем направления вращения и кнопкой разгона. Итак, конденсатор C1 служит для создания эффекта трёхфазной сети, а для чего нужен С2 и R1?

У асинхронных двигателей есть один недостаток, это «тяжкий» начальный момент запуска (а в нашем случае ещё и с пониженным напряжением).

При определённой нагрузке на валу электродвигателя, просто подав на него напряжение, у него не хватит сил для разгона (будет гудеть и нагреваться). Для того чтобы избежать подобного явления и был введён ещё один конденсатор (С2) задача которого вывести электродвигатель на нормальный режим работы. Разгон нужен в течение небольшого промежутка времени (около 4-8 сек). Для упрощения и удобства была запараллелена кнопка «разгона» с кнопкой «ПУСК» (понадобится спаренная кнопка). Для включения схемы необходимо нажать ПУСК и подержать его до тех пор, пока электродвигатель наберёт нужные обороты. Так как емкости оставляют некоторый заряд на себе после снятия напряжения, что может поразить Вас, был введён резистор R1, задача которого разряд С2. С1 разрядится через обмотку двигателя.

И последнее, что можно сказать, это о возможности менять направление вращение нашего электродвигателя. Если знаете или помните, то для изменения направления вращения трёхфазного электродвигателя требуется всего лишь поменять два провода местами.

В нашей схеме подключения трёхфазного электродвигателя к однофазной сети нужно перебросить только контакт конденсатора на второй питающий провод. Для этого в схеме стоит переключатель (Направление). На этом тема, схема подключения электродвигателя (3 фазный) к однофазной сети, окончена.

Видео по этой теме:

P.S. Не забывайте, что подключая трёхфазный электродвигатель, рассчитанный на напряжение питания 380 В. к сети 220 В., естественно будет потеряна мощность. Она будет примерно равняться 50 — 60% от номинальной мощности.

Поиск по сайту

Меню разделов



Show & Tell: Асинхронные двигатели переменного тока

Двигатели переменного тока просты в управлении, прочны и экономичны для применения в общих целях. По этим причинам они являются наиболее популярным типом электродвигателя в различных отраслях промышленности. В этом посте мы кратко представим асинхронные двигатели и продемонстрируем, как управлять этими двигателями.

Немного истории

Термин «асинхронный» в асинхронных двигателях (также известных как асинхронные двигатели) относится к электромагнитной индукции, которая является основной теорией работы асинхронных двигателей. Я объясню это в следующем разделе. Согласно Википедии, есть несколько имен, связанных с изобретением асинхронного двигателя переменного тока. В 1824 году французский физик Франсуа Араго открыл вращающиеся магнитные поля и ввел термин «Вращение Араго» (или «Диск Араго»). В 1831 году Майкл Фарадей смог объяснить эффекты, введя теорию электромагнитной индукции. В 1879 г.Уолтер Бейли продемонстрировал первый примитивный асинхронный двигатель, вручную включая и выключая выключатели. Первые трехфазные асинхронные двигатели переменного тока без коммутатора были независимо друг от друга изобретены Галилео Феррарисом в 1885 году и Николой Теслой в 1887 году.

В 1888 году оба опубликовали статьи, объясняющие эти технологии. Тесла подал заявку на патенты США в 1887 году и получил некоторые из этих патентов в 1888 году. Джордж Вестингауз, который в то время разрабатывал систему питания переменного тока, лицензировал патенты Теслы в 1888 году и приобрел опцион на патент США на концепцию асинхронного двигателя Феррари, чтобы развивать технологию дальше. General Electric (GE) начала разработку трехфазных асинхронных двигателей в 189 г.1. К 1896 году General Electric и Westinghouse подписали соглашение о перекрестном лицензировании конструкции ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором. Та же концепция используется и сегодня.

Асинхронные двигатели

идеально подходят для приложений, требующих непрерывной работы в одном направлении , таких как конвейеры, смесители и вращающиеся знаки. Они рассчитаны на непрерывную работу и обычно служат долго благодаря своей простой конструкции.

Конструкция и теория эксплуатации

На этом изображении показана конструкция асинхронного двигателя переменного тока, который является наиболее простым типом двигателей переменного тока с постоянными раздельными конденсаторами. Вращающийся элемент, ротор, поддерживается в корпусе двигателя двумя шарикоподшипниками для увеличения срока службы. Статор расположен вокруг ротора с тонким воздушным зазором. Выходной вал соединен с ротором. Токоподводящие провода соединены с обмотками статора. Фланцевый кронштейн запрессован в корпус двигателя для обеспечения качества.

При подаче переменного тока на медные обмотки статора вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока. Согласно правилу левой руки Флеминга, движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводнике) стального ротора, который генерирует свои собственные противоположные магнитные поля (закон Ленца). Затем магнитные поля от ротора взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.

Теория работы асинхронного двигателя переменного тока может быть объяснена с помощью Диска Араго , который представляет собой наблюдаемое явление, включающее Правило правой руки Флеминга и Правило левой руки Флеминга.

Хотите узнать больше о теории работы двигателей переменного тока?

Однофазные асинхронные двигатели

Однофазные асинхронные двигатели предлагаются с различными напряжениями и частотами для различных регионов мира. Для США однофазные двигатели обычно предлагаются на 110/115 вольт или 220/230 вольт, которые легко доступны. 60 Гц — типичная частота источника питания.

Вот фактические электрические схемы для этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Хотя принцип работы должен быть одинаковым для всех имеющихся на рынке однофазных двигателей переменного тока с постоянными конденсаторами и разделенными конденсаторами, цвета проводов могут различаться у разных производителей.

Для стандартного 3-проводного двигателя цвета проводов обычно бывают белыми, красными и черными. Черный всегда подключен к нейтральному (N). И белый, и черный подключаются к 2 клеммам специального конденсатора. Когда фаза (L) подключена к черному или красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Принцип работы двигателей с клеммной коробкой одинаков. Однако клеммы обозначены Z2, U2 и U1.

Подключение конденсатора

Для однофазных двигателей конденсатор имеет решающее значение для его запуска. Без пускового момента, обеспечиваемого конденсатором, вам пришлось бы вручную запускать двигатель, вращая вал. Это вроде как старые пропеллеры на старинном самолете. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером технической поддержки.

Вот пример подключения конденсатора с 4 клеммами и однофазного двигателя.

Пусть вас не смущает количество выводов на конденсаторе. На приведенной ниже схеме внутренней проводки показано, что две ближайшие клеммы имеют внутреннее соединение. Электрически это то же самое, что и традиционные конденсаторы с двумя выводами, которые имеют только один вывод с каждой стороны.

Мы также подготовили видеоролик, демонстрирующий правильный способ подключения этих двигателей, включая автоматические выключатели, переключатели и конденсатор.

Трехфазные асинхронные двигатели

Трехфазные асинхронные двигатели обычно предлагаются в США на 220/230 В и 50/60 Гц. В некоторых случаях предлагается 460 вольт. Трехфазные двигатели могут работать либо с постоянной скоростью, либо с инвертором/ЧРП (частотно-регулируемым приводом) для приложений с регулируемой скоростью.

Вот фактические электрические схемы для этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Для 3-проводного трехфазного двигателя у нас одинаковые цвета проводов. 3 фазы источника питания обозначены L1 (R), L2 (S) и L3 (T). Подсоедините красный к L1 (R), белый к L2 (S) и черный к L3 (T). Для двигателей с клеммной коробкой клеммы имеют маркировку U, V и W. Теория работы такая же. Чтобы изменить направление вращения, переключите любое из двух соединений между R, S и T.  

В случае перегрузки или блокировки вала рекомендуется использовать либо электромагнитный переключатель, либо электронную тепловую функцию инвертора, чтобы предотвратить перегорание двигателя.

Вы, наверное, заметили, что на схеме подключения отсутствует конденсатор . Для однофазных двигателей требуется конденсатор для создания многофазного источника питания. Для трехфазных двигателей конденсатор не нужен. Мы также подготовили видео, чтобы продемонстрировать правильную проводку.

И последнее, но не менее важное. Не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать поражения электрическим током или травмирования персонала.

Это все, что нужно для подключения однофазных и трехфазных асинхронных двигателей. Оставайтесь с нами для следующего поста, где я объясню проводку для других типов двигателей переменного тока, таких как реверсивные двигатели и двигатели с электромагнитным тормозом.

Не забудьте подписаться!

Еще немного истории…

В этом видеоролике кратко рассказывается об истории развития двигателей переменного тока Oriental Motor с 1966 года, когда серия K считалась стандартом де-факто для всех двигателей переменного тока, до появления серий KII и KIIS.

Однофазный асинхронный двигатель – конструкция, работа и типы

Однофазные двигатели более предпочтительны, чем трехфазные асинхронные двигатели для бытового и коммерческого применения. Из-за формы утилиты доступно только однофазное питание. Таким образом, в этом типе применения трехфазный асинхронный двигатель не может использоваться.

В следующем посте мы покажем конструкцию и различные типы однофазных асинхронных двигателей с работой и применением.

  • По теме: Трехфазный асинхронный двигатель — конструкция, работа, типы и применение

Содержание

Конструкция однофазного асинхронного двигателя

Однофазный асинхронный двигатель подобен трехфазному асинхронному двигателю с короткозамкнутым ротором, за исключением того, что он имеет одну фазу с двумя обмотками (вместо одной трехфазной обмотки в 3-фазном двигателе). фазные двигатели) установлены на статоре, а ротор с короткозамкнутой обмоткой размещен внутри статора, который свободно вращается с помощью подшипников, установленных на валу двигателя.

Конструкция однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя.

Подобно трехфазному асинхронному двигателю, однофазный асинхронный двигатель также состоит из двух основных частей;

  • Статор
  • Ротор

Связанная статья: Машина постоянного тока — конструкция, принцип работы, типы и применение

Статор

В статоре единственная разница заключается в обмотке статора. Обмотка статора представляет собой однофазную обмотку вместо трехфазной обмотки. Сердечник статора такой же, как сердечник трехфазного асинхронного двигателя.

В однофазном асинхронном двигателе в статоре используются две обмотки, за исключением асинхронного двигателя с расщепленными полюсами. Из этих двух обмоток одна обмотка является основной, а вторая — вспомогательной.

Сердечник статора ламинирован для уменьшения потерь на вихревые токи. Однофазное питание подается на обмотку статора (основная обмотка)

Ротор

Ротор однофазного асинхронного двигателя аналогичен ротору асинхронного двигателя с короткозамкнутым ротором. Вместо обмотки ротора используются стержни ротора, а на конце он замыкается концевыми кольцами. Следовательно, он делает полный путь в цепи ротора. Стержни ротора крепятся к концевым кольцам для увеличения механической прочности двигателя.

Пазы ротора скошены под некоторым углом, чтобы избежать магнитной связи. И это также использовалось для того, чтобы двигатель работал плавно и тихо.

На следующем рисунке показаны статор и ротор однофазного асинхронного двигателя.

  • Связанный пост: Серводвигатель — типы, конструкция, работа, управление и применение

Работа однофазного асинхронного двигателя

Однофазное питание переменным током подается на обмотку статора (основная обмотка). Переменный ток, протекающий по обмотке статора, создает магнитный поток. Этот поток известен как основной поток.

Теперь предположим, что ротор вращается и находится в магнитном поле, создаваемом обмоткой статора. Согласно закону Фарадея, ток начинает течь в цепи ротора по замкнутому пути. Этот ток известен как ток ротора.

Из-за тока ротора вокруг обмотки ротора возникает поток. Этот поток известен как поток ротора.

Есть два потока; основной поток, который создается статором , а второй поток ротора, который создается ротором .

Взаимодействие между основным потоком и потоком ротора, крутящий момент создается в роторе и он начинает вращаться.

Поле статора имеет переменный характер. Скорость поля статора такая же, как синхронная скорость. Синхронная скорость двигателя зависит от числа полюсов и частоты питания.

Может представлять собой два вращающихся поля. Эти поля равны по величине и вращаются в противоположном направлении.

Допустим, Φ м — максимальное поле, индуцируемое в основной обмотке. Значит, это поле разделено на две равные части, то есть Φ м /2 и Φ м /2.

Из этих двух полей одно поле Φ f вращается против часовой стрелки, а второе поле Φ b вращается по часовой стрелке. Следовательно, результирующее поле равно нулю.

Φ r = Φ f – Φ b

Φ r = 0

3 9 Теперь рассмотрим результаты в разные моменты времени.

Когда двигатель запускается, индуцируются два поля, как показано на рисунке выше. Эти два поля имеют одинаковую величину и противоположное направление. Таким образом, результирующий поток равен нулю.

В этом состоянии поле статора не может пересекаться с полем ротора, и результирующий крутящий момент равен нулю. Итак, ротор не может вращаться, но издает гудение.

Теперь представьте, что после поворота на 90˚ оба поля повернуты и направлены в одном направлении. Следовательно, результирующий поток представляет собой сумму обоих полей.

φ R = φ F + φ B

φ R = 0

В этом условии приготовленный результат применяется максимальным полем. Теперь оба поля вращаются отдельно, и это носит альтернативный характер.

Итак, оба поля обрезаны цепью ротора и ЭДС, наведенной в проводнике ротора. Из-за этой ЭДС в цепи ротора начинает течь ток, который индуцирует поток ротора.

Благодаря взаимодействию потока статора и потока ротора двигатель продолжает вращаться. T его теория известна как Двойная вращающаяся теория или двойное вращающееся поле теория .

Теперь, из приведенного выше объяснения, мы можем сделать вывод, что однофазный асинхронный двигатель не запускается самостоятельно.

Чтобы сделать этот двигатель самозапускающимся, нам нужен поток статора, вращающийся по своей природе, а не переменный. Это можно сделать различными методами.

  • По теме: Бесщеточный двигатель постоянного тока (BLDC) — конструкция, принцип работы и применение

Однофазный асинхронный двигатель можно классифицировать по способу пуска.

Типы однофазных асинхронных двигателей

Однофазные асинхронные двигатели классифицируются как;

  • Асинхронный двигатель с расщепленной фазой
  • Асинхронный двигатель с экранированными полюсами
  • Асинхронный двигатель с пусковым конденсатором
  • Пусковой конденсатор Пусковой конденсатор асинхронного двигателя
  • Асинхронный двигатель с постоянными конденсаторами
Асинхронный двигатель с расщепленной фазой

В этом типе двигателя дополнительная обмотка намотана на тот же сердечник статора. Итак, в статоре две обмотки.

Одна обмотка известна как основная обмотка или рабочая обмотка, а вторая обмотка известна как пусковая обмотка или вспомогательная обмотка. Последовательно с вспомогательной обмоткой включен центробежный выключатель.

Вспомогательная обмотка с высоким сопротивлением, а основная обмотка с высокой индуктивностью. Вспомогательная обмотка имеет несколько витков малого диаметра.

Вспомогательная обмотка предназначена для создания разности фаз между обоими потоками, создаваемыми основной обмоткой и обмоткой ротора.

Схема подключения показана на рисунке выше. Ток, протекающий по основной обмотке, равен I M , а ток, протекающий по вспомогательной обмотке, равен I А . Обе обмотки параллельны и питаются напряжением В.

Вспомогательная обмотка имеет высокое активное сопротивление. Так, ток I А почти совпадает по фазе с напряжением питания В.

Основная обмотка имеет сильноиндуктивный характер. Так, ток I M отстает от напряжения питания на большой угол.

Полный поток статора индуцируется результирующим током этих двух обмоток. Как показано на векторной диаграмме, результирующий ток представлен как (I). Это создаст разность фаз между потоками, и результирующий поток создаст вращающееся магнитное поле. И двигатель начинает вращаться.

Вспомогательная обмотка используется только для запуска двигателя. Эта обмотка бесполезна в рабочем состоянии. Когда двигатель достигает 75–80 % синхронной скорости, центробежный выключатель размыкается. Итак, вспомогательная обмотка выведена из цепи. И двигатель работает только на основной обмотке.

Разность фаз, создаваемая этим методом, очень мала. Следовательно, пусковой момент этого двигателя плохой. Таким образом, этот двигатель используется в приложениях с низким пусковым моментом, таких как вентиляторы, воздуходувки, измельчители, насосы и т. д.

  • Связанный пост: Шаговый двигатель — типы, конструкция, работа и применение
Асинхронный двигатель с экранированными полюсами

По сравнению с другими типами однофазных асинхронных двигателей, этот двигатель имеет другую конструкцию и принцип работы. Этот тип двигателя не требует дополнительной обмотки.

Этот двигатель имеет явный полюс статора или выступающий полюс, а ротор такой же, как у асинхронного двигателя с короткозамкнутым ротором. Полюса статора сконструированы специально для создания вращающегося магнитного поля.

Полюс этого двигателя разделен на две части; заштрихованная часть и незаштрихованная часть. Его можно создать, разрезав шест на неравные расстояния.

Медное кольцо помещается в малую часть стержня. Это кольцо является высокоиндуктивным кольцом и известно как заштрихованное кольцо или заштрихованная полоса. Часть, в которой проводится стимуляция заштрихованного кольца, известна как заштрихованная часть вехи, а оставшаяся часть — незаштрихованная часть.

Конструкция этого двигателя показана на рисунке ниже.

При прохождении переменного тока через обмотку статора в катушке статора индуцируется переменный поток. Из-за этого потока некоторое количество потока будет связано с заштрихованным кольцом, и ток будет течь через заштрихованное кольцо.

Согласно закону Ленца, ток, проходящий через катушку, имеет противоположный характер, и поток, создаваемый этой катушкой, будет противодействовать основному потоку.

Заштрихованное кольцо представляет собой высокоиндуктивную катушку. Таким образом, он будет противодействовать основному потоку, когда оба потока направлены в одном направлении, и увеличит основной поток, когда оба потока направлены в противоположные стороны.

Таким образом, это создаст разность фаз между основным потоком (поток статора) и потоком ротора. При использовании этого метода разность фаз очень мала. Следовательно, пусковой момент очень мал. Он используется в таких приложениях, как игрушечные двигатели, вентиляторы, воздуходувки, проигрыватели и т. д.

Асинхронный двигатель с конденсаторным пуском

Этот тип двигателя является усовершенствованной версией асинхронного двигателя с расщепленной фазой. Недостатком индукции с расщепленной фазой является низкий крутящий момент. Потому что в этом двигателе создаваемая разность фаз очень мала.

Этот недостаток компенсируется в данном двигателе конденсатором, включенным последовательно со вспомогательной обмоткой. Принципиальная схема этого двигателя показана на рисунке ниже.

В этом двигателе используется конденсатор сухого типа. Это предназначено для использования с переменным током. Но этот конденсатор не используется для непрерывной работы.

В этом методе также используется центробежный переключатель, который отключает конденсатор и вспомогательную обмотку, когда двигатель работает на 75-80% синхронной скорости.

Ток через вспомогательный блок опережает напряжение питания на некоторый угол. Этот угол больше, чем угол, увеличенный в асинхронном двигателе с расщепленной фазой.

Таким образом, пусковой момент этого двигателя очень высок по сравнению с асинхронным двигателем с расщепленной фазой. Пусковой крутящий момент этого двигателя на 300% больше, чем крутящий момент при полной нагрузке.

Благодаря высокому пусковому крутящему моменту этот двигатель используется там, где требуется высокий пусковой крутящий момент, например, в токарных станках, компрессорах, сверлильных станках и т. д. 

  • Сообщение по теме: КПД двигателя и как его повысить?
Конденсатор Пусковой конденсатор Работающий асинхронный двигатель

В этом типе двигателя два конденсатора соединены параллельно последовательно во вспомогательной обмотке. Из этих двух конденсаторов один конденсатор используется только для запуска (пусковой конденсатор), а другой постоянно подключен к двигателю (рабочий конденсатор).

Принципиальная схема этого рисунка показана на рисунке ниже.

Пусковой конденсатор имеет высокое значение емкости, а рабочий конденсатор имеет низкое значение емкости. Пусковой конденсатор соединен последовательно с центробежным выключателем, который размыкается, когда скорость двигателя составляет 70 % от синхронной скорости.

Во время работы рабочая и вспомогательная обмотки соединены с двигателем. Пусковой крутящий момент и эффективность этого двигателя очень высоки.

Таким образом, его можно использовать в приложениях, где требуется высокий пусковой крутящий момент, таких как холодильник, кондиционер, потолочный вентилятор, компрессор и т. д.

  • Связанный пост: Прямой онлайн-стартер — Схема подключения стартера DOL для двигателей
Асинхронный двигатель с постоянными конденсаторами

Конденсатор малой емкости постоянно подключен к вспомогательной обмотке. Здесь конденсатор имеет малую емкость.

Конденсатор используется для увеличения пускового момента, но он мал по сравнению с асинхронным двигателем с пусковым конденсатором.

Принципиальная схема и векторная диаграмма этого двигателя показаны на рисунке ниже.

Коэффициент мощности и КПД этого двигателя очень высоки, а также он имеет высокий пусковой крутящий момент, который составляет 80% крутящего момента при полной нагрузке.

Этот тип двигателя используется в таких приложениях, как вытяжной вентилятор, воздуходувка, обогреватель и т. д. Типы пускателей двигателей и методы пуска двигателей

Применение однофазных асинхронных двигателей

Однофазные двигатели не запускаются сами по себе и менее эффективны, чем трехфазные асинхронные двигатели.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *