- Ученые открыли материал с самой низкой теплопроводностью
- Теплопроводность – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)
- Теплопроводность элементов – Справочник по теплопроводности Angstrom Sciences
- Новый материал побил рекорд низкой теплопроводности – Physics World
Ученые открыли материал с самой низкой теплопроводностью
https://ria.ru/20210715/teploprovodnost-1741391973.html
Ученые открыли материал с самой низкой теплопроводностью
Ученые открыли материал с самой низкой теплопроводностью — РИА Новости, 15.07.2021
Ученые открыли материал с самой низкой теплопроводностью
Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это… РИА Новости, 15.07.2021
2021-07-15T21:00
2021-07-15T21:00
2021-07-15T21:00
наука
технологии
великобритания
химия
физика
/html/head/meta[@name=’og:title’]/@content
/html/head/meta[@name=’og:description’]/@content
https://cdnn21.img.ria.ru/images/07e5/07/0f/1741376784_0:401:1392:1184_1920x0_80_0_0_e989180d69619a141bcde475f93aa833.jpg
МОСКВА, 15 июл — РИА Новости. Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это открытие будет иметь решающее значение для разработки термоэлектрических материалов нового поколения. Результаты исследования опубликованы в журнале Science.Примерно семьдесят процентов всей энергии, производимой в мире, расходуется в виде тепла. Для сокращения этих потерь необходимы материалы с низкой теплопроводностью. Разработка новых и более эффективных термоэлектрических материалов, которые могут преобразовывать тепло в электричество, считается ключевым вопросом перехода на источники чистой энергии.Исследователи из Ливерпульского университета вместе с коллегами из Университетского колледжа Лондона, британской национальной лаборатории Резерфорда — Эплтона и французской лаборатории кристаллографии и материаловедения CRISMAT путем дизайна на атомном масштабе создали новый материал, обладающий уникально низкой теплопроводностью.Материал объединяет две разные атомные структуры, каждая из которых замедляет скорость передачи тепла сквозь твердое тело. Самой сложной задачей было соединить обе структуры в одном материале, так как для этого нужно точно контролировать расположение каждого атома. Подбирая экспериментальным путем химические варианты различных атомных расположений, ученые интуитивно ожидали получить среднее значение физических свойств двух компонентов, но синергетический эффект превзошел их ожидания.»Обнаруженный нами материал имеет самую низкую теплопроводность среди всех неорганических твердых тел и проводит тепло почти так же плохо, как воздух», — приводятся в пресс-релизе Ливерпульского университета слова руководителя исследования профессора Мэтта Россейнски (Matt Rosseinsky).Если принять теплопроводность стали за единицу, то показатель титанового стержня составит 0,1; вода и строительного кирпича — 0,01; воздуха — 0,0005; а нового материала — 0,001.Сначала авторы определили механизмы, ответственные за снижение теплопередачи в каждой из двух структур, а потом создали комбинированную компоновку атомов, имеющую имеет гораздо более низкую теплопроводность, чем любой из двух исходных материалов.»Захватывающий вывод этого исследования состоит в том, что можно улучшить свойства материала, используя атомистические взаимодействия, — говорит еще один из авторов статьи доктор Джон Алария (Jon Alaria), научный сотрудник химического факультетаЛиверпульского университета и Института возобновляемых источников энергии Стивенсона. — Помимо переноса тепла, эта стратегия может быть применена к другим важным фундаментальным физическим свойствам, таким как магнетизм и сверхпроводимость, обеспечивающим меньшее энергопотребление и более эффективную передачу электричества».По мнению авторов, их открытие представляет собой прорыв в управлении тепловым потоком на атомном масштабе и имеет большое значение как для фундаментального понимания свойств материалов, так и для практического применения в термоэлектрических устройствах, например, для разработки термоизолирующих покрытий.
https://ria.ru/20201224/ekran-1590713308.html
https://ria.ru/20210616/sverkhprovodnik-1737244365.html
великобритания
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2021
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og. xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
1920
1080
true
1920
1440
true
https://cdnn21.img.ria.ru/images/07e5/07/0f/1741376784_0:270:1392:1314_1920x0_80_0_0_2ff0d6390b219f4514dab73413f22c0b.jpg
1920
1920
true
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
технологии, великобритания, химия, физика
Наука, Технологии, Великобритания, Химия, Физика
МОСКВА, 15 июл — РИА Новости. Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это открытие будет иметь решающее значение для разработки термоэлектрических материалов нового поколения. Результаты исследования опубликованы в журнале Science.
Примерно семьдесят процентов всей энергии, производимой в мире, расходуется в виде тепла. Для сокращения этих потерь необходимы материалы с низкой теплопроводностью. Разработка новых и более эффективных термоэлектрических материалов, которые могут преобразовывать тепло в электричество, считается ключевым вопросом перехода на источники чистой энергии.
Исследователи из Ливерпульского университета вместе с коллегами из Университетского колледжа Лондона, британской национальной лаборатории Резерфорда — Эплтона и французской лаборатории кристаллографии и материаловедения CRISMAT путем дизайна на атомном масштабе создали новый материал, обладающий уникально низкой теплопроводностью.
Материал объединяет две разные атомные структуры, каждая из которых замедляет скорость передачи тепла сквозь твердое тело. Самой сложной задачей было соединить обе структуры в одном материале, так как для этого нужно точно контролировать расположение каждого атома.
Подбирая экспериментальным путем химические варианты различных атомных расположений, ученые интуитивно ожидали получить среднее значение физических свойств двух компонентов, но синергетический эффект превзошел их ожидания.
Ученые создали материал для смартфонов, который умеет регенерироваться
24 декабря 2020, 12:27
«Обнаруженный нами материал имеет самую низкую теплопроводность среди всех неорганических твердых тел и проводит тепло почти так же плохо, как воздух», — приводятся в пресс-релизе Ливерпульского университета слова руководителя исследования профессора Мэтта Россейнски (Matt Rosseinsky).
Если принять теплопроводность стали за единицу, то показатель титанового стержня составит 0,1; вода и строительного кирпича — 0,01; воздуха — 0,0005; а нового материала — 0,001.
Сначала авторы определили механизмы, ответственные за снижение теплопередачи в каждой из двух структур, а потом создали комбинированную компоновку атомов, имеющую имеет гораздо более низкую теплопроводность, чем любой из двух исходных материалов.
«Захватывающий вывод этого исследования состоит в том, что можно улучшить свойства материала, используя атомистические взаимодействия, — говорит еще один из авторов статьи доктор Джон Алария (Jon Alaria), научный сотрудник химического факультета
Ливерпульского университета и Института возобновляемых источников энергии Стивенсона. — Помимо переноса тепла, эта стратегия может быть применена к другим важным фундаментальным физическим свойствам, таким как магнетизм и сверхпроводимость, обеспечивающим меньшее энергопотребление и более эффективную передачу электричества».
По мнению авторов, их открытие представляет собой прорыв в управлении тепловым потоком на атомном масштабе и имеет большое значение как для фундаментального понимания свойств материалов, так и для практического применения в термоэлектрических устройствах, например, для разработки термоизолирующих покрытий.
Открыт новый топологический сверхпроводник
16 июня 2021, 15:41
Теплопроводность – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)
Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.
- Участник: Шароглазова Ксения Сергеевна
- Руководитель: Печерская Светлана Юрьевна
Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.
Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.
Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.
Задачи:
- изучить теоретический материал по данному вопросу;
- исследовать теплопроводность твердых тел;
- исследовать теплопроводность жидкостей;
- исследовать теплопроводность газов;
- сделать выводы о полученных результатах.
Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.
Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.
Элементы УМК к учебнику А.В.Перышкина: учебник «Физика. 8 класс» А.В.Перышкина
Содержание работы
Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.
Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE
Опыт 1
. Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержняВнесем в огонь конец деревянной палки. Он воспламенится.
Вывод: дерево обладает плохой теплопроводностью.
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.
Вывод: стекло имеет плохую теплопроводность.
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется.
Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.
Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.
Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т.
д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.Опыт 2. Исследование теплопроводности жидкостей на примере воды
Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.
Вывод: теплопроводность жидкостей меньше теплопроводности металлов.
Опыт 3. Исследование теплопроводности газов
Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.
Вывод: теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.
Выводы и их обсуждение
Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.
Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:
ТЕПЛОПРОВОДНОСТЬ |
|
ХОРОШАЯ |
ПЛОХАЯ |
металлы (серебро, медь, железо) |
жидкости (вода) |
|
газы (воздух) |
|
вакуум |
|
пористые тела, пробка, бумага, стекло, кирпич, пластмассы |
|
волосы, перья птиц, шерсть |
|
вата, войлок |
Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Применение теплопроводности
Теплопроводность на кухне
Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла.
Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной.
Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.Отопительная система
Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение.
Теплопроводность для тепла
Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.
Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.
Теплолечение
Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.
Теплопроводность в бане
Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.
Интересные факты о теплопроводности
Тепло ли колючим зверям в иголках?
Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?
Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.
Полипропилен
Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.
Какой материал имеет самую высокую теплопроводность?
Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.
Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?
Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
«Огнеупорный шарик»
Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.
Теплопроводность элементов – Справочник по теплопроводности Angstrom Sciences
Теплопроводность | Имя | Символ | # |
---|---|---|---|
0,0000364 Вт/смK | Радон | Р-н | 86 |
0,0000569 Вт/смK | Ксенон | Хе | 54 |
0,000089 Вт/смK | Хлор | Кл | 17 |
0,0000949 Вт/смK | Криптон | Кр | 36 |
0,0001772 Вт/смK | Аргон | Ар | 18 |
0,0002598 Вт/смK | Азот | Н | 7 |
0,0002674 Вт/смK | Кислород | О | 8 |
0,000279 Вт/смK | Фтор | Ф | 9 |
0,000493 Вт/смK | Неон | Не | 10 |
0,00122 Вт/смK | Бром | Бр | 35 |
0,00152 Вт/смK | Гелий | Он | 2 |
0,001815 Вт/смK | Водород | Х | 1 |
0,00235 Вт/смK | Фосфор | П | 15 |
0,00269 Вт/смK | Сера | С | 16 |
0,00449 Вт/смK | Йод | я | 53 |
0,017 Вт/смK | Астатин | В | 85 |
0,0204 Вт/смK | Селен | Se | 34 |
0,0235 Вт/смK | Теллур | Те | 52 |
0,063 Вт/смK | Нептуний | Нп | 93 |
0,0674 Вт/смK | Плутоний | Пу | 94 |
0,0782 Вт/смK | Марганец | Мн | 25 |
0,0787 Вт/смK | Висмут | Би | 83 |
0,0834 Вт/смK | Меркурий | рт. ст. | 80 |
0,1 Вт/смK | Америций | Ам | 95 |
0,1 Вт/смK | Калифорния | См. | 98 |
0,1 Вт/смK | Нобелий | № | 102 |
0,1 Вт/смK | Кюриум | См | 96 |
0,1 Вт/смK | Лоуренсиум | Лр | 103 |
0,1 Вт/смK | Фермиум | ФМ | 100 |
0,1 Вт/смK | Эйнштейний | Эс | 99 |
0,1 Вт/смK | Берклиум | Бк | 97 |
0,1 Вт/смK | Менделевий | Мд | 101 |
0,106 Вт/смK | Гадолиний | Гд | 64 |
0,107 Вт/смK | Диспрозий | Дай | 66 |
0,111 Вт/смK | Тербий | Тб | 65 |
0,114 Вт/смK | Церий | Се | 58 |
0,12 Вт/смK | Актиний | Ас | 89 |
0,125 Вт/смK | Празеодим | Пр | 59 |
0,133 Вт/смK | Самарий | См | 62 |
0,135 Вт/смK | Лантан | Ла | 57 |
0,139 Вт/смK | Европий | ЕС | 63 |
0,143 Вт/смK | Эрбий | Er | 68 |
0,15 Вт/смK | Франций | Пт | 87 |
0,158 Вт/смK | Скандий | Sc | 21 |
0,162 Вт/смK | Гольмий | Хо | 67 |
0,164 Вт/смK | Лютеций | Лу | 71 |
0,165 Вт/смK | Неодим | Нд | 60 |
0,168 Вт/смK | Тулий | Тм | 69 |
0,172 Вт/смK | Иттрий | Д | 39 |
0,179Вт/смK | Прометий | вечера | 61 |
0,184 Вт/смK | Барий | Ба | 56 |
0,186 Вт/смK | Радий | Ра | 88 |
0,2 Вт/смK | Полоний | ПО | 84 |
0,219 Вт/смK | Титан | Ти | 22 |
0,227 Вт/смK | Цирконий | Зр | 40 |
0,23 Вт/смK | Гафний | Хф | 72 |
0,23 Вт/смK | Резерфордий | РФ | 104 |
0,243 Вт/смK | Сурьма | Сб | 51 |
0,274 Вт/смK | Бор | Б | 5 |
0,276 Вт/смK | Уран | У | 92 |
0,307 Вт/смK | Ванадий | В | 23 |
0,349 Вт/смK | Иттербий | Ыб | 70 |
0,353 Вт/смK | Стронций | Старший | 38 |
0,353 Вт/смK | Свинец | Пб | 82 |
0,359 Вт/смK | Цезий | цезий | 55 |
0,406 Вт/смK | Галлий | Га | 31 |
0,461 Вт/смK | Таллий | Тл | 81 |
0,47 Вт/смK | Протактиний | Па | 91 |
0,479 Вт/смK | Рений | Ре | 75 |
0,502 Вт/смK | Мышьяк | Как | 33 |
0,506 Вт/смK | Технеций | ТК | 43 |
0,537 Вт/смK | Ниобий | № | 41 |
0,54 Вт/смK | Торий | Т | 90 |
0,575 Вт/смK | Тантал | Та | 73 |
0,58 Вт/смK | Дубниум | Дб | 105 |
0,582 Вт/смK | Рубидий | руб | 37 |
0,599 Вт/смK | Германий | Гэ | 32 |
0,666 Вт/смK | Олово | Сн | 50 |
0,716 Вт/смK | Платина | Пт | 78 |
0,718 Вт/смK | Палладий | Пд | 46 |
0,802 Вт/смK | Железо | Фе | 26 |
0,816 Вт/смK | Индий | В | 49 |
0,847 Вт/смK | Литий | Ли | 3 |
0,876 Вт/смK | Осмий | ОС | 76 |
0,907 Вт/смK | Никель | Ni | 28 |
0,937 Вт/смK | Хром | Кр | 24 |
0,968 Вт/смK | Кадмий | CD | 48 |
1 Вт/смK | Кобальт | Со | 27 |
1,024 Вт/смK | Калий | К | 19 |
1,16 Вт/смK | Цинк | Цин | 30 |
1,17 Вт/смK | Рутений | Ру | 44 |
1,29 Вт/смK | Углерод | С | 6 |
1,38 Вт/смK | Молибден | Пн | 42 |
1,41 Вт/смK | Натрий | Нет | 11 |
1,47 Вт/смK | Иридий | Ир | 77 |
1,48 Вт/смK | Кремний | Си | 14 |
1,5 Вт/смK | Родий | Рх | 45 |
1,56 Вт/смK | Магний | Мг | 12 |
1,74 Вт/смK | Вольфрам | Вт | 74 |
2,01 Вт/смK | Кальций | Са | 20 |
2,01 Вт/смK | Бериллий | Быть | 4 |
2,37 Вт/смK | Алюминий | Ал | 13 |
3,17 Вт/смK | Золото | Золото | 79 |
4,01 Вт/смK | Медь | Медь | 29 |
4,29 Вт/смK | Серебро | Аг | 47 |
Новый материал побил рекорд низкой теплопроводности – Physics World
Стратегия новых материалов обеспечивает самую низкую теплопроводность среди неорганических материалов. Предоставлено: Университет ЛиверпуляНовый неорганический материал с самой низкой теплопроводностью, о которой когда-либо сообщалось, может стать благом для технологий, преобразующих отработанное тепло в энергию. Материал, который проводит тепло почти так же плохо, как воздух, был разработан и синтезирован таким образом, что он сочетает в себе два различных расположения атомов, каждое из которых замедляет скорость прохождения тепла через него.
Из всей энергии, вырабатываемой во всем мире, ошеломляющие 70% в настоящее время идут на отработанное тепло. Помимо вреда для окружающей среды, отработанное тепло также вызывает перегрев электронных устройств, что снижает их эффективность и срок службы. Однако часть этого тепла можно использовать, используя материалы с низкой теплопроводностью 9.1073 κ , чтобы преобразовать его в электричество.
Уменьшение переноса тепла через фононы
Теплопроводность твердого тела определяется поведением его фононов, которые представляют собой колебания его кристаллической решетки. Есть два основных способа уменьшить перенос тепла через фононы: уменьшить длину, на которую рассеиваются фононы, или уменьшить скорость, с которой они путешествуют как группа.
Длина рассеяния фононов зависит от рассеяния между самими фононами и рассеяния фононов дефектами или границами внутри материала. Групповая скорость фононов, с другой стороны, зависит от структуры и состава материала. Исследователи ранее пытались уменьшить длину рассеяния фононов за счет технических дефектов в материалах и производства материалов с наноструктурами, специально разработанными для того, чтобы иметь низкое к . Другие методы включают изменение слоев между кристаллами для изменения фононных взаимодействий на границе раздела слоев.
Синергетические комбинации
В последней работе Мэтт Россейнски, Джон Алариа и их коллеги из Ливерпульского университета, Великобритания, создали композитный материал, содержащий слои, которые избирательно нацеливаются на фононы, перемещающиеся вдоль и поперек объема материала. Сопряжением слоев BiOCl и Bi 2 O 2 Se с Bi 4 O 4 SeCl 2 удалось подавить (соответственно) вклады продольных фононов и поперечных фононов в общую теплопроводность материала. Полученный композит имеет теплопроводность всего 0,1 Вт на метр Кельвина (Вт/м·К) при комнатной температуре в направлении его укладки — один из самых низких показателей среди всех сыпучих неорганических материалов и всего в четыре раза больше, чем теплопроводность воздуха.
«Отправной точкой нового исследования было понимание того, как структура материала позволит нам контролировать перенос тепла через него», — объясняют Россеинский и Аларай. Во время их продолжающегося пятилетнего исследования так называемых множественных анионных материалов им сначала нужно было разработать новую химию, которая позволила бы им синтезировать свой материал путем синергетического объединения двух разных и необычных расположений атомов. Им также необходимо было определить механизмы, ответственные за снижение теплопередачи в каждом устройстве, путем измерения и моделирования теплопроводности различных задействованных структур.
«Трудно объединить механизмы в одном материале, потому что вы должны точно контролировать, как в нем расположены атомы», — объясняют они. «Интуитивно вы ожидаете получить среднее значение физических свойств двух компонентов. Выбрав благоприятные химические границы между каждым из этих различных атомных расположений, мы экспериментально синтезировали материал, который сочетает в себе их оба».
Улучшенные материалы с низким значением κ
Важно отметить, что новый материал имеет гораздо более низкую теплопроводность при комнатной температуре, чем любой из материалов, содержащих только одну такую конструкцию. Этот неожиданный результат показывает, что расположение различных атомов в структуре важно, и помогает объяснить, почему свойства целого лучше, чем свойства его составных частей.
Подробнее
Теория переноса тепла становится всеобщей
Россеинский, Алария и их коллеги теперь надеются оптимизировать электронные свойства своего материала для создания термоэлектрического элемента.