- Принцип работы теплового насоса — Энергео
- Принцип работы теплового насоса, что такое тепловой насос, оборудование для отопления
- Устройство и принцип работы теплового насоса ремонт теплового насоса
- Принцип действия и установка теплового насоса
- Принцип работы теплового насоса, как работает тепловой насос
- Принцип работы теплового насоса «Воздух-вода»
- Принцип работы теплового насоса «вода-вода» | Полезное
- Мы отвечаем на 8 самых распространенных вопросов о тепловых насосах
- Пошаговое руководство по работе вашего теплового насоса
- Тепловые насосы 101 | Как работают тепловые насосы?
- ENERGY STAR Задайте вопрос экспертам | Продукция
- Последовательность работы теплового насоса Узнайте о качестве HVAC сегодня 1
- Нагрев и охлаждение с помощью теплового насоса
- Содержание
- Введение
- Предполагаемая аудитория
- Примечание по управлению энергопотреблением в доме
- Что такое тепловой насос и как он работает?
- Важная терминология для систем с тепловым насосом
- Воздушные тепловые насосы
- Основные преимущества воздушных тепловых насосов
- Как работает воздушный тепловой насос?
- Дополнительные источники тепла
- Соображения по энергоэффективности
- Сертификация, стандарты и рейтинговые шкалы
- Рекомендации по выбору размеров
- Другие критерии отбора
- Рекомендации по установке
- Рекомендации по эксплуатации
- Рекомендации по техническому обслуживанию
- Операционные расходы
- Ожидаемый срок службы и гарантии
- Земляные тепловые насосы
- Основные преимущества наземных тепловых насосных систем
- Как работает система заземления?
- Части системы
- Соображения по энергоэффективности
- Сертификация, стандарты и рейтинговые шкалы
- Рекомендации по выбору размеров
- Соображения по конструкции
- Рекомендации по установке
- Рекомендации по эксплуатации
- Рекомендации по техническому обслуживанию
- Операционные расходы
- Ожидаемый срок службы и гарантии
- Сопутствующее оборудование
- Сноски
- При какой температуре тепловые насосы становятся неэффективными?
Принцип работы теплового насоса — Энергео
Тепловой насос представляет собой устройство по преобразованию низкопотенциальной теплоты, получаемой от какого-либо общедоступного источника, в тепловую энергию высокого потенциала, предназначенную для нужд потребителя (отопления, горячего водоснабжения). Преобразование теплоты происходит за счет ряда фазовых переходов.
Термодинамически тепловой насос идентичен холодильной машине. И тепловой насос, и холодильная машина работают по обратному тепловому циклу, разница заключается в диапазоне рабочих температур и давлений. В мире существует весьма широкая классификация тепловых насосов, в сфере теплоснабжения наибольшее распространение получили парокомпрессионные установки.
Цикл работы парокомпрессионного теплового насоса включает в себя следующие преобразования:
Низкопотенциальное тепло принимается тепловым насосом в специальном пластинчатом теплообменнике – испарителе и передается особому рабочему телу – хладагенту. Хладагент представляет собой вещество с низкой температурой кипения. На сегодняшний день в тепловых насосах чаще всего в качестве хладагента используются различные фреоны (R407C, R134а, R410а), а также углекислый газ и пропан. Хладагент, приняв в теплообменнике определенное количество теплоты, испаряется и в газообразном состоянии поступает в компрессор. Компрессор сжимает поступающий хладагент до высокого давления, вследствие чего повышается и температура рабочего тела. После сжатия при более высоких параметрах газообразный хладагент поступает в следующий теплообменник – конденсатор. В конденсаторе происходит передача теплоты высокого потенциала теплоносителю системы отопления и горячего водоснабжения потребителя с последующим переходом остывающего хладагента в жидкое состояние. После конденсатора рабочее тело проходит через редукционное устройство, где давление и температура снижаются до первоначальных параметров перед теплообменником-испарителем. Цикл замыкается и повторяется снова.
Парокомпрессионные тепловые насосы принято различать по способам отбора низкопотенциальной теплоты.
Горизонтальный геотермальный контур
Грунт имеет свойство накапливать и сохранять солнечное тепло в течение длительного времени, что ведет к относительно равномерному уровню температуры источника тепла на протяжении всего года. Это обеспечивает эксплуатацию теплового насоса с достаточно высоким коэффициентом эффективности. Забор тепла из грунта осуществляется с помощью горизонтально проложенной в грунте системы пластиковых труб на глубине 1,2-1,5 м.
Вертикальные геотермальные скважиныВертикальный зонд — это система труб, опускаемых в вертикальную скважину, глубина и количество таких скважин зависит от мощности необходимого Вам теплового насоса. В грунте на глубине начиная с 10-15 метров в течение года поддерживается всегда одинаковая постоянная температура (около +7 — +8°С для РБ), поэтому данный вид коллектора в наших климатических условиях является наиболее надежным и эффективным.
Грунтовые водыЕсли в ваших условиях грунтовые воды легко доступны, то их так же можно использовать в качестве источника тепла, т.к. температура такого источника в любое время года колеблется в среднем от 7 до 12° C. Расстояние между точкой получения тепла и точкой возврата должно быть не менее 10-15 метров. Кроме того в целях предотвращения «короткого замыкания потока», следует обратить внимание на направление потока грунтовых вод. Стоит также учитывать, что для установки подобных сооружений нужно разрешение, кроме этого они должны отвечать определенным нормативным требованиям.
Перейти к каталогу тепловых насосов «грунт-вода».
Окружающий воздухОкружающий воздух является наиболее доступным источником низкопотенциальной теплоты для теплового насоса. Одним из преимуществ, при выборе теплового насоса данного типа, является простая схема монтажа оборудования в систему с уже установленным любым дополнительным источником тепла (например, дизельным, твердотопливным или газовым котлом). Однако стоит учитывать и то, что, ввиду особенностей наших климатических условий с достаточно низкой температурой наружного воздуха в холодное время года, работа теплового насоса в отопительный период является не столь продуктивной, как для насосов типа «грунт-вода». Кроме того, тепловые насосы, принимающие тепло от наружного воздуха, способны работать до температуры -25°С (до -32°С — системы «воздух-водух»), при более низкой температуре автоматика теплового насоса будет переводить теплоснабжение потребителя от другого дополнительного источника.
Перейти к каталогу тепловых насосов типа «воздух-вода».
Вентиляционный воздухСуществуют тепловые насосы, использующие удаляемый из помещений воздух системы вентиляции. Применение таких тепловых насосов позволяет осуществлять рекуперацию теплоты воздуха внутри зданий. Перед удалением из помещений, тёплый воздух проходит через тепловой насос, возвращая, таким образом, системе теплоснабжения здания часть накопленной теплоты.
Перейти к каталогу тепловых насосов, использующих вентиляционный воздух.
Принцип работы теплового насоса, что такое тепловой насос, оборудование для отопления
Тепловий насос Нitachi купити стало не лише престижно, а й економічно вигідно за всіма параметрами.
- Основними перевагами обладнання є його універсальність: працює на опалення, кондиціювання та гаряче водопостачання будь-якого будинку і квартири за низьких експлуатаційних витрат.
- У новій лінійці теплових насосів Yutaki від Hitachi представлено 70 моделей продуктивністю від 7 до 32 кВт.
- Тепловий насос для опалення будинку за ціною впевнено конкурує з іншим опалювальними агрегатами.
- Устаткування повністю вдосконалили, щоб вигідно виокремлюватися серед конкурентів.
- Насос для системи опалення з лінійки Yutaki Hitachi відрізняється від попередніх моделей потужністю установок, збільшенням коефіцієнта ефективності СОР, а також наявністю спеціального комплекту для кондиціювання.
- Новий білий дизайн установок робить їх максимально підходящими навіть для найвишуканішого інтер’єру.
- Купити тепловий насос цього бренду – економія коштів на опаленні, охолодженні і ГВП житла, очевидна вигода у зв’язку з постійним підвищенням всіх тарифів на опалення.
Де замовити теплові насоси в Києві?
Щоб обладнання радувало вас тривалим терміном служби й ефективною безперебійною роботою, замовте теплові насоси в Україні від перевіреного бренду. Компанія Hitachi на українському ринку представляє свою продукцію вже більше 20 років. Наш тепловий насос за ціною в Києві впевнено конкурує з іншими провідними виробниками і дозволяє стати володарем функціонального агрегату без зайвих фінансових витрат.
Ми пропонуємо теплові насоси Нitachi в Києві за цінами виробника
У нас представлена офіційна продукція бренду, що дозволяє пропонувати клієнтам теплові насоси за ціною без накруток. Пряма співпраця з японською корпорацією гарантує доступну вартість теплового насосу всіх моделей, своєчасні постачання та регулярне оновлення асортименту.
У нас також можна замовити тепловий насос під ключ — ми візьмемо на себе всі турботи про доставку, встановлення та запуск обладнання.
Устройство и принцип работы теплового насоса ремонт теплового насоса
Как устроен тепловой насос и как он работает?
Теплонасос функционирует как холодильник, только наоборот. Холодильник переносит тепло изнутри во вне. Тепловой насос переносит тепло, накопленное в воздухе, почве, недрах или воде, в ваш дом.
Тепловой насос состоит из 4 основных агрегатов:
— испаритель,
— конденсатор,
— расширительный вентиль (разряжающий вентиль-дроссель, понижает давление),
— компрессор (повышает давление).
Эти агрегаты связаны замкнутым трубопроводом. В системе трубопровода циркулирует хладагент, который в одной части цикла представляет собой жидкость, а в другой — газ.
Точка кипения для разных жидкостей меняется посредством давления, чем выше давление, тем выше точка кипения. Вода закипает при нормальном давлении при температуре +100 °С. При повышении давления вдвое, температура кипения воды достигает +120 °С, а при уменьшении давления в 2 раза, вода закипает при +80 °С. Хладагент в тепловом насосе имеет ту же тенденцию — его температура кипения изменяется при изменении давления. Точка кипения хладагента лежит низко, приблизительно — 40 °С при атмосферном давлении, поэтому может использоваться даже с низкотемпературным тепловым источником.
Земные недра как глубинный теплоисточник
Земные недра являются бесплатным теплоисточником, поддерживающим одинаковую температуру круглый год. Использование тепла земных недр является экологически чистой, надежной и безопасной технологией обеспечивания теплом и горячим водоснабжением всех типов зданий, больших и малых, общественных и частных.Уровень капиталовложений достаточно высокий, но взамен Вы получите безопасную в работе, с минимальными требованиями к сервисному обслуживанию альтернативную обогревательную систему с максимально длительным сроком эксплуатации. Коэффициент преобразования тепла высок, достигает 3. Установка не требует много места и может быть внедрена на участке земли малой плошади. Объем восстановительных работ после бурения незначителен, влияние пробуренной скважины на окружающую среду минимально. На уровень грунтовых вод воздействие не оказывается, так как грунтовые воды не потребляются. Тепловая энергия переносится к конвекционной системе водяного отопления и применяется для горячего водоснабжения.
Грунтовое тепло — близкозалегающая энергия
В поверхностном слое земли накапливается тепло в течение лета. Использование этой энергии для обогрева целесообразно для зданий с высокими энергорасходами. Наибольшее количество энергии извлекается из почвы с большим содержанием влаги.
Грунтовый теплонасос
Тепло из почвы поставляется посредством пластикового шланга. Экологически чистая, морозостойкая жидкость циркулирует в шланговой системе и переносит тепло к тепловому насосу, где оно преобразуется в высокотемпературное тепло для обогрева и горячего водоснабжения.
Водные теплоисточникиСолнце нагревает воду в морях, озерах и других водных источниках. Солнечная энергия накапливается в воде и донных слоях. Редко температура снижается ниже +4 °С. Чем ближе к поверхности, тем температура больше варьируется в течение года, а в глубине — она относительно стабильна.
Тепловой насос с водным источником тепла
Шланг для передачи тепла укладывается на дне или в грунте дна, где температура еще немного выше, чем температура воды. Важно, чтобы шланг снабжался отягощающим грузом для предотвращения всплытия шланга на поверхность. Чем ниже он залегает, тем меньше риск повреждения. Водный источник как источник тепла очень эффективен для зданий с отно сительно высокими потребностями в теп лоэнергии.
Кроме вышеперечисленных источников теплонасосная установка может использовать тепловые сбросы самого жилья для отопления и горячего водоснабжения: сбросную воду, а также вентиляционные выбросы и дымовые газы. В последнем случае вытяжная система должна быть оборудована действующим вентиляционным агрегатом. Данная комбинация улучшает вентилирование дома и уменьшает проблемы с плесенью, сыростью, радоновой загазованностью.
”Бросовые” источники тепла
Кроме вышеперечисленных источников тепловой насос может использовать тепловые сбросы самого жилья для отопления и горячего водоснабжения: сбросную воду, а также вентиляционные выбросы и дымовые газы. В последнем случае вытяжная система должна быть оборудована действующим вентиляционным агрегатом. Данная комбинация улучшает вентилирование дома и уменьшает проблемы с плесенью, сыростью, радоновой загазованностью.
Экономическая эфективность теплового насоса
Коэффициент преобразования тепла
Эффективность определяется так называемым коэффициентом преобразования тепла или коэффициентом температурной трансформации, который представляет собой отношение количества энергии, генерируемой теплонасосом, к количеству энергии, затрачиваемой на процесс переноса тепла.
В большинстве случаев коэфициент температурной трансформации равен 3. Это означает, что тепловой насос поставляет в 3 раза больше энергии, чем потребляет. Другими словами, 2/3 получено «бесплатно» от теплоисточника. Чем выше энергопотребности Вашего жилища, тем больше вы экономите денежных средств.
Тепловые насосы наиболее эффективны в отопительных системах с низкотемпературными характеристиками, например, в системах напольного отопления.
При подборе теплонасоса к Вашей обогревательной системе невыгодно ориентировать мощностные показатели теплонасоса на максимальные требования к мощности (на покрытие энергорасходов в отопительном контуре в самый холодный день года).
Опыт показывает, что теплонасос должен генерировать около 50-70% от этого максимума, тепловой насос должен покрывать 70-90% (в зависимости от теплоисточника) от общей годовой потребности в энергии для отопления и горячеговодоснабжения. При низких внешних температурах теплонасос применяется с имеющимся в наличии котельным оборудованием или пиковым доводчиком, которым укомплектован тепловой насос.
Виды теплонасосов, применяемые в системе отопления в России
В нашей стране свое применение нашли следующие типы тепловых агрегатов:
1. Грунтовый теплонасос.
Земные недра являются неисчерпаемым и бесплатным теплоисточником, который поддерживает одинаковую температуру на протяжении целого года. Использование такого тепла – это надежная, экологически чистая и безопасная технология обеспечения теплом всех типов зданий. Конечно, уровень капиталовложений при установке такого насоса достаточно высокий, но при этом Вы получаете неприхотливую к сервисному обслуживанию обогревательную систему с длительным сроком эксплуатации. Установка насоса не требует много места, к тому же он может быть внедрен на земельном участке малой площади.
2. Водный теплонасос.
Солнце щедро нагревает воду в озерах, реках и морях. Чем ближе к поверхности, тем больше варьируется температура воды, а на глубине ее величина относительно стабильна.
Шланг насоса, предназначенный для передачи тепла, желательно установить в грунте дна, поскольку там температура еще выше. При этом важно снабдить шланг отягощающим грузом, во избежание его всплытия на поверхность. Такой источник тепла эффективен для обогрева зданий с относительно невысокими тепловыми потребностями.
3. «Бросовый» теплонасос.
Принцип работы теплового насоса может также основываться и на использовании тепловых сбросов жилья: вентиляционные выбросы, использованная вода, дымовые газы и пр. Такая технология устраняет проблемы с плесенью и радоновой загазованностью, улучшая при этом вентилирование дома. ремонт теплового насоса
Принцип действия и установка теплового насоса
Тепловой насос – это сердце системы геотермального отопления. Ключевыми элементами теплового насоса являются: испаритель, компрессор, конденсатор, терморегулятор и циркулирующий по системе хладагент. Объединенные в единую систему, данные элементы позволяют забирать малое количество тепла из окружающей среды (воды, грунта) и превращать его в высокопотенциальное для отопления здания и обеспечения горячего водоснабжения.
Принцип работы тепловых насосов.
По принципу работы тепловой насос больше всего похож на холодильник. Только если холодильник забирает тепло и вытесняет его на радиатор, то тепловой насос, забирая тепло, переносит его в дом.
Охлажденный жидкий хладагент подается в теплообменник теплового насоса – испаритель. При подаче более теплого источника тепла (наружного воздуха, солевого раствора или воды) на испаритель, циркулирующий в нем хладагент забирает от источника тепла необходимую энергию для испарения и переходит из жидкого состояния в газообразное. Компрессор производит всасывание газообразного хладагента и выполняет его сжатие. За счет увеличения давления происходит повышение температуры – таким образом, хладагент «подкачивается» до более высокого температурного уровня. Для этого требуется электричество. Хладагент направляется в расположенный за компрессором конденсатор. Здесь хладагент отдает полученное ранее тепло в циркуляционный контур системы водяного отопления, переходя в жидкое состоянии Затем с помощью расширительного клапана производится снижение имеющегося остаточного давления, и цикл начинается занов Таким образом,в зависимости от источника отбора тепла, мы имеем разные типы тепловых насосов: «вода-вода», «грунт-вода», «воздух-вода», «грунт-воздух», «вода-воздух» и «воздух-воздух». Первое слово в обозначении типа — это источник тепла (низкопотенциальная тепловая энергия), второе — источник нагрузки для обогрева здания (высокопотенциальное тепло).
Энергоэффективность.
Примерно две трети тепловой энергии мы можем получать бесплатно от природы: воды, грунта или воздуха и только треть необходимо потратить на работу самого компрессора в тепловом насосе. Фактически, владелец теплового насоса может экономить до 70% финансовых средств, которые он бы регулярно затрачивал при отоплении традиционным способом (электроэнергия, газ или дизтопливо) своего дома, гаража, офиса, магазина, склада и т.д.
Все вышесказанное означает, что тепловой насос берет тепловую энергию из воды, земли или воздуха и «перекачивает» в ваш дом. Во время работы компрессор затрачивает электроэнергию. На каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает от 2,5 до 5 киловатт-часов тепловой энергии. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации, коэффициентом преобразования теплоты (КПТ) или просто СОР. По этой причине чем меньше разница температур теплоносителей во входном и выходном контурах, тем больше коэффициент преобразования тепла (КПТ), то есть больше экономия электроэнергии. Это значит, что в случае применения тепловых насосов — выгодней подключать их к низкотемпературным системам отопления. Имеется в виду обогрев от теплых водяных полов или теплых стен (укладка труб в стенах) или теплым воздухом, так как в этих случаях мы имеем теплоноситель около 30-40°С.
Типы установок коллекторов.
Геотермальные коллектора могут быть следующих типов, в порядке увеличения стоимости их организации:
Открытый коллектор.Представляет из себя подающую скважину на воду (которая по определению есть для водоснабжения) с дебетом не менее 3-х куб.м и динамическим уровнем воды желательно не ниже 10 метров и приемную скважину в которую осуществляется слив охлажденной воды. В таком варианте работают подавляющее большинство крупных коммерческих объектов с тепловыми мощностями от 100 кВт. Если у Вас дебет скважины и динамический уровень воды в ней подходящий то наверное это самый бюджетный и хорошо работающий вариант.
В данном варианте организации геотермального коллектора, трубы подогревателя низкого давления наполненные незамерзающей жидкостью, в соответствии с расчетом, укладываются на дно открытого водоема и с помощью циркуляционного насоса осуществляется прокачка гликолевого раствора через тепловой насос который снимает с потока свои 5 градусов, которые, градусы, снова восстанавливаются при прохождении по трубам коллектора. Круговорот воды (температуры) в природе.
Горизонтальный коллектор.Теплосъем осуществляется с массива грунта и теплового потока ниже глубины промерзания (около 2-х метров). В соответствии с расчетом роются траншеи, на дно которых укладываются трубы ПНД заполненные гликолевым раствором, в процессе работы теплового насоса осуществляется циркуляция теплоносителя. Возможна организация данного коллектора при наличии достаточной площади под земляные работы. Для работы теплового насоса тепловой мощностью 15кВт требуется приблизительно от 600 метров уложенной трубы ПНД и соответственной такой же погонаж вырытых траншей, общая же площадь коллектора с учетом технологии копки составит более 6 соток земельного участка.
Многоуровневый коллектор.Является разновидностью «Горизонтального коллектора», особенностью работ будет увеличение глубины траншеи до 3,1 м, послойная укладка ПНД в несколько уровней и сокращение общей длинны траншей в 4 и более раз. Фактическая стоимость работ будет близка к стоимости «горизонтального коллектора», при резком сокращении занимаемой площади и в этом варианте уже появляется возможность вписать геотермальный коллектор в «стандартный» земельный участок.
Вертикальный коллектор.
Создается на основе скважин глубинами до 100 метров и более в которые погружаются U-образные зонды с циркулирующей незамерзающей жидкостью. Наиболее компактный тип коллекторов, может быть расположен на любом по площади участке. Все в нем замечательно кроме как уж водится цены. Для получения 15 кВт тепловой энергии необходимо от 230 погонных метров пробуренных скважин. Цены на стандартные буровые работы все себе представляют. Не смотря ни на что, возможно это самый массовый вариант геотермальных коллекторов в мире и для кого-то он будет куда лучше, чем постоянная топка хоть пелетами, хоть дровами, а диз. топливо и электроотопление окажутся и в разы дороже в эксплуатации или банально отсутсвуют достаточные подведенные мощности.
Доступность и универсальность
Практически нет такого дома или объекта, где недоступна установка теплового насоса. Источник рассеянного тепла мы можем обнаружить в любом уголке нашей планеты. Земля, вода и, конечно, воздух есть даже на самом отдаленном от цивилизации участке, вдали от газопроводов — тепловой насос везде раздобудет для себя «пищу» для того, чтобы бесперебойно обогревать ваш дом. Это оборудование не зависит от капризов погоды, поставщиков и тарифов на тепло, наличия дров или дизельного топлива, или просто от падения давления газа в сети. Тепловые насосы не только вырабатывают тепло, но и охлаждают помещения, то есть они реверсивные. Тепловые насосы могут отбирать тепло из воздуха дома, охлаждая его и направлять тепловые избытки в скважину или на улицу с воздухом. В летнее время избыточное тепло можно использовать на подогрев бассейна. Также они способны одновременно с обогревом или охлаждением приготовить горячую воду для бытовых нужд.
Монтаж и пусконаладочные работы
Компания Фабрика Тепла предлагает вам предварительный расчет экономической целесообразности, подбор, поставку оборудования, проведение пусконаладочных работ. Ознакомиться со стоимостью популярных моделей тепловых насосов вы можете на нашем сайте и по телефону 8 (831) 220-70-80
Документальный фильм о тепловых насосах (СССР).
Категория: Тепловые насосы
Дата: 17 июня 2014 г.
Принцип работы теплового насоса, как работает тепловой насос
Как устроен геотермальный тепловой насос внутри
Виды тепловых насосов
Какие бывают виды тепловых насосов в в зависимости от источника тепла? Они делятся по способу отбора тепла из окружающей среды.
- Геотермальные. Переносят тепло грунта и\или грунтовых вод в дом
- Воздух-вода. Переносят тепло атмосферного воздуха в систему отопления.
- Рекуператоры вторичного тепла: отбор тепла вытяжного воздуха, стоков канализации, другого бросового тепла
Тепловой насос с вертикальными скважинами (зондами)
Отбор тепла скважиныПри отсутствии большой площади прилегающей территории, устанавливается вертикальный теплообменник (зонд) для работы с геотермальным тепловым насосом. Это наиболее компактный и популярный способ, который позволяет сохранить целостность ландшафта. Температура грунта на глубине бурения скважины стабильно находится на уровне +10ºС, поэтому эффективность таких тепловых насосов с вертикальным теплообменником выше. Недостатком является необходимость проведения бурильных работ, что повышает цену данного вида системы. При использовании в качестве источника тепла скважины, в нее опускается зонд из полиэтиленовой трубы, имеющий U-образную форму. Не обязательно использовать одну очень глубокую скважину, можно пробурить несколько неглубоких, более дешевых скважин, главное получить общую расчетную глубину.
Преимущества:
- Компактная система, не требующая большого участка
- Самая эффективная с точки зрения температур. Стабильная температура на протяжении всего года.
- Возможно реализация пассивного кондиционирования путем сброса летом тепла в скважин
- Нет необходимости в большом участке
- Не влияет на участок
Грунтовый тепловой насос
Бурение скважин под тепловой насосГрунтовый горизонтальный коллектор
Тепловой насос собирает тепло грунта с помощью коллектора, уложенного рядом со зданием на глубину около метра. Горизонтальный контур собирает солнечную энергию, накопившуюся за лето в грунте. Коллектор геотермальной отопительной системы размещается горизонтально глубже уровня промерзания почвы. Такой способ позволяет добиться высокой энергоэффективности, так как температура на глубине залегания коллектора колеблется от 3 до 12ºС. Но монтаж горизонтального теплообменника требует наличия значительной земельной площади и может повредить уже обустроенную придомовую территорию. Также из возможных минусов: Ваш газон позеленеет после зимы на пару недель позже, чем у соседа 🙂
Преимущества:
- Более низкая стоимость установки по сравнению с вертикальным контуром заземления
- Может также использоваться для извлечения тепла из озер
- Контур поддерживает постоянную температуру в течение года
- При реализации кондиционирования с помощью теплового насоса, в некоторых случаях, нужно устанавливать активный блок кондиионирования
Горизонтальный коллектор
Спиральный коллектор
Спиральный коллектор является комбинацией между вертикальными скважинами и горизонтальным коллектором. Применяется там, где в силу геологических причин бурение очень дорогое (например, залегание гранитной плиты). Дороже чем вариант горизонтального коллектора, так как требует предварительного изготовления спиралей более тонкой трубы (обычно 25 мм) высотой от 2 до 3 метров. Также возникает необходимость сборных колодцев, так как из-за уменьшения диаметра увеличивается общая длинна трубы в системе.
Тепловой насос вода-вода
Тепло грунтовых вод, тепло реки, тепло моряВода выкачивается с первой скважины по течению, через промежуточный теплообменник, отбирается тепло у воды (дельта температур 3-4 градуса). Затем вода сбрасывается во вторую скважину ниже по течению грунтовых вод.
К минусам можно отнести постоянное обслуживание системы, а также непрогнозируемое изменение геологических и водоносных параметров (дебит и состав воды в скважине может меняться в худшую сторону).
Аналогичная система может использоваться с глубоководной рекой. А также с морем, но это уже более сложная система с дорогим титановым теплообменником и фильтрацией, данная система оправдана только в промышленных масштабах.
Принцип работы теплового насоса воздух вода
Отбор тепла наружного воздухаНаиболее часто встречающийся тип “воздух-воздух” – это традиционные кондиционеры. А для работы с водяной системой отопления (радиаторы или теплые полы) применяются тепловой насос воздух вода Thermia iTec. Они извлекают тепло посредством обдува атмосферным воздухом теплообменника в наружном блоке. Внутри теплообменнника циркулирует более холодный фреон. За счет того, что фреон более холодный, чем атмосферный воздух, происходит отбор тепла из воздуха. Данная модель может работать до -25 градусов наружного воздуха.
Рекуперация тепла вытяжного воздуха
Утилизация тепла вытяжкиЭнергия отбирается от теплого вытяжного воздуха из здания. Это может быть тепло, как с вытяжного воздуховода (или шахты) естественной вытяжки, так и с принудительной системы вентиляции с рекуперацией. В таком случае это будет вторая ступень рекуперации тепла после основного рекуператора.
Какие могут быть схемы утилизации (рекуперации) тепла вытяжного воздуха с тепловым насосом?
Для небольших зданий, в том числе частных домов, в дополнение к геотермальному тепловому насосу устанавливается специальный аксессуар Thermia Vent, который является теплообменником типа “воздух-вода”. Обдуваемый вытяжным воздухом, он дополнительно нагревает входящий теплоноситель со скважин, повышая COP теплового насоса.
Для больших зданий, где объем тепла в вытяжном воздухе существенный, можно установить промышленный тепловой насос Thermia Mega, полноценно обеспечивающий горячей водой здание или частично его отапливая. Также данная система актуальна для предприятий с бросовым теплом от технологических процессов. Особенно эффективно работает с такой системой инверторный тепловой насос, который подстраивают свою мощность под текущее количество отбираемого технологического тепла вытяжки в данной момент.
Преимущества:
- Снижает стоимость установки в целом (меньше скважин)
- Встраивается в существующую систему вентиляции
- Улучшает COP теплового насоса
- Повышает категорию здания до отметки энергоэффективности “А”
Принцип работы теплового насоса «Воздух-вода»
Тепловой насос воздух вода – еще один тип тепловых насосов, которые обеспечивают не только отопления помещения, но и кондиционирование. Тепловой насос воздух вода – это инновационная система рециркуляции энергии, которая уменьшает нагрузку на окружающую среду, при этом повторно использует тепло, которое и так вырабатывается в повседневной жизни.
Тепловой насос воздух вода для отопления используется с максимальной эффективностью. Главное их преимущество – это экономичность. Тепловые насосы воздух вода на каждый потребленный 1,00 киловатт электрической энергии способны вырабатывать до 4,44 кВт тепловой. Таким образом, система отопления становиться намного более эффективной.
Принцип действия теплового насоса воздух вода состоит из следующих этапов:
- Принцип работы достаточно не сложный. Наружный блок с помощью хладагента забирает тепловую энергию из наружного воздуха (собственно источника тепла). Далее хладагент поступает в компрессор, где уже после сжатия его температура значительно увеличивается.
- Горячий хладагент (уже в форме газа) идет в теплообменник внутреннего блока фреон-вода.
- Хладагент напрямую передает тепло воде, которая уже самостоятельно переносит его к элементам системы отопления или кондиционирования.
- Хладагент (возвращенный в жидкую форму) идет уже в наружный блок, и цикл повторяется по кругу, пока не достигнет необходимой температуры в помещении.
Тепловой насос воздух вода работает и на охлаждение. При работе на охлаждение весь принцип действия происходит в обратной последовательности – хладагент отбирает тепло из воды, передает в наружный блок, а затем – в воздух.
Принцип работы теплового насоса воздух вода значительно отличается от традиционных отопительных приборов. Поскольку традиционные приборы отопления основаны на сжигании топлива.Тепловой насос работает по-другому. Он использует единицу электрической энергии, и «перекачивает» от 2 до 5 единиц (кВт) тепла (в зависит от температуры наружного воздуха).
Тепловой насос воздух вода для отопления дома подходит идеально. Он обеспечивает максимальную отдачу при минимальном потреблении. Дома установить такое оборудование не сложно, однако лучше чтобы подключением занимался профессионал. Ведь сам тепловой насос воздух вода для отопления достаточно не дешевый, поэтому необходимо правильно его установить.
Тепловой насос типа вода вода менее популярная модель в Европе, чем тепловой насос воздух вода. Объясняется это тем, водный ресурс значительно дороже и не такой доступный, как воздух.
Принцип работы теплового насоса «вода-вода» | Полезное
При постоянном росте цен на газ и уголь, потребители все чаще задумываются о применении альтернативных источников энергии — воды, земли или воздуха. Такое оборудование дает возможность отказаться от покупки топлива. К тому же, использование возобновляемых природных ресурсов является важным вопросом сохранения окружающей среды. Принцип работы теплового насоса вода-вода позволяет обеспечить тепло в доме, не нарушая природный баланс и не загрязняя окружающую среду.
Источником тепла может выступать любая водная среда — идеальным вариантом являются грунтовые воды, температура которых никогда не опускается ниже 7°C, но подойдут и открытые водоемы.
Расчет эффективности теплового насоса вода-вода
Прежде чем совершить покупку необходимо выполнить расчет и определить эффективность теплового насоса вода-вода, чтобы четко понимать выгоду от такого приобретения.
Тепловой насос производит объем энергии в 3-5 раз больше, чем расходует, однако, это вовсе не значит, что стоит верить рекламным трюкам некоторых продавцов, заявляющих о том, что КПД составляет 300-500%. У теплонасосов действительно высокий КПД, но превышать 100%, он не может.
Эффективность тн будет сильно зависеть от типа источника энергии. Если сравнить затраты на покупку, установку и транспортировку в соотношении на 1 кВт мощности, то самым дорогим будет геотермальный с вертикальным коллектором. Чуть менее дорогостоящим будет грунтовой с горизонтальным коллектором, а самым дешевым воздушный, но менее эффективным. Самым оптимальным оказывается вода-вода, у него отличное соотношение цены и выдаваемой мощности.
Устройство теплового насоса вода-вода
Если в качестве источника используется водоем, он должен быть расположен в непосредственной близости от дома, не более 100 м, иначе установка такого агрегата будет нерентабельной. Примечательно, что устройство и геотермального насоса, и водяного с закрытым циклом одинаковое. Разница лишь в том, что второй берет тепло только из воды.
Водяные насосы закрытого цикла требуют прокладки коллектора, а перенос энергии от низкопотенциального источника в отопительный контур совершается за счет хладагента. Эффективнее всего показывают себя системы, забирающие энергию из грунтовых вод, ведь они имеют практически постоянную среднегодовую температуру t = 7-10 oC.
Принцип работы теплового насоса вода-вода: вода из источника отдает тепло испарителю и попадает обратно в водоем через другую скважину для сброса. Хладагент в испарителе закипает и преобразуется в пар, затем сжимается в компрессоре, при этом температура и давление значительно повышаются. Далее хладагент перенаправляется в конденсатор, в котором отдает тепло в отопительный контур, а сам конденсируется. Далее он проходит через сбросной клапан, охлаждается и весь цикл повторяется заново, до тех пор, пока помещение не нагреется. Если в агрегате установлен погодазависимый режим, при достижении нужной температуры в контуре он автоматически отключится. Когда дом начнет охлаждаться, устройство включится снова.
В водяных теплонасосах открытого цикла плюсом является возможность получать воду для горячего водоснабжения. Система работает по принципу сообщающихся сосудов, перекачивая воду из источника через контур, а потом возвращая обратно. Минус таких систем – недолговечность и необходимость регулярной очистки.
Возникли вопросы?
Заполните форму обратной связи, наши менеджеры свяжутся с вами!
Мы отвечаем на 8 самых распространенных вопросов о тепловых насосах
Тепловой насос Mitsubishi сохраняет на кухне прохладу летом и тепло зимой.
Тепловые насосы — это круто — все так говорят? Но они еще в некотором роде… волшебные? Не совсем, конечно. Но технология, которая приводит в действие тепловые насосы, загадочна, если вы не являетесь экспертом в физике, а также в области отопления и охлаждения. И большая часть литературы в Интернете либо предлагает вам купить тепловой насос, либо хочет, чтобы вы НЕ покупали тепловой насос и использовали масло или пропан для получения тепла.Поэтому мы решили демистифицировать тепловые насосы для всех и прямо ответить на вопросы, чтобы вы могли принимать собственные обоснованные решения о покупке. Вы готовы учиться? Поехали:
Что такое тепловой насос?Тепловой насос — это автономное двухкомпонентное устройство, в котором используются холодильная техника и электричество для обогрева и охлаждения домов, предприятий и других приложений. Тепловой насос состоит из двух компонентов — конденсатора, который чаще всего находится вне дома, который производит обогрев или охлаждение, и внутреннего блока, который обычно устанавливается на стене и пропускает горячий или холодный воздух в дом; поскольку конденсатор и воздухообрабатывающий агрегат разделены или «разделены» линией хладагента, тепловые насосы иногда могут называться «мини-разветвителями».”Тепловые насосы предлагают чрезвычайно высокий КПД, а также возможность обеспечивать обогрев и охлаждение без необходимости прокладки воздуховодов в доме; поскольку использование воздуховодов не требуется, вы можете услышать, что тепловые насосы называют «бесканальными».
Вот пример обычного типа теплового насоса:
Настенная кассета Mitsubishi с тепловым насосом (внутренний блок) вверху и конденсатор (наружный блок) и пульт дистанционного управления внизу. Обратите внимание, что эти изображения непропорциональны, и конденсаторы обычно составляют два или более футов в поперечнике.
Как работает тепловой насос?Как работает тепловой насос — на этой диаграмме показан процесс охлаждения.
Проще говоря, тепловой насос использует электричество и хладагент для перемещения тепла из одного места в другое.
Для обеспечения тепла тепловой насос работает, отбирая тепло из воздуха за пределами вашего дома и передавая его охлаждающему хладагенту — затем хладагент сжимается, что значительно увеличивает температуру; затем хладагент перемещается во внутренний блок теплового насоса, который затем пропускает воздух над горячим хладагентом, повышая его температуру, чтобы приспособиться к термостатическому запросу тепла внутри дома.
Тепловой насос состоит из двух основных частей — «настенной кассеты», которая устанавливается внутри вашего дома, и конденсаторного блока, который остается снаружи вашего дома. Настенные кассетные и конденсаторные блоки теплового насоса соединены линией хладагента.
Внутренняя настенная кассета с термостатическим управлением обеспечивает как обогрев, так и охлаждение. Когда требуется тепло, тепловой насос включает вентилятор в наружном блоке, чтобы начать процесс отвода тепла из воздуха за пределами вашего дома.Линия хладагента передает это тепло к внутреннему блоку, который затем передает тепло воздуху внутри вашего дома через вентилятор внутри настенной кассеты. В режиме охлаждения процесс обратный: тепло выводится из дома, а холодный воздух возвращается внутрь.
В чем преимущество теплового насоса?Тепловые насосы действительно экономят ваши деньги на расходах на электроэнергию.
Поскольку тепловой насос использует электричество только для выработки энергии, а не для выработки тепла, он обеспечивает исключительно высокий КПД.При использовании традиционного резистивного электрического нагрева — например, электрического плинтуса или обогревателей — количество выделяемого тепла пропорционально количеству используемой электроэнергии: одна единица тепла на единицу электроэнергии для 100% эффективности.
При использовании теплового насоса коэффициент полезного действия резко возрастает, поскольку потребляемая электроэнергия используется только для питания двух вентиляторов (испарителя и конденсатора), компрессора и насоса, чтобы сконцентрировать тепло снаружи и передать его в ваш дом. Благодаря этому тепловые насосы способны обеспечивать более 3 единиц тепла на каждую единицу электроэнергии, используемой при КПД более 300%.Средняя зимняя температура в штате Мэн составляет 37 градусов, поэтому сезонная эффективность Mitsubishi Hyper Heat составляет около 285%
.Это означает более низкие счета за электроэнергию для комфортного дома — тепловые насосы очень недороги в эксплуатации, увеличивая ваши счета за электроэнергию в среднем на 75 долларов в месяц за тепловой насос, который постоянно работает в доме. Если вы используете тепловой насос вместе с основной системой отопления, такой как масляная, газовая или электрическая, вы получите дополнительную экономию, используя тепловой насос для компенсации расхода основного топлива: один тепловой насос может компенсировать до 300 галлонов масла. в обычном доме, экономя деньги на дорогих ископаемых видах топлива.Кроме того, тепловые насосы помогут снизить углеродный след вашего дома.
Как тепловой насос влияет на мои счета за отопление и электричество?Heat Pumps повысит ваши счета за электроэнергию, но снизит ваши затраты на другие виды топлива для отопления.
Каждый отдельный блок (часто называемый индивидуальным) тепловой насос, который используется ежедневно, увеличивает ваш счет за электроэнергию на 50–100 долларов в месяц. Однако тепловой насос соответственно снизит ваши счета за отопительное топливо — для типичного домашнего хозяйства, которое использует 800 галлонов масла в год, тепловой насос может уменьшить количество используемого масла на 300 галлонов.Если нефть стоит 2,75 доллара за галлон, цена за миллион британских тепловых единиц (британских тепловых единиц, стандартная мера тепла в США) составит 28,06 доллара. Чтобы получить такое же количество тепла, 1 миллион БТЕ, от теплового насоса с текущим стандартным тарифом на электроэнергию в 14,5 цента за киловатт-час, вам потребуется 14,71 доллара. Другими словами, отопление дома с помощью теплового насоса эквивалентно отоплению дома маслом по цене 1,44 доллара за галлон, или на 48% меньше.
Каковы преимущества теплового насоса при использовании солнечной энергии?Дом с солнечной батареей на крыше
Преимущество солнечных панелей заключается в том, что днем, когда светит солнце, панели на крышах собирают солнечную энергию и преобразуют ее для использования в вашем доме в качестве электричества.Во многих домах электроэнергия, вырабатываемая массивом, которая не используется в доме, возвращается вам вашей электроэнергетической компанией и используется для компенсации вашего счета за электричество в конце каждого месяца. В большинстве домов по-прежнему будет выставляться счет за электроэнергию, использованную в ночное время, во время штормов или в периоды интенсивного использования, например, в очень жаркие периоды лета.
Однако ваш тепловой насос питается от электричества — и когда вы соединяете солнечные панели для электричества с тепловыми насосами для тепла (которые используют электричество для выработки энергии), вы отапливаете свой дом в среднем примерно по 9 центов за кВтч по сравнению с14,5 цента за кВтч без солнечной энергии, что эффективно снижает ваши затраты на эксплуатацию теплового насоса почти на 40% в год.
Правда ли, что тепловые насосы перестают работать, когда становится очень холодно?Сервисный техник True North с конденсаторным агрегатом теплового насоса
Да, но для того, чтобы тепловой насос полностью перестал работать, должно стать очень и очень холодно.
Различные модели тепловых насосов имеют разные характеристики того, насколько холодно может быть, прежде чем они перестанут быть эффективными.Для этого примера мы будем использовать рейтинг теплового насоса Mitsubishi Hyper Heat ™, который рассчитан на обеспечение достаточной тепловой мощности до -13 градусов по Фаренгейту.
Тепловые насосы рассчитаны на «мощность». В этом примере, когда температура составляет 30 градусов, тепловой насос легко будет производить 100% своей мощности с максимальной эффективностью. Однако, когда температура начинает падать, начинает падать и мощность, а когда мощность начинает падать, тепловой насос будет «усерднее работать», чтобы поддерживать температуру в вашем доме.Это похоже на то, как если бы вам пришлось нажать на педаль газа, чтобы поднять машину на крутой холм, именно здесь эффективность тепловых насосов начинает падать — больше энергии используется, чтобы производить меньшую мощность.
При использовании теплового насоса Mitsubishi Hyper Heat ™ КПД начинает падать примерно при 2 градусах по Фаренгейту. При -2 градусах вы получите около 87% мощности устройства. А при -13 градусах вы получите около 76% мощности устройства. Неясно, при какой температуре устройство полностью перестанет работать — у нас еще не было достаточно холодного дня, чтобы продемонстрировать это с тепловыми насосами Hyper Heat ™, хотя в некоторых документах Mitsubishi указывается, что точка остановки составляет -18 градусов.
В старых домах с меньшей теплоизоляцией, большими потерями тепла или сквозняками тепловому насосу также потребуется больше работать, чтобы компенсировать быструю потерю тепла из-за этих проблем. Однако новые дома часто имеют отличную изоляцию и построены для предотвращения потерь тепла — в этих случаях тепло, создаваемое тепловым насосом, сохраняется внутри дома и помогает тепловому насосу работать с большей эффективностью.
Могу ли я отапливать дом с помощью тепловых насосов без других источников тепла?В некоторых регионах с более теплым климатом тепловые насосы могут быть единственным источником тепла зимой.Однако здесь, в штате Мэн, мы рекомендуем, чтобы в большинстве домов был либо основной, либо резервный источник тепла на очень холодные дни или длительные периоды низких температур, в течение которых тепловые насосы будут иметь проблемы с восстановлением после потери тепла. Этими другими источниками могут быть нефть, газ, пропан, электричество или биомасса. True North предлагает тепло из древесных гранул из биомассы или тепло природного газа для снижения затрат на топливо для отопления и снижения выбросов углерода, которые способствуют изменению климата.
Что такое водонагреватель с тепловым насосом?Этот водонагреватель с гибридным электрическим тепловым насосом Geospring Pro был установлен в подвале штата Мэн для обеспечения максимальной эффективности
Водонагреватель с тепловым насосом использует ту же технологию теплового насоса, которая описана выше, для нагрева горячей воды в доме.Водонагреватели с тепловым насосом очень хорошо изолированы, и вода может очень хорошо удерживать тепло — поэтому водонагреватели с тепловым насосом могут обеспечить горячей водой типичную семью из четырех человек при очень низких эксплуатационных расходах, чаще всего 15 долларов или меньше в месяц.
Есть вопросы? Хотите узнать, подходит ли для вашего дома тепловой насос или водонагреватель с тепловым насосом? Позвоните нам в любое время по телефону 207-221-5677 или напишите нам по адресу [email protected]!
Страница 1 из 11
Пошаговое руководство по работе вашего теплового насоса
Тепловые насосы, которые можно адаптировать практически к любой области применения, становятся все более популярными в домах и на предприятиях в Уилмингтоне, штат Северная Каролина.Для многих наших клиентов это возможность сэкономить на счетах за электроэнергию, что делает их такими привлекательными. Людям также нравится, как тепловые насосы обеспечивают комфорт в любую погоду. В этом пошаговом руководстве по технологии теплового насоса объясняется, как работает тепловой насос и почему установка теплового насоса является отличным вариантом для контроля микроклимата.
Холодильный цикл
Когда дело доходит до охлаждения, тепловые насосы и холодильники работают примерно одинаково. Тепло извлекается из воздуха внутри и перемещается за пределы помещения.Трехэтапный процесс заключается в преобразовании жидкого хладагента в газ, а затем обратно в жидкость. Ученые называют это фазовое преобразование или, попросту говоря, холодильным циклом. Тепловые насосы состоят из трех основных компонентов: испарителя, компрессора и конденсатора. Каждый из них играет решающую роль в том, как тепловые насосы перемещают тепло из одного места в другое.
- ШАГ ПЕРВЫЙ: Компрессор, расположенный в наружном блоке, всасывает холодный газообразный хладагент и нагревает его под давлением.Затем компрессор закачивает горячий газ под высоким давлением в конденсатор.
- ШАГ ВТОРОЙ: В конденсаторе используется вентилятор для охлаждения газа до жидкости, когда он проталкивается через спиральные металлические петли. Выделяемое тепло уходит в наружный воздух через металлические ребра на внешней стороне конденсатора.
- ШАГ ТРЕТИЙ: Охлажденная жидкость поступает во внутренний испаритель через узкий клапан, замедляя поток хладагента. Затем он испаряется в газ, проходя через охлаждающие змеевики устройства, удаляя тепло из окружающего воздуха.
Вентилятор, подключенный к испарителю, направляет охлажденный воздух в систему распределения воздуха теплового насоса. Цикл охлаждения повторяется до тех пор, пока в вашем доме или на работе не будет достигнута температура, установленная на вашем термостате.
Типы тепловых насосов
Тепловые насосы с реверсивным режимом работы могут обеспечивать как обогрев, так и охлаждение. Некоторые модели могут даже увеличить объем горячего водоснабжения. Принцип работы тепловых насосов в холодную погоду зависит от выбранного вами типа установки теплового насоса.
- Тепловые насосы «воздух-воздух» отбирают тепло из наружного воздуха и конденсируют его до тех пор, пока он не станет достаточно горячим, чтобы всем было комфортно тепло.
- Геотермальные модели используют тепловую энергию, хранящуюся под поверхностью земли, для обогрева вашего дома или офиса.
- В отличие от систем центрального кондиционирования, бесканальные тепловые насосы доставляют теплый воздух непосредственно в жилые помещения через отдельные кондиционеры.
Если у вас уже есть центральная воздушная печь, тепловой насос только для охлаждения предлагает энергоэффективный способ оставаться прохладным все лето.Какими бы ни были ваши потребности в комфорте в помещении, профессионалы Airmax Heating & Cooling помогут вам выбрать идеальную систему с тепловым насосом.
Комплексное обслуживание теплового насоса
Правильная установка важна для длительного использования новой системы теплового насоса. Важно, чтобы размер оборудования соответствовал вашим уникальным потребностям в комфорте. Негабаритная система приведет к потере энергии и ваших денег из-за частых циклов включения / выключения. Тепловые насосы меньшего размера не могут поддерживать желаемый уровень комфорта.В Airmax Heating & Cooling мы проводим расчет нагрузки, чтобы вы чувствовали себя комфортно, не тратя слишком много энергии.
Наши специалисты по HVAC также могут проводить регулярные плановые настройки для повышения эффективности и производительности. Заброшенные тепловые насосы потребляют на 25 процентов больше энергии, чем хорошо обслуживаемые системы. Наши планы обслуживания позволяют легко поддерживать ваш тепловой насос в отличном состоянии и экономить деньги на отоплении и охлаждении. Мы также предлагаем профессиональный ремонт теплового насоса, который вам понадобится, если ваша система когда-нибудь выйдет из строя.
Как работают тепловые насосы? Короткий ответ — замечательно! Для получения дополнительной информации о преимуществах этих энергоэффективных систем посетите наш раздел обслуживания тепловых насосов. Чтобы назначить бесплатную консультацию, позвоните в Airmax Heating & Cooling сегодня по телефону 910-795-4359.
Тепловые насосы 101 | Как работают тепловые насосы?
Как работают тепловые насосы?
Охватываемых тем:
- Технология теплового насоса:
- Факты о тепловом насосе:
- Работа теплового насоса:
- Характеристики теплового насоса:
[Страница 1 из 3]
«Учеба может начаться»
Технология теплового насоса:
Тепловые насосы предлагают наиболее энергоэффективный способ обеспечить обогрев и охлаждение во многих приложениях, поскольку они могут использовать возобновляемые источники тепла в нашем окружении.Даже при температурах, которые мы считаем холодными, воздух, земля и вода содержат полезное тепло, которое постоянно пополняется солнцем. Приложив немного больше энергии, тепловой насос может поднять температуру этой тепловой энергии до необходимого уровня.
Поскольку тепловые насосы потребляют меньше первичной энергии, чем обычные системы отопления, они являются важной технологией для снижения выбросов газов, наносящих вред окружающей среде, таких как диоксид углерода (CO 2 ), диоксид серы (SO 2 ) и оксиды азота. (НЕТ x ).
Факты о тепловом насосе:
- Использование прямого сжигания (газа или масла) для выработки тепла никогда не является наиболее эффективным использованием топлива.
- Тепловые насосы более эффективны, потому что они используют возобновляемую энергию в виде низкотемпературного тепла.
Работа теплового насоса:
Тепло естественным образом перетекает от более высокой температуры к более низкой. Однако тепловые насосы могут направлять тепловой поток в другом направлении, используя относительно небольшое количество высококачественной приводной энергии (электричество, топливо или высокотемпературное отработанное тепло).Таким образом, тепловые насосы могут передавать тепло от естественных источников тепла в окружающей среде, таких как воздух, земля или вода, или даже искусственных источников тепла, таких как промышленные или бытовые отходы, в здание или промышленное применение.
Тепловые насосы также могут использоваться для охлаждения. Затем тепло передается в противоположном направлении от охлаждаемого объекта к окружающей среде с более высокой температурой. Иногда избыточное тепло от охлаждения используется для одновременного удовлетворения потребности в тепле.
Проще говоря, во время вызова на охлаждение тепловой насос удаляет тепло и влажность из вашего дома и передает это тепло наружному воздуху.
Во время цикла нагрева тепловой насос удаляет тепло и влажность из наружного воздуха и передает это тепло в ваш дом. Это возможно, потому что наружный воздух даже при 0 градусов по Фаренгейту содержит много тепла. Помните, что ваш тепловой насос не выделяет много тепла, он просто передает его из одного места в другое.
Характеристики теплового насоса:
Постоянный нагрев …
Тепловой насос обеспечивает более низкую температуру приточного воздуха, чем печь, в течение более длительного периода времени, чтобы обеспечить более постоянный нагрев. Это может создать впечатление, что ваша система «никогда не перестает работать» или «она похожа на холодный воздух». Иногда температура воздуха, выходящего из вентиляционных отверстий, ниже температуры вашего тела, поэтому кажется, что воздух холодный. Но он по-прежнему отапливает ваш дом.И когда он больше не может справляться с потерей тепла в конструкции, автоматически включается 2-я ступень или вспомогательное тепло, вызывая гораздо более теплое тепло.
Отвод воды из наружного блока …
Во время цикла нагрева вы можете заметить, что вода стекает по наружному змеевику. Влага из воздуха конденсируется на внешней поверхности змеевика, где она собирается и стекает. Это нормально.
Размораживание наружного змеевика …
При определенных условиях (низкая температура, высокая влажность) на змеевике наружного блока может образовываться иней и даже лед.Для поддержания эффективности нагрева система автоматически размораживается. Подъем пара из наружного блока является нормальным явлением и является признаком правильной работы. Облако пара продержится всего несколько минут. Когда цикл разморозки завершен, система автоматически переключится на нагрев. Дополнительное тепло включается автоматически для поддержания комфорта во время оттаивания.
Продолжение …
Темы включают: Советы по тепловому насосу, техническое обслуживание и ответы на часто задаваемые вопросы
Насколько комфортно вы хотите быть?
Позвоните нам по телефону 1-800-544-4328
[Должен быть в нашей зоне обслуживания]
ENERGY STAR Задайте вопрос экспертам | Продукция
Как работает тепловой насос?
Если вы хотите заменить систему кондиционирования или отопления в своем доме, вы можете рассмотреть возможность использования теплового насоса с воздушным источником.Эти изделия обеспечивают прохладу летом, как и стандартные кондиционеры, но также обеспечивают тепло зимой. Но как именно они делают и то, и другое?
Как работают тепловые насосы летомВ летние месяцы тепловой насос работает так же, как и обычный кондиционер. Стандартные кондиционеры используют хладагент для поглощения нежелательного тепла в вашем доме и передачи его наружному воздуху. Это происходит за счет изменения давления хладагента.При низком давлении хладагент легко поглощает любое тепло, имеющееся в воздухе, и испаряется из жидкости в газ. При высоких давлениях газовый хладагент имеет более высокую энергию, чем внешний воздух, поэтому он передает тепло окружающему воздуху, и при охлаждении хладагент конденсируется обратно в жидкость. Контролируя давление хладагента, кондиционер может отводить тепло из вашего дома даже в очень жаркие дни.
Как работают тепловые насосы зимойТепловой насос использует этот же цикл «в обратном направлении» зимой для извлечения тепловой энергии извне и передачи ее в ваш дом.Даже когда на улице очень холодно, в воздухе все равно остается некоторое количество тепловой энергии. Поскольку у наружного воздуха больше энергии, чем у холодного хладагента под низким давлением, хладагент поглощает это тепло и испаряется. Как и в цикле кондиционирования воздуха, газовый хладагент может находиться под давлением, что приводит к повышению температуры. Когда хладагент подается обратно в ваш дом, он используется для нагрева воздуха внутри, пока тепло не будет извлечено, и он снова конденсируется в жидкость, и цикл продолжится.
Как тепловой насос экономит энергию?
Поскольку тепловой насос перемещает тепло из одного места в другое, а не генерирует его, тепловой насос потребляет меньше энергии для обогрева вашего дома, чем обычная электрическая или газовая система. Фактически, многие из них достаточно эффективны, чтобы получить ярлык ENERGY STAR. Если вы заменяете центральную систему кондиционирования воздуха, тепловые насосы могут работать с существующими воздуховодами в вашем доме или доступны в виде мини-сплит или «бесканальных» блоков, если в вашем доме нет воздуховодов.
Даже если вы не заменяете существующую систему отопления, добавляя кондиционер, тепловой насос может обеспечить охлаждение летом и более эффективно покрыть часть тепловой нагрузки в вашем доме. В самые холодные дни зимы даже небольшая система может компенсировать эксплуатационные расходы вашей основной системы отопления. При рассмотрении вопроса о модернизации или замене системы отопления и охлаждения вашего дома спросите своего подрядчика о тепловых насосах, сертифицированных ENERGY STAR.
Автор: Эбигейл Дакен, сертифицированные продукты ENERGY STAR
Последовательность работы теплового насоса Узнайте о качестве HVAC сегодня 1
Этот лед необходимо разморозить.Постоянные читатели, которые читают страницы с тепловым насосом здесь, в High Performance HVAC, знают, что метод цикла размораживания обычно работает по таймеру. Когда тепловой насос работает в течение заданного времени, включается цикл размораживания и размораживания или размораживания инея или льда на змеевиках конденсатора. Интервал времени в цикле размораживания устанавливается вручную специалистом по установке HVAC при установке устройства и будет варьироваться от региона к региону.
Последовательность работы теплового насоса — методы оттаивания и резервного нагрева
Когда включается цикл оттаивания, реверсивный клапан переключает режим на режим кондиционирования воздуха.Это переключает всю систему теплового насоса на кондиционер в режиме охлаждения. Это необходимо для размораживания змеевиков конденсатора. Этому противодействуют нагревательные полоски с помощью контроля оттаивания.
Управление оттаиванием активирует резервное электрическое тепло, поэтому тепловой насос продолжает обеспечивать тепло. Этот синхронизированный цикл завершается через определенное время, определенное производителем теплового насоса. Все возвращается в нормальный режим теплового насоса.
Существуют также тепловые насосы, у которых есть газовые или масляные печи для резервного тепла.Он работает так же, как и описанные выше нагревательные полоски, за исключением того, что вместо электрических нагревательных лент, обеспечивающих тепло, тепло обеспечивает газовая или масляная печь. Эти системы упоминаются в области HVAC как двухтопливные системы и считаются более эффективными, чем тепловые насосы с электрическими нагревательными полосами для резервного нагрева.
Поиск и устранение неисправностей теплового насоса
Если вы устраняете неисправности теплового насоса, вам нужно разбить все на группы. Это проблема управления или механическая проблема? К механическим проблемам относятся проблемы с охлаждением, воздушным потоком и механические детали.Проблемы управления включают реле, термостат теплового насоса и все, что есть в схемах управления системы. Понимание последовательности работы теплового насоса поможет вам быстрее определить проблему и, следовательно, быстрее ее решить.
Последовательность работы теплового насоса
Нагрев и охлаждение с помощью теплового насоса
Содержание
Введение
Если вы изучаете варианты обогрева и охлаждения вашего дома или сокращения счетов за электроэнергию, вы можете рассмотреть возможность использования системы теплового насоса.Тепловые насосы — это проверенная и надежная технология в Канаде, способная обеспечить круглогодичный контроль комфорта в вашем доме за счет подачи тепла зимой, охлаждения летом и, в некоторых случаях, нагрева горячей воды для вашего дома.
Тепловые насосы могут быть отличным выбором для множества применений, как для новых домов, так и для модернизации существующих систем отопления и охлаждения. Они также являются вариантом при замене существующих систем кондиционирования воздуха, поскольку дополнительные затраты на переход от системы только для охлаждения к тепловому насосу часто довольно низки.Учитывая множество различных типов и опций систем, часто бывает сложно определить, подходит ли тепловой насос для вашего дома.
Если вы подумываете о тепловом насосе, у вас, вероятно, возникнет ряд вопросов, в том числе:
- Какие типы тепловых насосов доступны?
- Какую часть моих годовых потребностей в отоплении и охлаждении может обеспечить тепловой насос?
- Тепловой насос какого размера мне нужен для дома и приложения?
- Сколько стоят тепловые насосы по сравнению с другими системами, и сколько я могу сэкономить на счетах за электроэнергию?
- Нужно ли мне делать дополнительные изменения в моем доме?
- Какой объем обслуживания потребуется системе?
В этом буклете представлены важные сведения о тепловых насосах, которые помогут вам быть более информированными и помогут сделать правильный выбор для вашего дома.Используя эти вопросы в качестве руководства, в данном буклете описаны наиболее распространенные типы тепловых насосов и обсуждаются факторы, связанные с выбором, установкой, эксплуатацией и обслуживанием теплового насоса.
Предполагаемая аудитория
Этот буклет предназначен для домовладельцев, которым нужна справочная информация о технологиях тепловых насосов, чтобы помочь в принятии обоснованных решений относительно выбора и интеграции системы, эксплуатации и технического обслуживания. Информация, представленная здесь, носит общий характер, а конкретные детали могут отличаться в зависимости от вашей установки и типа системы.Этот буклет не заменяет работу с подрядчиком или консультантом по энергетике, которые обеспечат соответствие вашей установки вашим потребностям и желаемым целям.
Примечание по управлению энергопотреблением в доме
Тепловые насосы — это очень эффективные системы отопления и охлаждения, которые могут значительно снизить ваши затраты на электроэнергию. Рассматривая дом как систему, рекомендуется свести к минимуму потери тепла из вашего дома из таких областей, как утечка воздуха (через трещины, отверстия), плохо изолированные стены, потолки, окна и двери.
Решение этих проблем в первую очередь может позволить вам использовать меньший размер теплового насоса, тем самым снижая затраты на оборудование теплового насоса и позволяя вашей системе работать более эффективно.
Ряд публикаций, объясняющих, как это сделать, можно получить в Natural Resources Canada.
Что такое тепловой насос и как он работает?
Тепловые насосы — это проверенная технология, которая десятилетиями использовалась как в Канаде, так и во всем мире для эффективного отопления, охлаждения и, в некоторых случаях, горячей воды в зданиях.На самом деле, вполне вероятно, что вы ежедневно взаимодействуете с технологией тепловых насосов: холодильники и кондиционеры работают по одним и тем же принципам и технологиям. В этом разделе представлены основные принципы работы теплового насоса и представлены различные типы систем.
Основные концепции теплового насоса
Тепловой насос — это устройство с электрическим приводом, которое отбирает тепло из места с низкой температурой (источник ) и доставляет его в место с более высокой температурой (сток ).
Чтобы понять этот процесс, представьте себе поездку на велосипеде по холму: для перехода с вершины холма на подножку не требуется никаких усилий, так как велосипед и гонщик будут естественно перемещаться с высокого места на более низкое. Однако подъем в гору требует гораздо больше работы, так как байк движется против естественного направления движения.
Аналогичным образом тепло естественным образом перетекает из мест с более высокой температурой в места с более низкими температурами (например, зимой тепло изнутри здания теряется наружу).Тепловой насос использует дополнительную электрическую энергию, чтобы противостоять естественному потоку тепла, а перекачивает энергию, доступную в более холодном месте, в более теплое.
Так как же тепловой насос обогревает или охлаждает ваш дом? Поскольку энергия извлекается из источника , температура источника снижается. Если дом используется в качестве источника, тепловая энергия будет удалена, охлаждают это пространство. Так тепловой насос работает в режиме охлаждения, и тот же принцип используется в кондиционерах и холодильниках.Точно так же, когда энергия добавляется к приемнику , его температура увеличивается. Если дом используется как раковина, добавляется тепловая энергия, нагревая пространство. Тепловой насос полностью реверсивный, что означает, что он может как обогревать, так и охлаждать ваш дом, обеспечивая комфорт круглый год.
Источники и приемники для тепловых насосов
Выбор источника и потребителя для вашей системы теплового насоса имеет большое значение для определения производительности, капитальных затрат и эксплуатационных расходов вашей системы. В этом разделе представлен краткий обзор распространенных источников и стоков для жилых помещений в Канаде.
Источники: Два источника тепловой энергии чаще всего используются для отопления домов с помощью тепловых насосов в Канаде:
- Air-Source: Тепловой насос забирает тепло из наружного воздуха во время отопительного сезона и отводит тепло наружу во время летнего периода охлаждения.
Может быть удивительно узнать, что даже при низких температурах наружного воздуха все еще доступно много энергии, которую можно извлечь и передать в здание. Например, теплосодержание воздуха при -18 ° C соответствует 85% тепла, содержащегося при 21 ° C.Это позволяет тепловому насосу обеспечивать хороший обогрев даже в более холодную погоду.
Системы с воздушным источником являются наиболее распространенными на канадском рынке, их установлено более 700 000 единиц по всей Канаде.
Этот тип системы обсуждается более подробно в разделе Воздушные тепловые насосы . - Земля-источник: Тепловой насос с грунтовым источником использует землю, грунтовые воды или и то, и другое в качестве источника тепла зимой и в качестве резервуара для отвода тепла, удаляемого из дома летом.
Эти тепловые насосы встречаются реже, чем блоки с воздушным источником, но все чаще используются во всех провинциях Канады. Их основное преимущество заключается в том, что они не подвержены резким колебаниям температуры, поскольку в качестве источника постоянной температуры используется земля, что обеспечивает наиболее энергоэффективный тип системы теплового насоса.
Этот тип системы более подробно обсуждается в разделе Тепловые насосы наземного источника питания .
Раковины: Две раковины для тепловой энергии чаще всего используются для отопления домов с помощью тепловых насосов в Канаде:
- Воздух в помещении нагревается тепловым насосом.Это можно сделать с помощью:
- Система с центральным воздуховодом или
- Внутренний блок без воздуховодов, например, настенный блок.
- Вода внутри здания подогревается. Затем эту воду можно использовать для обслуживания оконечных систем, таких как радиаторы, теплый пол или фанкойлы, через гидравлическую систему.
Введение в эффективность теплового насоса
Печи и котлы обеспечивают обогрев помещений за счет добавления тепла к воздуху за счет сжигания топлива, такого как природный газ или мазут.Несмотря на то, что эффективность постоянно улучшается, она все еще остается ниже 100%, а это означает, что не вся доступная энергия от сгорания используется для нагрева воздуха.
Тепловые насосы работают по другому принципу. Электроэнергия, подводимая к тепловому насосу, используется для передачи тепловой энергии между двумя местами. Это позволяет тепловому насосу работать более эффективно, с типичным КПД более
100%, т. Е. На вырабатывается на тепловой энергии больше, чем количество электроэнергии, используемой для его перекачки.
Важно отметить, что эффективность теплового насоса сильно зависит от температуры источника и стока . Точно так же, как более крутой холм требует больше усилий для подъема на велосипеде, большая разница температур между источником и приемником теплового насоса требует, чтобы он работал больше, и может снизить эффективность. Решающее значение имеет определение теплового насоса правильного размера для максимальной сезонной эффективности. Эти аспекты более подробно обсуждаются в разделах Воздушные тепловые насосы и Наземные тепловые насосы .
Терминология эффективности
В каталогах производителей используются различные показатели эффективности, что может затруднить понимание производительности системы для начинающего покупателя. Ниже приводится разбивка некоторых часто используемых терминов эффективности:
Показатели устойчивого состояния: Эти показатели описывают эффективность теплового насоса в «установившемся режиме», то есть без реальных колебаний времени года и температуры. Таким образом, их значение может значительно измениться при изменении температуры источника и стока, а также других рабочих параметров.Метрики устойчивого состояния включают:
Коэффициент полезного действия (COP): COP — это соотношение между скоростью, с которой тепловой насос передает тепловую энергию (в кВт), и количеством электроэнергии, необходимой для перекачивания (в кВт). Например, если тепловой насос использовал 1 кВт электроэнергии для передачи 3 кВт тепла, COP будет 3.
Коэффициент энергоэффективности (EER): EER аналогичен COP и описывает стационарную эффективность охлаждения теплового насоса.Он определяется делением холодопроизводительности теплового насоса в британских тепловых единицах в час на потребляемую электрическую энергию в ваттах (Вт) при определенной температуре. EER строго связан с описанием эффективности охлаждения в установившемся режиме, в отличие от COP, который можно использовать для выражения эффективности теплового насоса как при нагреве, так и при охлаждении.
Сезонные показатели производительности: Эти показатели предназначены для более точной оценки производительности в течение отопительного или холодного сезона за счет учета «реальных» изменений температуры в течение сезона.
Сезонные показатели включают:
- Коэффициент сезонной производительности отопления (HSPF): HSPF — это отношение количества энергии, которое тепловой насос поставляет в здание за полный отопительный сезон (в британских тепловых единицах), к общей энергии (в ватт-часах), которую он использует за тот же период. период.
- Сезонный коэффициент энергоэффективности (SEER): SEER измеряет эффективность охлаждения теплового насоса в течение всего сезона охлаждения. Он определяется путем деления общего охлаждения, обеспечиваемого в течение сезона охлаждения (в британских тепловых единицах), на общую энергию, использованную тепловым насосом в течение этого времени (в ватт-часах).SEER основан на климате со средней летней температурой 28 ° C.
Погодные характеристики долгосрочных климатических условий используются для представления отопительного сезона при расчете HSPF. Однако этот расчет обычно ограничивается одним регионом и может не полностью отражать производительность по Канаде.Некоторые производители могут предоставить HSPF для другого климатического региона по запросу; однако обычно HSPF сообщаются для Региона 4, представляющего климат, подобный Среднему Западу США. Регион 5 будет охватывать большую часть южной половины провинций Канады, от внутренних районов Британской Колумбии до Нью-Брансуика Footnote 1 .
Важная терминология для систем с тепловым насосом
Вот несколько общих терминов, с которыми вы можете встретиться при исследовании тепловых насосов.
Компоненты системы теплового насоса
Хладагент — это жидкость, которая циркулирует в тепловом насосе, попеременно поглощая, транспортируя и выделяя тепло. В зависимости от местоположения текучая среда может быть жидкой, газообразной или парогазовой смесью
Реверсивный клапан регулирует направление потока хладагента в тепловом насосе и переключает тепловой насос из режима нагрева в режим охлаждения или наоборот.
Змеевик — это петля или петля трубопровода, в которой происходит передача тепла между источником / стоком и хладагентом. Трубка может иметь ребра для увеличения площади поверхности, доступной для теплообмена.
Испаритель представляет собой змеевик, в котором хладагент поглощает тепло из окружающей среды и кипит, превращаясь в низкотемпературный пар. По мере того, как хладагент проходит от реверсивного клапана к компрессору, аккумулятор собирает лишнюю жидкость, которая не испарилась в газ.Однако не все тепловые насосы имеют аккумулятор.
Компрессор сжимает молекулы газообразного хладагента, повышая температуру хладагента. Это устройство помогает передавать тепловую энергию между источником и стоком.
Конденсатор представляет собой змеевик, в котором хладагент отдает тепло своему окружению и становится жидкостью.
Устройство расширения снижает давление, создаваемое компрессором.Это вызывает падение температуры, и хладагент становится низкотемпературной парожидкостной смесью.
Наружный блок — это место, где тепло передается в / из наружного воздуха в тепловом насосе с воздушным источником. Этот блок обычно содержит змеевик теплообменника, компрессор и расширительный клапан. Он выглядит и работает так же, как и наружная часть кондиционера.
Внутренний змеевик предназначен для передачи тепла в / из внутреннего воздуха в некоторых типах тепловых насосов с воздушным источником тепла.Как правило, внутренний блок содержит змеевик теплообменника, а также может включать дополнительный вентилятор для циркуляции нагретого или охлажденного воздуха в занятом пространстве.
Пленум , который можно увидеть только в канальных установках, является частью воздухораспределительной сети. Камера статического давления — это воздушный отсек, который является частью системы распределения нагретого или охлажденного воздуха по птичнику. Обычно это большой отсек непосредственно над теплообменником или вокруг него.
Прочие условия
Единицы измерения мощности или потребляемой мощности:
- БТЕ / ч , или британская тепловая единица в час, — это единица измерения тепловой мощности системы отопления.Одна британская тепловая единица — это количество тепловой энергии, выделяемой обычной свечой на день рождения. Если бы эта тепловая энергия выделялась в течение одного часа, это было бы эквивалентно одному БТЕ / ч.
- кВт или кВт равно 1000 Вт. Это количество энергии, необходимое для десяти 100-ваттных лампочек.
- тонн — это мера мощности теплового насоса. Это эквивалентно 3,5 кВт или 12 000 БТЕ / ч.
Воздушные тепловые насосы
Тепловые насосы с воздушным источником воздуха используют наружный воздух как источник тепловой энергии в режиме обогрева и как поглотитель энергии в режиме охлаждения.Эти типы систем обычно можно разделить на две категории:
Воздушно-воздушные тепловые насосы. Эти блоки нагревают или охлаждают воздух внутри вашего дома и представляют собой подавляющее большинство интегрированных тепловых насосов с воздушным источником в Канаде. Их можно дополнительно классифицировать по типу установки:
- Канальный: Внутренний змеевик теплового насоса расположен в канале. Воздух нагревается или охлаждается, проходя через змеевик, а затем распределяется по воздуховодам в разные места в доме.
- Ductless: Внутренний змеевик теплового насоса расположен во внутреннем блоке. Эти внутренние блоки обычно располагаются на полу или стене в жилом помещении и непосредственно нагревают или охлаждают воздух в этом помещении. Среди этих единиц вы можете встретить термины мини- и мультисплит:
- Mini-Split: Один внутренний блок расположен внутри дома, обслуживаемый одним наружным блоком.
- Multi-Split: Несколько внутренних блоков расположены в доме и обслуживаются одним наружным блоком.
Системы воздух-воздух более эффективны, когда разница температур внутри и снаружи меньше. Из-за этого тепловые насосы воздух-воздух обычно пытаются оптимизировать свою эффективность, обеспечивая больший объем теплого воздуха и нагревая этот воздух до более низкой температуры (обычно от 25 до 45 ° C). Это контрастирует с печными системами, которые доставляют меньший объем воздуха, но нагревают его до более высоких температур (от 55 ° C до 60 ° C). Если вы переключаетесь на тепловой насос от печи, вы можете заметить это, когда начнете использовать свой новый тепловой насос.
Тепловые насосы «воздух-вода»: Реже в Канаде тепловые насосы «воздух-вода» нагревают или охлаждают воду и используются в домах с жидкостными (водными) распределительными системами, такими как низкотемпературные радиаторы, теплые полы или фанкойлы. единицы. В режиме обогрева тепловой насос подает тепловую энергию в гидравлическую систему. В режиме охлаждения этот процесс меняется на противоположный, и тепловая энергия извлекается из гидравлической системы и отводится в наружный воздух.
Рабочие температуры в гидравлической системе имеют решающее значение при оценке тепловых насосов воздух-вода.Тепловые насосы воздух-вода работают более эффективно при нагревании воды до более низких температур, то есть ниже 45–50 ° C, и поэтому лучше подходят для излучающих полов или систем фанкойлов. Следует проявлять осторожность при рассмотрении возможности их использования с радиаторами с высокой температурой, для которых требуется температура воды выше 60 ° C, поскольку эти температуры обычно превышают пределы большинства тепловых насосов для жилых помещений.
Основные преимущества воздушных тепловых насосов
Установка воздушного теплового насоса может дать вам ряд преимуществ.В этом разделе рассматривается, как тепловые насосы с воздушным источником энергии могут помочь вашему домашнему хозяйству.
КПД
Основным преимуществом использования теплового насоса с воздушным источником является высокая эффективность, которую он может обеспечить при обогреве по сравнению с типичными системами, такими как печи, котлы и электрические плинтусы. При 8 ° C коэффициент полезного действия (COP) тепловых насосов с воздушным источником обычно находится в диапазоне от 2,0 до 5,4. Это означает, что для агрегатов с КПД 5,5 киловатт-часов (кВтч) тепла передается на каждый кВтч электроэнергии, подаваемой на тепловой насос.Когда температура наружного воздуха падает, COP ниже, так как тепловой насос должен работать при большей разнице температур между внутренним и внешним пространством. При –8 ° C КПД может составлять от 1,1 до 3,7.
В зависимости от сезона сезонный коэффициент полезного действия отопления (HSPF) имеющихся на рынке единиц может варьироваться от 7,1 до 13,2 (регион V). Важно отметить, что эти оценки HSPF относятся к области с климатом, подобным Оттаве. Фактическая экономия во многом зависит от места установки теплового насоса.
Экономия энергии
Более высокий КПД теплового насоса может привести к значительному сокращению энергопотребления. Фактическая экономия в вашем доме будет зависеть от ряда факторов, включая ваш местный климат, эффективность вашей текущей системы, размер и тип теплового насоса, а также стратегию управления. Доступно множество онлайн-калькуляторов, позволяющих быстро оценить, сколько экономии энергии вы можете ожидать для вашего конкретного приложения. Инструмент NRCan ASHP-Eval находится в свободном доступе и может использоваться установщиками и проектировщиками механики, чтобы проконсультировать по вашей ситуации.
Как работает воздушный тепловой насос?
Транскрипт
Природные ресурсы Канады являются одними из самых диверсифицированных в мире. Но на пути к низкоуглеродному будущему есть свои проблемы.
Вот ситуация: почти две трети энергии, потребляемой в канадских домах, используется для отопления и охлаждения. Это основная потребность канадцев, особенно с учетом нашей холодной зимы и жаркого лета.
Чтобы снизить потребление энергии и выбросы парниковых газов, мы должны переосмыслить традиционные методы отопления и охлаждения.
Но что поделаешь?
Каждый день ученые и инженеры из исследовательских центров CanmetENERGY компании Natural Resources Canada работают над поиском недорогих и экологически чистых решений этой проблемы.
Вот как.
Сегодня воздушные тепловые насосы представляют собой одну из самых многообещающих технологий для отопления и охлаждения наших домов. Они позволяют значительно снизить потребление энергии.
Тепловой насос извлекает тепло из холодного наружного воздуха и передает его в наш дом.С этой целью компрессор внутри устройства использует электричество для повышения температуры тепла, отбираемого из наружного воздуха. Тепловой насос также может обеспечивать охлаждение, выводя теплый воздух из помещения наружу. Энергия, вырабатываемая наружным воздухом, бесплатна: потребители платят только за электроэнергию, потребляемую компрессором.
Холодный климат Канады представляет собой проблему: когда температура падает, тепловые насосы испытывают проблемы с передачей тепла с улицы в помещение для обогрева наших домов.Вот почему наши исследователи усердно работают, пытаясь адаптировать воздушные тепловые насосы к нашему канадскому климату.
Тепловые насосы — одна из многих технологий, которые, по мнению CanmetENERGY, помогут сделать Канаду более безопасным и здоровым местом и создать низкоуглеродную экономику.
И это только начало.
CanmetENERGY: наука на службе у всех канадцев.
Воздушный тепловой насос имеет три цикла:
- Цикл отопления: обеспечение здания тепловой энергией
- Цикл охлаждения: удаление тепловой энергии из здания
- Цикл оттаивания: удаление инея
, накопившегося на наружных змеевиках
Цикл нагрева
Во время цикла нагрева тепло отбирается из наружного воздуха и «перекачивается» в помещение.
- Сначала жидкий хладагент проходит через расширительное устройство, превращаясь в смесь жидкости и пара низкого давления. Затем он переходит к наружному змеевику, который действует как змеевик испарителя. Жидкий хладагент поглощает тепло из наружного воздуха и закипает, превращаясь в пар с низкой температурой.
- Этот пар проходит через реверсивный клапан в аккумулятор, который собирает оставшуюся жидкость до того, как пар попадет в компрессор. Затем пар сжимается, уменьшая его объем и заставляя его нагреваться.
- Наконец, реверсивный клапан направляет газ, который теперь горячий, к внутреннему змеевику, который является конденсатором. Тепло от горячего газа передается воздуху в помещении, в результате чего хладагент конденсируется в жидкость. Эта жидкость возвращается в расширительное устройство, и цикл повторяется. Внутренний змеевик расположен в воздуховоде рядом с печью.
Способность теплового насоса передавать тепло из наружного воздуха в дом зависит от температуры наружного воздуха.Когда эта температура падает, способность теплового насоса поглощать тепло также падает. Для многих тепловых насосов с воздушным источником это означает, что существует температура (называемая точкой теплового баланса), когда тепловая мощность теплового насоса равна теплопотери в доме. Ниже этой температуры наружного воздуха тепловой насос может подавать только часть тепла, необходимого для поддержания комфорта в жилом помещении, и требуется дополнительное тепло.
Важно отметить, что подавляющее большинство тепловых насосов с воздушным источником воздуха имеют минимальную рабочую температуру, ниже которой они не могут работать.Для более новых моделей это может быть от -15 ° C до -25 ° C. Ниже этой температуры необходимо использовать дополнительную систему для обогрева здания.
Цикл охлаждения
Описанный выше цикл реверсируется для охлаждения дома летом. Блок забирает тепло из воздуха в помещении и отводит его наружу.
- Как и в цикле нагрева, жидкий хладагент проходит через расширительное устройство, превращаясь в смесь жидкости и пара низкого давления.Затем он поступает на внутренний змеевик, который действует как испаритель. Жидкий хладагент поглощает тепло из воздуха в помещении и закипает, превращаясь в низкотемпературный пар.
- Этот пар проходит через реверсивный клапан в аккумулятор, который собирает оставшуюся жидкость, а затем в компрессор. Затем пар сжимается, уменьшая его объем и заставляя его нагреваться.
- Наконец, горячий газ проходит через реверсивный клапан к наружному змеевику, который действует как конденсатор.Тепло от горячего газа передается наружному воздуху, в результате чего хладагент конденсируется в жидкость. Эта жидкость возвращается в расширительное устройство, и цикл повторяется.
Во время цикла охлаждения тепловой насос также осушает воздух в помещении. Влага в воздухе, проходящем по внутреннему змеевику, конденсируется на поверхности змеевика и собирается в поддоне на дне змеевика. Отвод конденсата соединяет этот поддон со сливом дома.
Цикл оттаивания
Если температура наружного воздуха упадет почти до нуля или ниже точки замерзания, когда тепловой насос работает в режиме обогрева, влага в воздухе, проходящем над внешним змеевиком, будет конденсироваться и замерзать на нем.Количество наледи зависит от температуры наружного воздуха и количества влаги в воздухе.
Это образование инея снижает эффективность змеевика, снижая его способность передавать тепло хладагенту. В какой-то момент наледь нужно убрать. Для этого тепловой насос переключается в режим разморозки. Самый распространенный подход:
- Сначала реверсивный клапан переводит устройство в режим охлаждения. Это направляет горячий газ в наружный змеевик, чтобы растопить иней.В то же время наружный вентилятор, который обычно обдувает змеевик холодным воздухом, отключается, чтобы уменьшить количество тепла, необходимого для растапливания инея.
- Пока это происходит, тепловой насос охлаждает воздух в воздуховоде. Система отопления обычно нагревает этот воздух, поскольку он распространяется по всему дому.
Один из двух методов используется для определения, когда агрегат переходит в режим размораживания:
- Регуляторы защиты от замерзания контролируют воздушный поток, давление хладагента, температуру воздуха или теплообменника и перепад давления на наружном теплообменнике для обнаружения накопления инея.
- Оттайка по времени и температуре начинается и заканчивается с помощью предварительно установленного интервального таймера или датчика температуры, расположенного на внешнем змеевике. Цикл можно запускать каждые 30, 60 или 90 минут, в зависимости от климата и конструкции системы.
Ненужные циклы оттаивания снижают сезонную производительность теплового насоса. В результате метод замораживания по требованию обычно более эффективен, поскольку он запускает цикл размораживания только тогда, когда это необходимо.
Дополнительные источники тепла
Поскольку воздушные тепловые насосы имеют минимальную рабочую температуру наружного воздуха (от -15 ° C до -25 ° C) и пониженную теплопроизводительность при очень низких температурах, важно рассмотреть возможность использования дополнительного источника тепла для тепла от воздушного источника. насосные операции.Дополнительный обогрев может также потребоваться при размораживании теплового насоса. Доступны разные варианты:
- Все электрические: В этой конфигурации работа теплового насоса дополняется элементами электрического сопротивления, расположенными в воздуховоде, или электрическими плинтусами. Эти элементы сопротивления менее эффективны, чем тепловой насос, но их способность обеспечивать обогрев не зависит от температуры наружного воздуха.
- Гибридная система: В гибридной системе воздушный тепловой насос использует дополнительную систему, такую как печь или бойлер.Этот вариант может использоваться в новых установках, а также является хорошим вариантом, когда тепловой насос добавляется к существующей системе, например, когда тепловой насос устанавливается вместо центрального кондиционера.
См. Последний раздел этой брошюры, Сопутствующее оборудование , для получения дополнительной информации о системах, в которых используются дополнительные источники тепла. Там вы можете найти обсуждение вариантов того, как запрограммировать вашу систему для перехода от использования теплового насоса к использованию дополнительного источника тепла.
Соображения по энергоэффективности
Чтобы лучше понять этот раздел, обратитесь к предыдущему разделу под названием Введение в КПД теплового насоса для объяснения того, что представляют собой HSPF и SEER.
В Канаде правила энергоэффективности предписывают минимальную сезонную эффективность нагрева и охлаждения, которая должна быть достигнута для продажи продукта на канадском рынке. В дополнение к этим правилам ваша провинция или территория могут иметь более строгие требования.
Минимальная производительность для Канады в целом и типичные диапазоны для продуктов, доступных на рынке, приведены ниже для отопления и охлаждения. Перед выбором системы важно также проверить, существуют ли какие-либо дополнительные правила в вашем регионе.
Сезонная производительность охлаждения, SEER:
- Минимальный SEER (Канада): 14 Диапазон
- , SEER на рынке доступных продуктов: от 14 до 42
Сезонная производительность отопления, HSPF
- Минимальный HSPF (Канада): 7.1 (для региона V) Диапазон
- , продукты HSPF, доступные на рынке: от 7,1 до 13,2 (для региона V)
Примечание: коэффициентов HSPF приведены для климатической зоны V AHRI, климат которой аналогичен климату Оттавы. Фактическая сезонная эффективность может варьироваться в зависимости от вашего региона. В настоящее время разрабатывается новый стандарт производительности, который призван лучше представить производительность этих систем в регионах Канады.
Фактические значения SEER или HSPF зависят от множества факторов, в первую очередь связанных с конструкцией теплового насоса.Текущие характеристики значительно изменились за последние 15 лет благодаря новым разработкам в компрессорной технологии, конструкции теплообменника, а также улучшенным потоком хладагента и управлению.
Односкоростные и регулируемые тепловые насосы
Особое значение при рассмотрении эффективности играет роль новых конструкций компрессоров в улучшении сезонных характеристик. Как правило, агрегаты, работающие на минимально предписанном уровне SEER и HSPF, характеризуются односкоростными тепловыми насосами . Регулируемая скорость В настоящее время доступны тепловых насосов с воздушным источником тепла, которые предназначены для изменения производительности системы, чтобы более точно соответствовать потребностям дома в отоплении / охлаждении в данный момент. Это помогает поддерживать максимальную эффективность в любое время, в том числе в более мягких условиях, когда потребность в системе ниже.
Совсем недавно на рынке были представлены воздушные тепловые насосы, которые лучше приспособлены к работе в холодном канадском климате. Эти системы, часто называемые тепловыми насосами для холодного климата , сочетают в себе компрессоры переменной производительности с улучшенными конструкциями теплообменников и средствами управления, чтобы максимизировать тепловую мощность при более низких температурах воздуха, сохраняя при этом высокую эффективность в более мягких условиях.Эти типы систем обычно имеют более высокие значения SEER и HSPF, при этом некоторые системы достигают SEER до 42, а HSPF приближаются к 13.
Сертификация, стандарты и рейтинговые шкалы
Канадская ассоциация стандартов (CSA) в настоящее время проверяет все тепловые насосы на предмет электробезопасности. Стандарт производительности определяет испытания и условия испытаний, при которых определяются мощность и эффективность теплового насоса по нагреву и охлаждению. Стандарты испытаний производительности для тепловых насосов с воздушным источником воздуха — CSA C656, который (по состоянию на 2014 год) был согласован с ANSI / AHRI 210 / 240-2008 «Рейтинг производительности унитарного оборудования для кондиционирования воздуха и теплового насоса с воздушным источником тепла».Он также заменяет CAN / CSA-C273.3-M91, Стандарт производительности для центральных кондиционеров и тепловых насосов сплит-системы.
Рекомендации по выбору размеров
Чтобы правильно рассчитать размер вашей системы теплового насоса, важно понимать потребности вашего дома в отоплении и охлаждении. Рекомендуется нанять специалиста по отоплению и охлаждению для выполнения необходимых расчетов. Нагрузки на отопление и охлаждение следует определять с помощью признанного метода определения размеров, такого как CSA F280-12, «Определение требуемой мощности обогрева и охлаждения жилых помещений».«
Размер вашей системы теплового насоса должен производиться в соответствии с вашим климатом, нагрузкой на отопление и охлаждение здания, а также целями вашей установки (например, максимизация экономии тепловой энергии по сравнению с заменой существующей системы в определенные периоды года). Чтобы помочь в этом процессе, NRCan разработала руководство по выбору и определению размеров и выбора теплового насоса с воздушным источником воздуха . Это руководство, вместе с сопутствующим программным инструментом, предназначено для консультантов по энергетике и проектировщиков механики и свободно доступно для предоставления рекомендаций по правильному выбору размеров.
Если размер теплового насоса меньше размера, вы заметите, что дополнительная система отопления будет использоваться чаще. Хотя малоразмерная система по-прежнему будет работать эффективно, вы можете не получить ожидаемой экономии энергии из-за частого использования дополнительной системы отопления.
Аналогичным образом, если тепловой насос слишком большого размера, желаемая экономия энергии может не быть реализована из-за неэффективной работы в более мягких условиях. Хотя дополнительная система отопления работает реже, в более теплых условиях окружающей среды тепловой насос вырабатывает слишком много тепла, и блок периодически включается и выключается, что приводит к дискомфорту, износу теплового насоса и потреблению электроэнергии в режиме ожидания.Поэтому важно хорошо понимать свою тепловую нагрузку и рабочие характеристики теплового насоса для достижения оптимальной экономии энергии.
Другие критерии отбора
Помимо размеров, следует учитывать несколько дополнительных факторов производительности:
- HSPF: Выберите установку с максимально возможным значением HSPF. Для агрегатов со сравнимыми номинальными характеристиками HSPF проверьте их номинальные характеристики в установившемся режиме при –8,3 ° C, низкотемпературный рейтинг.Блок с более высоким значением будет самым эффективным в большинстве регионов Канады.
- Размораживание: Выберите блок с контролем размораживания по запросу. Это сводит к минимуму количество циклов оттаивания, что снижает потребление дополнительной энергии и энергии теплового насоса.
- Уровень шума: Уровень звука измеряется в децибелах (дБ). Чем ниже значение, тем ниже звуковая мощность, излучаемая наружным блоком. Чем выше уровень децибел, тем громче шум. Уровень шума большинства тепловых насосов составляет 76 дБ или ниже.
Рекомендации по установке
Воздушные тепловые насосы должны устанавливаться квалифицированным подрядчиком. Проконсультируйтесь с местным специалистом по отоплению и охлаждению, чтобы определить размер, установить и обслуживать ваше оборудование, чтобы обеспечить его эффективную и надежную работу. Если вы хотите установить тепловой насос для замены или дополнения вашей центральной печи, вы должны знать, что тепловые насосы обычно работают при более высоких воздушных потоках, чем топочные системы. В зависимости от размера вашего нового теплового насоса могут потребоваться некоторые изменения в системе воздуховодов, чтобы избежать дополнительного шума и использования энергии вентилятором.Ваш подрядчик сможет дать вам рекомендации по вашему конкретному случаю.
Стоимость установки теплового насоса с воздушным источником воздуха зависит от типа системы, ваших проектных целей и любого существующего отопительного оборудования и воздуховодов в вашем доме. В некоторых случаях могут потребоваться дополнительные модификации воздуховодов или электрооборудования для поддержки вашей новой установки теплового насоса.
Рекомендации по эксплуатации
При эксплуатации теплового насоса следует учитывать несколько важных моментов:
- Оптимизация уставок теплового насоса и дополнительной системы. Если у вас есть дополнительная электрическая система (например, плинтусы или элементы сопротивления в воздуховоде), обязательно используйте более низкую уставку температуры для вашей дополнительной системы. Это поможет увеличить количество тепла, которое тепловой насос обеспечивает вашему дому, снизив потребление энергии и счета за коммунальные услуги. Рекомендуется установить заданное значение на 2–3 ° C ниже заданного значения температуры нагрева теплового насоса. Проконсультируйтесь с вашим подрядчиком по установке относительно оптимальной уставки для вашей системы.
- Настройка для эффективного размораживания. Вы можете снизить потребление энергии, настроив вашу систему на отключение внутреннего вентилятора во время циклов оттаивания. Это может сделать ваш установщик. Однако важно отметить, что при такой настройке размораживание может занять немного больше времени.
- Минимизация понижения температуры. Тепловые насосы реагируют медленнее, чем топочные системы, поэтому им труднее реагировать на глубокие понижения температуры. Следует использовать умеренные понижения температуры не более чем на 2 ° C или использовать «умный» термостат, который рано включает систему в ожидании выхода из спада.Опять же, проконсультируйтесь со своим подрядчиком по установке относительно оптимальной пониженной температуры для вашей системы.
- Оптимизируйте направление воздушного потока. Если у вас настенный внутренний блок, подумайте о том, чтобы отрегулировать направление воздушного потока для максимального комфорта. Большинство производителей рекомендуют направлять воздушный поток вниз при обогреве и в сторону людей при охлаждении.
- Оптимизация настроек вентилятора. Также не забудьте отрегулировать настройки вентилятора для максимального комфорта. Чтобы максимально увеличить количество тепла, отдаваемого тепловым насосом, рекомендуется установить скорость вентилятора на высокую или «Авто».При охлаждении, чтобы также улучшить осушение, рекомендуется «низкая» скорость вентилятора.
Рекомендации по техническому обслуживанию
Правильное обслуживание имеет решающее значение для обеспечения эффективной, надежной и длительной эксплуатации теплового насоса. Вы должны поручить квалифицированному подрядчику проводить ежегодное обслуживание вашего устройства, чтобы убедиться, что все находится в хорошем рабочем состоянии.
Помимо ежегодного обслуживания, вы можете сделать несколько простых вещей, чтобы обеспечить надежную и эффективную работу.Обязательно меняйте или очищайте воздушный фильтр каждые 3 месяца, так как засоренные фильтры уменьшат поток воздуха и снизят эффективность вашей системы. Кроме того, убедитесь, что вентиляционные отверстия и регистры воздуха в вашем доме не заблокированы мебелью или ковровым покрытием, поскольку недостаточный приток воздуха к вашему устройству или от него может сократить срок службы оборудования и снизить эффективность системы.
Операционные расходы
Экономия энергии за счет установки теплового насоса может помочь снизить ежемесячные счета за электроэнергию. Сокращение ваших счетов за электроэнергию во многом зависит от цены на электроэнергию по сравнению с другими видами топлива, такими как природный газ или мазут, а также от того, какой тип системы заменяется при модернизации.
Тепловые насосы обычно имеют более высокую стоимость по сравнению с другими системами, такими как печи или электрические плинтусы, из-за количества компонентов в системе. В некоторых регионах и случаях эта добавленная стоимость может быть окуплена за относительно короткий период времени за счет экономии затрат на коммунальные услуги. Однако в других регионах изменение тарифов на коммунальные услуги может продлить этот период. Важно работать с вашим подрядчиком или консультантом по энергетике, чтобы получить оценку экономики тепловых насосов в вашем районе и потенциальную экономию, которую вы можете достичь.
Ожидаемый срок службы и гарантии
Воздушные тепловые насосы имеют срок службы от 15 до 20 лет. Компрессор — важнейший компонент системы.
На большинство тепловых насосов распространяется годовая гарантия на детали и работа, а также дополнительная гарантия сроком от пяти до десяти лет на компрессор (только на запчасти). Однако гарантии у разных производителей различаются, поэтому обратите внимание на мелкий шрифт.
Земляные тепловые насосы
Земляные тепловые насосы используют землю или грунтовые воды в качестве источника тепловой энергии в режиме обогрева и в качестве поглотителя энергии в режиме охлаждения.Эти типы систем содержат два ключевых компонента:
- Наземный теплообменник: Это теплообменник, используемый для добавления или отвода тепловой энергии от земли или земли. Возможны различные конфигурации теплообменника, которые будут объяснены позже в этом разделе.
- Тепловой насос: Вместо воздуха в грунтовых тепловых насосах в качестве источника (при нагреве) или стока (при охлаждении) используется жидкость, протекающая через грунтовый теплообменник.
Со стороны здания возможны как воздушные, так и водяные системы.Рабочие температуры со стороны здания очень важны для гидравлических систем. Тепловые насосы работают более эффективно при обогреве при более низких температурах ниже 45–50 ° C, что делает их более подходящими для теплых полов или систем фанкойлов. Следует проявлять осторожность при рассмотрении возможности их использования с радиаторами с высокой температурой, для которых требуется температура воды выше 60 ° C, поскольку эти температуры обычно превышают пределы большинства тепловых насосов для жилых помещений.
В зависимости от взаимодействия теплового насоса и грунтового теплообменника возможны две различные классификации систем:
- Вторичный контур: В грунтовом теплообменнике используется жидкость (грунтовая вода или незамерзающая жидкость).Тепловая энергия, передаваемая от земли к жидкости, передается тепловому насосу через теплообменник.
- Прямое расширение (DX): Хладагент используется в качестве жидкости в теплообменнике грунта. Тепловая энергия, извлекаемая хладагентом из земли, используется непосредственно тепловым насосом — дополнительный теплообменник не требуется.
В этих системах теплообменник грунта является частью самого теплового насоса, действуя как испаритель в режиме обогрева и конденсатор в режиме охлаждения.
Земляные тепловые насосы могут удовлетворить целый ряд потребностей в комфорте в вашем доме, в том числе:
- Только отопление: Тепловой насос используется только для отопления. Это может включать как отопление помещений, так и производство горячей воды.
- Отопление с «активным охлаждением»: Тепловой насос используется как для отопления, так и для охлаждения
- Отопление с «пассивным охлаждением»: Тепловой насос используется при обогреве и обходится при охлаждении. При охлаждении жидкость из здания охлаждается непосредственно в теплообменнике грунта.
Операции нагрева и «активного охлаждения» описаны в следующем разделе.
Основные преимущества наземных тепловых насосных систем
КПД
В Канаде, где температура воздуха может опускаться ниже –30 ° C, наземные системы могут работать более эффективно, поскольку они используют более теплые и стабильные температуры грунта. Типичная температура воды, поступающей в грунтовый тепловой насос, как правило, выше 0 ° C, что дает COP около 3 для большинства систем в самые холодные зимние месяцы.
Экономия энергии
Системы заземления существенно снизят ваши расходы на отопление и охлаждение. Экономия затрат на тепловую энергию по сравнению с электрическими печами составляет около 65%.
В среднем, хорошо спроектированная система заземления дает экономию примерно на 10-20% больше, чем может дать лучший в своем классе тепловой насос с воздушным источником холодного климата, рассчитанный на покрытие большей части тепловой нагрузки здания. Это связано с тем, что температура под землей зимой выше, чем температура воздуха.В результате геотермальный тепловой насос может обеспечить больше тепла в течение зимы, чем воздушный тепловой насос.
Фактическая экономия энергии будет варьироваться в зависимости от местного климата, эффективности существующей системы отопления, затрат на топливо и электроэнергию, размера установленного теплового насоса, конфигурации месторождения и сезонного энергетического баланса, а также эффективности теплового насоса при Условия рейтинга CSA.
Как работает система заземления?
Земляные тепловые насосы состоят из двух основных частей: грунтового теплообменника и теплового насоса.В отличие от тепловых насосов с воздушным источником тепла, в которых один теплообменник расположен снаружи, в системах с грунтовым источником тепловой насос расположен внутри дома.
Конструкции наземного теплообменника можно классифицировать как:
- Closed Loop: Системы с замкнутым контуром собирают тепло от земли с помощью непрерывного контура трубопроводов, проложенных под землей. Раствор антифриза (или хладагент в случае системы DX с грунтовым источником), который был охлажден системой охлаждения теплового насоса на несколько градусов ниже температуры окружающей почвы, циркулирует по трубопроводу и поглощает тепло из почвы.
Общие схемы трубопроводов в системах с замкнутым контуром включают горизонтальные, вертикальные, диагональные и грунтовые системы прудов / озер (эти схемы обсуждаются ниже в разделе Рекомендации по проектированию ). - Открытый контур: Открытые системы используют тепло, сохраняющееся в подземном водоеме. Вода всасывается через колодец прямо в теплообменник, где отбирается ее тепло. Затем вода сбрасывается либо в надземный водоем, такой как ручей или пруд, либо обратно в тот же подземный водоем через отдельный колодец.
Выбор наружной системы трубопроводов зависит от климата, почвенных условий, доступной земли, местных затрат на установку на месте, а также от муниципальных и региональных норм. Например, системы без обратной связи разрешены в Онтарио, но не разрешены в Квебеке. Некоторые муниципалитеты запретили системы DX, потому что источником муниципальной воды является водоносный горизонт.
Цикл нагрева
В цикле отопления грунтовые воды, смесь антифриза или хладагент (который циркулировал по подземной системе трубопроводов и забирал тепло из почвы) возвращаются в блок теплового насоса внутри дома.В системах с грунтовой водой или смесью антифриза он затем проходит через первичный теплообменник, заполненный хладагентом. В системах DX хладагент поступает в компрессор напрямую, без промежуточного теплообменника.
Тепло передается хладагенту, который при закипании превращается в пар с низкой температурой. В открытой системе грунтовые воды затем откачиваются и сбрасываются в пруд или колодец. В системе с замкнутым контуром смесь антифриза или хладагент откачивается обратно в подземную систему трубопроводов для повторного нагрева.
Реверсивный клапан направляет пары хладагента в компрессор. Затем пар сжимается, что уменьшает его объем и вызывает нагрев.
Наконец, реверсивный клапан направляет уже нагретый газ в змеевик конденсатора, где он отдает свое тепло воздуху или гидравлической системе для обогрева дома. Отдав свое тепло, хладагент проходит через расширительное устройство, где его температура и давление еще больше снижаются, прежде чем он вернется в первый теплообменник или на землю в системе DX, чтобы снова начать цикл.
Цикл охлаждения
Цикл «активного охлаждения» в основном противоположен циклу нагрева. Направление потока хладагента изменяется реверсивным клапаном. Хладагент забирает тепло из воздуха в помещении и передает его напрямую, в системах DX, в грунтовые воды или смесь антифриза. Затем тепло перекачивается наружу, в водоем или возвратный колодец (в открытой системе) или в подземный трубопровод (в системе с замкнутым контуром). Часть этого избыточного тепла можно использовать для предварительного нагрева воды для бытового потребления.
В отличие от тепловых насосов с воздушным источником тепла, системы с заземлением не требуют цикла размораживания. Температуры под землей намного стабильнее температуры воздуха, а сам агрегат теплового насоса находится внутри; поэтому проблем с морозом не возникает.
Части системы
Наземные тепловые насосы состоят из трех основных компонентов: самого теплового насоса, жидкого теплоносителя (открытая система или замкнутый контур) и распределительной системы (воздушной или гидравлической), которая распределяет тепловую энергию от тепловой насос к зданию.
Земляные тепловые насосы имеют разные конструкции. Для воздушных систем автономные блоки объединяют нагнетатель, компрессор, теплообменник и змеевик конденсатора в одном шкафу. Сплит-системы позволяют добавлять змеевик в печь с принудительной подачей воздуха и использовать существующие нагнетатель и печь. В гидравлических системах теплообменники источника и стока и компрессор находятся в одном шкафу.
Соображения по энергоэффективности
Как и тепловые насосы, работающие на воздухе, системы тепловых насосов, работающих на земле, доступны с различной эффективностью.См. Предыдущий раздел под названием Введение в КПД теплового насоса для объяснения того, что представляют собой COP и EER. Ниже представлены диапазоны COP и EER для имеющихся на рынке единиц.
Подземные воды или приложения с открытым контуром
Отопление
- Минимальный КПД отопления: 3,6 Диапазон
- , COP для обогрева, доступные на рынке продукты: от 3,8 до 5,0
Охлаждение
- Минимальный EER: 16,2 Диапазон
- , EER на рынке доступных продуктов: 19.1 к 27,5
Приложения с замкнутым контуром
Отопление
- Минимальный КПД отопления: 3,1 Диапазон
- , COP для обогрева в доступных на рынке продуктах: от 3,2 до 4,2
Охлаждение
- Минимальный EER: 13,4
- Диапазон, EER на рынке доступных продуктов: от 14,6 до 20,4
Минимальная эффективность для каждого типа регулируется на федеральном уровне, а также в некоторых провинциальных юрисдикциях. Произошло резкое повышение эффективности систем наземного источника питания.Те же разработки компрессоров, двигателей и средств управления, которые доступны производителям тепловых насосов с воздушным источником, приводят к более высокому уровню эффективности систем с наземным источником питания.
В системах нижнего уровня обычно используются двухступенчатые компрессоры, теплообменники хладагент-воздух относительно стандартного размера и теплообменники хладагент-вода увеличенного размера с увеличенной поверхностью. Агрегаты с высоким КПД обычно используют компрессоры с несколькими или регулируемыми скоростями, внутренние вентиляторы с регулируемой скоростью или и то, и другое.Описание односкоростных и регулируемых тепловых насосов можно найти в разделе «Воздушный тепловой насос ».
Сертификация, стандарты и рейтинговые шкалы
Канадская ассоциация стандартов (CSA) в настоящее время проверяет все тепловые насосы на предмет электробезопасности. Стандарт производительности определяет испытания и условия испытаний, при которых определяются мощность и эффективность теплового насоса по нагреву и охлаждению. Стандарты тестирования производительности для систем с заземлением — CSA C13256 (для систем вторичного контура) и CSA C748 (для систем DX).
Рекомендации по выбору размеров
Важно, чтобы грунтовый теплообменник соответствовал мощности теплового насоса. Системы, которые не сбалансированы и не могут восполнять энергию, потребляемую из скважины, будут постоянно работать хуже с течением времени, пока тепловой насос не перестанет извлекать тепло.
Как и в случае с системами с воздушным тепловым насосом, обычно не рекомендуется выбирать размер системы с источником тепла для обеспечения всего тепла, необходимого для дома. Для рентабельности система, как правило, должна иметь такой размер, чтобы покрывать большую часть годовой потребности домохозяйства в тепловой энергии.Периодическая пиковая тепловая нагрузка во время суровых погодных условий может быть компенсирована дополнительной системой отопления.
Системытеперь доступны с вентиляторами и компрессорами с регулируемой скоростью. Этот тип системы может удовлетворить все нагрузки охлаждения и большинство нагрузок нагрева на низкой скорости, а высокая скорость требуется только для высоких нагрузок нагрева. Найдите описание односкоростных и регулируемых тепловых насосов в разделе Воздушный тепловой насос .
Доступны системы различных размеров для соответствия канадскому климату.Номинальные размеры жилых блоков (охлаждение с замкнутым контуром) варьируются от 1,8 кВт до 21,1 кВт (от 6 000 до 72 000 БТЕ / ч) и включают варианты горячего водоснабжения (ГВС).
Соображения по конструкции
В отличие от тепловых насосов с воздушным источником тепла, для тепловых насосов с грунтовым источником требуется грунтовый теплообменник для сбора и отвода тепла под землей.
Системы открытого цикла
В открытой системе в качестве источника тепла используются грунтовые воды из обычного колодца. Грунтовые воды перекачиваются в теплообменник, где извлекается тепловая энергия и используется в качестве источника для теплового насоса.Грунтовые воды, выходящие из теплообменника, затем снова закачиваются в водоносный горизонт.
Другой способ сброса использованной воды — это сбросной колодец, который представляет собой второй колодец, возвращающий воду в землю. Отводящий колодец должен иметь достаточную емкость для удаления всей воды, прошедшей через тепловой насос, и должен быть установлен квалифицированным бурильщиком. Если у вас есть дополнительная скважина, подрядчик по тепловому насосу должен нанять бурильщика, чтобы убедиться, что она подходит для использования в качестве сбросной скважины.Независимо от используемого подхода, система должна быть спроектирована так, чтобы предотвратить любой ущерб окружающей среде. Тепловой насос просто отводит или добавляет тепло воде; никаких загрязняющих веществ не добавлено. Единственное изменение воды, возвращаемой в окружающую среду, — это небольшое повышение или понижение температуры. Важно проконсультироваться с местными властями, чтобы понять какие-либо положения или правила, касающиеся систем разомкнутого контура в вашем районе.
Размер теплового насоса и спецификации производителя определяют количество воды, необходимое для открытой системы.Потребность в воде для конкретной модели теплового насоса обычно выражается в литрах в секунду (л / с) и указывается в технических характеристиках этого агрегата. Тепловой насос мощностью 10 кВт (34 000 БТЕ / ч) будет потреблять от 0,45 до 0,75 л / с во время работы.
Комбинация колодца и насоса должна быть достаточно большой, чтобы подавать воду, необходимую тепловому насосу, в дополнение к вашим потребностям в воде для бытовых нужд. Возможно, вам придется увеличить напорный бак или изменить водопровод, чтобы обеспечить достаточное количество воды для теплового насоса.
Плохое качество воды может вызвать серьезные проблемы в открытых системах. Вы не должны использовать воду из источника, пруда, реки или озера в качестве источника для вашей системы теплового насоса. Частицы и другие вещества могут засорить систему теплового насоса и вывести ее из строя за короткий период времени. Перед установкой теплового насоса вам также следует проверить воду на кислотность, жесткость и содержание железа. Ваш подрядчик или производитель оборудования может сказать вам, какой уровень качества воды является приемлемым и при каких обстоятельствах могут потребоваться специальные материалы для теплообменников.
Установка открытой системы часто регулируется местными законами о зонировании или требованиями лицензирования. Узнайте у местных властей, действуют ли ограничения в вашем районе.
Системы с обратной связью
Система с замкнутым контуром забирает тепло из самой земли, используя непрерывный контур заглубленной пластиковой трубы. В случае систем DX используются медные трубки. Труба соединяется с внутренним тепловым насосом, образуя герметичный подземный контур, по которому циркулирует раствор антифриза или хладагент.В то время как открытая система сливает воду из колодца, система с замкнутым контуром рециркулирует раствор антифриза в трубе под давлением.
Труба размещается в одном из трех типов расположения:
- Вертикальный: Вертикальный замкнутый контур является подходящим выбором для большинства загородных домов, где площадь участка ограничена. Трубопровод вставляется в просверленные отверстия диаметром 150 мм (6 дюймов) на глубину от 45 до 150 м (от 150 до 500 футов), в зависимости от условий почвы и размера системы.В отверстия вставляются П-образные петли трубы. Системы DX могут иметь отверстия меньшего диаметра, что может снизить затраты на бурение.
- Диагональ (под углом): Схема с обратной связью по диагонали (под углом) аналогична вертикальной схеме с обратной связью; однако скважины расположены под углом. Этот тип устройства используется там, где пространство очень ограничено и доступ ограничен одной точкой входа.
- По горизонтали: Горизонтальное расположение чаще встречается в сельской местности, где недвижимость больше.Труба укладывается в траншеи, как правило, глубиной от 1,0 до 1,8 м (от 3 до 6 футов), в зависимости от количества труб в траншее. Как правило, на тонну мощности теплового насоса требуется от 120 до 180 м (от 400 до 600 футов) трубы. Например, для хорошо изолированного дома площадью 185 м2 (2000 кв. Футов) обычно требуется трехтонная система, требующая от 360 до 540 м (от 1200 до 1800 футов) трубы.
Наиболее распространенная конструкция горизонтального теплообменника — это две трубы, расположенные бок о бок в одной траншее. В других конструкциях с горизонтальным контуром используются четыре или шесть труб в каждой траншее, если площадь участка ограничена.Другой дизайн, который иногда используется там, где площадь ограничена, — это «спираль», которая описывает ее форму.
Независимо от выбранной вами компоновки, все трубопроводы для систем антифриза должны быть из полиэтилена или полибутилена серии не ниже 100 с термоплавкими соединениями (в отличие от фитингов с зазубринами, зажимов или клеевых соединений), чтобы гарантировать герметичность соединений в течение всего срока службы. трубопроводов. При правильной установке эти трубы прослужат от 25 до 75 лет. На них не действуют химические вещества, содержащиеся в почве, и они обладают хорошими теплопроводными свойствами.Раствор антифриза должен быть приемлемым для местных органов охраны окружающей среды. В системах DX используются медные трубы холодного качества.
Ни вертикальные, ни горизонтальные петли не оказывают неблагоприятного воздействия на ландшафт, если вертикальные скважины и траншеи должным образом засыпаны и утрамбованы (плотно утрамбованы).
При установке с горизонтальной петлей используются траншеи шириной от 150 до 600 мм (от 6 до 24 дюймов). Это оставляет голые участки, которые можно восстановить с помощью семян травы или дерна.Вертикальные петли занимают мало места и меньше повреждают газон.
Важно, чтобы горизонтальные и вертикальные петли устанавливал квалифицированный подрядчик. Пластиковые трубы должны быть термически спаяны, и должен быть хороший контакт между землей и трубой, чтобы обеспечить хорошую теплопередачу, например, достигаемую затиркой скважин методом Tremie. Последнее особенно важно для вертикальных теплообменных систем. Неправильная установка может привести к снижению производительности теплового насоса.
Рекомендации по установке
Как и системы тепловых насосов с воздушным источником тепла, тепловые насосы с источником тепла от земли должны проектироваться и устанавливаться квалифицированными подрядчиками.Проконсультируйтесь с местным подрядчиком по тепловому насосу для проектирования, установки и обслуживания вашего оборудования для обеспечения его эффективной и надежной работы. Также убедитесь, что тщательно соблюдаются все инструкции производителя. Все установки должны соответствовать требованиям CSA C448 Series 16, стандарту установки, установленному Канадской ассоциацией стандартов.
Общая стоимость установленных систем заземления варьируется в зависимости от конкретных условий объекта. Стоимость установки зависит от типа наземного коллектора и технических характеристик оборудования.Дополнительные затраты на такую систему могут быть возмещены за счет экономии затрат на электроэнергию в течение всего 5 лет. Срок окупаемости зависит от множества факторов, таких как состояние почвы, нагрузки на отопление и охлаждение, сложность модернизации систем отопления, вентиляции и кондиционирования воздуха, местные тарифы на коммунальные услуги и заменяемый источник топлива для отопления. Проконсультируйтесь с вашей электроэнергетической компанией, чтобы оценить преимущества инвестиций в систему заземления. Иногда для утвержденных установок предлагается недорогой план финансирования или поощрение.Важно работать с вашим подрядчиком или консультантом по энергетике, чтобы получить оценку экономики тепловых насосов в вашем районе и потенциальную экономию, которую вы можете достичь.
Рекомендации по эксплуатации
При эксплуатации теплового насоса следует учитывать несколько важных моментов:
- Оптимизация уставок теплового насоса и дополнительной системы. Если у вас есть дополнительная электрическая система (например, плинтусы или элементы сопротивления в воздуховоде), обязательно используйте более низкую уставку температуры для вашей дополнительной системы.Это поможет увеличить количество тепла, которое тепловой насос обеспечивает вашему дому, снизив потребление энергии и счета за коммунальные услуги. Рекомендуется установить заданное значение на 2–3 ° C ниже заданного значения температуры нагрева теплового насоса. Проконсультируйтесь с вашим подрядчиком по установке относительно оптимальной уставки для вашей системы.
- Минимизация понижения температуры. Тепловые насосы реагируют медленнее, чем топочные системы, поэтому им труднее реагировать на глубокие понижения температуры. Следует использовать умеренные понижения температуры не более чем на 2 ° C или использовать «умный» термостат, который рано включает систему в ожидании выхода из спада.Опять же, проконсультируйтесь со своим подрядчиком по установке относительно оптимальной пониженной температуры для вашей системы.
Рекомендации по техническому обслуживанию
У вас должен быть квалифицированный подрядчик для проведения ежегодного обслуживания один раз в год, чтобы ваша система оставалась эффективной и надежной.
Если у вас есть воздухораспределительная система, вы также можете обеспечить более эффективную работу, заменяя или очищая фильтр каждые 3 месяца. Вы также должны убедиться, что ваши вентиляционные отверстия и регистры не заблокированы какой-либо мебелью, ковровым покрытием или другими предметами, которые могут препятствовать потоку воздуха.
Операционные расходы
Эксплуатационные расходы системы заземления обычно значительно ниже, чем у других систем отопления, из-за экономии топлива. Квалифицированные установщики тепловых насосов должны иметь возможность предоставить вам информацию о том, сколько электроэнергии будет использовать конкретная система заземления.
Относительная экономия будет зависеть от того, используете ли вы в настоящее время электроэнергию, нефть или природный газ, а также от относительной стоимости различных источников энергии в вашем районе.Используя тепловой насос, вы будете использовать меньше газа или масла, но больше электроэнергии. Если вы живете в районе, где дорогое электричество, ваши эксплуатационные расходы могут быть выше.
Ожидаемый срок службы и гарантии
Земляные тепловые насосы обычно имеют ожидаемый срок службы от 20 до 25 лет. Это выше, чем у тепловых насосов с воздушным источником, поскольку компрессор имеет меньшую тепловую и механическую нагрузку и защищен от воздействия окружающей среды. Срок службы самого контура заземления приближается к 75 годам.
На большинство тепловых насосов с наземным источником питания распространяется годовая гарантия на детали и работу, а некоторые производители предлагают программы расширенной гарантии. Однако гарантии у разных производителей различаются, поэтому обязательно проверьте мелкий шрифт.
Сопутствующее оборудование
Модернизация электрооборудования
Вообще говоря, нет необходимости обновлять электрическое обслуживание при установке дополнительного теплового насоса с источником воздуха. Однако возраст службы и общая электрическая нагрузка дома могут потребовать модернизации.
Электрооборудование на 200 ампер обычно требуется для установки полностью электрического теплового насоса с воздушным источником или грунтового теплового насоса. При переходе от системы отопления на природном газе или мазуте может потребоваться модернизировать электрическую панель.
Системы дополнительного отопления
Системы с воздушным тепловым насосом
Воздушные тепловые насосы имеют минимальную рабочую температуру наружного воздуха и могут терять часть своей способности нагреваться при очень низких температурах.Из-за этого большинству установок с источниками воздуха требуется дополнительный источник тепла для поддержания температуры в помещении в самые холодные дни. Дополнительный обогрев может также потребоваться при размораживании теплового насоса.
Большинство систем подачи воздуха отключаются при одной из трех температур, которые может установить подрядчик по установке:
- Точка теплового баланса: Температура, ниже которой тепловой насос не имеет достаточной мощности для удовлетворения потребностей здания в отоплении.
- Точка экономического баланса: Температура, ниже которой отношение электроэнергии к дополнительному топливу (например, природному газу) означает, что использование дополнительной системы более рентабельно.
- Температура отключения: Минимальная рабочая температура для теплового насоса.
Большинство дополнительных систем можно разделить на две категории:
- Гибридные системы: В гибридной системе воздушный тепловой насос использует дополнительную систему, такую как печь или бойлер.Этот вариант может использоваться в новых установках, а также является хорошим вариантом, когда тепловой насос добавляется к существующей системе, например, когда тепловой насос устанавливается вместо центрального кондиционера.
Эти типы систем поддерживают переключение между тепловым насосом и дополнительными операциями в соответствии с точкой теплового или экономического баланса.
Эти системы не могут работать одновременно с тепловым насосом — работает либо тепловой насос, либо газомазутная печь. - Все электрические системы: В этой конфигурации работа теплового насоса дополняется элементами электрического сопротивления, расположенными в воздуховоде, или электрическими плинтусами.
Эти системы могут работать одновременно с тепловым насосом и, следовательно, могут использоваться в стратегиях контроля точки баланса или отключения температуры.
Датчик температуры наружного воздуха отключает тепловой насос, когда температура падает ниже предварительно установленного предела. Ниже этой температуры работает только дополнительная система отопления. Датчик обычно настраивается на отключение при температуре, соответствующей точке экономического баланса, или при температуре наружного воздуха, ниже которой дешевле нагревать с помощью дополнительной системы отопления вместо теплового насоса.
Системы геотермальных тепловых насосов
Системы с наземным источником питания продолжают работать независимо от температуры наружного воздуха, и поэтому на них не распространяются такие же ограничения по эксплуатации. Дополнительная система отопления обеспечивает только тепло, превышающее номинальную мощность источника заземления.
Термостаты
Обычные термостаты
Большинство канальных систем с односкоростным тепловым насосом для жилых помещений устанавливаются с внутренним термостатом «двухступенчатый нагрев / одноступенчатое охлаждение» .На первом этапе требуется тепло от теплового насоса, если температура падает ниже заданного уровня. На втором этапе требуется тепло от дополнительной системы отопления, если температура в помещении продолжает опускаться ниже заданной. Бесканальные бытовые воздушные тепловые насосы обычно устанавливаются с одноступенчатым термостатом нагрева / охлаждения или, во многих случаях, встроенным термостатом, устанавливаемым с помощью пульта дистанционного управления, который поставляется вместе с агрегатом.
Наиболее распространенным типом используемых термостатов является «установил и забыл» тип .Установщик проконсультируется с вами перед установкой желаемой температуры. Как только это будет сделано, о термостате можно будет забыть; он автоматически переключит систему из режима нагрева в режим охлаждения или наоборот.
В этих системах используются два типа наружных термостатов. Первый тип управляет работой системы электрического резистивного дополнительного отопления. Это тот же тип термостата, который используется с электрической печью. Он включает различные ступени нагревателей, когда температура наружного воздуха постепенно падает.Это гарантирует, что необходимое количество дополнительного тепла будет обеспечиваться в соответствии с внешними условиями, что максимизирует эффективность и сэкономит ваши деньги. Второй тип просто отключает воздушный тепловой насос, когда температура наружного воздуха падает ниже заданного уровня.
Понижение температуры термостата может не дать таких же преимуществ для систем с тепловым насосом, как для более традиционных систем отопления. В зависимости от величины понижения и падения температуры тепловой насос может быть не в состоянии подавать все тепло, необходимое для быстрого восстановления температуры до желаемого уровня.Это может означать, что дополнительная система отопления работает до тех пор, пока тепловой насос не «догонит». Это снизит экономию, которую вы могли ожидать от установки теплового насоса. См. Обсуждение минимизации понижения температуры в предыдущих разделах.
Программируемые термостаты
Программируемые термостаты для тепловых насосов сегодня доступны у большинства производителей тепловых насосов и их представителей. В отличие от обычных термостатов, эти термостаты обеспечивают экономию за счет понижения температуры в периоды отсутствия людей или в ночное время.Хотя разные производители делают это по-разному, тепловой насос возвращает дом к желаемому уровню температуры с минимальным дополнительным отоплением или без него. Для тех, кто привык к понижению температуры и программируемым термостатам, это может оказаться выгодным вложением. Другие функции, доступные с некоторыми из этих электронных термостатов, включают следующее:
- Программируемое управление, позволяющее пользователю выбирать автоматический режим теплового насоса или только вентилятор, по времени суток и дню недели.
- Улучшенный контроль температуры по сравнению с обычными термостатами.
- Нет необходимости в наружных термостатах, так как электронный термостат требует дополнительного тепла только при необходимости.
- Нет необходимости в управлении внешним термостатом на дополнительных тепловых насосах.
Экономия от программируемых термостатов во многом зависит от типа и размера вашей системы теплового насоса. Для систем с регулируемой скоростью спады могут позволить системе работать на более низкой скорости, уменьшая износ компрессора и помогая повысить эффективность системы.
Системы распределения тепла
Системы с тепловым насосом обычно обеспечивают больший объем воздушного потока при более низкой температуре по сравнению с печными системами. Таким образом, очень важно изучить поток приточного воздуха в вашей системе и сравнить его с пропускной способностью существующих воздуховодов. Если воздушный поток теплового насоса превышает пропускную способность существующего воздуховода, у вас могут возникнуть проблемы с шумом или повышенное потребление энергии вентилятором.
Новые системы тепловых насосов следует проектировать в соответствии с установленной практикой.Если установка представляет собой модернизацию, необходимо тщательно изучить существующую систему воздуховодов, чтобы убедиться, что она соответствует требованиям.
Сноски
- Сноска 1
HSPF в регионе 5 наиболее сильно влияет на производительность теплового насоса в регионе Оттавы. Фактические значения HSPF могут быть ниже в регионах с повышенной температурой градусо-дней. Хотя многие более холодные регионы Канады по-прежнему относятся к региону 5, предоставленное значение HSPF может не полностью отражать фактическую производительность системы.
Вернуться к сноске 1 реферер
При какой температуре тепловые насосы становятся неэффективными?
Тепловые насосы используются для отопления и охлаждения домов по всей Атланте. В нашем южном климате эти системы HVAC обычно предлагают энергоэффективный комфорт в течение всего года. Однако, когда температура упадет слишком низко, вы можете заметить, что ваш тепловой насос выходит из строя. В нашем последнем блоге Estes Services объясняет, при какой температуре тепловые насосы становятся неэффективными.Для получения дополнительной информации о тепловых насосах свяжитесь с нами сегодня.
Отопление с помощью теплового насоса
Тепловой насос с воздушным источником обогревает ваш дом, забирая тепло из воздуха снаружи и передавая это тепло воздуху, циркулирующему по всему дому. Несмотря на то, что на улице кажется свежим, часто достаточно тепла, чтобы обеспечить достаточное отопление внутри вашего дома.
Зимы в Атланте в основном мягкие, что позволяет тепловым насосам работать эффективно в большинстве случаев. Однако наступает момент, когда температура наружного воздуха падает слишком низко для оптимальной работы.Тепловые насосы не работают так же эффективно, когда для большинства систем температура опускается до 25-40 градусов по Фаренгейту.
Тепловой насос лучше всего работает при температуре выше 40 градусов. Когда температура наружного воздуха падает до 40 градусов, тепловые насосы начинают терять эффективность, и они потребляют больше энергии для выполнения своей работы. Когда температура падает до 25-30 градусов, тепловой насос теряет свое место как наиболее эффективный вариант отопления для дома в Атланте.
Даже при 25 градусах тепловой насос все равно будет работать.Проблема при такой температуре заключается в том, что их системе потребуется больше энергии во время работы, потому что в наружном воздухе недостаточно тепловой энергии для использования тепловым насосом для обогрева ваших интерьеров.
Как обогревать при низких температурах
Когда тепловые насосы перестают работать эффективно, многие домовладельцы в Атланте обращаются к своим резервным системам отопления для обогрева. Резервная система отопления — это еще один тип системы отопления, который устанавливается для использования в периоды, когда тепловые насосы не обеспечивают оптимальную энергоэффективность.
Инвестиции в резервную систему отопления — разумная идея для домовладельцев Атланты, которые не хотят рисковать высокими счетами за электроэнергию из-за тепловых насосов, которые борются с холодом. Доступно несколько различных вариантов системы, в том числе:
- Электрический резистивный нагрев может быть добавлен в ваш дом путем установки нагревательных полос в вашей системе отопления, вентиляции и кондиционирования воздуха. Тепловые полоски берут на себя нагрев, когда тепловые насосы перестают эффективно работать в холодную погоду. Это не самый энергоэффективный вариант, но они более эффективны, чем тепловые насосы при низких температурах.Если у вас нет доступа к энергии природного газа в вашем доме, это может быть правильным вариантом резервного отопления для вас.
- Газовые печи обеспечивают эффективное отопление в холодные периоды, когда тепловые насосы не работают. Если в вашем доме есть подключения к природному газу, газовая печь, вероятно, станет вашим наиболее эффективным выбором для резервного отопления. Покупка и установка газовых печей обходятся дороже по сравнению с нагревательными полосами, но обеспечиваемый ими обогрев более эффективен и надежен.
Используйте резервное отопление с умом
Резервные системы отопления — отличное решение, когда температура в Атланте опускается до нуля, а тепловые насосы становятся менее эффективными.Ключ в том, что их следует использовать только при температуре ниже 25-30 градусов. Использование резервной системы отопления при повышении температуры увеличит ваши расходы на отопление.
Ваша система HVAC должна быть настроена на автоматическое включение резервной системы отопления при достижении определенной температуры. Он также должен отключать резервную систему отопления, когда температура поднимается выше этого диапазона, позволяя тепловому насосу снова работать. Можно переключаться между системами вручную, но вы рискуете оставить резервное тепло включенным дольше, чем необходимо, и увеличите свои счета за отопление.