Пуско рабочий конденсатор схема подключения: Схема подключения рабочего и пускового конденсатора

Содержание

Как подключить однофазный двигатель через пусковой конденсатор

Содержание

  1. 2 Схемы
  2. Схема подключения двигателя через конденсатор
  3. Схема подключения однофазного двигателя через конденсатор
  4. Схема подключения трёхфазного двигателя через конденсатор
  5. Онлайн расчет емкости конденсатора мотора
  6. Реверс направления движения двигателя
  7. Схемы Подключения Однофазных Электродвигателей Через Конденсатор
  8. Расчет емкости конденсатора мотора
  9. Подключение однофазного электродвигателя: использование магнитного пускателя
  10. Подключение однофазного двигателя через конденсатор — 3 схемы
  11. Асинхронный или коллекторный: как отличить
  12. Подключение однофазного двигателя
  13. Как определиться с типом двигателя
  14. Коллекторные двигатели
  15. Асинхронные двигатели
  16. Варианты подключения однофазных асинхронных двигателей
  17. Двигатели с пусковой обмоткой
  18. Конденсаторные двигатели
  19. Схема с двумя конденсаторами
  20. Как подключить однофазный электродвигатель — схема с конденсатором
  21. Схема подключения однофазного двигателя через конденсатор
  22. Расчет емкости конденсатора мотора
  23. Видео

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 0,1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Источник

Схемы Подключения Однофазных Электродвигателей Через Конденсатор

Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени. Обмотки электромотора Укладка обмоток в статоре однофазного электродвигателя Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек.

Расчет емкости конденсатора мотора

Подключение однофазного электродвигателя: использование магнитного пускателя

Но есть другой путь — подключение однофазного электродвигателя как генератора для получения трехфазного напряжения.


Магнитное поле основной обмотки поддерживает вращение длительное время. Решение — установка 3-х полюсного переключателя. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой. Это связано с тем, что при включении в сеть только рабочей обмотки С1-С2 у однофазного конденсаторного двигателя возникнет пульсирующее магнитное поле, а не вращающееся, то есть он не запустится. С каждым из сетевых проводов необходимо подключить дроссели для исключения помех.

В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем. Это и будет, один из сетевых проводов. Наиболее удобным является магнитный пускатель с управлением от в переменного тока. Все емкости, которые включаются в схему, должны быть однотипными.

Подключение однофазного двигателя через конденсатор — 3 схемы

Что при этом получается?

Если же нагрев достаточно ощутимый, то нужно искать его причины. При значительном превышении емкости начнется сильный нагрев.

Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного. Это оптимальное решение для достижения средних рабочих характеристик. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.

Во-вторых, и самое главное — автор на практике убедился, что даже предельно точный расчет не является гарантией корректной работы движка. Одна из обмоток подключается непосредственно к сети, а вторая — с использованием конденсатора. В геометрическом измерении обмотки в статоре размещаются друг напротив друга. Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать.

Асинхронный или коллекторный: как отличить

Две из них являются элементов конструкции статора,включены параллельно. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. По сути, пусковой работает всего секунды. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Для этого схемой предусматривается наличие специальной кнопки, предназначенной для размыкания контактов после выхода ротора на заданный уровень скорости. Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом.

Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Но в любом случае потери будут составлять от 30 до 50 процентов.

Источник

Подключение однофазного двигателя

Как правило, наши дома, гаражи и другие хозяйственные постройки подключены к источнику 220V, представляющую однофазную сеть. В связи с этим все потребители рассчитываются для работы от однофазной сети, выполненной двумя проводами, один из которых является нулевым, а другой фазным. В работе многих электрических приборов задействованы однофазные электрические двигатели, подключение которых связано с некоторыми тонкостями.

Как определиться с типом двигателя

Если двигатель новый, то особых проблем не будет, поскольку на его табличке указан тип двигателя и другие данные. Если двигатель подвергался ремонту, то определение его типа связано с некоторыми трудностями: табличку могли просто потерять или повредить ее механически. Поэтому в таких случаях лучше знать, как самостоятельно определить тип двигателя.

Коллекторные двигатели

Определить, двигатель коллекторный или асинхронный, совсем несложно, поскольку они имеют разное строение. Характерное отличие коллекторного двигателя – это наличие щеток, которые находятся неподвижно, а также коллектора, который вращается и представляет набор медных пластин. К этим пластинам прижимаются щетки, передающие электрический ток на обмотку якоря двигателя.

Достоинство таких двигателей заключается в том, что они быстро разгоняются и позволяют получить большие обороты. К тому же, поменяв полярность, допустимо сменить направление вращения устройства. Не менее важным можно считать тот фактор, что можно легко организовать контроль частоты вращения двигателя, с его регулировкой в широких пределах.

К существенному минусу коллекторных двигателей следует отнести их повышенную шумность в работе, особенно на повышенных оборотах. Что касается небольших оборотов, то работу этих двигателей можно считать вполне приемлемой. Следует учитывать также тот факт, что трение щеток и коллектора приводят к тому, что изнашиваются, как щетки, так и коллектор. В результате приходится менять щетки или протачивать коллектор. Если не осуществлять постоянного контроля за состоянием щеток и коллектора, то имеется высокая вероятность того, что устройство придется ремонтировать.

Асинхронные двигатели

Конструкция асинхронного двигателя несколько отличается от конструкции коллекторного двигателя несмотря на то, что у него также имеется статор и ротор (якорь), при этом асинхронные двигатели могут быть, как однофазными, так и трехфазными. Как правило, бытовые электроприборы оснащаются однофазными асинхронными двигателями.

Достоинство асинхронных двигателей заключается в том, что они более бесшумные, поэтому их устанавливают в бытовых приборах, работа которых связана с критическими уровнями шумов при длительной работе.

Различают два типа асинхронных двигателей – конденсаторные и с пусковой обмоткой (бифилярные). Пусковая обмотка необходима лишь для запуска двигателя, после чего она отключается и в работе двигателя никакого участия не принимает.

Конденсаторные двигатели отличаются тем, что дополнительная конденсаторная обмотка работает постоянно. Эта обмотка смещается по отношению к рабочей обмотке на 90 градусов. Благодаря такому построению, возможно менять направление вращения двигателя. Наличие конденсатора на двигателе свидетельствует о том, что это конденсаторный двигатель.

Если измерить сопротивление пусковой и рабочей обмоток, то можно легко определить тип асинхронного двигателя. Как правило, пусковая обмотка выполняется более тонким проводом и ее сопротивление больше в несколько раз, по сравнению с рабочей обмоткой. Нормальная работа таких двигателей обеспечивается за счет специального включающего устройства. Конденсаторные двигатели запускаются обычным выключателем, тумблером или кнопкой.

Варианты подключения однофазных асинхронных двигателей

Двигатели с пусковой обмоткой

Чтобы управлять работой асинхронным двигателем, имеющим пусковую обмотку, разработана специальная кнопка. Она состоит из трех контактов, один из которых отключается после включения устройства. Называется эта кнопка «ПНВС» и включает в себя средний контакт, который не фиксируется после включения и два крайних контакта с фиксацией.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена

Если двигатель с пусковой обмоткой, то у него может быть 3 или 4 вывода. Измерив их сопротивление, можно узнать, какой из концов или каких 2 конца имеют отношение к пусковой обмотке.

У двигателя, имеющего 3 вывода, один из концов пусковой обмотки уже соединен с рабочей обмоткой. Как уже было сказано выше, рабочая обмотка всегда имеет меньшее сопротивление, по сравнению с пусковой. У двигателя с 4-мя выводами пусковую обмотку придется соединять с рабочей самостоятельно, на пусковой кнопке. В результате, получится также 3 вывода, которые принимают участие в работе двигателя:

Поэтому подключение таких двигателей ничем не отличается друг от друга, достаточно найти обмотки и соответствующим образом подключить их на реле ПНВС.

Правильное подключение:

Три провода, выходящие из двигателя, подключаются так: провод, представляющий пусковую обмотку, крепится к среднему контакту (верхнему), а остальные два на крайние (тоже верхние) контакты. Питание 220 V подается на крайние контакты (нижние), при этом средний нижний контакт соединяется перемычкой с боковым контактом (нижним), который включает рабочую обмотку, но не общую, представляющую соединение рабочей и пусковой обмотки. В противном случае двигатель просто не запустится.

Конденсаторные двигатели

Существует три варианта (схемы) подключения конденсаторных двигателей к сети 220V. Без конденсаторов двигатель работать не будет. Он не запустится и будет гудеть. Такая длительная работа может привести к перегреву и выходу его из строя.

Первая схема связана с включением конденсатора в цепь питания конденсаторной обмотки. Подобная схема легко запускает двигатель, но его работа связана с низким К.П.Д. Схема, где конденсатор включен к цепи питания рабочей обмотки обладает лучшими показателями к.п.д., но при этом возникают проблемы с пуском двигателя. Поэтому первая схема используется для условий с тяжелым пуском, если при этом не требуются высокие рабочие характеристики.

Схема с двумя конденсаторами

Третий вариант подключения связан с установкой 2-х конденсаторов, поэтому схема представляет что-то среднее между вышеописанными двумя вариантами. Схема располагается в середине и более детально ее подключение представлено на фото ниже. Для реализации такой схемы включения потребуется кнопка ПНВС. Она необходима лишь для того, чтобы кратковременно подключать второй конденсатор, на время разгона двигателя. После отключения пускового конденсатора в работе останется две обмотки, причем пусковая обмотка должна быть подключена через конденсатор.

Подключение с двумя конденсаторами

Другие схемы подключения не требуют кнопки ПНВС, поскольку подключение конденсаторов фиксированное, на все время работы электродвигателя. Поэтому достаточно воспользоваться обычным автоматическим выключателем с фиксацией включенных контактов.

Источник

Как подключить однофазный электродвигатель — схема с конденсатором

Функционирование однофазного электродвигателя основано на использовании переменного электрического тока посредством подсоединения к сетям с одной фазой. Напряжение в такой сети должно соответствовать стандартному значению 220 Вольт, частота — 50 Герц. Преимущественное применение моторы данного типа находят в бытовых устройствах, помпах, небольших вентиляторах и т. п.

Мощности однофазных моторов достаточно и для электрификации частных домов, гаражей или дачных участков. В этих условиях используется однофазная электрическая сеть с напряжением 220 В, что предъявляет некоторое требования к процессу подключения мотора. Здесь применяется специальная схема, предполагающая использование устройства с пусковой обмоткой.

Схема подключения однофазного двигателя через конденсатор

Однофазные электродвигатели 220в подключают к сети с применением конденсатора. Это обусловлено некоторыми конструктивными особенностями агрегата. Так, на статоре мотора обмотка с переменным током создает магнитное поле, импульсы которого компенсируются лишь при условии смены полярности с частотой 50 Гц. Несмотря на характерные звуки, которые издает однофазный двигатель, вращение ротора при этом не происходит. Крутящий момент создается за счет применения дополнительных пусковых обмоток.

Чтобы понять, как подключить однофазный электродвигатель через конденсатор, достаточно рассмотреть 3 рабочие схемы с применением конденсатора:

Каждая из перечисленных схем подключения подходит для использования при эксплуатации асинхронных однофазных электродвигателей 220в. Однако каждый вариант имеет свои сильные и слабые стороны, поэтому они заслуживают более детального ознакомления.

Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Для этого схемой предусматривается наличие специальной кнопки, предназначенной для размыкания контактов после выхода ротора на заданный уровень скорости. Его дальнейшее вращение происходит под воздействием инерционной силы.

Поддержание вращательных движений на протяжении длительного промежутка времени обеспечивается магнитным полем основной обмотки однофазного двигателя с конденсатором. Функции переключателя при этом может выполнять специально предусмотренное реле.

Схема подключения однофазного электродвигателя через конденсатор предполагает наличие нажимной пружинной кнопки, разрывающей контакты в момент размыкания. Такой подход обеспечивает возможность снизить количество используемых проводов (допускается применение более тонкой пусковой обмотки). Во избежание возникновения коротких замыканий между витками рекомендуется применять термореле.

При достижении критически высоких температур этот элемент деактивирует дополнительную обмотку. Аналогичную функцию может выполнять центробежный выключатель, устанавливаемый для размыкания контактов в случаях превышения допустимых значений скорости вращения.

Для автоматического контроля скорости вращения и защиты мотора от перегрузов разрабатываются соответствующие схемы, а в конструкции агрегатов вносятся различные корректировочные компоненты. Установку центробежного выключателя можно произвести непосредственно на роторном валу либо на сопряженных с ним (прямым или редукторным соединением) элементах.

Воздействующая на груз центробежная сила способствует натяжению пружины, соединенной с контактной пластиной. Если скорость вращения достигает заданного значения, происходит замыкание контактов, подача тока на двигатель прекращается. Возможна передача сигнала другому управляющему механизму.

Существуют варианты схем, при которых в одном элементе конструкции предусматривается наличие центробежного выключателя и теплового реле. Подобное решение позволяет деактивировать двигатель посредством теплового компонента (в случае достижения критических температур) либо под воздействием раздвигающегося элемента центробежного выключателя.

В случае подключения двигателя через конденсатор часто происходит искажение линий магнитного поля в дополнительной обмотке. Это влечет за собой увеличение мощностных потерь, общее снижение производительности агрегата. Однако сохраняются хорошие показатели пуска.

Применение рабочего конденсатора в схеме подключение однофазного двигателя с пуcковой обмоткой предполагает ряд отличительных особенностей. Так, после пуска отключения конденсатора не происходит, вращение ротора осуществляется за счет импульсного воздействия со стороны вторичной обмотки. Это существенно увеличивает мощность двигателя, а грамотный побор емкости конденсатора позволяет оптимизировать форму электромагнитного поля. Однако пуск мотора становится более продолжительным.

Подбор конденсатора подходящей мощности производится с учетом токовых нагрузок, что позволяет оптимизировать электромагнитное поле. В случае изменения номинальных значений будет происходить колебание по всем остальным параметрам. Стабилизировать форму линий магнитных полей позволяет использование нескольких конденсаторов с разными емкостными характеристиками. Такой подход позволяет оптимизировать рабочие характеристики системы, однако предусматривает возникновение некоторых сложностей в процессах монтажа и эксплуатации.

Комбинированная схема подключения однофазного двигателя с пусковой обмоткой рассчитана на использование двух конденсаторов — рабочего и пускового. Это оптимальное решение для достижения средних рабочих характеристик.

Расчет емкости конденсатора мотора

Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций:

Рабочее напряжение для них должно быть в 1,5 раза выше, чем в электросети (в нашем случае 220 В). Для упрощения процесса запуска в пусковую цепь лучше устанавливать конденсатор с маркировкой «Starting» или «Start». Хотя допускается использование стандартных конденсаторов.

Источник

Видео

Подключение однофазного двигателя без конденсатора и через конденсатор

Подключение однофазного двигателя.

Рассчитать ёмкость конденсатора для трёхфазного двигателя в однофазной сети. КАК Я,ЭТО ДЕЛАЮ!!!

Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.

Рассчитываем и подключаем пусковые и рабочие конденсаторы в однофазной сети…

Подключить трехфазный двигатель в однофазную сеть. Пусковой и рабочий конденсаторы.

Как подключить однофазный двигатель к сети

Правильно подключаем двигатель от стиральной машинки в сеть 220 вольт через конденсатор.

Подключение однофазного конденсаторного электродвигателя. Устройство и схема управления.

Как подключить однофазный двигатель на примере ⚡ АИРЕ 80 С2 2,2кВт 3000об/мин

Как подключить конденсатор с четырьмя выходами к двигателю

Содержание

  1. Схемы подключения электродвигателя через конденсаторы
  2. Почему применяется запуск двигателя 220 В через конденсатор?
  3. 1 вариант
  4. 2 вариант
  5. 3 вариант
  6. Методы подключения трёхфазного электродвигателя
  7. Заключение
  8. Как подключить конденсатор к электродвигателю
  9. Подписка на рассылку
  10. Подключение электродвигателя через конденсатор: расчет и схема
  11. Коротенько про трехфазные асинхронные электродвигатели
  12. работа трехфазного электродвигателя без одной фазы при постоянной нагрузке
  13. почему для пуска от однофазной сети используют именно конденсаторы
  14. как подключить электродвигатель через конденсатор
  15. конденсаторы для запуска электродвигателя
  16. Схема подключения электродвигателя на 220В через конденсатор
  17. Схемы подключения
  18. Как рассчитать емкость
  19. Схемы Подключения Однофазных Электродвигателей Через Конденсатор
  20. Расчет емкости конденсатора мотора
  21. Подключение однофазного электродвигателя: использование магнитного пускателя
  22. Подключение однофазного двигателя через конденсатор — 3 схемы
  23. Асинхронный или коллекторный: как отличить
  24. Видео

Схемы подключения электродвигателя через конденсаторы

Асинхронные двигатели получили широкое применение, потому что они малошумны и легки в эксплуатации. Особенно это касается трехфазных короткозамкнутых асинхронников с их прочной конструкцией и неприхотливостью.

Почему применяется запуск двигателя 220 В через конденсатор?

Для начала определимся с терминологией. Конденсатор (лат. condensatio — «накопление») – это электронный компонент, хранящий электрический заряд и состоящий из двух близкорасположенных проводников (обычно пластин), разделенных диэлектрическим материалом. Пластины накапливают электрический заряд от источника питания. Одна из них накапливает положительный заряд, а другая – отрицательный.

Емкость – это количество электрического заряда, которое хранится в электролите при напряжении 1 Вольт. Емкость измеряется в единицах Фарад (Ф).

Рассмотрим схемы подключения конденсаторов:

1 вариант

К обмотке асинхронника подсоединяется фазосдвигающий конденсатор. Подключение осуществляется в однофазную сеть 220 В по специальной схеме.

Здесь видно, что электрообмотка прямо подключена к линии питания 220 В, вспомогательная соединена последовательно с конденсатором и выключателем. Последний предназначен для отключения дополнительной обмотки от источника питания после запуска.

Коммутационный аппарат настроен так, чтобы оставаться закрытым и поддерживать вспомогательную обмотку в эксплуатации до тех пор, пока мотор запускается и разгоняется примерно до 80% от полной нагрузки. На такой скорости, выключатель размыкается, отключая цепь вспомогательной обмотки от источника питания. Затем мотор работает как асинхронный двигатель на основной обмотке.

2 вариант

Схема идентична конденсаторному мотору, но без выключателя. Пусковой момент составляет только 20–30% от полной нагрузки крутящего момента.

Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Возможны различные модификации схем с предварительным расчетом необходимой емкости конденсатора для подсоединения к двигателю 220 В.

Стоит отметить, что обеспечение лучших характеристик нужно при изменении нагрузки мотора. Увеличение емкости ведёт к уменьшению сопротивления в цепи переменного тока. Правда замена емкости электролита несколько усложняет схему.

3 вариант

Схема подключения двух электролитов, подсоединенных параллельно к мотору, приведена ниже. При параллельном соединении общая ёмкость равна сумме емкостей всех подключенных электролитов.

Cs – это пусковой конденсатор. Величина емкостного реактивного сопротивления Х тем меньше, чем больше ёмкость электролита. Она рассчитывается по формуле:

При этом следует учитывать, что на 1 кВт приходится 0,8 мкФ рабочей емкости, а для пусковой емкости потребуется больше в 2,5 раза. Перед подключением к движку следует «прогнать» конденсатор через мультиметр. Подбирая детали нужно помнить, что пусковой кондер должен быть на напряжение 380 В.

Для управления пусковыми токами (контролем и ограничением их величины) используют преобразователь частоты. Такая схема подключения обеспечивает тихий и плавный ход электродвигателя. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. д. Машины такого типа имеют более высокий КПД и производительность, чем их аналоги, работающие лишь на основной электрообмотке.

Методы подключения трёхфазного электродвигателя

Попытка приспособить некоторое оборудование встречает определённые трудности, так как трёхфазные асинхронники большей частью подключаться должны к 380 В. А в доме у всех сеть на 220 В. Но подключить трёхфазный движок к однофазной сети – это вполне выполнимая задача.

Заключение

Асинхронники на 220 В широко применяются в быту. Исходя из требуемой задачи, существуют различные методы подключения однофазного и трёхфазного мотора через конденсатор: для обеспечения плавного пуска либо улучшения рабочих характеристик. Всегда можно самому легко добиться нужного эффекта.

Источник

Как подключить конденсатор к электродвигателю

Подписка на рассылку

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Схемы подключения

Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:

Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.

В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.

Как рассчитать емкость

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

Источник

Схемы Подключения Однофазных Электродвигателей Через Конденсатор

Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени. Обмотки электромотора Укладка обмоток в статоре однофазного электродвигателя Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек.

Расчет емкости конденсатора мотора

Подключение однофазного электродвигателя: использование магнитного пускателя

Но есть другой путь — подключение однофазного электродвигателя как генератора для получения трехфазного напряжения.


Магнитное поле основной обмотки поддерживает вращение длительное время. Решение — установка 3-х полюсного переключателя. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой. Это связано с тем, что при включении в сеть только рабочей обмотки С1-С2 у однофазного конденсаторного двигателя возникнет пульсирующее магнитное поле, а не вращающееся, то есть он не запустится. С каждым из сетевых проводов необходимо подключить дроссели для исключения помех.

В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем. Это и будет, один из сетевых проводов. Наиболее удобным является магнитный пускатель с управлением от в переменного тока. Все емкости, которые включаются в схему, должны быть однотипными.

Подключение однофазного двигателя через конденсатор — 3 схемы

Что при этом получается?

Если же нагрев достаточно ощутимый, то нужно искать его причины. При значительном превышении емкости начнется сильный нагрев.

Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного. Это оптимальное решение для достижения средних рабочих характеристик. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.

Во-вторых, и самое главное — автор на практике убедился, что даже предельно точный расчет не является гарантией корректной работы движка. Одна из обмоток подключается непосредственно к сети, а вторая — с использованием конденсатора. В геометрическом измерении обмотки в статоре размещаются друг напротив друга. Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать.

Асинхронный или коллекторный: как отличить

Две из них являются элементов конструкции статора,включены параллельно. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. По сути, пусковой работает всего секунды. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Для этого схемой предусматривается наличие специальной кнопки, предназначенной для размыкания контактов после выхода ротора на заданный уровень скорости. Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом.

Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Но в любом случае потери будут составлять от 30 до 50 процентов.

Источник

Видео

Пусковые конденсаторы Эпкос серии B32322

Подключение электродвигателя от старой стиральной машинки через конденсатор.

проверка и подключение однофазного асинхронного двигателя стиральной машины

Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.

Как подключить двигатель без конденсатора

Подключение асинхронного двигателя с пусковой обмоткой (4 провода)

как подключить двигатель от стиральной машины с четырьмя выводами и с тремя выводами

Очень Простой способ подключения двигателя стиральной машины с конденсатором!

Как подключить электродвигатель от старой стиральной машины с конденсатором

Рабочие конденсаторы с Алиэкспресс! Запуск двигателя 380в в сети 220в

Включение 3-фазного двигателя в однофазную сеть

Среди различных способов запуска трехфазных электродвигателей в однофазную сеть наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность, развиваемая двигателем в этом случае, составляет 50…60% от его мощности в трехфазном включении.

Электрическая принципиальная схема подключения 3-х фазного двигателя.

Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, модель с двойной клеткой короткозамкнутого ротора серии МА.

В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

Расчет параметров и элементов электродвигателя

Рисунок 1. Принципиальная схема включения трехфазного электродвигателя в сеть 220 В: С р – рабочий конденсатор; С п – пусковой конденсатор; П1 – пакетный выключатель.

Если, например, в паспорте электродвигателя указано напряжение его питания 220/380 В, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1.

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку “Разгон”.

После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в “треугольник” определяется по формуле:

, где

  • Ср – емкость рабочего конденсатора, в мкФ;
  • I – потребляемый электродвигателем ток, в А;
  • U -напряжение в сети, В.

А в случае соединения обмоток двигателя в “звезду” определяется по формуле:

, где

  • Ср – емкость рабочего конденсатора, в мкФ;
  • I – потребляемый электродвигателем ток, в А;
  • U -напряжение в сети, В.

Потребляемый электродвигателем ток в вышеприведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

, где

  • Р – мощность двигателя, в Вт, указанная в его паспорте;
  • h – КПД;
  • cos j – коэффициент мощности;
  • U -напряжение в сети, В.

Рисунок 2. Принципиальная схема соединения электролитических конденсаторов для использования их в качестве пусковых конденсаторов.

Емкость пускового конденсатора Сп выбирают в 2…2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети.

Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В.

Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)

Общая емкость соединенных конденсаторов составит:

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.

Мощность трехфазного
двигателя, кВт:

  • 0,4;
  • 0,6;
  • 0,8;
  • 1,1;
  • 1,5;
  • 2,2.

Минимальная емкость  рабочего
конденсатора Ср, мкФ:

  • 40;
  • 60;
  • 80;
  • 100;
  • 150;
  • 230.

Минимальная емкость пускового
конденсатора Ср, мкФ:

  • 80;
  • 120;
  • 160;
  • 200;
  • 250;
  • 300.

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток, на 20…30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, емкость конденсатора С

р следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об./мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

Вернуться к оглавлению

Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В

Рисунок 3. Принципиальная схема переносного универсального блока для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В без реверса.

Для запуска электродвигателей различных серий мощностью около 0,5 кВт от однофазной сети без реверсирования можно собрать переносной универсальный пусковой блок (рис. 3).

При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1. 2 подключает электродвигатель М1  к сети 220 В.

Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1.

После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1.

Остановка двигателя осуществляется нажатием на кнопку SB2.

Вернуться к оглавлению

Детали

В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об./мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 – спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 – проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

Рисунок 4. Схема пускового устройства в металлическом корпусе размером 170х140х50 мм.

Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4):

  • 1- корпус;
  • 2 – ручка для переноски;
  • 3 – сигнальная лампа;
  • 4 – тумблер отключения пускового конденсатора;
  • 5 -кнопки “Пуск” и “Стоп”;
  • 6 – доработанная электровилка;
  • 7- панель с гнездами разъема.

На верхней панели корпуса расположены кнопки “Пуск” и “Стоп” – сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере  SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5).

Рисунок 5. Принципиальная схема пускового устройства с автоматическим отключением пускового конденсатора.

При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 – пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1. 1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети.

Кнопку “Пуск” держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме.

Для остановки электродвигателя следует нажать кнопку “Стоп”. В усовершенствованном пусковом устройстве по схеме рис.5 можно использовать реле типа МКУ-48 или ему подобное.

Вернуться к оглавлению

Использование электролитических конденсаторов в схемах запуска электродвигателей

При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки.

Рисунок 6. Принципиальная схема замены бумажного конденсатора (а) электролитическим (б, в).

Схема замены обычног бумажного конденсатора дана на рис. 6.

Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости.

Например, если в схеме для однофазной сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене по вышеприведенной схеме можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

Вернуться к оглавлению

Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов

Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис. 7.

В приведенной схеме SA1 – переключатель направления вращения двигателя, SB1 – кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 – во время работы.

Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добиваются равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация.

Рисунок 7. Принципиальная схема включения трехфазного двигателя в однофазную сеть при помощи электролитических конденсаторов.

Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А.

При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

Следует обратить внимание на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.

Вернуться к оглавлению

Включение мощных трехфазных двигателей в однофазную сеть

Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности электрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5…2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например 3…4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой», и в клеммной коробке содержится всего 3 вывода.

Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.

Вернуться к оглавлению

Доработка трехфазного двигателя

Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки.

Рисунок 8. Принципиальная схема коммутации обмоток трехфазного электродвигателя для включения в однофазную сеть.

Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.

Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.

Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об./мин), установленном на самодельном деревообрабатывающем станке, и показала свою эффективность.

Вернуться к оглавлению

Детали

В схеме коммутации обмоток электродвигателя в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.

Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа», после чего продолжают дальнейшую работу.

Для того чтобы улучшить пусковые характеристики двигателей, кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз.

Схема включения однофазного двигателя с конденсатором, электросхема подключения электродвигателя

Содержание

  • Схема подключения однофазного двигателя через конденсатор
  • Онлайн расчет емкости конденсатора мотора
  • Реверс направления движения двигателя
    • Условные обозначения на схемах
    • Схема прямого включения электродвигателя
    • Схема подключения электродвигателя через магнитный пускатель
    • Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)
  • Переключение на нужное напряжение
    • Увеличение напряжения
    • Уменьшение напряжения
  • Однофазный
    • Включение в работу
  • Схемы подключения к сети

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

О том .

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

  1. Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для включения и отключения электрических цепей под нагрузкой управление которым осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т. д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

  1. Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

  1. Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

  1. Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Переключение на нужное напряжение

Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

Увеличение напряжения

Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.

В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы. Теперь важно не перепутать.

Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

Уменьшение напряжения

Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо. А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи.

Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

Однофазный

Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.

По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.

Схема однофазного асинхронного двигателя

Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.

Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!

Включение в работу

Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:

Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.

Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.

Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.

Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!

Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат.

Если нужен реверс, то он делается по такой схеме:

Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.

Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.

Схемы подключения к сети

Для начала имеет смысл вспомнить схему подключения трехфазного двигателя к трехфазной сети.

Схема подключения трехфазного электродвигателя на 220 В по схеме «Звезда» и «Треугольник»

Для простоты восприятия магнитный пускатель и прочие узлы коммутации не изображены. Как видно из схемы, каждая обмотка мотора питается от своей фазы. В однофазной же сети, как следует из ее названия, «фаза» всего одна. Но и ее достаточно для питания трехфазного электромотора. Взглянем на асинхронный двигатель, подключенный на 220 В.

Подключение электродвигателя 380 В на 220 В через конденсатор по схеме «Звезда» и «Треугольник»

Здесь одна обмотка трехфазного электромотора напрямую включена в сеть, две остальные соединены последовательно, а на точку их соединения подается напряжение через фазосдвигающий конденсатор С1. С2 является пусковым и включается кнопкой В1 с самовозвратом только в момент пуска: как только двигатель запустится, ее нужно отпустить.

Сразу возникает несколько вопросов:

  1. Насколько такая схема эффективна?
  2. Как обеспечить реверс двигателя?
  3. Какие емкости должны иметь конденсаторы?

Схема подключения двигателя 220 вольт без конденсаторов. Как подобрать конденсаторы для запуска электродвигателя

За счет простой конструкции и легкости обслуживания асинхронные электрические двигатели находят широкое применение практически в любой сфере от промышленных предприятий до бытовой техники. Из-за особенности рабочего принципа они по-разному подключаются к трехфазным и однофазным электросетям.

Принцип работы

Асинхронный трехфазный электродвигатель представляет собой конструкцию из двух основных компонентов: статора – большого неподвижного элемента, служащего одновременно и корпусом двигателя, и ротора – подвижной детали, передающей механическую энергию на вал. Читайте более подробно о в отдельной статье. Очень рекомендуем сделать это, т.к. информация там может быть полезна в работе!

Коротко, статор представляет собой корпус, внутри которого находится сердечник или магнитопровод. Внешне он похож на беличье колесо и собирается из электротехнической стали, изолированный с помощью нанесения специального лака. Такая конструкция снижает количество вихревых токов, появляющихся при воздействии с круговым магнитным полем двигателя. В пазах сердечника располагаются три обмотки, на которые подается питание.

Ротор представляет собой шихтованный сердечник и вал. Стальные листы, используемые в роторном сердечнике, не обрабатываются лаком-изолятором. Обмотка ротора – короткозамкнутая.

Рассмотрим принцип действия этой конструкции. После подачи энергии на асинхронный двигатель с короткозамкнутым ротором на фиксированных обмотках статора создается магнитное поле. При подключении к сети с синусоидальным переменным током, характер поля будет изменяться с изменением показателей сети. Поскольку обмотки статора смещены относительно друг друга не только в пространстве, но и во времени, возникают три магнитных потока со смещением, в результате взаимодействия которых возникает вращающееся результирующее поле, проводящее ротор в движение.

Несмотря на то, что фактически ротор неподвижен, вращение магнитных полей на обмотках статора создает относительно вращение, что и приводит его в движение. Результирующее поле, «собранное» потоками обмоток, в процессе вращения наводит электродвижущую силу в проводники ротора. Согласно правилу Ленца, основное поле буквально пытается догнать поток на обмотках с целью сокращения относительной скорости.

Асинхронные двигателя относятся к электрическим машинам и, следовательно, могут использоваться не только в качестве моторов, но и как генераторы. Для этого необходимо, чтобы вращение ротора осуществлялось через некий внешний источник энергии, например, через другой двигатель или воздушную турбину. При наблюдении остаточного магнетизма на роторе, то в обмотках статора также будет генерироваться переменный поток, что приведет к получению напряжения на них за счет принципа индукции. Такие генераторы называют индукционными, они находят в бытовой и хозяйственной сфере для обеспечения бесперебойной работы непостоянных сетей переменного тока.

Подключение к однофазной сети через конденсатор

Подключение трехфазного двигателя к однофазной сети невозможно в чистом виде, без изменения схемы питания. Дело в том, что для создания вращающегося магнитного потока необходимо наличие как минимум двух обмоток со сдвигом по фазе, за счет которого и создает относительное движение статора. Если мотор подключить к бытовой однофазной сети напрямую, подав питание на одну из обмоток статора, он не будет работать. Это связано с тем, что одна работающая фаза создает пульсирующее поле, которое может обеспечивать движение вращающегося ротора, но не способно запустить его.

Для решения этой проблемы в двигателе размещается дополнительная обмотка под углом в 90˚ относительно основной, в цепь которой последовательно включен фазосмещающий элемент. В этом качестве могут выступать резисторы, индукционные катушки и другие устройства, однако лучшую эффективность показало применение конденсаторов.

Дополнительная обмотка, создаваемая с помощью конденсаторов, чаще всего выступает в роли пускателя двигателя, поэтому её называют пусковой. По достижении определенной температуры и скорости вращения вала срабатывает переключатель, размыкающий цепь. После этого работа двигателя обеспечивает взаимодействием между ротором и пульсирующим полем рабочей обмотки, как уже было описано выше.

Для обеспечения максимальной эффективности работы необходимо использование конденсаторов, чья ёмкость подходит под сетевые показатели. Кроме того, нередко в таких двигателях используется магнитный пускатель или реле тока для автоматического управления рабочим процессом. В видео ниже, будет и про магнитный пускатель.

Функциональные особенности подключения асинхронного двигателя с одним конденсатором отличаются хорошими пусковыми характеристиками, но сравнительно небольшой мощностью. Поскольку частота бытовой сети с напряжением 220 В составляет 50 Гц, такие моторы не могут вращаться со скоростью более 3000 об/мин. Это сокращает сферу их использования до бытовых приборов: пылесосов, холодильников, триммеров, блендеров и т.д.

Очень настоятельно рекомендуем посмотреть два видео ролика в этом разделе (одно сверху, другое снизу), т.к. наглядное пособие, может быть крайне полезным.

Подключение без конденсатора

Для подключения асинхронного двигателя в однофазную сеть без использования конденсаторов существуют две популярные схемы. Для обеспечения работы двигателя берутся синисторы с разнополярными импульсами управления и симметричный динистор.

Первая схема предназначена для электродвигателей с величиной номинального вращения от 1500 об/мин. В качестве фазосмещающего элемента выступает специальная цепочка. Схема соединения обмоток статора – треугольник.

Необходимо создать сдвинутое напряжение на конденсаторе путем изменения сопротивления. После того, как напряжение конденсатора достигнет нужного уровня, динистор переключится и включит заряженный конденсатор в схему запуска.

Вторая схема подходит для электродвигателей с большим пусковым сопротивлением или номинальной скоростью вращения от 3000 об/мин.

Очевидно, в данной ситуации необходимо создать сильный пусковой момент. Именно по этой причине в машинах этого типа для подключения статорных обмоток используется треугольник. Вместо фазосдвигающих конденсаторов в этой схеме применяются электронные ключи. Первый из них последовательно включается в цепь рабочей фазы, а второй – параллельно. В результате этой хитрости создается опережающий сдвиг тока. Однако данный способ эффективен только для двигателей 120˚ электрическим смещением.

Трехфазный электромотор можно подключить с помощью тиристорного ключа. Это, пожалуй, самый простой и эффективный способ подключения асинхронного двигателя в однофазную сеть без конденсаторов. Принцип его действия таков: ключ остается закрытым во время максимального сопротивления. Благодаря этому создается наибольший фазовый сдвиг и, соответственно, пусковой момент. По мере ускорения вала сопротивление снижается до оптимального уровня, сохраняющего сдвиг по фазе в пределах значения, обеспечивающего работу двигателя.

При наличии тиристорного ключа можно и вовсе отказаться от конденсаторов – он демонстрирует лучшие рабочие и пусковые характеристики даже для двигателей мощностью более 2 кВт.

Реверс электродвигателя в однофазной сети

При подключении асинхронного двигателя в сеть с однофазным током управлять реверсом (обратным вращением) ротора можно с помощью третьей обмотки. Для этого необходим тумблер или аналогичный двухпозиционный переключатель. Сначала с ним через конденсатор соединяется третья обмотка. Два контакта тумблера подключаются к двум другим обмоткам. Такая простая схема позволит управлять направлением вращения, переводя переключатель в нужное положение.

Подключение к трехфазной сети двигателя с короткозамкнутым ротором

Самыми эффективными и часто используемыми способами подключения асинхронного двигателя к трехфазной сети являются так называемые звезда и треугольник.

В конструкции двигателя с короткозамкнутым ротором есть всего шесть контактов обмоток – по три на каждой. Для того чтобы подключить асинхронный двигатель звездой необходимо соединить концы обмоток в одном месте, подобно лучам звезды. Примечательно, что в такой схеме напряжение у начал обмоток составляет 380 В, а на участке цепи, пролегающем между их соединением и местом подключения фаз – 220 В. Возможность включения двигателя данным методом указывается на его бирке символом Y.

Главное достоинство этой схемы в том, что она предотвращает возникновение перегрузок по току на электродвигателе при условии использования четырехполюсного автомата. Машина запускает плавно, без рывков. Недостаток схемы в том, что пониженное напряжение на каждой из обмоток не дает двигателю развивать максимальную мощность.

Если электродвигатель с короткозамкнутым ротором был подключен по схеме звезда, это можно заметить по общей перемычке на концах обмоток.

Для обеспечения предельной рабочей мощности трехфазного электродвигателя его подключают к сети треугольником. В этой схеме обмотки статора соединяются друг с другом по принципу конец-начало. При питании от трехфазной сети нет необходимости в соединении с рабочим нулем. Напряжение на участках цепи между выводами будет равняться 380 В. На табличке двигателя, подходящего для подключения треугольников, изображается символ ∆. Иногда производитель даже указывает номинальную мощность при использовании той или иной схемы.

схема подключения «треугольник»

Главный недостаток треугольника – пусковые токи слишком большой величины, которые иногда перегружают проводку и выводят её из строя. В качестве оптимального решения изредка создают комбинированную схему, в которой запуск и набор скорости происходит при «звезде», а затем обмотки переключают на «треугольник».

Подключение с фазным ротором

Асинхронные электродвигатели с фазным ротором имеют высокие пусковые и регулировочные характеристики, благодаря чему применяются в высокомощных машинах и приборах малой мощности. Конструктивно этот асинхронный двигатель отличается от обычного трехфазного тем, что на роторе есть своя трехфазная обмотка со сдвинутыми катушками.


Для подключения электродвигателей с фазным ротором применяются описанные выше схемы звезда и треугольник (для 380 В и 220 В сетей соответственно). Стоит заметить, что для того или иного двигателя может быть использована только одна схема, указанная в паспорте. Пренебрежение этим требованием может привести к сгоранию мотора.

Соединение обмоток в клеммной коробке производится так же, как на схемах из предыдущего способа. Изменение рабочих характеристик так же закономерно: треугольник выдает практически в полтора раза большую мощность, а звезда, в свою очередь, мягче функционирует и управляется.

В отличие от моделей с короткозамкнутым ротором, асинхронный двигатель с трехфазным ротором имеет более сложную конструкцию, но это позволяет получать улучшенные пусковые характеристики и обеспечивать плавную регулировку вращения. Используются такие машины в оборудовании, требуемом регулировки частоты вращения и запускаемом под нагрузкой, к примеру, в крановых механизмах.

Двигатели с тремя фазами необходимы для различных самоделок: циркулярок, деревообрабатывающих, заточных и сверлильных станков. Проблемы с ним могут возникнуть, если сеть однофазная. В таком случае, существует несколько способов подключения двигателя к сети.

Способ 1. Подключение третьей обмотки через фазосдвигающий конденсатор

Среди различных способов запуска трехфазных двигателей в однофазных сетях, самый простой и эффективный — с подключением третьей обмотки через фазосдвигающий конденсатор. Учитывая, что конденсатор сдвигает фазу третьей обмотки на 90°С, а между первой и второй фазами сдвиг незначителен, электромотор теряет мощность примерно на 40. ..50% при включении обмоток по схеме треугольника.

Чтобы электромотор с конденсаторным пуском работал нормально, емкость конденсатора должна меняться в зависимости от числа оборотов. На практике это условие выполнить трудно, двигателем обычно управляют двухступенчато: сначала включают с пусковым конденсатором (ввиду больших пусковых токов), а после разгона его отсоединяют, оставляя только рабочий (рис.1).

При нажатии па кнопку SB1 (можно использовать кнопку от стиральной машины — пускатель ПНВС-10 УХЛ2) электродвигатель М начинает разгоняться, а когда он наберет обороты, кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются замкнутыми. Их размыкают для остановки электродвигателя. Если SB 1.2 в кнопке не отходит, под него следует подложить шайбу так, чтобы он отходил. При соединении обмоток двигателя по схеме «треугольник» емкость рабочего конденсатора С2 определяется по формуле:

С2=4800 I/U
где I -ток, потребляемый мотором, А;
U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или же рассчитать по формуле:

где Р — мощность двигателя, Вт;
U — напряжение сети, В;
n- КПД;
cosψ — коэффициент мощности. Емкость пускового конденсатора С1 выбирают в 2…2,5 раза больше рабочего при большой нагрузке на вал, а их допустимые напряжения должны превышать в 1,5 раза напряжение сети. Лучше всего применять конденсаторы марки МГБО, МБГП, МБГЧ с рабочим на­пряжением 500 В и выше. Пусковые конденсаторы необходимо зашунтировать резистором R1 сопротивлением 200…500 кОм, через который «стекает» оставшийся электрический заряд.

Реверсирование электромотора осуществляется путем переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1…4 и т.п.

При работе в режиме холостого хода по питаемой через конденсаторы обмотке протекает ток, па 20…40% превышающий поминальный. Поэтому если электромотор будет часто использоваться в недогруженном режиме или вхолостую, емкость конденсатора С2 следует уменьшить. Например, для включения двигателя мощностью 1,5 кВт можно использовать в качестве рабочего конденсатор емкостью 100 мкФ, пускового — 60 мкФ. Значения емкостей рабочих и пусковых конденсаторов в зависимости от мощности двигателя приведены в таблице.

Способ 2. Запуск двигателя с использованием оксидных конденсаторов

Если нет возможности приобрести бумажные конденсаторы, можно использовать оксидные (электролитические) в качестве пусковых» На рис.2 приведена схема замены бумажных конденсаторов на электролитические. Положительная полуволна переменного тока проходит через цепочку VD1C1, а отрицательная — через VD2C2, поэтому электролиты можно использовать с меньшим допустимым напряжением, чем для обычных бумажных конденсаторов. Так, если для бумажных конденсаторов необходимо напряжение 400 В и выше, то для электролита достаточно 300…350 В, потому что он пропускает только одну полуволну переменного тока, и следовательно, к нему прикладывается лишь половина действующего напряжения, а для надежности он должен выдержать амплитудное напряжение однофазной сети, т.е. примерно 300 В. Их расчет аналогичен расчету бумажных.

Схема включения такого двигателя с помощью электролитических конденсаторов приведена на рис. 3. Подобрать нужное значение емкости бумажных и оксидных конденсаторов проще всего измерив, ток в точках а, в, с — токи должны быть равны при оптимальной нагрузке на вал двигателя. Диоды VD1, VD2 выбираются с обратным напряжением не менее 300 В и 1пр. мах=10А. При большей мощности двигателя диоды устанавливаются на теплоотводы по два в плече, иначе может произойти пробой диодов и через оксидный конденсатор потечет переменный ток, в результате чего спустя некоторое время электролит может нагреться и разорваться. Электролитические конденсаторы в качестве рабочих применять нежелательно, поскольку длительное протекание через них больших токов приводит к их разогреванию и взрыву. Их лучше всего использовать в качестве пусковых.

Способ 3. Подключение пусковых конденсаторов с помощью токового реле

Если трехфазный электродвигатель используется при динамических (больших) нагрузках на вал, можно использовать схему подключения пусковых конденсаторов с помощью токового реле, которое позволяет в момент больших нагрузок на вал автоматически подключать и отключать пусковые конденсаторы (рис. 3).

При подключении обмоток по схеме, приведенной на рис.4, мощность электродвигателя составляет 75% от номинальной мощности в трехфазном режиме, т.е. потери составляют примерно 25%, поскольку обмотки А и В включены противофазно на полное напряжение 220 В, а напряжение вращения определяется включением обмотки С. Фазирование обмоток показано точками.

Способ 4. Резисторно-индуктивноемкостные преобразователи сети

Более практичны и удобны в работе с такими двигателями резисторно-индуктивноемкостные преобразователи сети с одной фазой 220 В в трехфазную, с токами в фазах до 4А и сдвигом напряжений в фазах около 120°. Такие устройства универсальны, монтируются в жес­тяном корпусе и позволяют под­ключать трехфазные электродвигатели мощностью до 2,5 кВт в однофазную сеть 220 В практически без потери мощности.

В преобразователе используется дроссель с воздушным зазором. Устройство дросселя показано на рис.6. При правильном подборе R, С и соотношения витков в секциях обмотки дросселя такой преобразователь обеспечивает нормальную длительную работу электродвигателей независимо от их характеристик и степени нагрузки на вал. Вместо индуктивности дано индуктивное сопротивление XL, так как его проще измерить: обмотка дросселя крайними выводами через амперметр подключается к напряжению 100…220 В частотой 50 Гц параллельно с вольтметром. Индуктивное сопротивление (активным можно пренебречь) практически определяется как отношение напряжения в вольтах к току в амперах XL=U/J.

Конденсатор С1 должен выдержи­вать напряжение не менее 250 В, С2 — не менее 350 В. Если использовать конденсаторы КБГ, МБГ-4, то напряжение соответствует номиналу, указанному на маркировке, а конденсаторы МБГП, МБГО при включении в цепь переменного тока должны иметь примерно двукратный запас по напряжению. Резистор R1 должен быть рассчитан на ток до ЗА, т.е. на мощность около 700 Вт (наматывается никелево-хромовой проволокой диаметром 1,3…1,5 мм на фарфоровой трубке с передвигающейся скобой, позволяющей получать нужное сопротивление для разных мощностей двигателя). Резистор должен быть защищен от перегрева, огражден от других элементов, токоведущих частей, от прикосновения людей. Металлическое шасси корпуса необходимо заземлить.

Сечение магнитопровода дросселя S=16…18cm2, диаметр провода d=l,3…1,5 мм, общее число витков W=600…700. Форма магнитопровода и марка стали — любые, главное — предусмотреть воздушный зазор (а следовательно, возможность менять индуктивное сопротивление), которое устанавливается винтами (рис.6). Для устранения сильного дребезжания дросселя между Ш-об-разными половинами магнитопровода прокладывается деревянный брусок и зажимается винтами. В качестве дросселя подходят силовые трансформаторы от ламповых цветных телевизоров мощностью 270…450 Вт. Вся обмотка дросселя выполняется в виде одной катушки с тремя секциями и четырьмя выводами. Если использовать сердечник с постоянным воздушным зазором, придется изготовить пробную катушку без промежуточных отводов, собрать дроссель с примерным зазором, включить в сеть и измерить XL. Затем для подгонки полученного значения к требуемому. XL нужно отмотать или домотать несколько витков. Выяснив необходимое число витков, мотают необходимую катушку, разделив каркас на секции в отношении W1:W2:W3=1:1:2. Так, если общее число витков равно 600, то Wl =W2= 150, a W3=300. Чтобы увеличить выходную мощность преобразователя и избежать при этом несимметрии напряжений, нужно изменить значения XL, Rl, Cl, С2, которые рассчитываются из тех соображений, что токи в фазах А, В и С должны быть равны при номинальной нагрузке на вал двигателя. В режимах недогрузки двигателя несимметрия напряжений фаз не опасна, если наибольший из токов фаз не превышает номинальный ток двигателя. Пересчет параметров преобразователя на другую мощность производится по формулам:

С1=80Р;
С2=40Р;
Rl = 140/P;
XL = 110/P,
W=600/ Р,
S=16P,
d=1,4P;

где P — мощность преобразователя в киловаттах, в то время как паспортная мощность двигателя — это его мощность на валу. Если коэффициент полезного действия двигателя неизвестен, его можно брать в среднем 75…80%.

Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор. При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства (0,5…3 кВт), стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя. Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. В тожe время применение рабочих, постоянно включенных фазосдвигающих конденсоторов можно считать целесообразным, так как они позволяют загрузить двигатель на75…85% его мощности при 3-фазном включении (безконденсаторов его мощность снижается примерно на 50%).

Вращающий момент, вполне достаточный для запуска указанных ЭД от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.

Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5…2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.

Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема , которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50…70°), что обеспечивает достаточный вращающий момент.

Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.

Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда (, рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)

сдвиг тока, второй — включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.

Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.

Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».

Нажав кнопку «Пуск», путем вращения движка подстроечного сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.

При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.

Автор производил отладку схемы, показанной на рис. 1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.

При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть ~220 В. Изменяя величину R, надо установить напряжение на лампе 1 70 В (для схемы рис.1 ) и 1 00 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.

Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.

Детали

Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.

Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения. Возможно, это и лучше, но этот динистор очень сложно найти в продаже.

Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше — 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).

Внешний вид электропривода измельчителя травы с описанной схемой запуска и ЭД 2,2 кВт 3000 об/мин показан на фото 1.

В. В. Бурлоко, г. Мориуполь

Литература

1. // Сигнал. — 1999. — №4.

2. С.П. Фурсов Использование трехфазных

электродвигателей в быту. — Кишинев: Картя

молдовенскэ, 1976.

Собираемся рассмотреть, как производится подключение трехфазного двигателя к однофазной сети, дать рекомендации по управлению агрегатом. Чаще люди хотят варьировать скорость вращения или направление. Как это сделать? Описывали размыто ранее, как подключить трехфазный двигатель на 230 вольт, теперь озаботимся деталями.

Стандартная схема включения трехфазного двигателя в однофазную сеть

Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов. Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке. Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.

На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей. Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора. Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:

Схема подключения трехфазного двигателя коммутацией обмоток треугольником

  1. На одну обмотку подается фаза розетки. Провода цепляют разницу потенциалов.
  2. Вторая обмотка запитывается конденсатором. Формируется сдвиг фаз 90 градусов относительно первой.
  3. На третьей за счет приложенных напряжений образуется слабо похожее на синусоиду колебание со сдвигом еще на 90 градусов.

Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.

Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике. Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой. Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три — по числу обмоток.

Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:

  • Схему электрического соединения обмоток.
  • Рабочий конденсатор, служащий цели создания правильного распределения фаз.
  • Пусковой конденсатор, облегчающий раскрутку вала на начальных оборотах. В последующем отключается от схемы кнопкой, разряжается шунтирующим резистором (для безопасности и пребывания в готовности к новому циклу пуска).


Подключение трехфазного двигателя 230 вольт треугольником

Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде. Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы. Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.

Пришло время сказать: емкость, обозначенная чертежом 100 мкФ, практически выбирается, учитывая:

  1. Частоты вращения вала.
  2. Мощность двигателя.
  3. Нагрузки, ложащиеся на ротор.

Подбирать нужно конденсатор экспериментальным путем. Согласно нашему рисунку, напряжение обмоток В и С будет одинаковым. Напоминаем: тестер показывает действующее значение. Фазы напряжения будут различны, форма сигнала обмотки В несинусоидальная. Действующее значение показывает: в плечи отдается одинаковая мощность. Обеспечивается боле менее стабильная работа установки. Мотор меньше греется, оптимизируется КПД двигателя. Каждая обмотка сформирована индуктивным сопротивлением, которое также накладывает отпечаток на сдвиг фаз между напряжением и током. Вот почему важно подобрать правильное значение емкости. Можно добиться идеальных условий работы двигателя.

Заставить двигатель крутиться в обратном направлении


Три фазы напряжения 380 вольт

При подключении на три фазы смена направления вращения вала обеспечивается правильной коммутацией сигнала. Применяются специальные контакторы (три штуки). 1 на каждую фазу. В нашем случае коммутации подлежит всего одна цепь. Причем (руководствуясь утверждениями гуру) достаточно обменять местами любые два провода. Будь то питание, место стыковки конденсатора. Проверим правило прежде выдачи напутствия читателям. Результаты демонстрирует второй рисунок, схематично приводящий эпюры, показывающие распределение фаз указанного случая.

Изготавливая эпюры, предполагали: обмотка С соединена последовательно конденсатору, дающему напряжению положительный прирост фазы. Согласно векторной диаграмме, для сохранения баланса на обмотке С должен быть отрицательный знак относительно основного напряжения. С другой стороны конденсатор, катушка В соединены параллельно. Одна ветвь обеспечивают напряжению положительный прирост (конденсатор), другая – току. Сродни параллельному колебательному контуру, токи ветвей текут практически в противоположную сторону. Учитывая сказанное, приняли закон изменения синусоиды противофазно относительно обмотки С.

Эпюры показывают: максимумы, согласно схеме, обходят обмотки против часовой стрелки. Прошлым обзором показывали аналогичным контекстом: вращение идет иным направлением. Получается, действительно при смене полярности питания вал вращается в противоположную сторону. Не будем рисовать распределение магнитных полей, считаем излишним повторяться.

Точнее подобные вещи позволят просчитывать специальные компьютерные программы. Объяснение дали на пальцах. Получилось, что практики правы: поменяв полярность питания, направление движения вала обратим противоположно. Наверняка аналогичное утверждение годится случаю включения конденсатора ветвью другой обмотки. Жаждущим подробных графиков рекомендуем изучать специализированные программные пакеты наподобие бесплатной Electronics Workbench. В приложении проставите угодное число контрольных точек, отследите законы изменения токов, напряжений. Любителям поиздеваться над своим мозгом будет возможность просмотра спектра сигналов.

Потрудитесь правильно задать индуктивности обмоток. Разумеется, влияние вносит нагрузка, препятствующая запуску. Учесть потери подобными программами сложно. Практики рекомендуют избегать заострять внимание указанной точилкой, подбирать номиналы конденсаторов (эмпирическим) опытным путем. Таким образом, точная схема подключения трехфазного двигателя определена конструкцией, предполагаемым целевым назначением. Допустим, токарный станок будет отличаться от хлеборушки развивающимися нагрузками.

Пусковой конденсатор трехфазного двигателя

Чаще подключение трехфазного двигателя к однофазной сети нужно вести с участием пускового конденсатора. Особенно аспект касается мощных моделей, моторов под значительной нагрузкой на старте. В этом случае увеличивается собственное реактивное сопротивление, которое придется компенсировать при помощи емкостей. Проще подобрать опять же экспериментально. Нужно собрать стенд, на котором имеется возможность «на горячую» включать, исключать из цепи отдельные емкости.

Избегайте помогать двигателю запуститься рукой, как демонстрируют «бывалые» мастера. Просто найдите значение батареи, при котором вал бодро вращается, по мере раскрутки начинайте исключать из цепи конденсаторы один за другим. Пока останется такой набор, ниже которого двигатель не вращается. Отобранные элементы образуют пусковую емкость. А правильность своего выбора нужно контролировать при помощи тестера: напряжение в плечах обмоток со сдвинутой фазой (в нашем случае С и В) должно быть одинаковым. Это значит, что отдается примерно равная мощность.


Трехфазный двигатель с пусковым конденсатором

Что касается оценок и прикидок, емкость батарей растет с увеличением мощности, оборотов. А если говорить о нагрузке, большое влияние оказывает на старте. Когда вал раскрутится, в большинстве случаев малые препятствия преодолеваются за счёт инерции. Чем массивнее вал, тем выше шанс, что двигатель не «заметит» возникшего затруднения.

Обратите внимание, что подключение асинхронного двигателя обычно ведется через защитный автомат. Устройство, которое остановит вращение при превышении током некоторого значения. Это не только уберегает пробки местной сети от выгорания, но и спасет обмотки двигателя при заклинивании вала. В этом случае ток резко повысится, и работа устройства прекратится. Небесполезен автомат защиты и при подборе нужного номинала емкости. Очевидцы утверждают, что если подключение 3-фазного двигателя в однофазную сеть ведется через слишком слабые конденсаторы, то нагрузка резко возрастает. В случае наличия мощного мотора это очень важно, потому что даже в нормальном режиме потребление превышает номинальное в 3-4 раза.

И пара слов о том, как оценить заранее пусковой ток. Допустим, нужно подключить асинхронный двигатель на 230 мощностью 4 кВт. Но это для трех фаз. В случае штатной проводки ток по каждой из них течет отдельно. У нас же все это будет складываться. Поэтому смело делим мощность на напряжение сети и получаем 18 А. Понятно, что без нагрузки подобный ток вряд ли будет расходоваться, но для стабильной работы двигателя на полную катушку нужен защитный автомат потрясающей мощности. Что касается простого тестового запуска, то вполне сгодится устройство ампер на 16. И даже есть шанс, что старт пройдет без эксцессов.

Надеемся, читатели теперь знают, как подключить трехфазный двигатель в домашнюю сеть на 230 вольт. Осталось к этому добавить, что возможности стандартной квартиры не превышают с точки зрения отдачи мощности потребителю значения порядка 5 кВт. Это значит, описанный выше двигатель дома попросту включать опасно. Обратите внимание, что даже болгарки редко бывают мощнее 2 кВт. При этом двигатель оптимизирован для работы в однофазной сети 220 вольт. Проще говоря, слишком мощные устройства не только вызовут моргание света, но скорее всего, спровоцируют возникновение других нештатных ситуаций. В лучшем случае выбьет пробки, в худшем – случится возгорание проводки.

На этом говорим «до свидания» и хотим заметить: знание теории иной раз полезно практикам. Особенно если дело касается мощной техники, способной причинить немалый вред.

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель , а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Р ном,

где С — емкость конденсатора, мкФ, Р ном — номинальная мощность электродвигателя, кВт.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

C общ = C 1 + C 1 + … + С n

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1 ). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (С р) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (С п). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором С п показана на рис. 3 .

Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С п

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток . Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1 ), достаточно третью фазную обмотку статора (W ) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V ).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б ), нужно третью фазную обмотку статора (W ) подсоединить через конденсатор к зажиму второй обмотки (V ). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4) .

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Как подключить конденсатор к двигателю переменного тока

12 августа 2022 г.

За прошедшие годы электродвигатели сильно изменились. В наши дни на рынке можно найти сотни дизайнов, но это не значит, что один двигатель справится со своей задачей. Многие приложения требуют добавления в схему периферии управления или аксессуаров, чтобы система электродвигателя могла справиться с приложением.

В список принадлежностей, необходимых для безопасной и эффективной работы электродвигателя, входят пусковые и рабочие конденсаторы. Мы рассмотрим, как подключить конденсатор к двигателю переменного тока, объяснив, что такое пусковые и рабочие конденсаторы и как их заменить ниже.

Что такое конденсатор?

Конденсатор — это электрическое устройство, добавляемое в электрическую цепь для устранения проблем с питанием. Конденсаторы удерживают электрический заряд, который может быть использован устройством, питаемым от цепи, по мере необходимости.

В этой статье мы рассмотрим два основных типа конденсаторов, используемых в электродвигателях.

Пусковой конденсатор удерживает заряд, который помогает двигателю при запуске, создавая дополнительный крутящий момент, чтобы двигатель мог поворачивать нагрузку от стоять на месте. Пусковые конденсаторы подключаются к цепи вспомогательной обмотки двигателя и отключаются от цепи основной обмотки центробежным выключателем после достижения двигателем заданной скорости (обычно 75% от номинальной скорости).

Для получения дополнительной информации обратитесь к электрической схеме далее в этой статье.

Рабочий конденсатор подключен к основной цепи катушки и никогда не отключается от цепи. Рабочий конденсатор удерживает заряд, чтобы помочь уменьшить проблемы с питанием во время работы двигателя. Они помогают сгладить поток мощности и повысить производительность и эффективность двигателя.

Для каких типов двигателей нужны конденсаторы?

Пусковые и рабочие конденсаторы электродвигателей используются с однофазными асинхронными двигателями переменного тока. Чаще всего вы найдете эти двигатели в бытовой технике:

  • вакуумных очистителей
  • Посудородные машины
  • Стиральные машины и сушилки
  • Системы кондиционирования воздуха
  • Насосы для гидромассажной ванны
  • Powered Gates
  • Compressors

. Как AC Single-Phase Comtors Motors Motors Motors. электродвигатели имеют две цепи обмоток, основную обмотку и вспомогательную/пусковую обмотку. Две обмотки соединены последовательно центробежным выключателем, который после запуска отключает вспомогательную обмотку от основной. См. схему ниже.

Рисунок 1 взят с https://www.tedss.com/LearnMore/Motor-Start-Run-Capacitors

При запуске пусковой конденсатор посылает заряд через вспомогательную обмотку; этот заряд не совпадает по фазе с основной обмоткой, создавая вращающееся магнитное поле для крутящего момента ротора. Пусковой конденсатор обеспечивает достаточный крутящий момент, чтобы запустить двигатель под нагрузкой и быстро разогнать его до нужной скорости. Как только двигатель достигает заданной скорости, центробежный переключатель отключает вспомогательную обмотку от основной обмотки. Двигатель продолжает получать питание от цепи основной обмотки.

Замена пусковых и рабочих конденсаторов

Прежде чем мы начнем, мы хотели бы отметить, что все электрические работы должны выполняться сертифицированным электриком. Наем сертифицированного электрика может помочь спасти вас и ваш бизнес от повреждений вашего оборудования или, что еще хуже, физического вреда человеку. eMotors Direct не несет ответственности за любой ущерб или травмы, которые могут возникнуть в результате этих указаний.

Вот пошаговая инструкция по замене конденсаторов. Это объяснение будет работать как для пусковых, так и для рабочих конденсаторов.

  1. Сначала отключите питание системы.
  2. Найдите и разрядите конденсатор.
    1. Вы можете разрядить конденсатор, поместив изолированную отвертку на клеммы.
  3. Теперь вам нужно убедиться, что номиналы новых конденсаторов соответствуют заменяемым.
  4. Пометьте провода или, еще лучше, сделайте снимок, чтобы убедиться, что вы правильно подключили новый конденсатор.
  5. Установите новый конденсатор так же, как и старый конденсатор.
  6. Наконец, возобновите подачу питания на систему и проверьте двигатель.

Краткий обзор

Многие системы электродвигателей требуют периферийных аксессуаров для обеспечения безопасной и эффективной работы. В случае однофазных асинхронных двигателей переменного тока этим аксессуаром является конденсатор. Пусковые и рабочие конденсаторы удерживают электрический заряд, чтобы обеспечить дополнительный крутящий момент при запуске и сгладить ток во время работы, чтобы двигатель работал эффективно и без повреждений.

Есть вопросы? Свяжитесь с нашими экспертами.

Свяжитесь с нашей командой экспертов по электронной почте или телефону.

1-800-890-7593
[email protected]

Tags:

  • #controls
  • #efficiency
  • #electricity
  • #voltage
  • #capacitor

Share:

Questions? Свяжитесь с нами

Связанные статьи

Схема подключения однофазного двигателя и примеры — Wira Electrical

9Схема подключения однофазного двигателя 0002 очень поможет нам при работе с электродвигателями для большинства бытовых приборов.

В настоящее время каждый дом и бытовая техника используют для работы однофазное электричество. Это также верно для почти каждого электродвигателя, который мы используем, например: двигатель водяного насоса, фен и электрический вентилятор. Вот почему действительно стоит изучить схему однофазного двигателя, если мы хотим проводить техническое обслуживание и ремонт.

Мы изучим схему каждого типа однофазного двигателя, потому что однофазные двигатели могут иметь разные схемы, соединения и назначение. Вот почему изучение каждого типа, который мы можем найти, является хорошей идеей.

Схема подключения однофазного двигателя

Однофазный асинхронный двигатель — это двигатель переменного тока, работающий от однофазного питания. Этот двигатель широко используется в бытовой технике.

Источник: Википедия.

Ротор — это динамическая часть асинхронного двигателя, которая вращается внутри двигателя.

Статор — это статическая часть асинхронного двигателя, создающая вращающееся магнитное поле для ротора.

В отличие от двигателя постоянного тока, однофазное электричество к статору будет иметь трудности при вращении ротора двигателя переменного тока из-за недостаточного вращающегося магнитного поля. Двигатель переменного тока хорошо известен своим более высоким током при запуске двигателя.

Будут представлены различные схемы однофазных двигателей, а также их модификации для обеспечения правильной работы. Несмотря на то, что все они разные, некоторые из них имеют одни и те же элементы: конденсатор и центробежный переключатель.

Конденсатор будет подключен к вспомогательной обмотке для создания вращающегося магнитного поля со сдвинутой фазой. Некоторые однофазные двигатели немедленно обесточивают конденсатор и вспомогательную обмотку, когда скорость достигает определенной точки, некоторые из них все еще включают ее.

Вам лучше изучить их ниже, как подключить однофазный двигатель и как подключить однофазный двигатель.

Подключение однофазного асинхронного двигателя

При изучении и наблюдении за подключением однофазного двигателя мы начнем с подключения однофазного асинхронного двигателя. Как указывалось выше, однофазный двигатель испытывает трудности с созданием вращающегося магнитного поля для запуска вращения ротора.

Поэтому вспомогательная обмотка развернута для создания дополнительного магнитного поля. Конечно, добавление еще одной обмотки ничему не поможет при вращении ротора. Конденсатор используется для сдвига фазы, поэтому мы можем получить два вращающихся магнитных поля с разными фазами.

Ниже приведена схема центробежного выключателя однофазного двигателя.

Центробежный выключатель используется для соединения вспомогательной обмотки с конденсатором и источником питания. Как только скорость достигает определенного значения, переключатель отключает конденсатор и вспомогательную обмотку от источника питания.

С этого момента питание подается только на основную обмотку, чтобы двигатель работал в установившемся режиме.

Исходя из этого поведения, мы можем назвать это переключателем конденсатора однофазного электродвигателя или конденсатор запускает асинхронный двигатель , потому что мы используем конденсатор для переключения между пуском и работой.

Схема подключения двигателя постоянного конденсатора с расщепленной фазой

Как следует из названия, эта схема однофазного двигателя будет работать с расщепленной фазой, генерируемой конденсатором. Емкость конденсатора и реактивное сопротивление обмотки в некоторой степени сдвигают фазу.

Ниже приведена схема подключения однофазного двигателя с постоянным конденсатором.

Этот постоянный конденсаторный двигатель с расщепленной фазой также известен как конденсаторный двигатель с одним номиналом . Этому также не нужен центробежный переключатель или какой-либо другой переключатель для отключения питания от вспомогательной обмотки. О центробежных выключателях других типов мы поговорим позже.

Этот двигатель состоит из:

  • А короткозамкнутого ротора,
  • А обмотки статора,
  • Вспомогательной обмотки и
  • А конденсатора для пуска двигателя.

Ниже показано, как подключить двигатель с расщепленной фазой.

Конденсатор Пуск Конденсатор Схема подключения двигателя

Теперь мы узнаем о схеме подключения однофазного двигателя 2 конденсатора или Пуск конденсатора двигателя .

Двигатель с конденсаторным пуском, работающий от конденсатора, также известен как двигатель с двумя конденсаторами . «Двойное значение» происходит от установки двух конденсаторов для двух разных целей: запуска и работы.

В дополнение к двум конденсаторам в этом двигателе также используется центробежный переключатель для управления процессом пуска и работы.

Пусковой конденсатор подключается к вспомогательной обмотке, когда двигатель находится в пусковой фазе.

После того, как двигатель достигнет определенной скорости, центробежный переключатель отключит вспомогательную обмотку от пускового конденсатора.

Этот двигатель имеет две обмотки: основную обмотку и вспомогательную обмотку, как и другие типы. Вспомогательная обмотка поможет при запуске двигателя, а основная обмотка будет питаться постоянно.

Поскольку он имеет два конденсатора для обеспечения двух фазовых сдвигов друг к другу, мы можем назвать это схемой подключения однофазного двухполюсного двигателя.

На рисунке ниже показан фактический вид двигателя с конденсаторным пуском.

Ниже приведен пример того, как мы подключаем двигатель с пусковым конденсатором.

Двигатель с экранированными полюсами

Этот двигатель широко используется в маломощных устройствах.

Этот однофазный двигатель сильно отличается от предыдущих типов, поскольку в нем не используются конденсатор и центробежный переключатель для создания желаемых вращающихся магнитных полей.

Имейте в виду, что этот двигатель относительно небольшой и не развивает большой мощности. Он в основном используется для небольших приложений, таких как электрический вентилятор. Этот двигатель дешев, прост в запуске, прочен, прост, но не эффективен. В большинстве случаев мы выбрасываем этот мотор, как только он сломается, и покупаем новый, а не ремонтируем его.

Ниже показана конструкция двигателя с экранированными полюсами.

В отличие от других однофазных двигателей, в которых в качестве статора используются обмотки, в этом двигателе в качестве статора используется многослойный сердечник для создания магнитного поля. Его ротор будет таким же, с короткозамкнутым ротором.

Кроме того, катушка используется для создания магнитного потока в пластинах статора.

Из названия следует, что нам нужно что-то, чтобы изобразить «заштрихованный столб». Здесь используются экранирующие полюса из пары закороченных медных марок, известных как экранирующие кольца.

Экранирующие кольца не связаны электрически в двигателе, но они создают магнитные поля за счет индуцированного тока, протекающего в катушке.

Эти кольца делают возможным возникновение вращающегося магнитного поля. Кольца будут задерживать генерируемый вращающийся магнитный поток. Этот проводник должен прервать полный оборот полюса. Поток увеличивается, но задерживается индуцированным током в медном кольце.

Ниже приведено фактическое изображение двигателя с заштрихованными полюсами.

Пусковые и рабочие конденсаторы двигателя.

Что такое моторные конденсаторы?

Конденсатор двигателя — это особый тип конденсатора, который работает в сочетании с асинхронными двигателями переменного тока. эти конденсаторы отвечают за запуск двигателей переменного тока или их питание для поддержания их работы. Конденсаторы двигателя доступны в трех различных типах: пусковой конденсатор, Рабочий конденсатор и двойной рабочий конденсатор. Каждый тип имеет свое конкретное приложение, для которого он используется.

Пусковой конденсатор, подключенный к двигателю переменного тока, посылает толчок двигателю для его запуска. Затем рабочий конденсатор, подключенный к двигателю переменного тока, посылает регулярную серию толчков, поддерживающих работу двигателя. Между тем двойной рабочий конденсатор отвечает за питание двух отдельных двигателей. Наиболее распространенное применение конденсаторов двигателя — кондиционеры; эти конденсаторы работают в сочетании с тремя различными двигателями: двигателем компрессора, двигателем вентилятора и двигателем вентилятора.

К популярным производителям относятся:

  • Гентек
  • Аэровокс
  • КДЭ
  • Баркер Микрофарады Инк. (ИМТ)

Схема конденсатора двигателя

Пусковые конденсаторы

Пусковые конденсаторы отвечают за увеличение пускового момента двигателя переменного тока, который, в свою очередь, быстро включает и выключает двигатель переменного тока. Пусковые конденсаторы остаются в цепи достаточно долго, чтобы двигатель достиг определенной скорости (обычно 75% от полной мощности), а затем он выводится из цепи центробежным выключателем. После пуска двигатели переменного тока работают более эффективно с рабочими конденсаторами.

Пусковые конденсаторы представляют собой электрохимические устройства, состоящие из плотно намотанной алюминиевой фольги, разделенной слоями бумаги. которые пропитаны проводящим электролитом. Травление фольги перед формированием и намоткой увеличивает как эффективную площадь поверхности фольги, так и емкость на единицу объема готового конденсатора. Вся сборка помещена в корпус из влаго- и маслостойкого литого пластика. Пусковые конденсаторы рассчитаны на работу при температуре окружающей среды от -40°С до +65°С и частоте от 50Гц до 60Гц (применение на более высоких частотах не рекомендуется).

Пусковые конденсаторы имеют фиксированную емкость и напряжение. Как правило, они имеют номинальную емкость выше 70 мкФ.
Наиболее распространенные напряжения:

  • 125 В переменного тока
  • 165 В переменного тока
  • 250 В переменного тока
  • 330 В переменного тока

Примечание. Любой пусковой конденсатор емкостью более 20 мкФ представляет собой неполяризованный алюминиевый электролитический конденсатор с нетвердым электролитом. Это означает, что это применимо только для мгновенного использования.

Рабочие конденсаторы

Для работы многих однофазных двигателей переменного тока требуется вращающееся магнитное поле. Рабочий конденсатор отвечает за питание второй фазной обмотки (вспомогательной катушки) в двигателе переменного тока, что, в свою очередь, создает вращающееся магнитное поле, поддерживающее работу двигателя.

Рабочие конденсаторы предназначены для непрерывного использования во время работы двигателя переменного тока. в отличие от пусковых конденсаторов, которые включаются в цепь только в течение короткого периода времени только для запуска двигателя. Вот почему полимерные конденсаторы с низкими потерями используются в качестве рабочих конденсаторов из-за более длительного срока службы и меньших потерь тока. в отличие от электролитических конденсаторов, которые идеально подходят для кратковременного использования.

Рабочие конденсаторы бывают двух разных типов: «мокрый» и «сухой». Конденсатор мокрого типа заполнен жидкостью, которая предотвращает перегрев конденсатора. Сухой стиль поставляется с тем же диэлектриком, но он не заполнен жидкостью, что делает его вес значительно меньше, чем мокрый стиль. В настоящее время большинство рабочих конденсаторов поставляются с пленочным полипропиленовым или полиэфирным диэлектриком.

Рабочие конденсаторы имеют фиксированную емкость и напряжение. Емкость варьируется от 1,5 мкФ до 100 мкФ.
Наиболее распространенные напряжения:

  • 330 В переменного тока
  • 370 В переменного тока
  • 440 В переменного тока
  • 660 В переменного тока

Двойные конденсаторы

Двойные рабочие конденсаторы — это рабочие конденсаторы, которые могут питать два электродвигателя вместо одного. Этот конденсатор в основном экономит место при его использовании, потому что он объединяет два конденсатора в одном корпусе. Двойные рабочие конденсаторы обычно имеют как минимум три вывода или клеммы, которые помечены «C», «FAN» и «HERM».

  • C общий
  • ВЕНТИЛЯТОР
  • Герметичный компрессор HERM

Они рассчитаны на два значения емкости, что позволяет использовать конденсатор в двух разных приложениях одновременно. Примером может быть 20 мкФ + 5 мкФ при 370 В переменного тока. Двойные рабочие конденсаторы часто встречаются в кондиционерах. Они используются для подачи питания как на двигатель вентилятора, так и на двигатель компрессора.

Ресурсы

Конденсаторы Пуск/Работа/Двойная работа двигателя можно найти в больших вентиляторах, нагревательных печах с принудительной подачей воздуха, кондиционерах, автоматических воротах и ​​водяных насосах джакузи/джакузи.

Нажмите здесь, чтобы просмотреть наш ассортимент конденсаторов Motor Run .
Нажмите здесь, чтобы просмотреть наш каталог конденсаторов Motor Start .

Цвета проводки конденсатора переменного тока — Полное руководство

Электрики обычно заменяют новый пусковой конденсатор, если электродвигатель переменного тока не может нормально запуститься. Это самый простой и дешевый способ решить проблему. Вам нужно знать цвета проводов конденсаторов переменного тока — полное руководство для этого.

Следуйте цветовой маркировке его проводов, чтобы правильно заменить конденсатор. Например, базовая система цветов проводки в типичном узле вентилятора или воздуходувки состоит из трех цветов: красный для положительной стороны источника питания, желтый для двигателя вентилятора, который регулирует скорость или скорость вращения, и белый, который является нейтральной стороной. источника питания, который электрик должен подключить к земле.

На языке электротехники конденсатор — это компонент, хранящий электрическую энергию в электрическом поле. Таким образом, это пассивное устройство. Как и все электрические устройства, он также имеет две клеммы. Емкость относится к эффекту конденсаторов.

Читайте дальше, чтобы узнать больше о цветах проводки конденсатора переменного тока, о том, как конденсатор работает и как он обычно подключается или подключается к электрической цепи переменного тока.

Цвета проводки конденсатора переменного тока — полное руководство

Используется в типичной электрической цепи переменного тока

Конденсатор находится в типичной электрической цепи переменного тока, питающей электродвигатель. Электрик обычно проверяет состояние конденсатора, когда электродвигатель не запускается. При замене конденсатора необходимо следовать системе его цветовой маркировки, чтобы исключить ошибочное подключение проводов.

Цвета проводки

Три цвета проводки входят в базовую систему проводки блока воздуходувки или вентилятора. Первый цвет красный, представляющий положительную сторону источника питания.

Желтый провод управляет скоростью или об/мин двигателя вентилятора. Последний цвет — белый, представляющий нейтральную сторону цепи, которую электрик подключает к земле.

Конденсатор — это устройство, накапливающее электрическую энергию

Говоря языком электричества, конденсатор — это устройство, которое накапливает электрическую энергию в электрическом поле. Конденсатор содержит несколько пластин, которые накапливают электрический заряд при подключении к источнику напряжения или питания. Таким образом, конденсатор действует как пассивное электрическое устройство.

Конденсаторы имеют две клеммы

Конденсаторы, как и любые другие электрические компоненты, имеют две клеммы. Емкость относится к эффекту, который они производят в электрической цепи.

Например, у электролитических конденсаторов всегда два вывода. Одна клемма является анодом или положительным контактом, а другая — катодом или отрицательным контактом. Анод конденсаторов подключается к более высокому напряжению цепи.

Двойные конденсаторы с тремя выводами

Системы отопления, вентиляции и кондиционирования воздуха (HVAC) имеют двухконтурные конденсаторы. В отличие от обычных конденсаторов только с двумя выводами, у двухконтурных конденсаторов их три. Но с точки зрения работы они работают как обычные рабочие конденсаторы только с двумя выводами.

Что такое конденсатор

Важно для эффективной работы больших электродвигателей в системах ОВКВ

Конденсаторы важны для эффективной работы больших электродвигателей, используемых в системах ОВКВ. Например, двигатель компрессора системы кондиционирования воздуха имеет высокий пусковой момент. Он использует комплект пусковых конденсаторов, чтобы помочь запустить двигатель.

Комплект пускового конденсатора Включение

Типовой комплект пускового конденсатора состоит из пускового конденсатора, набора проводов и реле. Этот конденсатор обеспечивает электрические обмотки электродвигателя необходимой добавкой во время фазы запуска.

Как только электродвигатель заработает и наберет достаточную скорость, реле отключит конденсатор от электрической цепи, используемой электродвигателем.

Провода имеют цветовой код

Провода внутри комплекта пускового конденсатора имеют цветовой код.

У них есть изоляция, которая отличает их друг от друга. Электрики также используют этот код для подключения к рабочему конденсатору двигателя и контактору.

Как правило, все электрики используют стандартные цвета проводов конденсаторов.

Фактические цвета проводов различаются в зависимости от нескольких факторов

Однако на практике правильные цвета проводов, используемые для соответствия клеммам двигателя вентилятора, клеммам конденсатора и проводам, могут различаться в зависимости от марки двигателя, области применения и возраста .

Даже в этом случае электрики обычно выполняют определенные действия, которые помогают им разобраться, куда должны идти провода. Так что, если электрик забудет пометить провода, которые он уже отрезал от их прежних соединений, он все равно сможет снова правильно подключить их к вновь установленным конденсаторам.

Как отличить провода конденсатора

Бывают случаи, когда электрики забывают пометить провода, которые они отсоединяют от клемм конденсатора. Итак, если есть коричневый, желтый, черный и синий провод, что они делают? Даже те, кто высказал свои мысли в онлайн-чатах и ​​форумах HVAC, имеют разные мнения по этому поводу.

Вы можете часами читать комментарии на форумах о проводке конденсаторов пуск-работа, и все равно будет неясно, как правильно определить цветовую кодировку проводки конденсаторов.

Основная причина этого в том, что электрики не решаются дать ответ, который может сжечь оборудование или даже убить кого-то.

Техник использует изолированную отвертку для замыкания клемм F и H

В реальной жизни техник-электрик обычно использует изолированную отвертку для замыкания клемм F и H, подключенных к клемме COM, чтобы они могли разрядить конденсатор. Зачем им снимать шапку?

Если запасенная мощность в конденсаторе все же велика, его вообще не следует трогать. Случайное прикосновение к напряжению под напряжением может убить. Самый безопасный способ — отключить питание и разрядить накопившуюся в конденсаторе энергию, прежде чем пытаться прикоснуться к чему-либо в цепи.

Итак, эта работа требует соответствующей подготовки для обращения с электричеством и электрическими компонентами.

Практикуйтесь в маркировке каждого провода

Урок таков: лучше всего практиковаться в маркировке каждого провода. Дайте каждому проводу идентификатор и напишите, к чему подключен каждый провод, прежде чем отсоединять их от электрических соединений. Также нужно обратиться к схеме, которая должна прилагаться к самому электрооборудованию.

Проведение простых проверок вольтом-миллиамперметра (VOM)

Следуйте по отмеченным клеммам на пусковом или рабочем конденсаторе. Если у вас есть мультиметр, вы также можете запустить простые тесты вольт-ом-миллиамперметра (VOM), чтобы проверить и идентифицировать клеммы электродвигателя и конденсатора.

Проверка схемы подключения оборудования HVAC

Проверка схемы подключения вашего оборудования HVAC может помочь вам определить местонахождение конденсатора. Следуйте за проводами и идентифицируйте их.

Обычно электрическую схему можно найти внутри шкафа воздухообрабатывающего оборудования HVAC. Если его там нет, он может быть внутри дверцы отсека вентилятора.

Если вы искали везде и не можете найти ни одной схемы, в крайнем случае обратитесь к производителю оборудования HVAC и попросите у него копию.

Как найти проводку пускового или рабочего конденсатора с помощью электрической схемы

Если у вас уже есть схема, вот как найти проводку пускового или рабочего конденсатора:

  • Проверьте бирку данных двигателя вентилятора. Он должен обеспечивать идентификацию клемм проводки.
  • Если у вас многоскоростной двигатель, используйте мультиметр VOM для измерения сопротивления между скоростью и общим проводом от двигателя. Чем выше сопротивление, тем ниже скорость вращения двигателя.
  • Электрик проследит провода от их свободного конца обратно к источнику, чтобы они могли соответствовать обычным соединениям, указанным на схеме.
  • Если маркировка нечеткая, электрик проверит двигатель, чтобы определить различные клеммы.

Могут быть лишние провода или провода, не используемые в двигателях вентилятора. Их использование зависит от требуемой скорости вращения вентилятора. Электротехники используют следующие принципы для идентификации этих проводов:

  • В простых случаях – у односкоростного двигателя будет меньше всего проводов. Обычно проводов всего три, один на пуск, другой на прогон и третий на общий.
  • В более сложных случаях – двигатель с 2 или 3 скоростями (низкая, средняя, ​​высокая) к трем проводам простых двигателей добавляются 2 или 3 провода.
  • В более сложных случаях – для двигателя, который может вращаться по часовой стрелке или против часовой стрелки, к обычным трем проводам простых двигателей добавляется от 2 до 4 проводов.

Как подключить пусковой конденсатор

Вы уже знаете, что пусковые конденсаторы имеют изоляцию с цветовой маркировкой. Их провода подключаются к рабочему конденсатору электродвигателя и реле или контактору, подающему электроэнергию на двигатель. Шаги по подключению конденсатора для этого типа двигателя следующие:

1. Выключите двигатель

Первое, что вам нужно сделать, это выключить двигатель, чтобы отключить его электропитание. Отключите двигатель, если он подключен к настенной розетке, или выключите автоматический выключатель двигателя.

2. Проверьте электрическую схему

Проверьте электрическую схему пускового конденсатора. На этой диаграмме должны быть указаны идентификатор конденсатора, цвет провода реле и функция провода. Обычно на боковой стороне реле вы видите штамп со схемой подключения.

3. Вставьте клемму общего (черного) провода

Реле пускового конденсатора имеет клемму с меткой «Общая». Этот общий провод обычно черного цвета. Подсоедините его к общей клемме на стороне нагрузки контактора двигателя.

Имейте в виду, что есть другие провода, подключенные к общей клемме, которые обозначены «C» или «COM» на электрической схеме электродвигателя.

4. Нажмите на клемму рабочего провода реле

На реле пускового конденсатора также имеется клемма провода с пометкой «Работа». Вставьте эту клемму в клемму «HERM» рабочего конденсатора.

К этой пусковой клемме электродвигателя, помеченной буквой «S», подключены другие провода. Эти провода также подключаются к клемме рабочего конденсатора электродвигателя.

5. Нажмите на клемму одного провода комплекта пускового конденсатора

Комплект пускового конденсатора имеет проволочные клеммы на каждом из коротких проводов. Вставьте один из этих проводов в клемму пускового конденсатора. На каждую клемму пускового конденсатора должен идти один провод.

6. Нажмите на клемму одного из проводов пускового конденсатора

Пусковой конденсатор имеет несколько проводов. Вставьте клемму одного из этих проводов в клемму «Пуск» реле пускового конденсатора.

7. Нажмите на клемму второго провода комплекта пускового конденсатора

У пускового конденсатора есть еще один провод. Вставьте клемму этого второго провода в общую клемму пускового конденсатора с меткой «C» или «COM».

К этой клемме «C» подключены другие провода. Один из проводов идет к горячей клемме на стороне нагрузки реле или подрядчика, а другой провод подключается к рабочей клемме двигателя, обозначенной буквой «R».

Опять же, провода какого цвета идут на конденсатор переменного тока? Конденсаторы переменного тока обычно имеют красный, желтый и белый провода. Желтый провод управляет скоростью вращения вентилятора, а белый — это нейтральный провод, соединенный с землей.

Что такое двойные конденсаторы?

Типы конденсаторов, распространенные в системах ОВКВ

Конденсаторы двойного действия — это типы конденсаторов, широко используемые в системах ОВКВ. Эти конденсаторы имеют три вывода по сравнению с двумя выводами стандартных конденсаторов. Они такие же, как и стандартные конденсаторы, но только с дополнительной клеммой.

Сдвоенные конденсаторы с тремя клеммами

Для чего нужен дополнительный клеммник? Двойные конденсаторы с тремя выводами позволяют пользователю экономить место, если доступное монтажное пространство очень мало. Производители четко маркируют свои клеммы. Поэтому их очень легко подключить к различным частям кондиционера.

Этикетка подключения проводки

Соединения проводки двойных конденсаторов обычно помечены буквой «C» для общего, «HERM» или «H» для герметичного компрессора и «FAN» или «F» для вентилятора, используемого в оборудовании HVAC. .

Эти конденсаторы обычно рассчитаны на напряжение от 370 до 440 вольт. Большинство из них имеют 50 Гц или 60 Гц.

Старый кондиционер поставляется с двумя отдельными конденсаторами

Типичный наружный кондиционер оснащен вентилятором и компрессором. Для эффективной работы обоих этих компонентов HVAC требуется конденсатор. В прошлом в кондиционерах использовались два отдельных конденсатора: один для вентилятора, а другой для компрессора.

Современные кондиционеры оснащены двойными конденсаторами

В настоящее время современные кондиционеры оснащены только одним конденсатором. Этот конденсатор запускает и запускает как вентилятор, так и компрессор. Этот конденсатор является конденсатором двойного действия.

Как я уже говорил, эти конденсаторы имеют три вывода. Один для «C» или общий, другой для «F» или вентилятор, а третий для «H» или «HERM» или герметичный компрессор.

Схема подключения двойного конденсатора

Чтобы лучше понять проводное соединение двойного конденсатора, ознакомьтесь со схемой подключения двойного конденсатора переменного тока ниже:

Как подключить сдвоенный конденсатор к блоку переменного тока

Типичный метод подключения сдвоенного рабочего конденсатора в составе систем HVAC следующий:

  • Общий вывод двойного конденсатора должен быть подключен к рабочему выводу компрессора и вентилятора, как показано на приведенной выше электрической схеме.
  • Подключите клемму вентилятора двойного конденсатора к пусковой клемме вентилятора.
  • Клемма HERM двойного конденсатора должна быть подключена к пусковой клемме компрессора.

Клеммы для сдвоенных конденсаторов

Большинство сдвоенных конденсаторов имеют клеммы в виде четырех 1/4-дюймовых нажимных лепестков. Большинство этих конденсаторов имеют от трех до четырех выводов. Это дает электрикам достаточно выступов для каждого соединения, поэтому им не составит труда выполнить необходимые соединения проводки.

Цвет клемм

Как правило, одна клемма для каждой пусковой и рабочей обмотки электрического провода подключается внутри и выводится наружу клеммы, обозначенной как общая клемма. Черный — стандартный цвет для этого терминала.

Две другие клеммы выведены за пределы обмотки пускового и рабочего электропровода. Синий — это типичный обозначенный цвет, используемый для начального терминала, а красный — обычно назначаемый цвет для рабочего терминала.

Эти цветовые обозначения клемм (и изоляции проводки) могут различаться в зависимости от страны. Поэтому рекомендуется убедиться, что это рабочая или пусковая клемма, используя мультиметр для измерения сопротивления на каждой клемме.

Часто задаваемые вопросы

Эта тема немного техническая, поэтому у вас возникнет много вопросов. Возможно, ответы на ваши вопросы находятся в списке ниже:

Какого цвета провода у конденсатора?

Обычно провода конденсатора обозначаются тремя цветами. Один из цветов красный, обозначающий горячую линию или источник питания.

Желтый представляет собой провод, используемый для двигателя вентилятора, который определяет скорость двигателя. Белый означает заземленный провод, который является нейтральной стороной источника питания.

Как подключить провода к конденсатору?

При подключении проводов к конденсатору необходимо следовать установленной процедуре. Обычно процесс происходит следующим образом:

  • Выключите двигатель
  • См. электрическую схему
  • Нажмите на клемму общего провода (черную) и вставьте провод (черный)
  • Нажмите на клемму рабочего провода и вставьте рабочий провод
  • Нажмите на одну из клемм набора пусковых конденсаторов и вставьте провод
  • Нажмите на другую клемму набора пусковых конденсаторов и вставьте провод
  • Нажмите на клемму второго провода комплекта пускового конденсатора и вставьте провод.

Что произойдет, если конденсатор неправильно подключен?

Неправильное подключение проводов, идущих к конденсатору и от него в системе HVAC, может привести к катастрофическим последствиям. Может произойти взрыв или пожар. Установленные поляризованные конденсаторы будут сначала издавать свистящий звук, а затем взрываться.

В заключении: Полное руководство по цветам проводки конденсатора переменного тока

Для правильного подключения конденсатора переменного тока всегда следует следовать цветовой маркировке проводов.

Например, в базовой системе подключения конденсаторов переменного тока используется следующее:

  • Красный для положительной стороны источника питания,
  • Желтый для управления скоростью двигателя вентилятора и
  • Белый для нейтральной стороны источника питания. источник питания; это имеет связь с землей.

Конденсаторы накапливают большое количество напряжения. Они повышают пусковую мощность электродвигателей и компрессоров в системах ОВКВ. Если они неправильно подключены или установлены, могут произойти ужасные последствия. Поэтому при подключении и установке конденсаторов переменного тока следует соблюдать предельную осторожность.

Типы однофазных асинхронных двигателей | Схема подключения однофазного асинхронного двигателя

Хотите создать сайт? Найдите бесплатные темы и плагины WordPress.

Поскольку жилые дома и многие коммерческие здания имеют только однофазное питание, однофазные асинхронные двигатели переменного тока имеют множество применений. Домашние стиральные и сушильные машины имеют практически однофазный асинхронный двигатель мощностью около 1/3 лошадиных сил.

Типичный холодильник No-Frost имеет три двигателя: один, который является составной частью компрессорного агрегата, один для вентилятора, обеспечивающего циркуляцию холодного воздуха, и один, для запуска таймера цикла разморозки.

Системы воздушного отопления имеют двигатель вентилятора. Кухонные приборы, такие как блендеры и миксеры, инструменты, такие как дрели, и другие устройства могут легко иметь несколько десятков однофазных асинхронных двигателей.

Асинхронный двигатель с расщепленной фазой

На рис. 1 показан асинхронный двигатель с расщепленной фазой. Двигатель с расщепленной фазой зависит исключительно от различий в сопротивлении и реактивном сопротивлении обмоток для создания фазового сдвига.

В цепи вспомогательной обмотки имеется центробежный выключатель, который размыкается, когда двигатель приближается к полной скорости. Двигатель с расщепленной фазой характеризуется относительно низким пусковым моментом, возможно, 100%-150% от номинального момента.

РИСУНОК 1:   Электрическая схема (электромонтаж) двухфазного асинхронного двигателя (SPIM) и кривая крутящий момент-скорость.

Асинхронные двигатели с конденсаторным пуском

На рис. 2 показан асинхронный двигатель с конденсаторным пуском. В двигателе с конденсаторным пуском конденсатор используется для создания фазового сдвига.

 Размеры обеспечивают высокий пусковой крутящий момент, достигающий 300 % от номинального крутящего момента. Конденсатор не рассчитан на длительную работу, поэтому в этом двигателе есть центробежный выключатель для снятия вспомогательной обмотки после пуска.

РИСУНОК 2:   Электрическая схема асинхронного двигателя с пусковым конденсатором (CSIM) и кривая крутящий момент-скорость.

Однофазные двигатели по своей природе более шумные и менее плавные, чем многофазные двигатели. Поскольку есть составляющая потока, вращающаяся в обратном направлении, возникают пульсирующие крутящие моменты, поэтому кривая крутящий момент-скорость на самом деле представляет собой просто представление среднего крутящего момента.

 Если бы мы оставили конденсатор во вспомогательной обмотке после запуска двигателя, мы могли бы приблизиться к двухфазному режиму работы и получить более плавный и тихий двигатель.

Двигатель с постоянным раздельным конденсатором

Поскольку реактивное сопротивление обмотки двигателя и конденсатора являются функциями частоты, мы можем получить истинную двухфазную работу только при одной скорости двигателя для данного конденсатора.

Постоянный двигатель с раздельными конденсаторами, показанный на рис. 3, имеет рабочий конденсатор, что означает очень низкий пусковой момент, возможно, всего 75% от номинального момента.

РИСУНОК 3:   Электрическая схема двигателя с постоянным раздельным конденсатором (PSC) и кривая крутящий момент-скорость.

В реверсивном электродвигателе с разделенными конденсаторами постоянного тока, показанном на рис. 4, используются две идентичные обмотки, один конденсатор и переключатель. Селекторный переключатель используется для переключения конденсатора между двумя обмотками.

 Положение переключателя 1 включает конденсатор последовательно с обмоткой b, а положение переключателя 2 включает конденсатор последовательно с обмоткой a. Эффект заключается в изменении направления вращения.

РИСУНОК 4:  Схема (электропроводка) реверсивного двигателя постоянного тока с разделенными конденсаторами

Конденсатор Пусковой конденсатор работает двигатель

Чтобы обеспечить как хороший пусковой момент, так и хорошие рабочие характеристики, можно использовать два конденсатора, как показано на рис. 5.

Один конденсатор обеспечивает высокий пусковой момент и отключается, когда двигатель достигает номинальной скорости. Другой , меньший конденсатор, всегда остается в цепи. Этот тип двигателя называется двигателем с пусковым конденсатором .

РИСУНОК 5:   Конденсаторный пусковой конденсатор, схема цепи двигателя (электропроводка) и кривая крутящий момент-скорость.

На рис. 6 представлена ​​фотография асинхронного двигателя с конденсаторным пуском. Характерный горб в верхней части двигателя — это место, где находится конденсатор.

Асинхронный двигатель с расщепленной фазой не будет иметь горба, поскольку в нем нет конденсатора. На рис. 7 показана фотография конденсатора запуска .

На рисунках 8 и 9 представлены фотографии ротора и статора, оснащенных центробежным выключателем. На рис. 8 грузы на валу отклоняются, когда скорость двигателя приближается к синхронной, в результате чего шайба на конце перемещается к беличьей клетке. Это разблокирует переключатель, установленный на концевом раструбе двигателя, как показано на рис. 9..

РИСУНОК 6: Асинхронный двигатель с пусковым конденсатором (CSIM). ( Предоставлено Baldor Electric Company )

РИСУНОК 7: a Рабочий конденсатор для PSC или двигателя с двумя конденсаторами.

РИСУНОК 8:   Короткозамкнутый ротор с вращающейся частью центробежного переключателя.

РИСУНОК 9: Неподвижная часть центробежного выключателя в концевом стакане статора.

Электродвигатель с экранированными полюсами

Еще одним представителем семейства асинхронных двигателей является двигатель с расщепленными полюсами. Как правило, двигатель с расщепленными полюсами представляет собой очень маленькую машину (0,05 л.с.), используемую для легко запускаемых нагрузок, таких как вентилятор.

Хотя это и не очень эффективно, это простая, дешевая и надежная машина. Тот факт, что это небольшая машина, имеет тенденцию компенсировать ее неэффективность. На рис. 10 показан принцип работы двигателя с расщепленными полюсами.

Конструкция двигателя с экранированными полюсами

Часть стали статора обернута несколькими короткозамкнутыми витками медного проводника. Согласно закону Фарадея, ток в закороченных витках (затеняющая катушка) будет создавать поток, который будет препятствовать любому изменению потока через нее.

 Левое медное кольцо на рис. 10 показывает увеличение потока через кольцо. Изменение потока индуцирует ток в закороченном кольце, который противодействует изменению потока, как показано на рисунке.

Кольцо справа показывает, что происходит, когда поток уменьшается через кольцо. Теперь индуцированный ток пытается поддерживать поток в кольце. В нижней части рисунка 10 показан один тип двигателя с расщепленными полюсами. Пластины имеют прямоугольную форму, с вырезом для катушки и еще одним для ротора, как показано на рисунке. Катушка наматывается через прямоугольное окно в пакете пластин.

РИСУНОК 10: Конструкция двигателя с экранированными полюсами и работа с экранированными полюсами.

Работа двигателя с экранированными полюсами

Работа двигателя с прямоугольными экранированными полюсами показана на рисунке 11.

Первый вид (1) показывает двигатель, когда ток увеличивается в положительном направлении, как показано на синусоида в середине рисунка. В течение этого интервала большая часть потока проходит через центр ротора, а не через заштрихованные полюса.

 В интервале секунд ток и поток уменьшаются. Таким образом, заштрихованный полюс пытается поддерживать поток, и большая часть потока проходит через заштрихованные полюса. Обратите внимание, что в результате общее направление потока изменилось с левого верхнего угла на левый нижний угол.

Процесс продолжается на видах 3 и 4, и в результате получается квазивращающееся поле, которого достаточно для запуска и работы двигателя. Направление вращения двигателя с расщепленными полюсами можно изменить, только физически разобрав двигатель и изменив направление вращения ротора.

РИСУНОК 11:  Графики потока в двигателе с расщепленными полюсами.

Основным преимуществом двигателя с расщепленными полюсами является его очень низкая стоимость. Многие читатели, возможно, приобрели большой вентилятор в дисконтном магазине с несколькими скоростями менее чем за 15 долларов.

Поскольку двигатель с расщепленными полюсами работает при больших значениях скольжения, регулирование скорости также очень дешево. Напомним уравнение для наведенного в катушке напряжения:

${{E}_{rms}}=4,44fN{{\phi}_{\max}}$

Затененный полюс Регулятор скорости двигателя

Напряжение, подаваемое на двигатель, разумеется, является постоянным (или, по крайней мере, почти постоянным). Если бы число витков в обмотке менялось, то поток изменялся бы в противоположном направлении. Таким образом, скоростью двигателя с расщепленными полюсами можно управлять, изменяя количество вольт на виток обмотки статора, как показано на рисунке 12.

Регулирование скорости осуществляется с помощью обмотки с ответвлениями и переключателя, как показано на рисунке. на рисунке 12(а). Увеличение числа витков приведет к меньшему напряжению на виток и меньшему потоку; меньший поток означает меньший крутящий момент от машины, что приводит к работе с более высоким значением скольжения и более низкой скоростью.

РИСУНОК 12:   Регулирование скорости двигателя с расщепленными полюсами.

На рис. 13 представлена ​​фотография ротора и статора двигателя с расщепленными полюсами. На рис. 14 представлена ​​фотография круглого двигателя с расщепленными полюсами и шестью выступающими полюсами на статоре.

РИСУНОК 13:   Ротор и статор с экранированными полюсами.

РИСУНОК 14:   Круглый двигатель с расщепленными полюсами.

 

Универсальный двигатель

Универсальный двигатель представляет собой двигатель постоянного тока, предназначенный для работы от переменного тока. Поскольку катушки возбуждения воспринимают переменный ток, статор должен быть изготовлен из пластин, как и якорь. Якорь и возбуждение соединены последовательно, как показано на рисунке 15 в разрезе.

Когда ток меняет полярность, поток, создаваемый обеими обмотками, также меняет полярность, что приводит к однонаправленному вращению.

Следя за течением тока в каждом виде на рис. 15 и применяя правило левой руки для двигателей, можно увидеть, что направление вращения всегда против часовой стрелки для этого конкретного расположения обмотки.

РИСУНОК 15: Универсальный двигатель с источником переменного тока.

Универсальный двигатель, как и серийный двигатель постоянного тока, имеет очень высокую скорость холостого хода, которая быстро падает при увеличении нагрузки. На рис. 16 показаны скоростно-моментные характеристики универсального двигателя.

 Скорость холостого хода может быть настолько высокой, что центробежная сила может разорвать двигатель. Таким образом, двигатель должен быть постоянно подключен к какой-либо механической нагрузке.

В отличие от вариации асинхронного двигателя , универсальный двигатель не ограничивается работой ниже синхронной скорости. Универсальные двигатели используются в портативных дрелях, пилах, фрезерах, пылесосах и других подобных устройствах.

РИСУНОК 16:  Момент-скорость для универсального двигателя.

Направление вращения универсального двигателя можно изменить, поменяв местами относительные полюса ротора и статора. Это достигается путем изменения щеточных соединений на коммутаторе, чтобы позволить току изменить свое направление в роторе, продолжая течь в том же направлении в статоре. Скорость универсального двигателя обычно регулируется с помощью электронных устройств.

Вы нашли apk для Android? Вы можете найти новые бесплатные игры и приложения для Android.

Электромонтажные конденсаторы для двигателя воздушного компрессора Baldor VL1309

НикCJ7
Новый член