Пускатель: Магнитный пускатель 2 величины — купить по выгодным ценам в Кемерово

Содержание

Контактор и магнитный пускатель в автоматике

   19.09.2016    Нет комментариев    Рубрика: Автоматика в быту, Основы автоматики, Промышленная автоматизация

Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.

Чем отличается контактор от магнитного пускателя?

Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.

Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.

Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.

Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под  цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2).

На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.

А вот устройства на следующих рисунках правильнее называть контакторами:

Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.

В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.

Устройство и принцип работы магнитного пускателя

Устройство контактора чем-то похоже на электромагнитное реле — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя  — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые.

Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).

В общем случае устройство магнитного пускателя выглядит так:

Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.

Схема подключения магнитного пускателя

Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки.

Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.

Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.

Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:

Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.

Схема «самоподхвата» магнитного пускателя

Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).

На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.

Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.

Подключение двигателя через пускатель с тепловым реле

На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.

Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.

Реверсивный пускатель

Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.

Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.

Схема реверсивного магнитного пускателя выглядит так:

Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.

При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».

При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.

Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).

   Tags: Промышленная автоматика, Управление двигателем


HiMC260 Магнитный контактор (пускатель)

Отзывы

HiMC260 Магнитный контактор (пускатель)

Цена магнитного контактора (пускателя) HiMC260

Наша компания осуществляет комплексные поставки низковольтного оборудования HYUNDAI со склада и под заказ по дилерским ценам. Доставка до места, любой транспортной компанией, по желанию заказчика.

Таблица 1 Общие Технические характеристики

ТипHiMC260
Номинальное напряжение изоляцииB1000
Номинальное рабочее напряжениеB1000
AC-1(Ith)A300
Номин токAC-3
(Ie)
200-240BкВт/A75/260
380-440B132/260
500-550B150/220
660-690B160/173
1 000B160/113
200BЛ. С.75
230B75
460B200
575B200
AC-4
(Ie)
200-240BA200
380-440B200
Изно
состой
кость
Электр-кая (AC-3)× 1 000раз1 000
Механическая5 000
Время срабатыванияВключениемс50-65
Отключ-е42-65
Частота срабатываний в час (AC-3)раз300
Включающая
способность
AC220BA2600
AC480B2600
Частота срабатыванийраз50
Отключающая
способность
AC220BA2080
AC480B2080
Частота срабатыванийраз50
Длительный токA300
Макс. л.с.100-120B1 фаза
Л.С./A
220-240B
220-240B3 фазы
Л.С./A
75/192
440-480B150/180
Размер5
Макс. л.с.115B1 фаза
Л.С./A
230B
200B3 фазы
Л.С./A
75
230B100
460/575B200

Винтовой

основные3NО
ДополнAC, AC/DC
2NО+2NC
DC2NО+1NC
ГабаритыAC, AC/DC(Ш× В×Г)мм138×189×171
DC138×189×171
ВесACкг7,06
DC7,14
AC/DC7,14

Передовые технологии и высокие характеристики Магнитных контакторов

Прочный Значительно увеличен срок службы

Тихий Бесшумный

Малый Компактная конструкция

НАЗНАЧЕНИЕ И ПРИМЕНЕНИЕ

Магнитный пускатель (контактор) используется для мягкого и безопасного запуска/

отключения и эксплуатации электрического двигателя и безопасной и долговечной

эксплуатации электрических сетей. Магнитный пускатель (контактор) так же применяют

для коммутации различных силовых устройств, формирования схем реверсивного

управления трёхфазных асинхронных двигателей с короткозамкнутым ротором.
Магнитный контактор является основным элементом магнитного пускателя.

Контакторы должны соответствовать номиналу теплового тока, номиналу рабочего тока, включающей и отключающей способности, электрической и механической

износостойкости, а так же категории применения.

Особенности конструкции

В магнитных контакторах серии HiMC используется модульная конструкция, которая позволяет быстро и просто монтировать блоки дополнительных контактов, реле времени, блоки

механической фиксации и т.д. Контакторы серии HiMC удобны в применении, экономически выгодны и обладают высокой степенью надежности.

Применяются:

Конструкция, разработанная специально для промышленного применения, например в

центре управления двигателями. Контакторы серии HiMC подходят к различным системам

управления и используются преимущественно в судостроении и на электростанциях, где

высокая надежность и высокие характеристики являются неотъемлемым критерием.

-Значительно увеличены электрическая и механическая износостойкость контакторов

серии HiMC.

-Использование новых материалов предотвращает возможное проявление коррозии,

а сердечник при помощи специальной масляной антикоррозийной обработки работает в бесшумном режиме.

-Легкая установка различных аксессуаров.

— Клемные зажимы спроектированы в соответствии с МЭК 60529 со степенью защиты IP20.

— При помощи фиксаторов,катушку с частотой 50Гц и 60Гц можно легко заменить.

— Быстрый и простой демонтаж

— Быстрая и легкая замена катушки

-Разнообразие установки

AC-1

Неиндуктивная нагрузка или малоиндуктивная нагрузка, печь сопротивления

AC-2

Двигатель с фазным ротором: пуск, торможение

AC-3

Двигатель с короткозамкнутым ротором: пуск, выключение двигателя с пробегом

AC-4

Двигатель с короткозамкнутым ротором: торможение, толчковый режим

AC-12

Активная тепловая нагрузка

AC-15

Индуктивная нагрузка

DC-1

Неиндуктивная нагрузка или малоиндуктивная нагрузка, печь сопротивления

DC-3

Электродвигатели параллельного возбуждения: торможение, толчковый режим

DC-5

Электродвигатели последовательного возбуждения: торможение, толчковый режим

DC-12

Активная тепловая нагрузка

DC-13

Индуктивная нагрузка

Рис Установка

Температура окружающей среды

20°C (норм. ), -25-40°C

Средняя температура

ниже 35°C

Температура хранения

-30-65°C, в месте без наледи

Относительная влажность

45-85% RH

Высота над уровнем моря

ниже 2 000м

Вибростойкость

10-55Гц, 2g

Ударостойкость

5 г

■Устанавливать в сухом и безвибрационном месте.
■Рекомендуется устанавливать перпендикулярно, но допускается наклон ±30°.
■Наклон более 30° и горизонтальная установка может сократить срок
■службы контактора и повлиять на другие характеристики

Рис 1 Положение контактов

Рис 2 Принадлежности

1. Контакторы4. Блок механической фиксации8. Тепловое реле
• HiMC9-50• HLB2• HiTh32 для HiMC9-22
2. Блок дополнительных контактов:5. Электронное реле времени• HiTh50 для HiMC32, 40
установка с фронтальной стороны• HOKZE• HiTH50 для HiMC50
• HiAB для HiMC9-506. Устройство взаимной блокировки9. Цифровое реле защиты двигателя
3. Блок дополнительных контактов:• HiTL40 для HiMC9-40• HiMP22 для HiMC9-22
установка сбоку• HiTL50 для HiMC50• HiMP40 для HiMC32, 40
• HiAL11 для HiMC9-227. Поглотитель перенапряжений• HiMP50 для HiMC50

• HRC40 для HiMC9-40

• HRC50 для HiMC50

Рис 3 Схема силовой цепи

Рис 4 Схема цепей управления

Сечение проводов и усилие затяжки

Таблица

КонтакторБолтовые клеммыСечение кабеля (мм кв)Размер обжимного наконечника (мм2)Усилие затяжки (кгс. см)
HiMC260M102-2002/M10-200/М10100

Расшифровка обозначения: HiMC260

Где,

HiMC – обозначение серии контактора

260 – номинал до 260 ампер 

что это такое, определение, виды и как это работает – Progressive Automations

Привод – это часть устройства или машины, которая помогает ему совершать физические движения путем преобразования энергии, часто электрической, воздушной или гидравлической, в механическую силу. Проще говоря, это компонент любой машины, обеспечивающий движение.

Иногда, чтобы ответить на вопрос, что делает актуатор, процесс сравнивают с функционированием человеческого тела. Подобно мышцам в теле, которые позволяют преобразовывать энергию в какую-либо форму движения, например движение рук или ног, приводы работают в машине для выполнения механического действия.

Приводы присутствуют почти в каждой машине вокруг нас, от простых электронных систем контроля доступа, вибратора в вашем мобильном телефоне и бытовой технике до транспортных средств, промышленных устройств и роботов. Типичными примерами приводов являются электродвигатели, шаговые двигатели, винтовые домкраты, электрические стимуляторы мышц в роботах и ​​т. д.

Просмотреть все приводы

Как работает линейный привод?

Привод — это устройство, которое преобразует энергию, которая может быть электрической, гидравлической, пневматической и т. д., в механическую таким образом, чтобы ею можно было управлять. Количество и характер подводимой энергии зависят от вида преобразуемой энергии и функции исполнительного механизма. Электрические и пьезоэлектрические приводы, например, работают на входе электрического тока или напряжения, для гидроприводов — его несжимаемой жидкости, а для пневматических приводов — воздуха. На выходе всегда механическая энергия.

Приводы — это не то, о чем вы будете читать каждый день в СМИ, в отличие от искусственного интеллекта и машинного обучения. Но реальность такова, что он играет решающую роль в современном мире почти так же, как никакое другое устройство, когда-либо изобретенное.

В системах промышленной мехатроники, например, они несут исключительную ответственность за то, чтобы устройство, такое как роботизированная рука, могло двигаться при подаче электрического сигнала. Ваш автомобиль использует приводы в системе управления двигателем для регулировки воздушных заслонок по крутящему моменту и оптимизации мощности, скорости холостого хода и управления подачей топлива для идеального сгорания.

Приводы — это не то, о чем вы будете читать каждый день в СМИ, в отличие от искусственного интеллекта и машинного обучения. Но реальность такова, что он играет решающую роль в современном мире почти так же, как никакое другое устройство, когда-либо изобретенное.

Они встречаются не только в больших приложениях. Дома актуаторы — это важные устройства, которые помогают вам устанавливать консоли или шкафы, в которых можно разместить телевизоры и которые можно открыть одним нажатием кнопки. Их также можно увидеть в телевизорах и настольных подъемниках, которые пользователи могут регулировать с помощью электрических переключателей или кнопок по своему усмотрению.

Хотите посмотреть телевизор в кресле? По всей вероятности, у него есть подвижная подставка для головы или ног, которая также использует привод. Системы домашней автоматизации, которые могут интуитивно закрывать оконные жалюзи в зависимости от количества проникающего света, также зависят от исполнительных механизмов. Короче говоря, их использование бесконечно, потому что они нужны любому механическому движению, а большинству устройств требуется та или иная форма механического движения.

Ниже приведены обычные компоненты, которые являются частью функционирования привода:

  • Источник питания: обеспечивает подачу энергии, необходимой для привода привода. В промышленных секторах они часто бывают электрическими или жидкостными.
  • Преобразователь мощности: Роль преобразователя мощности заключается в подаче питания от источника к приводу в соответствии с измерениями, установленными контроллером. Гидравлические пропорциональные клапаны и электрические инверторы являются примерами преобразователей энергии в промышленных системах.
  • Привод: Фактическое устройство, которое преобразует подаваемую энергию в механическую силу.
  • Механическая нагрузка: Энергия, преобразованная приводом, обычно используется для функционирования механического устройства. Механическая нагрузка относится к этой механической системе, которая приводится в действие приводом.
  • Контроллер: Контроллер обеспечивает бесперебойную работу системы с соответствующими входными величинами и другими заданными значениями, установленными оператором.

Подробнее

Выбор линейного привода

Как мы уже видели, приводы имеют множество применений в различных областях. Но это не означает, что все актуаторы одинаковы. При покупке привода вы должны знать, какой из них лучше всего соответствует вашим требованиям. Вот подробное руководство о том, как правильно выбрать привод для ваших нужд.

Шаг 1. Оцените требуемое движение:

Объект, который вам нужно переместить в вашем проекте, требует линейного или вращательного движения? Линейные приводы полезны для приложения механической силы, которая перемещает объект по прямой линии, в то время как поворотные приводы, как следует из названия, создают круговое движение.

Шаг 2: Учитывайте потребление энергии:

Электрические приводы становятся все более и более популярными из-за их растущей сложности и гибкости при выполнении различных операций. Но это не значит, что он подходит для любой работы. Рассмотрите возможность использования гидравлических или пневматических приводов, если ваша работа не связана с вводом электрического напряжения.

Шаг 3: Оцените требуемый уровень точности:

Некоторые приводы идеально подходят для работы в тяжелых условиях в суровых условиях, но они могут не работать, когда речь идет о выполнении более мелких работ, таких как упаковка, требующая точности и способности повторять одно и то же действие сотни или тысячи раз.

Шаг 4: Узнайте, какое усилие вам нужно:

Назначение привода — перемещать или поднимать объект. Узнайте, в вашем случае, сколько весит этот предмет. Грузоподъемность привода определяет, сколько он может поднять, и хотя многие приводы могут выглядеть одинаково, их грузоподъемность будет различаться. Прежде чем купить привод, убедитесь, что вес вашего объекта соответствует мощности привода.

Шаг 5: Узнайте, как далеко вам нужно переместить объект:

Расстояние, или длина хода, как это технически известно, имеет значение. Длина хода определяет, насколько далеко ваш объект может быть перемещен. Производители часто продают приводы с разной длиной хода.

Шаг 6: Насколько быстрым должно быть движение:

Скорость привода часто является важным фактором для большинства людей, в зависимости от их проекта. Обычно проекты, требующие, чтобы приводы создавали большую силу, будут двигаться медленнее, чем те, которые создают малую силу. Скорость привода измеряется расстоянием в секунду.

Шаг 7: Учитывайте условия эксплуатации:

Должен ли привод работать в неблагоприятных или неблагоприятных условиях, где пыль или влажность вызывают беспокойство? В этом случае вам следует выбрать продукт с более высоким уровнем защиты.

Шаг 8: Определите тип монтажа:

Доступные на рынке приводы бывают разных типов монтажа, и перед покупкой привода необходимо понимать их преимущества. Например, метод установки с двумя шарнирами в линейном электрическом приводе позволяет устройству поворачиваться в обе стороны при выдвижении и втягивании. При этом приложение получает две свободные точки поворота при движении по фиксированному пути.

И наоборот, стационарная установка, при которой привод крепится к объекту вдоль вала, удобна для таких действий, как нажатие кнопки. На этом этапе вы должны иметь возможность сузить свои варианты до значительно меньшего пула, с которого вы начали. Отсюда вам нужно будет еще больше сузить круг. Например, линейные приводы бывают разных стилей для разных функций. Например, стержневой тип является наиболее распространенным и простым среди них, с валом, который расширяется и втягивается. Стиль гусеницы, который не меняет свою общую длину или размер во время операций, больше подходит, когда проблема ограничена пространством. Существуют также колонные подъемники и другие приводы, которые идеально подходят для установки телевизионных и настольных подъемников. Также стоит учитывать такие факторы, как рабочее напряжение и тип двигателя.

Выберите актуатор

Возможности линейного актуатора

Показатели производительности — это количественные выходные данные, которые помогают вам оценить качество конкретного продукта. Приводы можно рассматривать по нескольким показателям производительности. Традиционно наиболее распространенными среди них были крутящий момент, скорость и долговечность. В наши дни энергоэффективность также считается не менее важной. Другие факторы, которые можно учитывать, включают объем, массу, условия эксплуатации и т. д.

Крутящий момент или усилие

Естественно, крутящий момент является одним из наиболее важных аспектов, которые следует учитывать при работе привода. Ключевым фактором здесь является то, что необходимо учитывать два типа показателей крутящего момента: статическая и динамическая нагрузка. Момент или сила статической нагрузки относится к мощности привода, когда он находится в состоянии покоя. Динамическая метрика относится к крутящему моменту устройства, когда оно находится в движении.

Скорость

Скорость привода зависит от веса груза, который он должен нести. Обычно чем выше вес, тем ниже скорость. Следовательно, показатель скорости следует в первую очередь рассматривать, когда привод не несет никакой нагрузки.

Долговечность

Тип привода и конструкция производителя определяют долговечность привода. Хотя такие приводы, как гидравлические, считаются более долговечными и прочными по сравнению с электрическими приводами, подробные характеристики качества используемого материала будут зависеть от производителя.

Энергоэффективность

С ростом озабоченности по поводу энергосбережения и его прямого влияния на эксплуатационные расходы энергоэффективность становится все более и более решающим показателем для всех видов машин. Здесь чем меньше энергии требуется актуатору для достижения своей цели, тем лучше.

Как подключить линейные приводы

Учитывая широкий спектр приводов, для их подключения к системе управления используются различные методы. Подключение электрического линейного привода — достаточно простой процесс. Многие электрические линейные приводы в наши дни поставляются с четырьмя контактами, и их подключение так же просто, как их подключение. Однако, если ваш привод не имеет четырех контактов, процесс немного отличается. Вам нужно будет купить дополнительный разъем, который часто имеет длину 6 и 2 фута.

  1. Подготовьте провода
  2. Ваш привод может поставляться с открытыми концами проводов. При необходимости вы можете немного убрать это перед подключением к 4-контактному разъему. Если провод разъема недостаточно открыт, зачистите и его.

  3. Подключение проводов
  4. Подсоедините линейный привод к 4-контактному разъему, скрутив правые оголенные провода вместе и заклеив изолентой. Часто провода на актуаторе и разъеме бывают синего и коричневого цветов и их можно подсоединять соответствующим образом.
    Иногда цвета на приводе могут отличаться. Например, если привод имеет красный и черный провода, подключите красный к коричневому проводу привода, а черный к синему. Если он поставляется с красным и синим, подключите красный к коричневому, а синий к синему проводу на разъеме. Если провода привода красные и желтые, подключите красный к коричневому проводу, а желтый к синему проводу.

  5. Весь комплект
  6. Теперь можно идти. Подключите разъем и подключите блок управления к розетке. Если, несмотря на это, у вас возникнут проблемы, щелкните здесь, чтобы получить более подробное руководство по подключению привода к разъему.

Полное руководство по выбору, тестированию и реализации линейного движения для любого применения. Написано инженерами для инженеров.

Как установить линейный привод

Выбор привода и его правильное подключение — это только полдела. Не менее важным является монтаж привода способом, подходящим для вашего применения. Ниже приведены два распространенных метода, которые используются для монтажа электрического линейного привода.

Крепление с двумя шарнирами

Этот метод включает в себя фиксацию привода с обеих сторон с помощью точки крепления, которая может свободно поворачиваться и обычно состоит из монтажного штифта или скобы. Крепление с двумя шарнирами позволяет приводу поворачиваться в любую сторону при выдвижении и втягивании, позволяя приложению достичь фиксированного движения траектории с двумя свободными точками поворота.

Одним из наиболее полезных применений этого метода является открытие и закрытие дверей. Когда привод выдвигается, двойные фиксированные точки позволяют двери открываться. Действие закрывания и открывания двери вызывает изменение угла, но шарнир обеспечивает достаточно места для поворота двух точек крепления. При использовании этого метода убедитесь, что имеется достаточно места для выдвижения привода без каких-либо препятствий на его пути.

Стационарный монтаж

В этом методе привод устанавливается в стационарном положении с помощью монтажного кронштейна на валу, фиксирующего его на валу. Обычно такое крепление используется для достижения действия, похожего на толкание чего-либо в лоб. Например, такая форма крепления идеальна для включения или выключения кнопки. При выборе этого метода убедитесь, что монтажное устройство может выдержать нагрузку привода.

Проверка

Применение и возможности линейных приводов

Применение линейных электрических приводов практически безгранично. Заводы-изготовители используют их при обработке материалов. Примерами этого являются режущее оборудование, которое перемещается вверх и вниз, и клапаны, регулирующие поток сырья. Роботы и роботизированные руки в обрабатывающей промышленности и за ее пределами также используют системы линейных приводов для движения по прямой линии.

Поскольку тенденции в области автоматизации становятся все более популярными, клиенты всегда ищут способы внедрения линейных приводов в свои приложения.

С ростом популярности систем домашней автоматизации электрические линейные приводы стали использоваться в качестве автоматических оконных штор. Бытовую технику, такую ​​как телевизор, можно без проблем разместить на оптимальной высоте с помощью подъемников для телевизоров, в которых используются линейные электрические приводы. Существуют также настольные подъемники, в которых используются приводы для регулировки высоты в соответствии с потребностями пользователей.

В солнечной энергетике они помогают перемещать панели в направлении солнечного света. Даже в таких отраслях, как сельское хозяйство, где более распространена тяжелая техника с гидравлическими приводами, электрические линейные приводы используются для точных и деликатных движений.

Тематические исследования

Приводы — что это такое? (Выберите правильный)

Thomson в настоящее время имеет две учетные системы: одну для загрузки веб-сайта и моделей САПР, а другую для электронной коммерции. Мы понимаем, что два входа в систему доставляют неудобства, и работаем над тем, чтобы объединить наши системы в один процесс входа. Пока мы не сможем объединить два входа, следуйте этим рекомендациям:

Вход на веб-сайт

  • Загрузить модели САПР
  • Сохранение и извлечение проектов в инструментах LinearMotioneering® и MicronMotioneering®
  • Доступ к экстрасети дистрибьютора и всем связанным ресурсам

Вход в систему электронной коммерции

  • Заказ напрямую в Thomson онлайн (только для Северной Америки)
  • Авторизованные дистрибьюторы Thomson могут просматривать и заказывать котировки онлайн (по всему миру)
  • Просмотр корзины покупок и просмотр предыдущих прямых заказов
  • Стандартные линейные приводы
  • Прецизионные линейные приводы
  • Шаговый двигатель
    Линейные приводы

Стандартные линейные приводы Thomson изготовлены из прочных высококачественных обеспечить необслуживаемую, надежную и безопасную работу для максимального срока службы и значение. Они имеют длину хода до 36 дюймов, скорость до 3 дюймов в секунду, нагрузку до 3600 фунтов и рабочий цикл до 25% при полной нагрузке. В эти приводы встроен автономный электродвигатель, вращательное движение которого преобразуется в линейное перемещение. При дальнейшей интеграции печатной платы становятся доступными многие функции управления.

Просмотр стандартных линейных приводов

 

 


Рекомендуемый продукт: Electrak XD

  • , быть умнее, меньше и эффективнее, чем конкурирующие технологии .
  • Основные характеристики
  • включают допустимую нагрузку до 25 000 Н, рабочий цикл до 100 %, ход до 1200 мм и скорость до 75 мм/с.
  • Эта модель обеспечивает превосходную защиту даже в самых суровых условиях и от проникновения пыли со степенью защиты IP69.K (статический), IP67 (статический) и IP66 (динамический).
  • Управляемость повышается за счет встроенных элементов управления, таких как переключение низкого уровня, программируемые концевые выключатели, обратная связь по положению, синхронизация, системы шин и многое другое.

Узнайте больше об Electrak XD

Размер и выбор

Модели САПР

Выбор продукта

Видео

Литература

Часто задаваемые вопросы

Прецизионные линейные приводы Thomson предназначены для обеспечения высокой производительности в приложениях, требующих непрерывной работы. Они обеспечивают самую высокую тягу и скорость среди всех электроприводов и позволяют создавать более компактные механизмы с максимальной производительностью. Прецизионные линейные приводы, которые часто выбирают как чистую и эффективную альтернативу гидродинамическим решениям, потребляют энергию только по запросу и работают тише, чем пневматика.

Обзор линейных приводов Thomson Precision

 

 

 


Рекомендуемый продукт: Серия ПК

  • Доступны серводвигатели, совместимые со всеми моделями, что помогает сократить время, затрачиваемое на определение размера и выбор двигателя.
  • Большой, высокоточный шарико-винтовой узел обеспечивает непревзойденный срок службы, обеспечивая до четырех раз большее расстояние перемещения, чем аналогичные приводы.
  • Большая длина хода позволяет работать в труднодоступных местах и ​​покрывает большие площади при сканировании, резке и измерении.
  • Исключительная удельная мощность и высокая скорость.

Узнайте больше о ПК серии

Модели САПР

Выбор продукта

Видео

Литература

FAQ

Линейные приводы Thomson с шаговым двигателем сочетают в себе гибридный шаговый двигатель и прецизионный ходовой винт в одном компактном корпусе и предлагаются в трех основных конфигурациях — вращающийся винт (MLS), вращающаяся гайка (MLN) и привод (MLA). . Преимущества включают повышенную плотность крутящего момента, повышенную эффективность, снижение шума и нашу запатентованную конструкцию Taper-Lock, которая обеспечивает надежное и правильное выравнивание соединений ходового винта с валом двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *