Простой терморегулятор своими руками схема – Схема простого терморегулятора для сборки в домашних условиях

Содержание

электронные схемы, тонкости, принцип действия термостата

Соблюдение температурного режима является очень важным технологическим условием не только на производстве, но и в повседневной жизни. Имея столь большое значение, этот параметр должен чем-то регулироваться и контролироваться. Производят огромное количество таких приборов, имеющих множество особенностей и параметров. Но сделать терморегулятор своими руками порой куда выгоднее, нежели покупать готовый заводской аналог.

ТерморегуляторСоздайте терморегулятор своими руками

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:


В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Это три основные части системы поддержания заданных температурных параметров. Хотя, помимо них, в схеме могут участвовать и другие части наподобие промежуточного реле. Но они исполняют лишь дополнительную функцию.

Принцип работы

Принцип, по которому работают все регуляторы, – это снятие физической величины (температуры), передача данных на схему блока управления, решающего, что нужно сделать в конкретном случае.

Если делать термореле, то наиболее простой вариант будет иметь механическую схему управления. Здесь с помощью резистора устанавливается определённый порог, при достижении которого будет дан сигнал на исполнительный механизм.

Чтобы получить дополнительную функциональность и возможность работы с более широким диапазоном температур, придётся встраивать контроллер. Это же поможет увеличить срок эксплуатации прибора.

На данном видео вы можете посмотреть как самостоятельно изготовить терморегулятор для электрического отопления:

Самодельный регулятор температуры

Схем для того, чтобы сделать терморегулятор самому, в действительности очень много. Всё зависит от сферы, в которой будет применяться такое изделие. Конечно, создать нечто слишком сложное и многофункциональное крайне трудно. А вот термостат, который сможет использоваться для обогревания аквариума или сушки овощей на зиму, вполне можно создать, имея минимум знаний.

Простейшая схема

Самая простая схема термореле своими руками имеет безтрансформаторный блок питания, который состоит из диодного моста с параллельно подключённым стабилитроном, стабилизирующим напряжение в пределах 14 вольт, и гасящего конденсатора. Сюда же можно при желании добавить и стабилизатор на 12 вольт.

РегуляторСоздание терморегулятора не требует особых усилий и денежных вложений

В основе всей схемы будет использован стабилитрон TL431, который управляется делителем, состоящим из резистора на 47 кОм, сопротивления на 10 кОм и терморезистора, выполняющего роль датчика температуры, на 10 кОм. Его сопротивление понижается с повышением температуры. Резистор и сопротивление лучше подбирать, чтобы добиться наилучшей точности срабатывания.

Сам же процесс выглядит следующим образом: когда на контакте управления микросхемой образуется напряжение больше 2,5 вольт, то она произведёт открытие, что включит реле, подавая нагрузку на исполнительный механизм.

Как изготовить терморегулятор для инкубатора своими руками, вы можете увидеть на представленном видео:

И напротив, когда напряжение станет ниже, то микросхема закроется и реле отключится.

Чтобы избежать дребезжания контактов реле, необходимо его выбирать с минимальным током удержания. И параллельно вводам нужно припаять конденсатор 470×25 В.

При использовании терморезистора NTC и микросхемы, уже бывавших в деле, предварительно стоит проверить их работоспособность и точность.

Таким образом, получается простейший прибор, регулирующий температуру. Но при правильно подобранных составляющих он превосходно работает в широком спектре применения.

Прибор для помещения

Такие терморегуляторы с датчиком температуры воздуха своими руками оптимально подходят для поддержания заданных параметров микроклимата в помещениях и ёмкостях. Он полностью способен автоматизировать процесс и управлять любым излучателем тепла начиная с горячей воды и заканчивая тэнами. При этом термовыключатель имеет отличные эксплуатационные данные. А датчик может быть как встроенным, так и выносным.

Здесь в качестве термодатчика выступает терморезистор, обозначенный на схеме R1. В делитель напряжения входят R1, R2, R3 и R6, сигнал с которого поступает на четвёртый контакт микросхемы операционного усилителя. На пятый контакт DA1 подаётся сигнал с делителя R3, R4, R7 и R8.

Сопротивления резисторов необходимо подбирать таким образом, чтобы при минимально низкой температуре замеряемой среды, когда сопротивление терморезистора максимальное, компаратор положительно насыщался.

Напряжение на выходе компаратора составляет 11,5 вольт. В это время транзистор VT1 находится в открытом положении, а реле K1 включает исполнительный или промежуточный механизм, в результате чего начинается нагрев. Температура окружающей среды в результате этого повышается, что понижает сопротивление датчика. На входе 4 микросхемы начинает повышаться напряжение и в результате превосходит напряжение на контакте 5. Вследствие этого компаратор входит в фазу отрицательного насыщения. На десятом выходе микросхемы напряжение становится приблизительно 0,7 Вольт, что является логическим нулём. В результате транзистор VT1 закрывается, а реле отключается и выключает исполнительный механизм.

На микросхеме LM 311

Такой термоконтроллер своими руками предназначен для работы с тэнами и способен поддерживать заданные параметры температуры в пределах 20-100 градусов. Это наиболее безопасный и надёжный вариант, так как в его работе применяется гальваническая развязка термодатчика и регулирующих цепей, а это полностью исключает возможность поражения электротоком.

Как и большинство подобных схем, в её основу берется мост постоянного тока, в одно плечо которого подключают компаратор, а в другое – термодатчик. Компаратор следит за рассогласованием цепи и реагирует на состояние моста, когда тот переходит точку баланса. Одновременно он же старается уравновесить мост с помощью терморезистора, изменяя его температуру. А термостабилизация может возникнуть лишь при определённом значении.

Резистором R6 задают точку, при которой должен образоваться баланс. И в зависимости от температуры среды терморезистор R8 может в этот баланс входить, что и позволяет регулировать температуру.

На видео вы можете увидеть разбор простой схемы терморегулятора:


Если заданная R6 температура ниже необходимой, то на R8 сопротивление слишком большое, что понижает ток на компараторе. Это вызовет протекание тока и открывание семистора VS1, который включит нагревательный элемент. Об этом будет сигнализировать светодиод.

По мере того как температура будет повышаться, сопротивление R8 станет снижаться. Мост будет стремиться к точке баланса. На компараторе потенциал инверсного входа плавно снижается, а на прямом – повышается. В какой-то момент ситуация меняется, и процесс происходит в обратную сторону. Таким образом, термоконтроллер своими руками будет включать или выключать исполнительный механизм в зависимости от сопротивления R8.

Если в наличии нет LM311, то её можно заменить отечественной микросхемой КР554СА301. Получается простой терморегулятор своими руками с минимальными затратами, высокой точностью и надёжностью работы.

Необходимые материалы и инструменты

Сама по себе сборка любой схемы электрорегулятора температуры не занимает много времени и сил. Но чтобы сделать термостат, необходимы минимальные знания в электронике, набор деталей согласно схеме и инструмент:

  1. Импульсный паяльник. Можно использовать и обычный, но с тонким жалом.
  2. Припой и флюс.
  3. Печатная плата.
  4. Кислота, чтобы вытравить дорожки.

Достоинства и недостатки

Даже простой терморегулятор своими руками имеет массу достоинств и положительных моментов. Говорить же о заводских многофункциональных устройствах и вовсе не приходится.

Регуляторы температуры позволяют:

  1. Поддерживать комфортную температуру.
  2. Экономить энергоресурсы.
  3. Не привлекать к процессу человека.
  4. Соблюдать технологический процесс, повышая качество.

Из недостатков можно назвать высокую стоимость заводских моделей. Конечно, самодельных приборов это не касается. А вот производственные, которые требуются при работе с жидкими, газообразными, щелочными и другими подобными средами, имеют высокую стоимость. Особенно если прибор должен иметь множество функций и возможностей.

kaminguru.com

Терморегулятор своими руками: схема, видео, фото

Продолжаем нашу рубрику электронные самоделки, в этой статье мы будем рассматривать устройства, поддерживающие определенный тепловой режим, или же сигнализирующие о достижении нужного значения температуры. Такие устройства имеют очень широкую сферу применения: они могут поддерживать заданную температуру в инкубаторах и аквариумах, теплых полах и даже являться частью умного дома. Для вас мы предоставили инструкцию о том, как сделать терморегулятор своими руками и с минимумом затрат.

Немного теории

Простейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча из двух сопротивлений, опорного и элемента, меняющего свое сопротивление в зависимости от прилаживаемой к нему температуры. Более наглядно это представлено на картинке ниже.

Измерительный мост

Как видно из схемы, резистор R2 является измерительным элементом самодельного терморегулятора, а R1, R3 и R4 опорным плечом устройства. Это терморезистор. Он представляет собой проводниковый прибор, который изменяет своё сопротивление при изменении температуры.

Составляющие элементы

Элементом терморегулятора, реагирующим на изменение состояния измерительного плеча, является интегральный усилитель в режиме компаратора. Данный режим переключает скачком выход микросхемы из состояния выключено в рабочее положение. Таким образом, на выходе компаратора мы имеем всего два значения «включено» и «выключено». Нагрузкой микросхемы является вентилятор для ПК. При достижении температуры определенного значения в плече R1 и R2 происходит смещение напряжения, вход микросхемы сравнивает значение на контакте 2 и 3 и происходит переключение компаратора. Вентилятор охлаждает необходимый предмет, его температура падает, сопротивление резистора меняется и компаратор отключает вентилятор. Таким образом поддерживается температура на заданном уровне, и производится управление работой вентилятора.

Обзор схем

Напряжение разности с измерительного плеча поступает на спаренный транзистор с большим коэффициентом усиления, а в качестве компаратора выступает электромагнитное реле. При достижении на катушке напряжения, достаточного для втягивания сердечника, происходит ее срабатывание и подключение через ее контакты исполнительных устройств. При достижении заданной температуры, сигнал на транзисторах уменьшается, синхронно падает напряжение на катушке реле, и в какой-то момент происходит расцепление контактов и отключение полезной нагрузки.

Самоделка на транзисторах

Особенностью такого типа реле является наличие гистерезиса — это разница в несколько градусов между включением и отключением самодельного терморегулятора, из-за присутствия в схеме электромеханического реле. Таким образом, температура всегда будет колебаться на несколько градусов возле нужного значения. Вариант сборки, предоставленный ниже, практически лишен гистерезиса.

Принципиальная электронная схема аналогового терморегулятора для инкубатора:

Для инкубатора

Данная схема была очень популярна для повторения в 2000 годах, но и сейчас она не потеряла актуальность и с возложенной на нее функцией справляется. При наличии доступа к старым деталям, можно собрать терморегулятор своими руками практически бесплатно.

Сердцем самоделки является интегральный усилитель К140УД7 или К140УД8. В данном случае он подключен с положительной обратной связью и является компаратором. Термочувствительным элементом R5 служит резистор типа ММТ-4 с отрицательным ТКЕ, это значит, что при нагревании его сопротивление уменьшается.

Выносной датчик подключается через экранированный провод. Для уменьшения наводок и ложного срабатывания устройства, длина провода не должна превышать 1 метр. Нагрузка управляется через тиристор VS1 и максимально допустимая мощность подключаемого нагревателя зависит от его номинала. В данном случае 150 Ватт, электронный ключ — тиристор необходимо установить на небольшой радиатор, для отвода тепла. В таблице ниже представлены номиналы радиоэлементов, для сборки терморегулятора в домашних условиях.

Номиналы радиоэлементов

Устройство не имеет гальванической развязки от сети 220 Вольт, при настройке будьте внимательны, на элементах регулятора присутствует сетевое напряжение, которое опасно для жизни. После сборки обязательно изолируйте все контакты и поместите устройство в токонепроводящий корпус. На видео ниже рассматривается, как собрать терморегулятор на транзисторах:

Самодельный термостат на транзисторах

Теперь расскажем как сделать регулятор температуры для теплого пола. Рабочая схема срисована с серийного образца. Пригодится тем, кто хочет ознакомиться и повторить, или как образец для поиска неисправности прибора.

Центром схемы является микросхема стабилизатора, подключенная необычным способом, LM431 начинает пропускать ток при напряжении выше 2,5 Вольт. Именно такой величины у данной микросхемы внутренний источник опорного напряжения. При меньшем значении тока она ни чего не пропускает. Эту ее особенность стали использовать во всевозможных схемах терморегуляторов.

Самодельный регулятор для теплого пола

Как видим, классическая схема с измерительным плечом осталась: R5, R4 – дополнительные резисторы делителя напряжения, а R9 — терморезистор. При изменении температуры происходит сдвиг напряжения на входе 1 микросхемы, и в случае, если оно достигло порога срабатывания, то напряжение идет дальше по схеме. В данной конструкции нагрузкой для микросхемы TL431 являются светодиод индикации работы HL2 и оптрон U1, для оптической развязки силовой схемы от управляющих цепей.

Как и в предыдущем варианте, устройство не имеет трансформатора, а получает питание на гасящей конденсаторной схеме C1, R1 и R2, поэтому оно так же находится под опасным для жизни напряжением, и при работе со схемой нужно быть предельно осторожным. Для стабилизации напряжения и сглаживания пульсаций сетевых всплесков, в схему установлен стабилитрон VD2 и конденсатор C3. Для визуальной индикации наличия напряжения на устройстве установлен светодиод HL1. Силовым управляющим элементом является симистор ВТ136 с небольшой обвязкой для управления через оптрон U1.

При данных номиналах диапазон регулирования находится в пределах 30-50°С. При кажущейся на первый взгляд сложности конструкция проста в настройке и легка в повторении. Наглядная схема терморегулятора на микросхеме TL431, с внешним питанием 12 вольт для использования в системах домашней автоматики представлена ниже:

Управление вентилятором

Данный терморегулятор способен управлять компьютерным вентилятором, силовым реле, световыми индикаторами, звуковыми сигнализаторами. Для управления температурой паяльника существует интересная схема с использованием все той же интегральной микросхемы TL431.

Регулятор для паяльника

Для измерения температуры нагревательного элемента используют биметаллическую термопару, которую можно позаимствовать с выносного измерителя в мультиметре или купить в специализированном магазине радиодеталей. Для увеличения напряжения с термопары до уровня срабатывания TL431, установлен дополнительный усилитель на LM351. Управление осуществляется через оптрон MOC3021 и симистор T1.

При включении терморегулятора в сеть необходимо соблюдать полярность, минус регулятора должен быть на нулевом проводе, иначе фазное напряжение появится на корпусе паяльника, через провода термопары. В этом и является главный недостаток этой схемы, ведь не каждому хочется постоянно проверять правильность подключения вилки в розетку, а если пренебречь этим, то можно получить удар током или повредить электронные компоненты во время пайки.  Регулировка диапазона производится резистором R3. Данная схема обеспечит долгую работу паяльника, исключит его перегрев и увеличит качество пайки за счет стабильности температурного режима.

Еще одна идея сборки простого терморегулятора рассмотрена на видео:

Регулятор температуры на микросхеме TL431

Также дополнительно рекомендуем просмотреть еще одну идею сборки термостата для паяльника:

Простой регулятор для паяльника

Разобранных примеров регуляторов температуры вполне достаточно для удовлетворения нужд домашнего мастера. Схемы не содержат дефицитных и дорогих запчастей, легко повторяются и практически не нуждаются в настройке. Данные самоделки запросто можно приспособить для регулирования температуры воды в баке водонагревателя, следить за теплом в инкубаторе или теплице, модернизировать утюг или паяльник. Помимо этого можно восстановить старенький холодильник, переделав регулятор для работы с отрицательными значениями температуры, путем замены местами сопротивлений в измерительном плече. Надеемся наша статья была интересна, вы нашли ее для себя полезной и поняли, как сделать терморегулятор своими руками в домашних условиях! Если же у вас все еще остались вопросы, смело задавайте их в комментариях.

Будет интересно прочитать:

samelectrik.ru

Простой терморегулятор своими руками — Diodnik

Иногда дома приходиться иметь с бытовым инкубатором или сушкой для овощей. Зачастую дешевая техника такого рода имеет термореле очень плохого качества, контакты которого быстро выгорают или оно не отличаются хорошей плавностью регулировки. И так, сегодня у нас на повестке дня простой терморегулятор своими руками, мы соберем схему и продемонстрируем его работу.

Простой терморегулятор своими руками – схема

 

Питание схемы терморегулятора осуществляется с помощью бестрансформаторного блока питания, состоит он из гасящего конденсатора С1 и диодного моста D1. Параллельно мосту включен стабилитрон ZD1, который стабилизирует напряжение в пределах 14В. При желании, можно еще добавить и стабилизатор на 12В.

Основу схемы составляет управляемый стабилитрон TL431. Управление TL431 производиться с помощью делителя напряжения R4, R5 и R6. Датчиком температуры воздуха является NTC терморезистор R4 номиналом 10кОм. При повышении температуры он уменьшает свое сопротивление.





При напряжении более 2,5В на контакте управления TL431, эта микросхема открывается, далее срабатывает  реле, замыкая контакты и включая нагрузку.

При повышении температуры датчика R4, его сопротивление начнет падать. Когда напряжение на контакте управления TL431 станет меньше 2,5В микросхема закроется и отключит реле с нагрузкой.

Подбором резисторов R5 и R6 необходимо добиться необходимого диапазона регулировки температуры. Номинал R5 – отвечает за максимальную температуру, а R6 – за минимальную.

Для устранения эффекта дребезжания контактов реле при включении или отключении параллельно выводам А1 и А2 контактов реле необходимо подключить конденсатор С4. Реле К1 необходимо использовать с как можно меньшим током удержания.

При использовании б/у-шных TL431 и  NTC терморезисторов важно проверить их работоспособность. Для этого желательно ознакомиться с материалами на тему: как проверить TL431 и как проверить термистор.

Простой терморегулятор своими руками

Вот такой простой терморегулятор своими руками у нас получился.

Фото обратной стороны платы.

Такое устройство сделанное своими руками смело можно использовать, как терморегулятор для инкубатора или сушки. При использовании герметичного терморезистора (датчика температуры), сфера применения его уже расширяется, он неплохо будет играть роль, как терморегулятор аквариума.

Простой терморегулятор своими руками в действии

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Простая и надёжная схема терморегулятора для инкубатора

 ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать  R3 можно по таблице ниже.

Терморезистор

R3

1 kОм

2,7 кОм

2 кОм

4,3 кОм

3,6 кОм

7,5 кОм

10 кОм

10 кОм

15 кОм

15 кОм

Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.

Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).

Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).

Гистерезис очень сильно зависит от типа применяемого терморезистора.

Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.

Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.

Таблица напряжений по постоянному току микросхемы К561ЛА7

(измеряется цифровым мультиметром в рабочей схеме)

№ вывода

Нагреватель выкл / включен

1, 2

4,3 / 5,5

3

0,2 / 8,9

4

3,8 / 8,9

5, 6

4,1 / 0

7

0

8

7 / 8,9

9

0,2 / 8,9

10

~

12, 13

0

14

9 / 7,5

Фото собранной платы

Примечание: маркировка некоторых деталей согласно схемы изменилась.

Фото печатной платы

Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!

А. Зотов. Волгоградская обл.

P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.

Фото готовой платы, собранной из набора

Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.

 Наш «Магазин Мастера«




П О П У Л Я Р Н О Е:

  • Что такое web-камера? Устройство. Подключение.
  • Что такое web-камера?

    Web-камера — это цифровое устройство, которое состоит из видеокамеры (ПЗС-матрицы), процессора компрессии и встроенного web-сервера. Web-камера предназначена для организации видеонаблюдения и передачи видеоизображения по сети LAN/WAN/Internet. Для работы web-камеры в сети не требуется специальных устройств и персонального компьютера. Подробнее…

  • Самодельный компрессор
  • Компрессор для накачки воздуха полезный инструмент в гараже автолюбителя. Им не только удобно и легко накачать колёса, но и также можно продуть карбюратор, трубку… и любую поверхность, можно использовать для  краскопульта. Применений сжатой струе воздуха, конечно много, но для работы, например, отбойного молотка производительности этого компрессора будет не достаточно.

    Подробнее…

  • Прибор для проверки предельных значений напряжений радиодеталей
  • При ремонте, настройке, создания новых схем схем бывает нужен прибор для проверки величин допустимых напряжений и напряжений утечек транзисторов, диодов, конденсаторов и других радиодеталей.

    В статье, ниже представлена схема такого прибора на основе преобразователя на МС 1211ЕУ1.

    Подробнее…


— н а в и г а т о р —


Популярность: 141 425 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

Терморегулятор для тэна своими руками: схема простого термореле

Как сделать?

Инструкции для изготовления терморегулятора своими руками основаны на строгом следовании выбранной схеме, в соответствии с которой необходимо соединить все составляющие в единое целое. Например, электронная схема для инкубатора собирается по следующему алгоритму:

  • Изучить изображение (лучше распечатать и положить перед собой).
  • Найти необходимые детали, в том числе корпус и плату (подойдут старые от счетчика).
  • Начать с «сердца» — интегрального усилителя К140УД7/8, подключив его с положительно заряженным обратным действием, что даст ему функции компаратора.
  • Подключить на место «R5» отрицательный резистор ММТ-4.
  • Присоединить выносной датчик с помощью экранизированной проводки, причем длина шнура может быть не более метра.
  • Для управления нагрузкой включить в схему тиристор VS1, установив его на радиатор небольших размеров, чтобы обеспечить соответствующую теплоотдачу.
  • Настроить остальные элементы цепи.
  • Подключить к блоку питания.
  • Проверить работоспособность.

К слову, добавив датчик температуры, собранное устройство можно смело использовать не только для инкубаторов, сушек, но и поддержания теплового режима в аквариуме или террариуме.

Как отремонтировать?

Заводской или самодельный термостат можно и починить, чтобы не покупать новый и не тратить время на поиск и сборку необходимых деталей. В первую очередь, устройство необходимо найти (если не вы занимались его установкой), ведь по фото терморегулятора видно, что его размеры небольшие, что несколько затрудняет поиск.

Поможет совет: термостат расположен рядом с кнопкой температурного режима.

Признаками поломки устройства могут быть следующие моменты:

  • Прибор перестал выполнять основную функцию: температура сильно понизилась или повысилась без реакции механизма;
  • Подключенный аппарат работает, не переходя в режим ожидания или экономии;
  • Агрегат самопроизвольно отключился.

В зависимости от причины неисправности необходимо предпринять следующие действия, чтобы отремонтировать терморегулятор своими руками:

  • Отключить ремонтируемый аппарат от сети.
  • Снять защитный корпус с устройства.
  • Проверить качество контактов и присоединений.
  • Отсоединить и вытянуть капиллярную трубку.
  • Достать реле.
  • Поменять сильфонную трубку, зафиксировать.
  • При необходимости произвести замену других деталей.
  • Подключить проводку обратно.
  • Поставить реле на место.

Рекомендуется по мере разбора устройства записывать свои действия на видео или делать пошаговые фото, чтобы обратный процесс сборки термостата не вызвал затруднений.

Терморегуляторами оснащены многие бытовые и хозяйственные приборы и, знание, как их починить, заново собрать своими руками и установить, значительно сэкономит ваши средства, время и силы.

Терморегулятор своими руками

Терморегуляторы широко используются в современных бытовых приборах, автомобилях, системах отопления и кондиционирования, на производстве, в холодильном оборудовании и при работе печей. Принцип действия любого терморегулятора основан на включении или выключении различных приборов после достижения определенных значений температуры.

Как сделать терморегулятор

Современные цифровые терморегуляторы управляются при помощи кнопок: сенсорных или обычных. Многие модели также оснащены цифровой панелью, на которой отображается заданная температура. Группа программируемых терморегуляторов является самой дорогостоящей. С помощью прибора можно предусмотреть изменение температуры по часам или задать необходимый режим на неделю вперед. Управлять прибором можно дистанционно: через смартфон или компьютер.

Для сложного технологического процесса, например, сталеплавильной печи, сделать терморегулятор своими руками – задача довольно непростая, которая требует серьезных знаний. Но собрать небольшое устройство для кулера или инкубатора под силу любому домашнему мастеру.

Механический терморегулятор

Для того, чтобы понять, как работает регулятор температуры, рассмотрим простое устройство, которое используется для открывания и закрывания заслонки шахтового котла и срабатывает при нагреве воздуха.

Для работы устройства были использованы 2 алюминиевые трубы, 2 рычага, пружина для возврата, цепочка, которая идет к котлу, и регулировочный узел в виде кран-буксы. Все комплектующие были смонтированы на котел.

Как известно, коэффициент линейного теплового расширения алюминия составляет 22х10-6 0С. При нагревании алюминиевой трубы длиной полтора метра, шириной 0,02 м и толщиной 0,01 м до 130 градусов Цельсия происходит удлинение на 4,29 мм. При нагреве трубы расширяются, за счет этого происходит смещение рычагов, и заслонка закрывается. При остывании трубы уменьшаются в длине, а рычаги открывают заслонку. Основной проблемой при использовании данной схемы является то, что точно определить порог срабатывания терморегулятора очень сложно. Сегодня предпочтение отдается устройствам на основе электронных элементов.

Механический терморегулятор

Схема работы простого терморегулятора

Обычно для поддержания заданной температуры используются схемы на основе реле. Основными элементами, входящими в данное оборудование, являются:

  • температурный датчик;
  • пороговая схема;
  • исполнительное или индикаторное устройство.

В качестве датчика можно использовать полупроводниковые элементы, термисторы, термометры сопротивления, термопары и биметаллические термореле.

Схема терморегулятор реагирует на превышения параметра над заданным уровнем и включает исполнительное устройство. Самым простым вариантом такого прибора является элемент на биполярных транзисторах. Термореле выполнено на основе триггера Шмидта. В роли датчика температуры выступает терморезистор – элемент, сопротивление которого изменяется в зависимости от повышения или понижения градусов.

R1 – это потенциометр, который устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. За счет регулировки происходит срабатывание исполнительного устройства и коммутации реле K1, когда сопротивление терморезистора изменяется. При этом рабочее напряжение реле должно соответствовать рабочему питанию оборудования. Чтобы защитить выходной транзистор от импульсов напряжения, параллельно подсоединен полупроводниковый диод. Величина нагрузки подключаемого элемента зависит от максимального тока электромагнитного реле.

Схема работы терморегулятора

Внимание! В интернете можно увидеть картинки с чертежами термостата для разного оборудования. Но довольно часто изображение и описание не соответствуют друг другу. Иногда на рисунках могут быть представлены просто другие устройства. Поэтому изготовление можно начинать только после тщательного изучения всей информации.

Перед началом работ следует определиться с мощностью будущего терморегулятора и температурным диапазоном, в котором предстоит ему работать. Для холодильника потребуются одни элементы, а для отопления –другие.

Терморегулятор на трех элементах

Одним из элементарных устройств, на примере которого можно собрать и понять принцип работы, является простой терморегулятор своими руками, предназначенный для вентилятора в ПК. Все работы производятся на макетной плате. Если же существуют проблемы с пальником, то можно взять беспаечную плату.

Схема терморегулятор в этом случае состоит всего лишь из трех элементов:

  • силового транзистора MOSFET (N канальный), можно использовать IRFZ24N MOSFET 12 В и 10 А или IFR510 Power MOSFET;
  • потенциометра 10 кОм;
  • NTC термистора в 10 кОм, который будет выполнять роль сенсора температуры.

Термодатчик реагирует на повышение градусов, за счет чего срабатывает вся схема, и вентилятор включается.

Теперь переходим к настройке. Для этого включаем компьютер и регулируем потенциометр, задавая значение для выключенного вентилятора. В тот момент, когда температура приближается к критической, максимально уменьшаем сопротивление до того, как лопасти будут вращаться очень медленно. Лучше сделать настройку несколько раз, чтобы убедиться в эффективности работы оборудования.

Простой терморегулятор для ПК

Современная электронная промышленность предлагает элементы и микросхемы, значительно отличающиеся по виду и техническим характеристикам. У каждого сопротивления или реле есть несколько аналогов. Необязательно использовать только те элементы, которые указаны в схеме, можно брать и другие, совпадающие по параметрам с образцами.

Терморегуляторы для котлов отопления

При регулировке отопительных систем важно точно откалибровать прибор. Для этого потребуется измеритель напряжения и тока. Для создания работающей системы можно воспользоваться следующей схемой.

Схема терморегулятора для отопления

С помощью этой схемы можно создать наружное оборудование для контроля за твердотопливным котлом. Роль стабилитрона здесь выполняет микросхема К561ЛА7. Работа устройства основана на способности терморезистора уменьшать сопротивление при нагреве. Резистор подключается в сеть делителя напряжения электричества. Необходимую температуру можно задать с помощью переменного резистора R2. Напряжение поступает на инвертор 2И-НЕ. Полученный ток подается на конденсатор С1. К 2И-НЕ, который контролирует работу одного триггера, подключен конденсатор. Последний соединен со вторым триггером.

Контроль температуры идет по следующей схеме:

  • при понижении градусов напряжение в реле растет;
  • при достижении определенного значения вентилятор, который соединен с реле, выключается.

Напайку лучше производить на слепыше. В качестве элемента питания можно взять любое устройство, работающее в пределах 3-15 В.

Осторожно! Установка самодельных приборов любого назначения на системы отопления может привести к выходу из строя оборудования. Более того, использование подобных устройств может быть запрещено на уровне служб, осуществляющих подвод коммуникаций в вашем доме.

Цифровой терморегулятор

Для того чтобы создать полноценно функционирующий терморегулятор с точной калибровкой, без цифровых элементов не обойтись. Рассмотрим прибор для контроля температур в небольшом хранилище для овощей.

Основным элементом здесь является микроконтроллер PIC16F628A. Эта микросхема обеспечивает управление разными электронными устройствами. В микроконтроллере PIC16F628A собраны 2 аналоговых компаратора, внутренний генератор, 3 таймера, модули сравнения ССР и обмена передачи данных USART.

При работе терморегулятора значение существующей и заданной температуры подается на MT30361 – трехразрядный индикатор с общим катодом. Для того чтобы задать необходимую температуру, используются кнопки: SB1 – для уменьшения и SB2 – для увеличения. Если проводить настойку с одновременным нажатием кнопки SB3, то можно установить значения гистерезиса. Минимальным значением гистерезиса для этой схемы является 1 градус. Подробный чертеж можно увидеть на плане.

Терморегулятор с регулируемым гистерезисом

При создании любого из устройств важно не только правильно спаять саму схему, но и продумать, как лучше разместить оборудование. Необходимо, чтобы сама плата была защищена от влаги и пыли, иначе не избежать короткого замыкания и выхода из строя отдельных элементов. Также следует позаботиться об изоляции всех контактов.

>Видео

Простой терморегулятор своими руками

Необычное применение регулируемого стабилитрона TL431. Простой терморегулятор. Описание и схема

Всем, кто когда ни будь занимался ремонтов современных блоков питания компьютеров или различных зарядных устройств – для сотовых телефонов, для зарядки «пальчиковых» аккумуляторов типоразмера ААА и АА хорошо известна маленькая деталька TL431. Это так называемый регулируемый стабилитрон (отечественный аналог КР142ЕН19А). Вот уж тут воистину можно сказать: «Мал золотник, да дорог».

Логика работы стабилитрона такова: когда на управляющем электроде напряжение превышает 2,5 В (задается внутренним опорным напряжением) стабилитрон, по сути дела являющийся микросхемой, открыт.

В этом состоянии через него и нагрузку протекает ток. Если же это напряжение становится чуть меньше указанного порога, стабилитрон закрывается и отключает нагрузку.

При работе такого стабилитрона в источниках питания в качестве нагрузки чаще всего используется излучающий светодиод оптрона, управляющего силовым транзистором.

Это в тех случаях, когда необходима гальваническая развязка первичной и вторичной цепей. Если такой развязки не требуется, то стабилитрон может управлять непосредственно силовым транзистором.

Выходная мощность стабилитрона-микросхемы такова, что с его помощью, возможно управлять маломощным реле. Именно это позволило применить его в конструкции терморегулятора.

В предлагаемой конструкции стабилитрон используется в качестве компаратора. При этом у него только один вход: второго входа для подачи опорного напряжения не требуется, так как оно вырабатывается внутри данной микросхемы.

Такое решение позволяет предельно упростить конструкцию и уменьшить количество деталей. Теперь, как в описании любой конструкции следует сказать несколько слов о деталях и собственно о принципе работы данного терморегулятора.

Схема простого треморегулятора

Напряжение на управляющем электроде 1 задается с помощью делителя R1, R2 и R4. В качестве R4 используется терморезистор с отрицательным ТКС, поэтому при нагревании его сопротивление уменьшается. Когда на выводе 1 напряжение выше 2,5В микросхема открыта, реле включено.

Контакты реле включают симистор D2, который включает нагрузку. С повышением температуры сопротивление терморезистора падает, за счет чего напряжение на выводе 1 становится ниже 2,5В – реле отключается, отключается нагрузка.

С помощью переменного резистора R1 производится настройка температуры срабатывания терморегулятора.

Датчик температуры должен быть расположен в зоне измерения температуры: если это, например, электрокотел, то датчик должен быть закреплен на трубе, выходящей из котла.

Включение симистора с помощью реле обеспечивает гальваническую развязку терморезистора от сети.

Терморезистор типа КМТ, ММТ, СТ1. В качестве реле возможно применение РЭС-55А с обмоткой на 10…12В. Симистор КУ208Г позволяет включить нагрузку до 1,5КВт. Если нагрузка не более 200Вт симистор может работать без применения радиатора.

Борис Аладышкин

Обзор схем

Напряжение разности с измерительного плеча поступает на спаренный транзистор с большим коэффициентом усиления, в качестве компаратора выступает электромагнитное реле. При достижении на катушке напряжения, достаточного для втягивания сердечника, происходит ее срабатывание и подключение через ее контакты исполнительных устройств. При достижении заданной температуры, сигнал на транзисторах уменьшается, синхронно падает напряжение на катушке реле, и в какой-то момент происходит расцепление контактов.

Особенностью такого типа реле является наличие гистерезиса — это разница в несколько градусов между включением и отключением самодельного терморегулятора, из-за присутствия в схеме электромеханического реле. Вариант сборки, предоставленный ниже, практически лишен гистерезиса.

Принципиальная электронная схема аналогового терморегулятора для инкубатора:

Данная схема была очень популярна для повторения в 2000 годах, но и сейчас она не потеряла актуальность и с возложенной на нее функцией справляется. При наличии доступа к старым деталям, можно собрать терморегулятор своими руками практически за даром.

Сердцем самоделки является интегральный усилитель К140УД7 или К140УД8. В данном случае он подключен с положительной обратной связью и является компаратором. Термочувствительным элементом R5 служит резистор типа ММТ-4 с отрицательным ТКЕ, это когда при нагревании его сопротивление уменьшается.

Выносной датчик подключается через экранированный провод. Для уменьшения наводок и ложного срабатывания устройства, длина провода не должна превышать 1 метр. Нагрузка управляется через тиристор VS1 и мощность нагревателя целиком зависит от его номинала. В данном случае 150 ватт, электронный ключ — тиристор необходимо установить на небольшой радиатор, для отвода тепла. В таблице ниже представлены номиналы радиоэлементов, для сборки терморегулятора в домашних условиях.

Устройство не имеет гальванической развязки от сети 220 вольт, при настройке будьте внимательны, на элементах регулятора присутствует сетевое напряжение. На видео ниже рассматривается, как собрать терморегулятор на транзисторах:

Самодельный термостат на транзисторах

Теперь расскажем как сделать регулятор температуры для теплого пола. Рабочая схема срисована с серийного образца. Пригодится тем, кто хочет ознакомиться и повторить, или как образец для поиска неисправности.

Центром схемы является микросхема стабилизатора, подключенная необычным способом, LM431 начинает пропускать ток при напряжении выше 2.5 вольт. Именно такой величины у данной микросхемы внутренний источник опорного напряжения. При меньшем значении она ни чего не пропускает. Эту ее особенность стали использовать во всевозможных схемах терморегуляторов.

Как видим, классическая схема с измерительным плечом осталась R5, R4 и R9 терморезистор. При изменении температуры происходит сдвиг напряжения на входе 1 микросхемы, и в случае если оно достигло порога срабатывания происходит включение и подается напряжение дальше. В данной конструкции нагрузкой TL431 являются светодиод индикации работы HL2 и оптрон U1, оптическая развязка силовой схемы от управляющих цепей.

Как и в предыдущем варианте, устройство не имеет трансформатора, а получает питание на гасящей конденсаторной схеме C1R1 и R2. Для стабилизации напряжения и сглаживания пульсаций сетевых всплесков, в схему установлен стабилитрон VD2 и конденсатор C3. Для визуальной индикации наличия напряжения на устройстве установлен светодиод HL1. Силовым управляющим элементом установлен симистор ВТ136 с небольшой обвязкой для управления через оптрон U1.

При данных номиналах диапазон регулирования находится в пределах 30-50°С. При кажущейся сложности конструкция проста в настройке и легка в повторении. Наглядная схема терморегулятора на микросхеме TL431, с внешним питанием 12 вольт для использования в системах домашней автоматики:

Данный терморегулятор способен управлять компьютерным вентилятором, силовым реле, световыми индикаторами, звуковыми сигнализаторами. Для управления температурой паяльника существует интересная схема с использованием той же интегральной микросхемы TL431.

Для измерения температуры нагревательного элемента используют биметаллическую термопару, которую можно позаимствовать с выносного измерителя в мультиметре. Для увеличения напряжения с термопары до уровня срабатывания TL431, установлен дополнительный усилитель LM351. Управление осуществляется через оптрон MOC3021 и симистор T1.

При включении терморегулятора в сеть необходимо соблюдать полярность, минус регулятора должен быть на нулевом проводе, иначе фазное напряжение появится на корпусе паяльника, через провода термопары. Регулировка диапазона производится резистором R3. Данная схема обеспечит долгую работу паяльника, исключит его перегрев и увеличит качество пайки.

Еще одна идея сборки простого терморегулятора рассмотрена на видео:

Регулятор температуры на микросхеме TL431

Также рекомендуем просмотреть еще одну идею сборки термостата для паяльника:

Простой регулятор для паяльника

Разобранных примеров регуляторов температуры вполне достаточно для удовлетворения нужд домашнего мастера. Схемы не содержат дефицитных и дорогих запчастей, легко повторяются и практически не нуждаются в настройке. Данные самоделки запросто можно приспособить для регулирования температуры воды в баке водонагревателя, следить за теплом в инкубаторе или теплице, модернизировать утюг или паяльник. Помимо этого можно восстановить старенький холодильник, переделав регулятор для работы с отрицательными значениями температуры, путем замены местами сопротивлений в измерительном плече. Надеемся наша статья была интересна, вы нашли ее для себя полезной и поняли, как сделать терморегулятор своими руками в домашних условиях!

Будет интересно прочитать:

  • Как сделать паяльник из подручных средств
  • Регулятор освещения своими руками
  • Как выпаивать радиодетали из плат

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Это три основные части системы поддержания заданных температурных параметров. Хотя, помимо них, в схеме могут участвовать и другие части наподобие промежуточного реле. Но они исполняют лишь дополнительную функцию.

Самодельный регулятор температуры

Схем для того, чтобы сделать терморегулятор самому, в действительности очень много. Всё зависит от сферы, в которой будет применяться такое изделие. Конечно, создать нечто слишком сложное и многофункциональное крайне трудно. А вот термостат, который сможет использоваться для обогревания аквариума или сушки овощей на зиму, вполне можно создать, имея минимум знаний.

Это полезно: распределительный коллектор в системе отопления.

Простейшая схема

Самая простая схема термореле своими руками имеет безтрансформаторный блок питания, который состоит из диодного моста с параллельно подключённым стабилитроном, стабилизирующим напряжение в пределах 14 вольт, и гасящего конденсатора. Сюда же можно при желании добавить и стабилизатор на 12 вольт.

Создание терморегулятора не требует особых усилий и денежных вложений

В основе всей схемы будет использован стабилитрон TL431, который управляется делителем, состоящим из резистора на 47 кОм, сопротивления на 10 кОм и терморезистора, выполняющего роль датчика температуры, на 10 кОм. Его сопротивление понижается с повышением температуры. Резистор и сопротивление лучше подбирать, чтобы добиться наилучшей точности срабатывания.

Сам же процесс выглядит следующим образом: когда на контакте управления микросхемой образуется напряжение больше 2,5 вольт, то она произведёт открытие, что включит реле, подавая нагрузку на исполнительный механизм.

Как изготовить терморегулятор для инкубатора своими руками, вы можете увидеть на представленном видео:

И напротив, когда напряжение станет ниже, то микросхема закроется и реле отключится.

Чтобы избежать дребезжания контактов реле, необходимо его выбирать с минимальным током удержания. И параллельно вводам нужно припаять конденсатор 470×25 В.

При использовании терморезистора NTC и микросхемы, уже бывавших в деле, предварительно стоит проверить их работоспособность и точность.

Таким образом, получается простейший прибор, регулирующий температуру. Но при правильно подобранных составляющих он превосходно работает в широком спектре применения.

Прибор для помещения

Такие терморегуляторы с датчиком температуры воздуха своими руками оптимально подходят для поддержания заданных параметров микроклимата в помещениях и ёмкостях. Он полностью способен автоматизировать процесс и управлять любым излучателем тепла начиная с горячей воды и заканчивая тэнами. При этом термовыключатель имеет отличные эксплуатационные данные. А датчик может быть как встроенным, так и выносным.

Здесь в качестве термодатчика выступает терморезистор, обозначенный на схеме R1. В делитель напряжения входят R1, R2, R3 и R6, сигнал с которого поступает на четвёртый контакт микросхемы операционного усилителя. На пятый контакт DA1 подаётся сигнал с делителя R3, R4, R7 и R8.

Сопротивления резисторов необходимо подбирать таким образом, чтобы при минимально низкой температуре замеряемой среды, когда сопротивление терморезистора максимальное, компаратор положительно насыщался.

Напряжение на выходе компаратора составляет 11,5 вольт. В это время транзистор VT1 находится в открытом положении, а реле K1 включает исполнительный или промежуточный механизм, в результате чего начинается нагрев. Температура окружающей среды в результате этого повышается, что понижает сопротивление датчика. На входе 4 микросхемы начинает повышаться напряжение и в результате превосходит напряжение на контакте 5. Вследствие этого компаратор входит в фазу отрицательного насыщения. На десятом выходе микросхемы напряжение становится приблизительно 0,7 Вольт, что является логическим нулём. В результате транзистор VT1 закрывается, а реле отключается и выключает исполнительный механизм.

На микросхеме LM 311

Такой термоконтроллер своими руками предназначен для работы с тэнами и способен поддерживать заданные параметры температуры в пределах 20-100 градусов. Это наиболее безопасный и надёжный вариант, так как в его работе применяется гальваническая развязка термодатчика и регулирующих цепей, а это полностью исключает возможность поражения электротоком.

Как и большинство подобных схем, в её основу берется мост постоянного тока, в одно плечо которого подключают компаратор, а в другое – термодатчик. Компаратор следит за рассогласованием цепи и реагирует на состояние моста, когда тот переходит точку баланса. Одновременно он же старается уравновесить мост с помощью терморезистора, изменяя его температуру. А термостабилизация может возникнуть лишь при определённом значении.

Резистором R6 задают точку, при которой должен образоваться баланс. И в зависимости от температуры среды терморезистор R8 может в этот баланс входить, что и позволяет регулировать температуру.

На видео вы можете увидеть разбор простой схемы терморегулятора:

Если заданная R6 температура ниже необходимой, то на R8 сопротивление слишком большое, что понижает ток на компараторе. Это вызовет протекание тока и открывание семистора VS1, который включит нагревательный элемент. Об этом будет сигнализировать светодиод.

По мере того как температура будет повышаться, сопротивление R8 станет снижаться. Мост будет стремиться к точке баланса. На компараторе потенциал инверсного входа плавно снижается, а на прямом – повышается. В какой-то момент ситуация меняется, и процесс происходит в обратную сторону. Таким образом, термоконтроллер своими руками будет включать или выключать исполнительный механизм в зависимости от сопротивления R8.

Если в наличии нет LM311, то её можно заменить отечественной микросхемой КР554СА301. Получается простой терморегулятор своими руками с минимальными затратами, высокой точностью и надёжностью работы.

Достоинства и недостатки

Даже простой терморегулятор своими руками имеет массу достоинств и положительных моментов. Говорить же о заводских многофункциональных устройствах и вовсе не приходится.

Регуляторы температуры позволяют:

  1. Поддерживать комфортную температуру.
  2. Экономить энергоресурсы.
  3. Не привлекать к процессу человека.
  4. Соблюдать технологический процесс, повышая качество.

Из недостатков можно назвать высокую стоимость заводских моделей. Конечно, самодельных приборов это не касается. А вот производственные, которые требуются при работе с жидкими, газообразными, щелочными и другими подобными средами, имеют высокую стоимость. Особенно если прибор должен иметь множество функций и возможностей.

Иногда дома приходиться иметь с бытовым инкубатором или сушкой для овощей. Зачастую дешевая техника такого рода имеет термореле очень плохого качества, контакты которого быстро выгорают или оно не отличаются хорошей плавностью регулировки. И так, сегодня у нас на повестке дня простой терморегулятор своими руками, мы соберем схему и продемонстрируем его работу.

Простой терморегулятор своими руками – схема

Питание схемы терморегулятора осуществляется с помощью бестрансформаторного блока питания, состоит он из гасящего конденсатора С1 и диодного моста D1. Параллельно мосту включен стабилитрон ZD1, который стабилизирует напряжение в пределах 14В. При желании, можно еще добавить и стабилизатор на 12В.

Основу схемы составляет управляемый стабилитрон TL431. Управление TL431 производиться с помощью делителя напряжения R4, R5 и R6. Датчиком температуры воздуха является NTC терморезистор R4 номиналом 10кОм. При повышении температуры он уменьшает свое сопротивление.



При напряжении более 2,5В на контакте управления TL431, эта микросхема открывается, далее срабатывает реле, замыкая контакты и включая нагрузку.

При повышении температуры датчика R4, его сопротивление начнет падать. Когда напряжение на контакте управления TL431 станет меньше 2,5В микросхема закроется и отключит реле с нагрузкой.

Подбором резисторов R5 и R6 необходимо добиться необходимого диапазона регулировки температуры. Номинал R5 – отвечает за максимальную температуру, а R6 – за минимальную.

Для устранения эффекта дребезжания контактов реле при включении или отключении параллельно выводам А1 и А2 контактов реле необходимо подключить конденсатор С4. Реле К1 необходимо использовать с как можно меньшим током удержания.

При использовании б/у-шных TL431 и NTC терморезисторов важно проверить их работоспособность. Для этого желательно ознакомиться с материалами на тему: как проверить TL431 и как проверить термистор.

Как сделать терморегулятор своими руками

В качестве корпуса был использован сгоревший электронный счётчик Гранит-1. Плата, на которой расположились все основные радиодетали также от счетчика. Внутри корпуса поместились трансформатор блока питания и электромагнитное реле:

В качестве реле я решил использовать автомобильное, которое можно приобрести в любом автомагазине. Рабочий ток катушки приблизительно 100 миллиампер:

Так как регулируемый стабилитрон маломощный, его максимальный ток не превышает 100 миллиампер, непосредственно включить реле в цепь стабилитрона не получится. Поэтому пришлось использовать более мощный транзистор КТ814. Конечно, схему можно упростить, если применить реле, у которого ток через катушку будет меньше 100 миллиампер, например SRD-12VDC-SL-C или SRA-12VDC-AL. Такие реле можно включить непосредственно в цепь катода стабилитрона.

Немного расскажу о трансформаторе. В качестве, которого я решил использовать нестандартный. У меня завалялась катушка напряжения от старого индукционного счетчика электрической энергии:

Как видно на фотографии там имеется свободное место для вторичной обмотки, я решил попробовать намотать её и посмотреть что получится. Конечно площадь поперечного сечение сердечника у него маленькая, соответственно и мощность небольшая. Но для данного регулятора температуры этого трансформатора достаточно. По расчётам у меня получилось 45 витков на 1 вольт. Для получения 12 вольт на выходе нужно намотать 540 витков. Чтобы уместить их я использовал провод диаметром 0,4 миллиметра. Конечно, можно использовать готовый блок питания с выходным напряжением 12 вольт или адаптер.

Как вы заметили, в схеме стоит стабилизатор 7805 со стабилизированным выходным напряжением 5 вольт, который питает управляющий вывод стабилитрона. Благодаря этому регулятор температуры получился со стабильными характеристиками, которые не будут изменяться от изменения питающего напряжения.

В качестве датчика я использовал терморезистор, у которого при комнатной температуре сопротивление 50 Ком. При нагревании сопротивление данного резистора уменьшается:

Чтобы защитить его от механических воздействий я применил термоусаживающие трубочки:

Место для переменного резистора R1 нашлось с правой стороны терморегулятора. Так как ось резистора очень короткая пришлось напаять на неё флажок, за который удобно поворачивать. С левой стороны я поместил тумблер ручного управления. При помощи него легко проконтролировать рабочее состояние устройства, при этом, не изменяя выставленную температуру:

Несмотря на то, что клемник бывшего электросчетчика очень громоздкий, убирать его из корпуса я не стал. В него чётко входит вилка, от какого либо прибора, например электрообогревателя. Убрав перемычку (на фотографии желтая справа) и включив вместо перемычки амперметр можно померить силу тока, отдаваемую в нагрузку:

Теперь осталось проградуировать терморегулятор. Для этого нам понадобится цифровой термометр ТМ-902С. Нужно оба датчика устройства соединить вместе при помощи изоленты:

Термометром произвести замер температуры различных предметов горячих, холодных. При помощи маркера нанести шкалу и разметку на терморегуляторе, момент включения реле. У меня получилось от 8 до 60 градусов Цельсия. Если кому-то нужно сдвинуть рабочую температуру в ту или иную сторону, это легко сделать, изменив номиналы резисторов R1, R2, R3:

Вот мы и сделали электронный терморегулятор своими руками. Внешне выглядит вот так:

Чтобы не было видно внутренности устройства, через прозрачную крышку, я ее закрыл скотчем, оставив отверстие под светодиод HL1. Некоторые радиолюбители, кто решил повторить эту схему, жалуются на то, что реле включается, не очень чётко, как бы дребезжит. Я ничего этого не заметил, реле включается и отключается очень чётко. Даже при небольшом изменении температуры, никакого дребезга не происходит. Если все-таки он возникнет нужно подобрать более точно конденсатор C3 и резистор R5 в цепи базы транзистора КТ814.

Собранный терморегулятор по данной схеме включает нагрузку при понижении температуры. Если кому то наоборот понадобится включать нагрузку при повышении температуры, то нужно поменять местами датчик R2 с резисторами R1, R3.

svyazist-izh.ru

Собираем электронный терморегулятор своими руками схема и подробное описание по сборке устройства

Привет всем любителям электронных самоделок. Недавно я по быстрому смастерил электронный терморегулятор своими руками, схема устройства очень проста. В качестве исполнительного устройства используется электромагнитное реле с мощными контактами, которые могут выдержать ток до 30 ампер. Поэтому рассматриваемая самоделка может использоваться для разных бытовых нужд.

По нижеприведенной схеме, терморегулятор можно использовать, например, для аквариума или для хранения овощей. Кому то он может пригодиться при использовании совместно с электрическим котлом, а кто-то его может приспособить и для холодильника.

Электронный терморегулятор своими руками, схема устройства

Как я уже говорил, схема очень проста, содержит минимум недорогих и распространённых радиодеталей. Обычно терморегуляторы строятся на микросхеме компараторе. Из-за этого устройство усложняется. Данная самоделка построена на регулируемом стабилитроне TL431:

Теперь поговорим подробнее о тех деталях, которые я использовал.

Детали устройства:

  • Трансформатор понижающий на 12 вольт
  • Диоды; IN4007, или другие с похожими характеристиками 6 шт.
  • Конденсаторы электролитические; 1000 мк, 2000 мк, 47 мк
  • Микросхема стабилизатор; 7805 или другая на 5 вольт
  • Транзистор; КТ 814А, или другой p-n-p c током коллектора не меньше 0,3 А
  • Регулируемый стабилитрон; TL431 или советский КР142ЕН19А
  • Резисторы; 4,7 Ком, 160 Ком, 150 Ом, 910 Ом
  • Резистор переменный; 150 Ком
  • Терморезистор в качестве датчика; около 50 Ком с отрицательным ТКС
  • Светодиод; любой с наименьшим током потребления
  • Реле электромагнитное; любое на 12 вольт с током потребления 100 мА или меньше
  • Кнопка или тумблер; для ручного управления

Как сделать терморегулятор своими руками

В качестве корпуса был использован сгоревший электронный счётчик Гранит-1. Плата, на которой расположились все основные радиодетали также от счетчика. Внутри корпуса поместились трансформатор блока питания и электромагнитное реле:

В качестве реле я решил использовать автомобильное, которое можно приобрести в любом автомагазине. Рабочий ток катушки приблизительно 100 миллиампер:

Так как регулируемый стабилитрон маломощный, его максимальный ток не превышает 100 миллиампер, непосредственно включить реле в цепь стабилитрона не получится. Поэтому пришлось использовать более мощный транзистор КТ814. Конечно, схему можно упростить, если применить реле, у которого ток через катушку будет меньше 100 миллиампер, например SRD-12VDC-SL-C или SRA-12VDC-AL. Такие реле можно включить непосредственно в цепь катода стабилитрона.

Немного расскажу о трансформаторе. В качестве, которого я решил использовать нестандартный. У меня завалялась катушка напряжения от старого индукционного счетчика электрической энергии:

Как видно на фотографии там имеется свободное место для вторичной обмотки, я решил попробовать намотать её и посмотреть что получится. Конечно площадь поперечного сечение сердечника у него маленькая, соответственно и мощность небольшая. Но для данного регулятора температуры этого трансформатора достаточно. По расчётам у меня получилось 45 витков на 1 вольт. Для получения 12 вольт на выходе нужно намотать 540 витков. Чтобы уместить их я использовал провод диаметром 0,4 миллиметра. Конечно, можно использовать готовый блок питания с выходным напряжением 12 вольт или адаптер.

Как вы заметили, в схеме стоит стабилизатор 7805 со стабилизированным выходным напряжением 5 вольт, который питает управляющий вывод стабилитрона. Благодаря этому регулятор температуры получился со стабильными характеристиками, которые не будут изменяться от изменения питающего напряжения.

В качестве датчика я использовал терморезистор, у которого при комнатной температуре сопротивление 50 Ком. При нагревании сопротивление данного резистора уменьшается:

Чтобы защитить его от механических воздействий я применил термоусаживающие трубочки:

Место для переменного резистора R1 нашлось с правой стороны терморегулятора. Так как ось резистора очень короткая пришлось напаять на неё флажок, за который удобно поворачивать. С левой стороны я поместил тумблер ручного управления. При помощи него легко проконтролировать рабочее состояние устройства, при этом, не изменяя выставленную температуру:

Несмотря на то, что клемник бывшего электросчетчика очень громоздкий, убирать его из корпуса я не стал. В него чётко входит вилка, от какого либо прибора, например электрообогревателя. Убрав перемычку (на фотографии желтая справа) и включив вместо перемычки  амперметр можно померить силу тока, отдаваемую в нагрузку:

Теперь осталось проградуировать терморегулятор. Для этого нам понадобится цифровой термометр ТМ-902С. Нужно оба датчика устройства соединить вместе при помощи изоленты:

Термометром произвести замер температуры различных предметов горячих, холодных. При помощи маркера нанести шкалу и разметку на терморегуляторе, момент включения реле. У меня получилось от 8 до 60 градусов Цельсия. Если кому-то нужно сдвинуть рабочую температуру в ту или иную сторону, это легко сделать, изменив номиналы резисторов R1, R2, R3:

Вот мы и сделали электронный терморегулятор своими руками. Внешне выглядит вот так:

Чтобы не было видно внутренности устройства, через прозрачную крышку, я ее закрыл скотчем, оставив отверстие под светодиод HL1. Некоторые радиолюбители, кто решил повторить эту схему, жалуются на то, что реле включается, не очень чётко, как бы дребезжит. Я ничего этого не заметил, реле включается и отключается очень чётко. Даже при небольшом изменении температуры, никакого дребезга не происходит. Если все-таки он возникнет нужно подобрать более точно конденсатор C3 и резистор R5 в цепи базы транзистора КТ814.

Собранный терморегулятор по данной схеме включает нагрузку при понижении температуры. Если кому то наоборот понадобится включать нагрузку при повышении температуры, то нужно поменять местами датчик R2 с резисторами R1, R3.

radiobezdna.ru

принцип работы, схемы устройств, как настроить и проверить, основные неисправности

Необходимость настройки температурного режима возникает при использовании различных систем теплового или холодильного оборудования. Вариантов много, и все они требуют наличия управляющего устройства, без которого работа систем возможна либо в режиме максимальной мощности, либо на полном минимуме возможностей. Контроль и настройка производятся с помощью терморегулятора — устройства, способного воздействовать на систему через датчик температуры и включать или отключать её по необходимости. При использовании готовых комплектов оборудования блоки управления входят в комплект поставки, но для самодельных систем приходится собирать терморегулятор своими руками. Задача не самая простая, но вполне решаемая. Рассмотрим её внимательнее.

Принцип работы терморегулятора

Терморегулятор — это устройство, способное реагировать на изменения температурного режима. По типу действия различают терморегуляторы триггерного типа, отключающие или включающие нагрев при достижении заданного предела, или устройства плавного действия с возможностью тонкой и точной настройки, способные контролировать изменения температуры в диапазоне долей градуса.

Существуют две разновидности терморегуляторов:

  1. Механический. Представляет собой устройство, использующее принцип расширения газов при изменении температуры, или биметаллические пластины, изменяющие свою форму от нагревания или охлаждения.
  2. Электронный. Состоит из основного блока и датчика температуры, подающего сигналы об увеличении или понижении заданной температуры в системе. Используется в системах, требующих высокой чувствительности и тонкой регулировки.

Механические устройства не позволяют обеспечить высокой точности настройки. Они являются одновременно и датчиком температуры, и исполнительным органом, объединёнными в единый узел. Биметаллическая пластина, используемая в нагревательных устройствах, представляет собой термопару из двух металлов с разным коэффициентом теплового расширения.

ТерморегуляторТерморегулятор

Главное предназначение терморегулятора — автоматическое поддержание необходимой температуры

Нагреваясь, один из них становится больше другого, отчего пластина изгибается. Контакты, установленные на ней, размыкаются и прекращают нагрев. При охлаждении пластина возвращается в изначальную форму, контакты вновь замыкаются и нагрев возобновляется.

Камера с газовой смесью — чувствительный элемент термостата холодильника или отопительного терморегулятора. При изменениях температуры меняется объём газа, что вызывает перемещение поверхности мембраны, соединённой с рычагом контактной группы.

Камера с газовой смесьюКамера с газовой смесью

В терморегуляторе для отопления используется камера с газовой смесью, работающая по закону Гей-Люссака — при изменении температуры меняется объём газа

Механические термостаты надёжны и обеспечивают устойчивую работу, но настройка режима работы происходит с большой погрешностью, практически «на глазок». При необходимости тонкой настройки, обеспечивающей регулировку в пределах нескольких градусов (или ещё тоньше), используются электронные схемы. Датчиком температуры для них служит терморезистор, способный различить мельчайшие изменения режима нагрева в системе. Для электронных схем ситуация обратная — чувствительность датчика слишком высока и её искусственно загрубляют, доводя до пределов разумного. Принцип действия состоит в изменении сопротивления датчика, вызванном колебаниями температуры контролируемой среды. Схема реагирует на смену параметров сигнала и повышает/понижает нагрев в системе до получения другого сигнала. Возможности электронных блоков контроля намного выше и позволяют получить настройку температуры любой точности. Чувствительность таких термостатов даже избыточна, поскольку нагрев и охлаждение — процессы, обладающие высокой инерционностью, которые замедляют время реакции на смену команд.

Область применения самодельного устройства

Изготовление механического терморегулятора в домашних условиях достаточно сложно и нерационально, поскольку результат будет работать в слишком широком диапазоне и не сможет обеспечить требуемой точности настройки. Чаще всего собирают самодельные электронные терморегуляторы, которые позволяют поддерживать оптимальный режим температуры тёплого пола, инкубатора, обеспечивать желаемую температуру воды в бассейне, нагрев парилки в сауне и т.д. Вариантов применения самодельного терморегулятора может быть столько, сколько систем, подлежащих настройке и регулировке температурного режима, имеется в доме. Для грубой настройки с помощью механических устройств проще приобрести готовые элементы, они недороги и вполне доступны.

Преимущества и недостатки

Самодельный терморегулятор обладает определёнными достоинствами и недостатками. Плюсами устройства являются:

  • Высокая ремонтопригодность. Терморегулятор, сделанный самостоятельно, легко отремонтировать, поскольку его конструкция и принцип работы известны до мелочей.
  • Расходы на создание регулятора намного ниже, чем при покупке готового блока.
  • Существует возможность изменения рабочих параметров для получения более подходящего результата.

К недостаткам следует отнести:

  • Сборка такого устройства доступна только людям, имеющим достаточную подготовку и определённые навыки работы с электронными схемами и паяльником.
  • Качество работы устройства в большой степени зависит от состояния использованных деталей.
  • Собранная схема требует настройки и юстировки на контрольном стенде или с помощью эталонного образца. Получить сразу готовый вариант устройства невозможно.

Основной проблемой является необходимость подготовки или, как минимум, участие специалиста в процессе создания прибора.

Как сделать простой терморегулятор

Изготовление терморегулятора происходит поэтапно:

  • Выбор типа и схемы устройства.
  • Приобретение необходимых материалов, инструментов и деталей.
  • Сборка прибора, настройка, запуск в эксплуатацию.

Стадии изготовления прибора имеют свои особенности, поэтому их следует рассмотреть подробнее.

Необходимые материалы

В число необходимых для сборки материалов входят:

  • Фольгированный гетинакс или монтажная плата;
  • Паяльник с припоем и канифолью, в идеале — паяльная станция;
  • Пинцет;
  • Пассатижи;
  • Лупа;
  • Кусачки;
  • Изолента;
  • Медный соединительный провод;
  • Необходимые детали, согласно электрической схемы.

В процессе работы могут понадобиться и другие инструменты или материалы, поэтому данный список не следует считать исчерпывающим и окончательным.

Схемы устройств

Выбор схемы обусловлен возможностями и уровнем подготовки мастера. Чем сложнее схема, тем больше нюансов возникнет при сборке и настройке устройства. В то же время самые простые схемы позволяют получить лишь наиболее примитивные приборы, работающие с высокой погрешностью.

Рассмотрим одну из несложных схем.

Простая схема терморегулятораПростая схема терморегулятора

В данной схеме в качестве компаратора используется стабилитрон

На рисунке слева изображена схема регулятора, а справа — блок реле, включающий нагрузку. Датчик температуры — это резистор R4, а R1 — переменный резистор, используемый для настройки режима нагрева. Управляющим элементом является стабилитрон TL431, который открыт до тех пор, пока на его управляющем электроде имеется нагрузка выше 2,5 В. Нагрев терморезистора вызывает снижение сопротивления, отчего напряжение на управляющем электроде падает, стабилитрон закрывается, отсекая нагрузку.

Другая схема несколько сложнее. В ней использован компаратор — элемент, производящий сравнение показаний термодатчика и эталонного источника напряжения.

Схема терморегулятора с компараторомСхема терморегулятора с компаратором

Подобная схема с компаратором применима для регулировки температуры тёплого пола

Любое изменение напряжения, вызванное увеличением или уменьшением сопротивления терморезистора, создаёт разницу между эталоном и рабочей линией схемы, вследствие чего на выходе устройства генерируется сигнал, вызывающий включение или отключение нагрева. Подобные схемы, в частности, используются для регулировки режима работы тёплого пола.

Пошаговая инструкция

Порядок сборки каждого устройства имеет свои особенности, но некоторые общие шаги выделить можно. Рассмотрим ход сборки:

  1. Готовим корпус прибора. Это важно, поскольку оставлять плату незащищённой нельзя.
  2. Готовим плату. Если используется фольгированный гетинакс, придётся травить дорожки при помощи электролитических методов, предварительно нарисовав их нерастворимой в электролите краской. Монтажная плата с готовыми контактами значительно упрощает и ускоряет процесс сборки.
  3. Проверяем с помощью мультиметра работоспособность деталей, при необходимости заменяем их на исправные образцы.
  4. По схеме собираем и соединяем все необходимые детали. Необходимо следить за точностью соединения, правильной полярностью и направлением установки диодов или микросхем. Любая ошибка может привести к выходу из строя важных деталей, которые придётся приобретать снова.
  5. После окончания сборки рекомендуется ещё раз внимательно осмотреть плату, проверить точность соединений, качество пайки и прочие важные моменты.
  6. Плата помещается в корпус, производится пробный запуск и настройка работы устройства.

Как настроить

Для настройки прибора необходимо либо иметь эталонное устройство, либо знать номинал напряжений, соответствующих той или иной температуре контролируемой среды. Для отдельных устройств существуют собственные формулы, показывающие зависимость напряжения на компараторе от температуры. Например, для датчика LM335 такая формула имеет вид:

V = (273 + T) • 0,01,

где Т — требуемая температура по Цельсию.

В других схемах настройка производится путём подбора номиналов регулировочных резисторов при создании определённой, известной температуры. В каждом конкретном случае могут быть использованы собственные методики, оптимальным образом подходящие к имеющимся условиям или используемому оборудованию. Требования к точности прибора также отличаются друг от друга, поэтому единой технологии настройки не существует в принципе.

Основные неисправности

Наиболее распространённой неисправностью самодельных терморегуляторов является нестабильность показаний терморезистора, вызванная низким качеством деталей. Кроме того, нередко встречаются сложности с настройкой режимов, вызванные несоответствием номиналов или изменением состава деталей, необходимых для правильной работы устройства. Большинство возможных проблем напрямую зависят от уровня подготовки мастера, производящего сборку и настройку прибора, так как навыки и опыт в этом деле значат очень много. Тем не менее, специалисты утверждают, что изготовление терморегулятора своими руками — полезная практическая задача, дающая неплохой опыт в создании электронных устройств.

Если уверенности в своих силах нет, лучше использовать готовое устройство, которых достаточно в продаже. Необходимо учитывать, что отказ регулятора в самый неподходящий момент может стать причиной серьёзных неприятностей, для устранения которых потребуются усилия, время и деньги. Поэтому, принимая решение о самостоятельной сборке, следует подойти к вопросу максимально ответственно и тщательно взвесить свои возможности.

Оцените статью: Поделитесь с друзьями!

kotel.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *