Подключение электродвигателя 220 вольт через конденсатор: Подключение электродвигателя 380В на 220В

Содержание

Подключение электродвигателя в однофазную сеть на 220 вольт.

В статье рассказывается и наглядно демонстрируется, как осуществляется подключение промышленного трехфазного электромотора, рассчитанного на 380 В, в однофазную бытовую сеть 220 вольт.

Для решения задачи необходим конденсатор. Основная рабочая характеристика прибора — емкость, которая выражается в микрофарадах. Она сокращенно обозначается МКФ и для каждого агрегата рассчитывается отдельно с учетом его мощности. Среднее значение — 7 МКФ на 0,1 кВт, соответственно, для мотора 0,37 кВт нужен конденсатор емкостью 25,9 МКФ.

Однако устройств с таким показателем не выпускают. На рынке представлены конденсаторы 18, 20, 30 МКФ и т. д., поэтому необходимо подобрать изделие с наиболее приближенной емкостью. Для 25,9 МКФ подойдут устройства 20–30 МКФ, однако при подключении электродвигателя на 220 вольт необходимо произвести пробный запуск. Это обусловлено тем, что у агрегатов от разных производителей имеются специфические особенности. Это касается технологии сборки, сплава металла, количества обмоток и пр.

Известны примеры, когда моторы от разных заводов-изготовителей при прочих равных условиях запускались по-разному, а некоторые из них отказывались работать. Если возникли проблемы с пуском, рекомендуется установить конденсатор с большей емкостью. Если же работающий агрегат чрезмерно шумит и вибрирует, а также стремительно нагревается, емкость конденсатора следует снизить. Помните: мотор должен функционировать тихо и без вибраций.

Для достижения оптимальных эксплуатационных характеристик подключение электродвигателя на 220 вольт рекомендуется производить по схеме «треугольник».

Схема подключения однофазного электродвигателя:

Для подключения треугольником - необходимо поставить перемычки и сделать три разные последовательные соединения. После чего подключать к 3 независимо последовательным соединениям провода.

Видеоматериал

Схема подключения однофазного электродвигателя на 220 вольт через конденсатор

Нередки случаи, когда необходимо подключить электродвигатель к сети 220 вольт - это происходит при попытках приобщить оборудование к своим нуждам, но схема не отвечает техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на 220 вольт.

Почему так происходит? Например, в гараже необходимо подключение асинхронного электродвигателя на 220 вольт, который рассчитан на три фазы. При этом, необходимо сохранить КПД (коэффициент полезного действия), так поступают в случае, если альтернативы (в виде движка) просто не существует, потому как в схеме на три фазы легко образуется вращающееся магнитное поле, которое обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше, по сравнению с трехфазной схемой подключения.

Когда в однофазных движках присутствует только одна обмотка, мы наблюдаем картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для пуска не происходит, пока собственноручно не раскрутить вал. Для того, чтобы вращение могло происходить самостоятельно, добавляем вспомогательную пусковую обмотку. Это вторая фаза, она перемещена на 90 градусов и толкает ротор при включении. При этом двигатель все равно включен в сеть с одной фазой, так что название однофазного сохраняется. Такие однофазные синхронные моторы имеют рабочую и пусковую обмотки. Разница в том, что пусковая действует только при включении заводя ротор, работая всего три секунды. Вторая же обмотка включена все время. Для того, чтобы определить где какая, можно использовать тестер. На рисунке можно увидеть соотношение их со схемой в целом.

Подключение электродвигателя на 220 вольт: мотор запускается путем подачи 220 вольт на рабочую и пусковую обмотки, а после набора необходимых оборотов нужно вручную отключить пусковую. Для того, чтобы фазу сдвинуть, необходимо омическое сопротивление, которое и обеспечивают конденсаторы индуктивности. Встречается сопротивление как в виде отдельного резистора, так и в части самой пусковой обмотки, которая выполняется по бифилярной технике. Она работает так: индуктивность катушки сохраняется, а сопротивление становиться больше из-за удлиненного провода из меди. Такую схему можно наблюдать на рисунке 1: подключение электродвигателя 220 вольт.

Рисунок 1. Схема подключения электродвигателя 220 вольт с конденсатором

Существуют также моторы, у которых обе обмотки непрерывно подключены к сети, они называются двухфазные, потому как поле внутри вращается, а конденсатор предусмотрен, чтобы сдвигать фазы. Для работы такой схемы, обе обмотки имеют провод с равным друг другу сечением.

Схема подключения коллекторного электродвигателя на 220 вольт

Где можно встретить в быту?

Электрические дрели, некоторые стиральные машинки, перфораторы и болгарки имеют синхронный коллекторный двигатель.

Он способен работать в сетях с одной фазой даже без пусковых механизмов. Схема такая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй – в статоре. Два кончика, которые остались, необходимо присоединить к питанию в 220 вольт.

Подключение электродвигателя 220 вольт с пусковой обмоткой

Внимание!

  • Такая схема исключает блок электроники, а следовательно – мотор сразу же с момента старта, будет работать на полную мощность – на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе;
  • существуют электромоторы с двумя скоростями. Их можно определить по трем концам в статоре, выходящим из обмотки. В этом случае скорость вала при подключении уменьшается, а риск деформации изоляции при старте – увеличивается;
  • направление вращения можно изменить, для этого следует поменять местами окончания подключения в статоре или якоре.

Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Есть еще один вариант подключения электродвигателя мощность в 380 Вольт, который приходит в движение без нагрузки.

Для этого также необходим конденсатор в рабочем состоянии.

Один конец подключается к нулю, а второй - к выходу треугольника с порядковым номером три. Чтобы изменить направление вращения электромотора, стоит подключить его к фазе, а не к нулю.

Схема подключения электродвигателя 220 вольт через конденсаторы

В случае, когда мощность двигателя более 1,5 Киловатта или он при старте работает сразу с нагрузкой, вместе с рабочим конденсатором необходимо параллельно установить и пусковой. Он служит увеличению пускового момента и включается всего на несколько секунд во время старта. Для удобства он подключается с кнопкой, а все устройство - от электропитания через тумблер или кнопку с двумя позициями, которая имеет два фиксированных положения. Для того, чтобы запустить такой электромотор, необходимо все подключить через кнопку (тумблер) и держать кнопку старта, пока он не запустится. Когда запустился – просто отпускаем кнопку и пружина размыкает контакты, отключая стартер

Специфика заключается в том, что асинхронные двигатели изначально предназначаются для подключения к сети с тремя фазами в 380 В или 220 В.

Важно! Для того чтобы подключить однофазный электромотор в однофазную сеть, необходимо ознакомиться с данными мотора на бирке и знать следующее:

Р = 1,73 * 220 В * 2,0 * 0,67 = 510 (Вт) расчет для 220 В

Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) расчет для 380 В

По формуле становиться понятно, что электрическая мощность превосходит механическую. Это необходимый запас для компенсации потерь мощности при старте - создании вращающегося момента магнитного поля.

Существуют два типа обмотки - звездой и треугольником. По информации на бирке мотора можно определить какая система в нем использована.

Это схема обмотки звездой

Красные стрелки - это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в 220 В, а двух других - линейного напряжения 380 В. Такой двигатель можно приспособить под однофазную сеть по рекомендациям на бирке: узнать для какого напряжения созданы обмотки, можно соединять их звездой или треугольником.

Схема обмотки треугольником проще. По возможности лучше применить ее, так как двигатель будет терять мощность в меньшем количестве, а напряжение по обмоткам всюду будет равно 220 В.

Это схема подключения с конденсатором асинхронного двигателя в однофазную сеть. Включает рабочие и пусковые конденсаторы.

Пример:

  • применяем конденсаторы ориентируясь на напряжение, минимум 300 или 400 В;
  • емкость рабочих конденсаторов набирается путем параллельного их соединения;
  • вычисляем таким образом: каждые 100 В - это еще 7мкФ, учитывая, что 1 кВт равен 70 мкФ;
  • это пример параллельного соединения конденсаторов

  • емкость для пуска должна превышать в три раза емкость рабочих конденсаторов.

Важно! Если при старте не отключить вовремя пусковые конденсаторы, когда мотор наберет стандартные для него обороты, они приведут к большому перекосу по току во всех обмотках, что попросту заканчивается перегревом электромотора.

Подключение пусковых конденсаторов к электродвигателю.

В одной из прошлых статей мы говорили о подборе рабочих конденсаторов для работы  3 ф.(380 Вольт) асинхронного электродвигателя от 1 ф. сети (220 Вольт). А именно о подборе рабочих конденсаторов  по амперметру . Спасибо Вам мои читатели за  множество отзывов и благодарностей, ведь если бы не Вы  уже давно бы забросил это дело.  В одном из писем  присланных мне на почту были вопросы: « Почему  не рассказал о пусковых конденсаторах?», «Почему у меня не запускается двигатель, ведь я всё сделал, как было написано».  А ведь правда что не всегда хватает «рабочих» конденсаторов для пуска электродвигателя под  нагрузкой, и возникает вопрос: «Что же делать?». А вот что: «Нам нужны пусковые конденсаторы».
А вот как их подобрать правильно мы сейчас поговорим. И так что мы имеем: 3 фазный электродвигатель, к которому на основе прошлой статье  мы подобрали ёмкость рабочего конденсатора 60 мкФ. Для пускового конденсатора мы берем емкость в 2 - 2,5 раза больше чем ёмкость рабочего конденсатора. Таким образом, нам понадобится конденсатор ёмкостью 120 – 150 мкФ. При этом рабочее напряжение этих конденсаторов должно быть в 1,5 раза больше напряжения сети. Сейчас у многих возникает вопрос: « А почему не 300 мкФ или даже 1000 мкФ, ведь кашу маслом не испортишь?». Но в не этом случае, всего должно быть в меру, при слишком большей ёмкости пусковых конденсаторов  нечего очень страшного не случиться, но эффективность пуска электродвигателя будет хуже. Таким образом не стоит тратить лишние средства на покупку слишком большой ёмкости.

Но какие, же конденсаторы нужны для пуска электродвигателя?

Если нам нужна небольшая ёмкость пускового конденсатора то вполне подойдёт конденсаторы того же типа которые мы использовали для рабочих конденсаторов.
  Но если нам нужно довольно таки  большая ёмкость? Для такой цели не целесообразно использовать такой тип конденсаторов через их дороговизну и размеры (при сборе большой батареи конденсаторов размеры её будут велики).  Для таких целей нам служат специальные пусковые (стартовые) конденсаторы, которые сейчас присутствуют в продаже, в большом ассортименте.  Такие конденсаторы встречаются разных форм и типов, но в их названиях присутствует маркировка (надпись): «Start», «Starting»,  « Motor Start» или что-то в этом роде, все они служат для пуска электродвигателя. Но для лучшей убедительности лучше спросить у продавца при покупке, он всегда подскажет.

 


А вот сейчас Вы скажете: «А как же конденсаторы от старых советских ч/б телевизоров, так называемые «электролиты»?»

Да что я Вам могу сказать по этому поводу. Я сам их не использую, и Вам не рекомендую и даже отговариваю. Всё потому что их использование в качестве пусковых конденсаторов не вполне безопасно. Потому что они могут вздуваться или и того хуже взрываться. К тому же такой тип конденсаторов со временем высыхает и теряет  свою номинальную ёмкость, и мы не можем точно знать, какую именно мы применяем в данный момент.

И так у нас есть электродвигатель, рабочий и пусковой конденсатор. Как нам всё это подключить?

Для этого нам понадобится кнопка ПНВС.

  

Кнопка ПНВС (пускатель нажимной с пусковым контактом) имеет три контакта: два крайних –   с фиксацией и один посередине – без фиксации. Он и служит для включения пускового конденсатора, а при прекращении нажатия на кнопку возвращается в исходное положение (пусковой конденсатор «Сп» включается только во время пуска двигателя, а рабочий конденсатор «Ср» постоянно находиться в работе), другие два крайних контакта остаются включенными и отключаются при нажатии кнопки «Стоп». Кнопку «Пуск» нужно удерживаться до тех пор, пока скорость вала не достигнет максимальных оборотов, и только после её отпустить. Также не стоит забывать, что конденсатор имеет свойство иметь заряд электрического тока, и Вы можете попасть под поражения электрическим током.  Что бы этого не случилось, по окончанию работы  отключите электродвигатель от сети, и включите на одну две секунды кнопку «Пуск», чтобы конденсаторы могли разрядиться. Либо параллельно пусковому конденсатору поставьте резистор около 100 килоом, чтобы конденсатор разряжался на него.

У нас с двигателя выходят три провода. Первый и третий  мы подключаем к двум крайним контактам кнопки. Второй же провод мы подключаем к одному из контактов пускового конденсатора «Сп», а второй контакт этого конденсатора к средней  клемме копки ПНВС. Ко второму и третьему проводу, как показано на схеме, подключаем рабочий конденсатор  «Ср».  С другой стороны кнопки два крайних контакта подключаем к сети, а к среднему подключаем «перемычку» к контакту, к которому подключен рабочий конденсатор «Ср».

Схематически это выглядит так:

вариант схемы с реверсом:


Удачи Вам в ваших экспериментах.

принцип работы, инструкция по запуску, выбор значений

Рассмотрим вначале, почему считается, что двигатель питается напряжением 380 вольт. Имеют счастье быть три фазы по 220 вольт. Простейшие вопросы заставляют уплывать новичков, отсутствие знания теории порождает возникновение ошибок практических. Искренне благодарим энтузиастов, забросавших Ютуб обучающими роликами, без столь богатого материала сложно дать дельные советы планирующим осуществить подключение электродвигателя 380 на 220 вольт с конденсатором. Приступим к реализации теории на практике.

Работа двигателя 380 вольт

Подобные двигатели называются трехфазными. Отличаются кучей преимуществ перед типичными бытовыми, широко используются промышленностью. Достоинства касаются большой мощности, КПД. Именно в трехфазных двигателях удаётся обойтись без пусковых обмоток, конденсаторов при наличии соответствующего питания. Конструкции удается исключить лишние элементы. Пускозащитное реле холодильника, четко следящее за целостностью, временем работы пусковой обмотки. Трехфазным двигателям доморощенные ухищрения не нужны.

Простой пример работы трех фаз

Почему так происходит? Наличием трех фаз удается создать внутри статора вращающееся электромагнитное поле без дополнительных ухищрений. Давайте посмотрим рисунок. Простоты ради, показан ротор, снабженный двумя полюсами, статор содержит по катушке на фазу переменного тока. Конфигурации типичных двигателей 380 вольт более сложная, упрощение не помешает пояснить суть процессов, протекающих внутри.

Рисунок синим показывает отрицательно заряженные поля, красным – положительные. В начальный момент статор лишен знака, три катушки белые. Ротор в нашем предположении изготовлен из постоянных магнитов, окрашен и пребывает в произвольном положении. Полюса всего два. Далее двигаемся согласно эпюрам:

  1. Первая картинка наградила фазу В отрицательным знаком, две другие заряжены слегка положительно (приблизительно треть амплитуды), схематично показано бледным розовым цветом. Положительный полюс ротора сместился к катушке В. Слабое положительное поле А-С притянуло южный полюс ротора. Поскольку уровень заряда одинаков, центр полюса – ровно посередине.
  2. В следующий момент времени (спустя 60 градусов, 3,3 мс) южный полюс появляется на фазе А статора. Ротор проворачивается на 60 градусов вдоль часовой стрелки. Слабые отрицательные поля фаз В, С удерживают между собой положительный полюс ротора.
  3. В данный момент времени северный полюс статора располагается на фазе С, ротор продолжает вращение еще на 60 градусов. Дальнейшая картина должна быть понятна.

Трехфазный электродвигатель

В результате правильного распределения трех фаз поле статора вращается, увлекая ротор. Частота оборотов не совпадает с сетевыми 50 Гц. Обмоток статоре больше, количество полюсов ротора иное. В придачу имеется явление проскальзывания в зависимости от амплитуды напряжения, многих других факторов. Нюансы используются регулировать скорости вращения вала двигателя. Вплотную достигли разгадки вопроса напряжения 380 вольт. Сформировано тремя фазами с действующим значением напряжения 220 вольт (как в розетке). Взять разницу меж любыми двумя в произвольный момент времени, величина превышает указанное значение.

Получается 380 вольт. Двигатель с тремя фазами использует для работы три напряжения с действующим значением 220 вольт, сдвиг меж любыми составляет 120 градусов. Можно легко проследить из графика на нашем рисунке. Вот почему многих снедает соблазн использовать оборудование в домашних условиях, запустить, используя одну фазу, поставляемую розеткой. Напрямую снделать невозможно, как должно быть понятно, приходится изобретать ухищрения. Простейшим назовем применение конденсатора. Прохождение емкости изменяет фазу напряжения на 90 градусов. Разница меньше 120, которые хотели получить в идеале.

На практике подключение электродвигателя через конденсатор отлично работает. Правда для осуществления задумки придется немного повозиться.

Запуск трехфазного двигателя 380 В от домашней сети

Во-первых, нужно знать, как производится электрическая коммутация обмоток. Обычно корпус двигателя снабжен защитным кожухом, скрывающим электрическую разводку. Нужно снять щит, приступить к изучению схемы. Чаще рядом показана схема электрических соединений. Чтобы запуск произвести трехфазной сетью, применяется коммутация типа “звезда”. Концы трех обмоток имеют одну общую точку, называемую нейтралью, противоположная сторона снабжается фазами. Одна на каждую обмотку. Получается распределение поля, рассмотренное выше.

Объединение обмотки двигателя треугольником

Подключая асинхронный двигатель 380 на 220 Вольт, потрудитесь коммутацию изменить. Пригодится электрическая схема, приводимая шильдиком корпуса. Согласно рисунку, обмотки двигателя объединяются треугольником. Каждая на обоих концах объединяется с другой. Давайте посмотрим, что получается. Чем отличается методика от штатного использования оборудования. Для простоты на рисунке показываем схему включения конденсатора. Выглядит так:

  • Напряжение сети 220 В приложено к обмотке С.
  • На обмотку А напряжение приходит через рабочий конденсатор в состоянии сдвига фаз на 90 градусов.
  • На обмотке В действует разница меж указанными напряжениями.

Посмотрим эпюры: как будет выглядеть практически. Сдвиг фаз неравномерный. Меж пиками, по которым построены эпюры, отложено 90 и 45 градусов. Вследствие этого вращение в принципе лишено возможностей быть равномерным. Форма фазы обмотки В отличается от синусоидальной. Запуск трехфазного двигателя сетью 220 вольт сопровождается наличием потерь энергии. Процесс возможен. Происходит часто явление, называемое залипанием. Неправильная форма поля внутри статора бессильна раскрутить статор.

Схема подключения двигателя несколько упрощена, отличается от норм исполнения чертежей проектной документации. Наглядность рисунка очевидна. Конденсатор схемы рабочий, встречается пусковой. Нужен усилить вращающий момент на начальном этапе. Любой асинхронный двигатель при старте потребляет больше тока, на первое движение тратится много энергии. Конденсатор обычно присоединяется параллельно рабочему, включается в цепь нажатием специальной кнопки. Например, предлагается пометить, как Ускорение.

Когда вал наберет обороты, емкость пусковая становится ненужной, снижается сопротивление движению вала. Отпуская кнопку Ускорение, исключаем элемент из сети. Чтобы пусковая емкость разрядилась (вольтаж способен достигать 300 В), закоротим на значительной величины сопротивление, через которое в рабочем состоянии ток не пойдет. Постепенно электроны компенсируются, опасность поражения исчезнет. Возникает простой вопрос – как подобрать рабочую, пусковую емкости? Подключение электродвигателя 380 В на 220 В непростая задача. Давайте рассмотрим ответ.

Выбор значений рабочей, пусковой емкостей для подключения трехфазного двигателя на 220 В

Первым делом обратите внимание: рабочее напряжение конденсаторов должно значительно перекрывать номинал 220 В. Подключение двигателя 380 на 220 вольт сопровождается возникновением гораздо более весомых значений вольтажа. Среди пусковых и рабочих конденсаторов исключите элементы рабочим напряжением ниже 400 вольт. Практика накладывает коррективы, придется обойтись попавшимся под руку. Обратите внимание на провода. Токи по технической документации даны относительно напряжения 220 В. Рассматриваемая схема задействует другие значения. Возможно, придется пересчитать размеры токов.

На практике если емкость рабочая слишком мала, вал «залипает». Двигатель стал бы работать, если придать начальное ускорение, если зверь мощностью 4 кВт поотрывает пальцы, винить некого. Оказывается, номинал рабочей емкости определен минимум двумя параметрами:

Наладка двигателя

  1. Мощнее двигатель, больший номинал конденсаторов нужно применить. На 250 Вт хватает значения десятков мкФ, при более значительных мощностях значение исчисляется сотнями. Логично заранее запастись солидным набором конденсаторов. Желательно брать пленочные, электролитические без специальных мер применять запрещено, предназначены работать в сетях постоянного тока. При подключении переменного напряжения 220 В могут попросту взорваться.
  2. Выше обороты двигателя, больший номинал пускового конденсатора потребуется. Достигнув разницы в несколько раз, значение емкости повышаем на порядок (10 раз). Для пуска двигателя мощностью 2,2 кВт, оборотами 3000 в минуту постарайтесь запастись батареей на 200–250 мкФ. Очень большое значение. Емкость Земного шара составляет доли мФ.

Сильно емкость пускового конденсатора зависит от приложенной нагрузки. Мотор, работающий на шкив, потребляет много энергии, объем батареи возрастает. Попытаемся выбрать номиналы. Практиками замечено: стабильнее двигатель 380 В работает, питаемый однофазной сетью, когда напряжения в плечах конденсатора равны. Обмотку, работающую непосредственно от сети, избегаем трогать, измеряем потенциал двух других. Каким образом получается, величина емкости определяет напряжение?

Асинхронный двигатель характеризуется собственным реактивным сопротивлением. При включении образуется делитель. Красиво рисовали эпюры, на практике форма фаз способна сильно отличаться. Определяется реактивное сопротивление перечисленным выше набором параметров. Конструкция двигателя, обуславливающая размер мощности, скорость оборотов, нагрузка вала. Ряд параметров, учесть которые теоретическими путями в рамках обзора попросту не представляется возможным. Поэтому практики просто рекомендуют сначала найти минимальный размер батареи, при котором двигатель начинает вращаться, затем плавно увеличивать номинал, пока напряжения обмоток не станут равными.

После раскрутки двигателя порой оказывается: равенство нарушилось. Сопротивление движению вала упало. Перед тем, как подключить электродвигатель с 380 на 220 окончательно, определитесь с условиями работы, постарайтесь обеспечить указанное равенство.

Обратите внимание: действующее значение способно превышать 220 вольт. Значение напряжения составит 270 В. Перед тем, как подключить электродвигатель через конденсатор, побеспокойтесь о контактах. Обеспечьте надежную стыковку во избежание потерь, перегрева в местах прохождения тока. Коммутацию лучше вести на специальные клеммы, затягивая болтами. После окончательной подборки параметров электрическую часть следует закрыть кожухом, провода пропустить через резиновый уплотнитель боковой стенки отсека.

Подключение трехфазного двигателя к сети 220 вольт. ~ БЛОГ О ЗАТОЧКЕ

Хотелось бы небольшое внимание уделить схемам подключения трехфазных асинхронных  двигателей 220/380 вольт к сети напряжением 220 вольт. Ни чего сложного здесь нет и такую работу может сделать любой человек, имеющий минимальный опыт работы электрикой. Если же такого опыта нет, тогда лучше обратиться к специалисту...

1. Схема подключения "звезда". В такой схеме подключения обмотки двигателя соединяются в одной точке - см. рис.1. Двигатели работают мягче, чем при соединении "треугольник" (см. ниже), но из-за больших потерь, двигатель с таким подключением не может развить полную мощность - потери в мощности составляют около 30-35% от паспортных.


2. Схема подключения "треугольник". При такой схеме подключения обмотки двигателя соединяются последовательно, т.е. конец одной обмотки соединяется с началом следующей. В этом случае двигатель работает на полную мощность, но возникает большой пусковой ток, это можно почуствовать по небольшом рывку при разгоне двигателя.

3. Какое подключение выбрать. Есть мнение, что подключение "треугольник" лучше делать в случаях, когда при включении двигатель не испытывает нагрузок. Также существуют варианты подключения, когда пуск двигателя происходит по схеме "звезда", а после набора оборотов автоматически переключается на треугольник. Обычно такие схемы используются для электродвигателей большой мощности, поэтому в данной статье мы их рассматривать не будем.
4. Подключение через конденсатор. Наиболее часто подключение таких двигателей к сети 220 вольт переменного тока осуществляется через конденсатор (рис. 3, 4). В этом случае напряжение сети подводят к началам двух фаз двигателя, а к выводу третьей фазы и одному из проводов подключают рабочий конденсатор и отключаемый пусковой, необходимый для увеличения пускового момента (используется при наличии нагрузки при пуске двигателя). 5. Расчет емкостей конденсаторов. Рабочую емкость конденсатора для двигателя с обмоткой "звезда" рассчитываю по формуле:=2800х(I/U); а для двигателя с обмоткой "треугольник": Ср=4800х(I/U), где Cp - емкость рабочего конденсатора в мкФ, I - потребляемый двигателе ток по паспорту в А, U - напряжение сети. Емкость пусковых конденсаторов выбирают в 2-2.5 раза больше рабочих. Выбор конденсаторов по номинальному напряжению производится из расчета: Uк = 1,2хU (Uк - напряжение на конденсаторе)

6. Пример расчета емкости рабочего конденсатора для асинхронного двигателя АИР-56А4 с характеристиками: 220/380 В, 0.48А, 1500 об/мин, обмотки соединены "треугольником", пуск двигателя без нагрузки: Ср = 4800 x 0.48 / 22010 мкФ. В итоге выбирает конденсатор 10 мкФ с рабочим напряжением 300 В (Uк = 1,2 x 220 = 264 В), или включенных параллельно два конденсатора по 5 мкФ и 300 В каждый....

ZAT (Днепр, Украина)
http://www.zat24.com/


Создана 30.08.10, посл.обновление - 15.05.2019

Подключение трехфазного двигателя на 220 вольт

 Для правильного подключения трехфазного электродвигателя в однофазную сеть, необходимо использовать частотный преобразователь со входом 220 вольт и трехфазным выходом на 380 вольт (3 х 220вольт). Частотный преобразователь позволяет осуществлять плавный пуск электродвигателя, регулировать обороты электродвигателя, а так же реализовать реверсивное вращение.

 

 

ссылка на частотный преобразователь

 

 

Подключение по схеме треугольник

 

 

 

Подключение по схеме звезда

 

 

 

 

Подключение с пусковым конденсатором

 

 

Емкость конденсатора рассчитывается по формуле: С = 66·Рном , где С - емкость конденсатора, Рном - мощность двигателя в кВт.

на каждые 100 ватт мощности двигателя, требуется  7мкф емкости конденсатора.

 

 

Для расчета емкости конденсаторов используйте удобный

Калькулятор емкости конденсаторов для электродвигателей

Как подключить двигатель 380

Как подключить двигатель 380

Опубликовано в рубрике Электромонтажные работы

Дома, в гараже, или на производстве иногда возникает необходимость подключения двигателя 380 В к стационарной сети 220 В. Очень часто можно встретить двигатели, которые рассчитаны на питание электросети и на 380 В., и на 220 В. Для подключения двигателя можно либо воспользоваться услугами электрика, либо попытаться подключить самостоятельно. Если в качестве примера рассмотреть асинхронный двигатель на 1,0кВт. То для его подключения лучше воспользоваться схемой «треугольник» и применить конденсатор исходя из расчета 7-10 мкФ на каждые 100 Вт двигателя.

Как подключить асинхронный двигатель 380 на 220

Максимальной мощности двигателя на 380 В в сети 220 В можно добиться при использовании соединения в треугольник. Основным моментам, на который необходимо уделить внимание является выбор конденсаторов. Первое что необходимо знать это то, что они не должны быть полярными. Всем нам знакомы конденсаторы советской эпохи, которые хорошо используются и в настоящее время. Вторым моментом является то, что если на валу двигателя будет нагрузка, или мощность двигателя больше 1,5 кВт, то необходимо предусмотреть конденсаторы для запуска. Это значит, что они будут использоваться только для запуска двигателя, поле чего их необходимо отключить. Обычно используют либо кнопку, либо переключатель. Емкость пускового конденсатора берется исходя из мощности рабочего в 2-3 раза большего номинала.

Подключение двигателя 380В в сеть 220В

На фото ниже представлено подключение двигателя 380 на 220. Для того чтобы сильно не углубляться в суть, нам просто необходимо:

  1. На крайние контакты клемной колодки подать питание 220В.
  2. Подключить конденсатор одним концом на свободный контакт, а вторым на фазу, либо ноль. (В зависимости от необходимого направления двигателя)

Для того чтобы предусмотреть реверс можно использовать переключатель, где на центральный контакт подается вывод от конденсатора, а на крайние выводы от «фазы» и «нуля».

Комментарии и размещение обратных ссылок в настоящее время закрыты.

Схема подключения однофазного двигателя 220 В через конденсатор

Бывают случаи, когда нужно подключить мотор на 220 вольт - это случается при попытке подключить оборудование под свои нужды, но схема не соответствует техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся в этой статье разобрать основные методы решения проблемы и представить несколько альтернативных схем подключения однофазного двигателя с конденсатом на 220 вольт.

Почему это происходит? К примеру, в гараже необходимо подключить асинхронный двигатель на 220 вольт, который рассчитан на три фазы. Таким образом, необходимо поддерживать КПД (КПД), если альтернативы (в виде двигателя) просто не существует, потому что в цепи из трех фаз легко образуется вращающееся магнитное поле. , что обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше по сравнению с трехфазной схемой подключения.

Когда в однофазных двигателях всего одна катушка, мы видим картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для запуска не происходит, пока сам не раскрутит вал. Чтобы вращение могло происходить самостоятельно, добавили вспомогательную пусковую обмотку. Это вторая фаза, она смещена на 90 градусов и толкает ротор при повороте. Этот двигатель по-прежнему включен в сеть с одной фазой, поэтому название остается однофазным. Такие однофазные синхронные двигатели имеют пусковую обмотку и рабочую.Разница в том, что лаунчер работает только при включении заводского ротора, работает всего три секунды. Вторая обмотка подключена постоянно. Чтобы определить, что есть что, вы можете использовать тестер. На картинке вы можете увидеть соотношение их схемы в целом.

Подключаем мотор на 220 вольт: мотор запускается от подачи 220 вольт на рабочую и пусковую обмотку, а потом выставляем нужную скорость вручную, нужно отключать пусковые установки. Для фазового сдвига необходимо омическое сопротивление, которое конденсаторы обеспечивают индуктивностью.Встречается сопротивление в виде отдельного резистора и пусковой обмотки, которое выполнено по бифилярной технике. Работает это так: индуктивность катушки сохраняется, а сопротивление становится больше из-за удлиненного медного провода. Такую схему можно увидеть на рисунке 1: подключение электродвигателя 220 вольт.

Рисунок 1. Схема подключения двигателя 220 В с конденсатором

Есть также двигатели, у которых обе обмотки постоянно подключены к сети, они называются двухфазными, потому что поле внутри вращается, а конденсатор предназначен для сдвига фазы.Для такой схемы обе обмотки имеют провод равного сечения.

Где можно встретиться в повседневной жизни?

Электродрели, некоторые стиральные машины, дрели и болгарки являются синхронными коллекторами двигателя. Он умеет работать в однофазных сетях даже без триггеров. Схема следующая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй - в статоре. Два наконечника, которые необходимо было подключить к источнику питания 220 вольт.

Подключение электродвигателя 220 вольт с пусковой обмоткой

Внимание!

  • В этой схеме отсутствует электроника, и, следовательно, двигатель сразу же после запуска будет работать на полную мощность на максимальной скорости, когда вы начинаете буквально подпрыгивать с силой тока стартера, который вызывает искру в коллекторе;
  • есть электродвигатели с двумя скоростями. Их можно определить по трем концам статора, выходящим из обмоток.В этом случае частота вращения вала при подключении уменьшается, а риск деформации изоляции при пуске увеличивается;
  • направление вращения можно изменить, для этого необходимо поменять местами концевые соединения в статоре или якоре.

Есть еще одно соединение для питания двигателя на 380 В, которое приводится в движение без нагрузки. Также требуется конденсатор в рабочем состоянии.

Один конец соединен с нулем, а второй с выходом треугольника с цифрой три.Чтобы изменить направление вращения электродвигателя, нужно подключить его к фазе, а не к нулю.

Схема подключения двигателя 220 В переменного тока через конденсаторы

В том случае, если мощность двигателя более 1,5 кВт или это при запуске работы напрямую с нагрузкой, при параллельном включении конденсатора необходимо установить и запустить. Он служит для увеличения пускового момента и включается только на несколько секунд во время пуска. Для удобства он подключается к кнопке, а все устройство от блока питания через тумблер или кнопку с двумя положениями, имеющую два фиксированных положения.Для того, чтобы запустить такой мотор, необходимо подключить кнопку (тумблер) и удерживать кнопку пуска до его запуска. При запуске - достаточно отпустить кнопку и пружина размыкает контакты, отключая стартер

Специфика заключается в том, что асинхронные двигатели изначально предназначались для подключения к сети с тремя фазами 380 В или 220 В.

Важно! Для подключения однофазного электродвигателя к однофазной сети необходимо иметь данные двигателя на бирке и знать следующее:

P = 1,73 * 220 * 2,0 * 0,67 = 510 (Вт) расчет для 220V

R = 1,73 * 380 * 1,16 * 0,67 = 510,9 (Вт) расчет на 380 В

По формуле становится понятно, что электрическая мощность превышает механическую.Это необходимый резерв для компенсации потерь мощности при запуске - создания вращающего момента магнитного поля.

Есть два типа обмоток - звезда и треугольник. По информации на бирке мотора можно определить, какую систему он использует.

Красные стрелки - распределение напряжения в обмотках двигателя, говорит о том, что на одной обмотке распределяется однофазное напряжение 220 В, а на двух - линейное напряжение 380 В. Этот двигатель может быть адаптирован для однофазной сети по Рекомендации по метке: узнайте, какие напряжения создаются при намотке, вы можете соединить их в звезду или треугольник.

Схема намотки треугольника проще. Лучше его использовать, так как двигатель будет терять мощность в меньшем количестве, а напряжение на обмотках везде равно 220 В.

Данная схема подключения конденсаторного асинхронного двигателя в однофазной сети. Включает в себя рабочий и пусковой конденсаторы.

Пример:

  • конденсаторы б / у на напряжение не менее 300 или 400;
  • - рабочая емкость конденсаторов набрана при параллельном включении;
  • рассчитано так: каждые 100 ватт все равно 7мкФ, при том, что 1 кВтч равен 70 мкФ;
  • это пример параллельного включения конденсаторов
  • Емкость
  • для запуска должна в три раза превышать емкость рабочего конденсатора.

Важно! Если на старте вовремя не отключать пусковые конденсаторы при достижении двигателем нормативного для него количества импульса, они приведут к большому току смещения во всех обмотках, что попросту закончится перегревом электродвигателя.

Прочитав статью, обратите внимание на подключение трехфазных двигателей в однофазной сети:

Связанные с контентом

Конденсатор

- Как я могу заставить мой двигатель 380/380 вольт работать от 220 вольт?

Подключение конденсатора к трехфазному двигателю для однофазной работы называется подключением Штейнмеца.Если вы выполните поиск по «Steinmetz connection», вы найдете довольно много информации об этом.

Если двигатель имеет только шесть выводов или клемм для внешних подключений, он может работать только при напряжении 380 В на любой из двух указанных скоростей. Для низкой скорости U4, V4 и W4 соединяются вместе, а трехфазное питание подключается к U2, V2 и W2. Для высокоскоростной работы подключение к U2, T2 и W2 отсутствует, а питание подключается к Uw, T4 и W4. Номинальная механическая мощность одинакова для обеих скоростей, поэтому крутящий момент, доступный на высокой скорости, составляет половину крутящего момента на низкой скорости.Вы можете использовать частотно-регулируемый привод (VFD) с выходом 380 В для любого из этих подключений.

Если на каждом конце каждой обмотки имеется независимое внешнее соединение, 12 выводов или клемм, обмотки могут быть соединены в параллельном треугольнике. Это должно подходить для трехфазного питания 220 вольт. Я считаю, что это все еще будет 4-полюсная низкоскоростная конфигурация. Вы можете использовать VFD с выходом 220 вольт для этого соединения.

У вас не должно возникнуть проблем с поиском частотно-регулируемого привода на 220 вольт, однофазный вход и 220 вольт, трехфазный выход.Возможно, вам удастся найти частотно-регулируемый привод со встроенной схемой повышения напряжения, обеспечивающий трехфазный выход 380 вольт и однофазный вход 220 вольт. В противном случае вам понадобится входной трансформатор для VFD и VFD на 380 В, который принимает однофазный вход.

Я не знаю, какие есть варианты с подключением Steinmetz.

Если у существующего двигателя нет специального вала или редуктора, установленного непосредственно на нем. Лучшим вариантом может быть покупка другого двигателя и, возможно, частотно-регулируемого привода для регулирования скорости.

См. Схему ниже:

Для U2, V2 и W2 две катушки двигателя соединены вместе внутри двигателя или в клеммной коробке двигателя. Если вы можете разорвать это соединение, вы можете повторно подключить катушки, как показано красными линиями. Я почти уверен, что это позволит двигателю работать на высокой скорости на 220 вольт. Для однофазной сети подключите конденсатор от одной из линий питания к точке, где должна быть подключена недостающая фаза. Это позволяет двигателю работать от однофазного тока, но его крутящий момент значительно снижается.Это связь Стейнмеца. Вы сможете найти номиналы конденсаторов и другую информацию, выполнив поиск «Steinmetz connection».

Конденсатор

- трехфазный двигатель, работающий от одной фазы с использованием соединения треугольником Штейнмеца

Как трехфазные двигатели могут работать от однофазной сети, используя соединение треугольником Штейнмеца с одним конденсатором?

Подключение не дает хорошей производительности, но дает лучшее, что может быть достигнуто без трехфазного источника питания. 2 x 50 / f где:

C в микрофарадах

л.с. - номинальная мощность двигателя

л.с.

В - номинальное напряжение двигателя

f - номинальная частота двигателя

К сожалению, я скопировал ссылки, которые у меня есть некоторое время назад, без указания их происхождения.

Приложение 1:

Ёмкость конденсатора должна быть оптимизирована в зависимости от фактической нагрузки двигателя.

Формула взята из PDF-файла на сайте engineering.com, щелчок по ссылке поиска Google загружает PDF-файл.Я не знаю, как получить доступ к связанному с этим контексту на сайте.

В целом можно сказать, что хороший многофазный двигатель делает плохой однофазный двигатель. Хороший многофазный двигатель может быть однофазным. двигатель, и чтобы получить хороший однофазный двигатель чрезвычайно хороший требуется многофазный двигатель.

Однофазный асинхронный двигатель , Чарльз Протеус Штайнмец, заседание Американского института инженеров-электриков, Нью-Йорк, 23 февраля 1898 г.

Приложение 2:

Метод оптимизации емкости конденсатора состоит в том, чтобы отрегулировать емкость таким образом, чтобы ток в конденсаторе был равен номинальному току двигателя для соединения треугольником.

Существуют варианты подключения Steinmetz для конденсаторного запуска, конденсаторного запуска с конденсаторным запуском и для соединения звездой (звездой).

Переключение двигателя с 240 на 120 вольт

В Северной Америке многие однофазные двигатели мощностью от 1 до 2 л.с. могут быть переподключен для работы от 120 вольт или 240 вольт (или 115 против 230 вольт, это зависит от того, какое напряжение принято "номинальным").

Такие двигатели обычно имеют шесть выводов, выходящих из двигателя к проводке. коробки, или некоторые соединения могут быть винтовыми клеммами.Лучший способ изменить напряжение на двигателе - это следовать схеме подключения на наклейка. Но иногда, когда вы открываете мотор, бывает всего шесть проводов а диаграммы нет! Так случилось с мотором мощностью 1,5 л.с. на моем старом столе увидел. 20 лет назад я подключил его к 240 вольт, но я хотел снова переключить его на 120 вольт. где я его переместил.

Внутри двигатель имеет две обмотки на 120 В, соединенные последовательно. когда двигатель подключен на 240 вольт (слева, слева). При переключении на 120 вольт две обмотки меняют конфигурацию на параллельность.

Было бы проще подключить A к C, а затем подключить питание к B. Но это переключит полярность обмотки между A и B, что означает, что намотка A-B будет бороться с витками B-C. Если потом вот так вот воткнуть, то мотор потреблял около 100 ампер, но не работал. Если автоматический выключатель не лопнуло сразу, через десять секунд мотор начнет дымить.

Но не все так просто: есть еще пусковая обмотка

Но на самом деле это сложнее, чем показано выше.Мотор также имеет обмотка стартера, включенная последовательно с выключателем стартера и конденсатором стартера (см. красный контур слева). Обмотка стартера активна только тогда, когда двигатель набирает обороты.

Если обмотку стартера и конденсатор также необходимо перенастроить на напряжение меняет, проводка будет совсем кошмаром!

Таким образом, вместо обмотки стартера в этих двигателях всегда обмотка на 120 вольт, и двигатели две обмотки на 120 вольт используются в качестве автотрансформатора, чтобы сделать 120 вольт для обмотки стартера.Перенастройка между 240 и 120 вольт выполнена таким же образом, но обмотка стартера остается подключенной к одной из обмоток.

Если у вас нет электрической схемы, а двигатель в настоящее время подключен на 240 вольт, вы можете определить точку "B" по тому факту, что это не подключен к любому проводу питания. С помощью омметра проверьте, какой из трех проводов от B к проводу питания всего одним проводом прикреплен к нему. Это тот, который вам нужно отключить и подключиться к C. А конец обмотки в точке A нужно вывести на точку B.

Разобравшись с этим, я понял, что 20 лет назад я переставил крепление пускового конденсатора на этот двигатель, чтобы он не выступал над столом настольной пилы, когда полотно наклонен на 45 градусов. И, перемещая конденсатор, я в конечном итоге установил его прямо над шильдик двигателя, на котором также изображена проводка. Итак, сняв крышку конденсатора, я увидел этикетку со схемой подключения. и я смог проверить свою работу, прежде чем подключил ее.


Предположим, у вас есть загадочный однофазный асинхронный двигатель, 1750 об / мин или 3500 об / мин. (или очень близко к этим RPM).Из него выходят шесть выводов или проводов. Как вы его подключаете? На некоторых двигателях будет шесть подключений, но некоторые из них могут иметь винтовые клеммы. в проводке вместо проводов. Я просто назову их ведущими. Если у двигателя есть винтовые стойки для крепления проводов, он обычно имеет дополнительный винтовой штифт для соединения проводов вместе в Работа на 240 вольт, но винтовой стержень ни к чему не подключен в двигателе.

С помощью омметра найдите пару выводов, между которыми сопротивление меньше 5 Ом.Показания не должны изменяться, когда вы держите глюкометр на них. Обозначьте эти провода 1 и 2. 1 и 2 не должны иметь проводимости к другим выходящим выводам. Теперь найдите еще одну пару проводов с таким же сопротивлением, как 1 и 2 между ними, Обозначьте эти 3 и 4. 1-2 и 3-4 - главные обмотки.

Остальные два вывода должны подключаться к пусковому конденсатору, пусковому выключателю, и прямая обмотка последовательно (при неработающем двигателе пусковой выключатель будет закрыт). Пометьте оставшиеся отведения 5 и 6.Если вы измеряете сопротивление между 5 и 6, вы должны увидеть показания на вашем глюкометре постоянно увеличиваются (установите на глюкометре другое чем самый низкий диапазон Ом). если ты поменяйте местами щупы измерителя между 5 и 6, значение сопротивления снова будет ниже, но опять идем наверх. Вы измеряете сопротивление на конденсаторе, и когда он "заряжается" от счетчика, подавая ток для измерения, значение сопротивления возрастет.

Для работы на 120 В необходимо подключить

1,3,5 к одному проводу питания и 2,4,6 к другому OR 1,4,5 и 2,3,6.Но какой ??

Если вы сделаете это неправильно, вы взорвете автоматический выключатель или сломаете двигатель. Обычно, если обмотка 1-2 противостоит обмотке 3-4, происходят очень плохие вещи.

Вы можете на короткое время запустить двигатель с напряжением 120 вольт, используя только одну обмотку на 120 вольт. Поэтому просто оставьте провода 3 и 4 отключенными. Подключите один провод питания к 1,5, другой на 2,6, и подключите его к 120 вольт. Мотор должен работать.

Отключите двигатель, теперь добавьте провода 3 к 1 и 5 (1,3,5 и один из проводов питания все вместе), а другому проводу питания оставьте только 2,6.Подключите двигатель, пока он работает, измерьте напряжение между оставшимися неподключенный провод 4 и другой провод, подающий питание, подключенный к проводам 2,6). Если напряжение меньше 10 вольт, то вы можно соединить провода 2,4,6 вместе. Ваш двигатель теперь подключен к 120 вольт.

Если показание превышает 200 вольт, необходимо поменять местами провода 3 и 4. Измените маркировку отведения 3 как 4, а 4 как 3, затем повторите шаг выше и убедитесь, что разница чтение меньше 10 вольт.

Чтобы реверсировать двигатель, поменяйте местами выводы 5 и 6 (те, которые идут к обмотке стартера).

Чтобы подключить двигатель на 240 В, подключите провод 1 к одному проводу питания
, соедините провода 2,3,5 вместе (не соединяя их ни с одним из проводов питания)
Подключите другой провод питания к 4,6.
Если у двигателя есть винтовые стойки в монтажной коробке, будет дополнительная винтовая стойка, ни к чему не подключен, для соединения проводов 2,3,5 вместе.
И, как и прежде, чтобы реверсировать двигатель, поменяйте местами провода 5 и 6

Если это не сработает для вас, возможно, двигатель не имеет двойного напряжения. однофазный двигатель, или с ним что-то не так. Не стесняйтесь, напишите мне. Я наверное не смогу вам помочь, но полезно знать где вы сталкиваетесь с проблемами.Таким образом, если многие люди зацикливаются на одном и том же проблема, я мог бы добавить несколько примечаний по этому поводу.

И если вы взорвете мотор или он загорится, не вините меня!

См. Также:


Вернуться на мой сайт woodworking

Заставьте электродвигатель снова поработать: 6 шагов (с изображениями)

Электролитический конденсатор нередко высыхает и выходит из строя в аудиооборудовании через 20 лет или меньше.Но замена пускового конденсатора без предварительной проверки на короткое замыкание или разрыв обмоток, сброс обрыва и неисправный центробежный переключатель не заставят ваш двигатель работать, если конденсатор на самом деле не ваша проблема.

Многие двигатели имеют куполообразную крышку снаружи двигателя, а конденсатор находится под ней. Конденсаторы двигателя обычно представляют собой цилиндры с выводами наверху. Но некоторые конденсаторы в старых двигателях также могут быть плоскими, например, короткая стопка учетных карточек 4 x 6. Они могут быть расположены в основании двигателя, так что по внешнему виду создается впечатление, что в двигателе нет конденсатора.

Конденсатор может вздуться или протечь при выходе из строя. Он может даже расколоться. Но это также может выглядеть совершенно нормально. Существуют различные процедуры тестирования конденсаторов, но эти тесты не являются надежными. Конденсатор может пройти несколько тестов и все равно выйти из строя под нагрузкой.

Если вы еще этого не сделали, воспользуйтесь отверткой, чтобы замкнуть любой остаточный заряд в конденсаторе двигателя. Сделайте это пару раз на всякий случай.

Если ваш конденсатор определенно нуждается в замене, скопируйте цифры напряжения и емкости, надеюсь, все еще читаемые.Вы всегда можете использовать запасной конденсатор, рассчитанный на более высокое напряжение, чем оригинальный конденсатор вашего двигателя, но значения емкости должны соответствовать как можно точнее. Таким образом, конденсатор переменного тока на 230 вольт может заменить конденсатор переменного тока на 125 вольт. Емкость будет иметь диапазон от 220 до 260 мкФ. Конденсатор с номиналом от 210 до 250 мкФ должен быть достаточно близким для нормальной работы. (Если вы видите значения в миллифарадах, 1 миллифарад равен 1000 микрофарад.)

Вот несколько способов проверить конденсатор .Выберите те, которые подходят тому, что у вас есть.

Процедура A - Отключив хотя бы один провод от конденсатора и отключив питание цепи двигателя, подключите омметр к обоим выводам конденсатора. Аналоговый счетчик предпочтительнее, но не обязателен. Показание должно возрасти до высокого значения и внезапно упасть до нуля или обрыв цепи. Если есть стабильное показание некоторого значения, конденсатор закорочен. Если сначала показания не повышаются, что-то внутри конденсатора сломано и имеется разрыв цепи.

Процедура B - Отсоедините оба провода от конденсатора. Подключите его к шнуру лампы и последовательно с лампой накаливания мощностью около 60 Вт. Подключите его к розетке. Лампа должна гореть, хотя может быть тусклее, чем обычно.

Процедура C - Здесь вы можете получить измеритель, который считывает значение емкости конденсатора, менее чем за 20 долларов плюс доставка. Вышеупомянутые тесты дают вам представление о том, работает ли конденсатор, но не дают никаких подсказок о фактической емкости конденсатора.(Высохший электролитический конденсатор может показаться хорошим, но его емкость слишком мала для запуска двигателя.) Счетчик меняет это. Поищите в инструкциях схемы измерителя емкости. По крайней мере, один использует модуль Arduino. Около 25 лет назад у меня был журнал электроники с самодельной схемой для измерителя емкости на базе микросхемы 555. (Вот аналогичное устройство, которое вы можете сделать.) Теперь у меня есть цифровой мультиметр с измерением емкости. Некоторые измерители емкости используют генератор сигналов высокой частоты, который является частью измерителя. Их можно использовать «в цепи» и давать точные показания без обратной связи через другие части схемы.

Конденсаторы могут давать хорошие показания на измерителе и при этом оставаться слабыми или выходить из строя. Измеритель ESR измеряет внутреннее сопротивление, которое влияет на фактическую производительность.

Процедура C ' - Книга, упомянутая в следующем шаге, предоставляет еще один тест. Он включает в себя измерение тока (силы тока), используемого двигателем при включении питания. Математическая формула показывает, сколько микрофарад дает ваш конденсатор с учетом параметров теста.Это полезно, потому что это тест под нагрузкой.

Процедура D - Не всегда возможно купить несколько единиц испытательного оборудования, которое нельзя использовать более одного или двух раз. Если все остальное (короткое замыкание и размыкание, центробежный переключатель, сброс и т. Д.) Проверяется в вашем двигателе и конденсатор показывает, что все в порядке, но двигатель по-прежнему не работает, новый конденсатор будет доставлен к вашей двери за 10-20 долларов. . В худшем случае у вас будет относительно небольшая сумма денег, и возможно, у вашего конденсатора есть недостаток, который не проявится в тестах, которые вы можете провести.В лучшем случае мотор может работать.

По окончании, восстанавливает соединения с конденсатором , старый или новый.

Схема электрических соединений Схема запуска конденсаторного двигателя 220 В Схема запуска электродвигателя конденсатора 220 В Двигатели для запуска конденсатора:

  • Схема подключения Двигатели для запуска конденсатора 220 В Конденсаторные двигатели для запуска: схема и объяснение того, как a, Электропроводка однофазного двигателя с конденсаторным пуском - практический машинист, привет, счет i есть балдор 3л.с. 220в. Найдите ответы на вопрос, связанный со схемой подключения двигателя конденсаторного пуска.Получите бесплатную помощь У меня есть электродвигатель A.O Smith SE2F01 115 / 220v TypeC, у него 4 провода :.

    Пусковая обмотка включена последовательно с конденсатором (большой белый цилиндр). Я приложил изображение правильной схемы подключения, скопированной с вашего изображения. A-C OR. Электропроводка на китайский мотор. Купил новый деревообрабатывающий станок для изготовления. Теперь схема подключения. Я не разбираю китайский язык, но моторная пластина кажется 2800 об / мин, 220 В и пусковые моторы Googlecapacitor для электрических схем. Я подумал, что это будет проще простого: снимите крышку с проводки и красный цвет на красный. Чтобы реверсировать двигатель, вам нужно удалить металлические перемычки и переставить их, как показано на схеме.Это конденсатор, который позволяет двигателю запускаться и работать плавно, поскольку он был разработан. Правильная проводка 1-фазного электрического двигателя 220 В. Асинхронный двигатель переменного тока с конденсаторным пуском серии JY, 30–80 долл. США за штуку, JULANTE, JY, Асинхронный двигатель. (Материк), КПД: IE 1, высота: не более 1000 метров, цвет: синий, напряжение: 220 В, схема подключения трехфазного электродвигателя.

    Схема подключения 220 В конденсаторный пусковой двигатель >>> НАЖМИТЕ ЗДЕСЬ

  • Схема подключения для однофазного двигателя, 2 с, 220 В, установка и подключение переключателя Схема подключения Конфигурация подключения двигателя для запуска двигателя с двухфазным конденсатором. Как подключить однофазный двигатель 220 В. Ремонт и обслуживание дома. Пусковой конденсатор двигателя DAYTON 6FLV4 710850 MFD Round $ 20,87, SPP8E Supco 108 130MFD Пусковые конденсаторы 220 В МНОГО из 25 конденсаторов $ 24,25, Лот 10. Однофазная схема подключения 220 В, однофазная проводка China 220 В Подключение однофазного двигателя 220 В и конденсатора - FixYa Как расшифровать конденсаторный пуск, двухвольтный однофазный мотор, что не могу разобраться в правильной разводке. Найдите схему подключения пускового конденсатора двигателя переменного тока, найдите лучшую часть двигателя переменного тока Источник питания переменного тока 220 В / 240 В Частота 50 Гц Ток 5A MotorPower.Кондиционер 220 В - правильный калибр проводов - Здравствуйте, у меня есть специальная розетка для оконного воздушного конденсатора 220 В, Схема проводки / СКАЧАТЬ. leeson электрические типы электродвигателей Схема подключения трехфазного электродвигателя электродвигатели для асинхронного двигателя, однофазные, без конденсатора для запуска не требуется. Античный General Electric RepulsionInduction Motor Однофазный 110 / 220V демонстрационный электродвигатель мощностью 3 л.

    # Схема подключения инвертора мощности 5000 Вт # 3-х портовая схема подключения клапана # 3-фазная электрическая схема конденсатора электродвигателя # 3-фазный двигатель "звезда-треугольник".

    Пусковой конденсатор на 220 В будет в диапазоне от 40 мфд и выше. Затем ваш компрессор проверьте вашу проводку по приведенной выше схеме. Затем проверьте изоляцию.

  • Это двигатель с конденсаторным пуском - конденсаторный двигатель 220 В. Я не нашел информации об этом определить это? После того, как пожарные машины ушли, нельзя научиться безопасному электромонтажу.

    Интересно, может ли кто-нибудь, хорошо разбирающийся в проводке двигателя переменного тока 220 В, помочь мне составить схему проводки, когда кнопка нажата, что двигатель требует вращения, чтобы запустить холостой двигатель, если у него нет конденсаторов для его запуска.

    начать охлаждение и дать возможность образоваться ледяной банке при завершении установки. Приблизительно три (3) D. Обратитесь к электрической схеме и исправьте. E. Неисправный электродвигатель вентилятора конденсатора. E. Замените конденсатор 220 В СХЕМА СОЕДИНЕНИЙ (двигатель вентилятора, пусковой конденсатор, реле или защита от перегрузки), может взиматься плата за оценку в размере пятидесяти долларов (50 долларов США). ПЕРЕСМОТРЕННЫЙ ЗАПУСК. СЕРИЙНЫЙ № 110710019 51300-50 2EC-2B / 50. ЭЛЕКТРИЧЕСКИЙ ДВИГАТЕЛЬ 2HP, 50 Гц, 1-ФАЗНЫЙ, 110/220 В Рисунок 19: Схема электрических соединений двигателя Baldor 2 и 3 л.с. КОНДЕНСАТОР, ПУСКОВОЙ, БАЛДОР, 850-950МФД 115В.Существует ряд проводов от двигателя, которые необходимо подключить к новому трехпозиционному поворотному переключателю «высокий / низкий» вместе с конденсатором и пусковым контактором. Двигатель встроен. Есть ли шанс найти оригинальную электрическую схему? Есть два набора.

    СХЕМА СОЕДИНЕНИЙ ОДНОФАЗНОГО ДВИГАТЕЛЯ С КОНДЕНСАТОРОМ ЗАПУСКА. Дата обновления 220V ОДНОФАЗНАЯ ПРОВОДКА ПЕРЕДАЧИ ОБРАТНОГО УПРАВЛЕНИЯ. ЭЛЕКТРИЧЕСКАЯ СХЕМА ДЛЯ ОДНОФАЗНОГО ДВИГАТЕЛЯ 220 В. Формат: PDF. Оборудование: источник питания, DAI, двухфазный / конденсаторный пусковой двигатель (8251). 843 Просмотр.Где найти 3-фазный трансформатор 220В 440В? Где найти 3-фазный трансформатор 220В - 440В? Может ли кто-нибудь отправить мне схему подключения конденсаторного двигателя.

  • >>> НАЖМИТЕ ЗДЕСЬ

  • Однофазные двигатели переменного тока (часть 2)




    (продолжение части 1)

    ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ С РАЗДЕЛЕННОЙ ФАЗКОЙ

    ==


    FGR. 26 Определение направления вращения двигателя с расщепленной фазой.

    ==


    FGR. 27 А конденсаторный двигатель с конденсаторным запуском.

    ==


    FGR. 28 Конденсаторный пуск Конденсаторный двигатель с дополнительным пуском конденсатор.

    ==


    FGR. 29 Потенциальные пусковые реле.

    ==


    FGR. 30 Подключение реле потенциала.

    ==

    Направление вращения однофазного двигателя в целом можно определить когда мотор подключен.

    Направление вращения определяется обращением к задней или задней части мотор. FGR. 26 показана схема подключения для вращения. Если по часовой стрелке желательно вращение, T5 должен быть соединен с T1. Если вращение против часовой стрелки желательно, T8 (или T6) должен быть подключен к T1. Эта схема подключения Предполагается, что двигатель содержит два набора рабочих и два набора пусковых обмоток. Тип используемого двигателя будет определять фактическое подключение.

    Например, FGR.24 показано подключение двигателя с двумя рабочими обмотками. и только одна пусковая намотка. Если бы этот двигатель был подключен по часовой стрелке вращения, клемма T5 должна быть подключена к T1, а клемма T8 должен быть подключен к T2 и T3. Если вращение против часовой стрелки желательно, клемма T8 должна быть подключена к T1, а клемма T5 должен быть подключен к T2 и T3.

    КОНДЕНСАТОРНО-ПУСКОВЫЕ МОТОРЫ КОНДЕНСАТОРА

    Хотя двигатель с конденсаторным пуском работает от конденсатора, это двигатель с расщепленной фазой, он работает по другому принципу, чем индукционный пуск с сопротивлением двигатель или асинхронный двигатель с конденсаторным пуском.Конденсатор-пуск, конденсатор-бег двигатель сконструирован таким образом, что его пусковая обмотка остается под напряжением во все времена. Конденсатор включен последовательно с обмоткой для обеспечения непрерывный ведущий ток в пусковой обмотке (FGR.27). Поскольку пусковая обмотка все время находится под напряжением, центробежный переключатель не необходимо для отключения пусковой обмотки при приближении двигателя к полной скорости.

    Конденсатор, используемый в этом типе двигателя, обычно заполнен маслом. типа, так как он предназначен для постоянного использования.Исключение из этого общего Правило - это небольшие двигатели с дробной мощностью, используемые в реверсивном потолке поклонники. Эти вентиляторы имеют низкое потребление тока и используют электролитический конденсатор переменного тока. чтобы сэкономить место.

    Конденсаторный двигатель с конденсаторным пуском на самом деле работает по принципу вращающегося магнитного поля в статоре. Поскольку обе обмотки запускаются и запускаются остаются под напряжением все время, магнитное поле статора продолжает вращаться и двигатель работает как двухфазный двигатель.У этого мотора отличный запуск и рабочий крутящий момент. Он тих в работе и имеет высокий КПД. Поскольку конденсатор все время остается подключенным к цепи, коэффициент мощности двигателя близок к единице.

    Хотя конденсаторный двигатель с конденсаторным пуском не требует центробежного выключатель для отключения конденсатора от пусковой обмотки, некоторые двигатели используйте второй конденсатор во время пускового периода, чтобы улучшить пуск крутящий момент (FGR.28).

    Хороший пример этого можно найти на компрессоре системы кондиционирования. Блок кондиционирования предназначен для работы от однофазной сети. Если двигатель не герметичен, для отключения используется центробежный выключатель пусковой конденсатор из цепи, когда двигатель достигает примерно 75% номинальной скорости. Однако для герметичных двигателей необходимо использовать некоторые тип внешнего переключателя для отключения пускового конденсатора от цепи.

    Двигатель с конденсаторным пуском, запускаемый через конденсатор, или постоянный разделенный конденсатор мотор, как его обычно называют в системах кондиционирования и охлаждения промышленность, как правило, использует потенциальное пусковое реле для отключения пусковой конденсатор, когда нельзя использовать центробежный выключатель.Потенциал пусковое реле, FGR. 29A и B, работает, обнаруживая увеличение напряжение, возникающее в пусковой обмотке при работе двигателя. Схема Схема потенциальной цепи пускового реле приведена на FGR. 30. Внутри схемы реле потенциала служит для отключения пускового конденсатора от цепи когда двигатель достигает 75% своей полной скорости. Пусковое реле Катушка SR подключена параллельно пусковой обмотке двигателя.Нормально замкнутый контакт SR включен последовательно с пусковым конденсатором. Когда контакт термостата замыкается, питание подается как на рабочий, так и на рабочий цикл. пусковые обмотки. На этом этапе подключены как пусковой, так и рабочий конденсаторы. в цепи.

    Когда ротор начинает вращаться, его магнитное поле индуцирует напряжение в пусковая обмотка, создавая более высокое напряжение на пусковой обмотке чем приложенное напряжение. Когда двигатель разогнался примерно до 75% от на полной скорости напряжение на пусковой обмотке достаточно высокое, чтобы подать напряжение на катушку реле потенциала.Это вызывает нормально закрытый Контакт SR для размыкания и отключения пускового конденсатора от цепи. Поскольку пусковая обмотка этого двигателя никогда не отключается от линия питания, катушка потенциального пускового реле остается под напряжением пока двигатель работает.

    ===


    FGR. 31 Затененный полюс.


    FGR. 32 Затеняющая катушка препятствует изменению магнитного потока при увеличении тока.


    FGR.34 Затеняющая катушка препятствует изменению магнитного потока при уменьшении тока.


    FGR. 33 Существует противодействие магнитному потоку, когда ток не меняется.

    ====

    ИНДУКЦИОННЫЕ ДВИГАТЕЛИ С ТЕНЕННЫМИ ПОЛЮСАМИ

    Асинхронный двигатель с расщепленными полюсами популярен благодаря своей простоте. и долгая жизнь. Этот двигатель не содержит пусковых обмоток или центробежного переключателя. Он содержит ротор с короткозамкнутым ротором и работает по принципу вращающегося магнитное поле, создаваемое затеняющей катушкой, намотанной на одной стороне каждого полюса кусок.

    Двигатели с расщепленными полюсами обычно представляют собой двигатели с дробной мощностью, используемые для приложения с низким крутящим моментом, такие как работающие вентиляторы и нагнетатели.

    КАТУШКА ОТТЕНОК

    Затеняющая катушка намотана на один конец полюсного наконечника (FGR. 31). На самом деле это большая петля из медной проволоки или медной ленты. Два конца соединены, чтобы сформировать полную цепь. Затеняющая катушка действует как трансформатор с закороченной вторичной обмоткой.Когда ток переменного тока форма волны увеличивается от нуля к своему положительному пику, магнитное поле создается в полюсе. Когда магнитные линии потока прорезают затеняющая катушка, в катушке индуцируется напряжение. Так как катушка низкая сопротивление короткому замыканию, в контуре протекает большое количество тока. Этот ток вызывает сопротивление изменению магнитного потока (FGR. 32). Пока в затеняющей катушке наведено напряжение, будет противодействие изменению магнитного потока.

    Когда переменный ток достигает своего пикового значения, он больше не меняется, и в затеняющей катушке не возникает напряжения. Поскольку нет ток в затеняющей катушке, нет противодействия магнитному поток. Магнитный поток полюсного наконечника теперь однороден по полюсу. лицо (ЛГР. 33).

    Когда переменный ток начинает уменьшаться от пикового значения обратно в сторону нуля магнитное поле полюсного наконечника начинает схлопываться.Напряжение снова вводится в затеняющую катушку. Это индуцированное напряжение создает ток, противодействующий изменению магнитного потока (FGR. 34). Это вызывает магнитный поток должен быть сосредоточен в заштрихованной части полюса кусок.

    Когда переменный ток проходит через ноль и начинает увеличиваться отрицательное направление, происходит тот же набор событий, за исключением того, что полярность магнитного поля обратное. Если бы эти события были просмотрены в быстрый порядок, магнитное поле будет видно, чтобы вращаться поперек лица полюса.

    ==


    FGR. 35 Четырехполюсный асинхронный двигатель с расщепленными полюсами.

    ==


    FGR. 36 Обмотка статора и ротор асинхронного двигателя с экранированными полюсами ..

    ===

    СКОРОСТЬ

    Скорость асинхронного двигателя с расщепленными полюсами определяется тем же Факторы, определяющие синхронную скорость других асинхронных двигателей: частота и количество полюсов статора.

    Двигатели с расщепленными полюсами обычно имеют четырех- или шестиполюсные двигатели.FGR. 35 показан чертеж четырехполюсного асинхронного двигателя с расщепленными полюсами.

    ОБЩИЕ РАБОЧИЕ ХАРАКТЕРИСТИКИ

    Двигатель с экранированными полюсами содержит стандартный ротор с короткозамкнутым ротором. Количество крутящего момента определяется силой магнитного поля статора, напряженности магнитного поля ротора и разность фазового угла между потоками ротора и статора. Индукция заштрихованного полюса двигатель имеет низкий пусковой и рабочий крутящий момент.

    Направление вращения определяется направлением, в котором вращающееся магнитное поле движется по лицевой стороне полюса. Ротор поворачивается направление показано стрелкой в ​​FGR. 35.

    Направление можно изменить, сняв обмотку статора и повернув это вокруг. Однако это не обычная практика. Как правило, Асинхронный двигатель с расщепленными полюсами считается нереверсивным. FGR. 36 показаны обмотка статора и ротор асинхронного двигателя с экранированными полюсами.

    ==


    FGR. 37 Трехскоростной мотор.

    ==

    МНОГОСКОПНЫЕ ДВИГАТЕЛИ

    Существует два основных типа многоскоростных однофазных двигателей. Один из них последовательный тип полюса, а другой - запуск конденсатора со специальной обмоткой конденсаторный двигатель или асинхронный двигатель с экранированными полюсами. Последовательный полюс однофазный двигатель работает, реверсируя ток через переменный полюсов и увеличение или уменьшение общего числа полюсов статора.В последующий полюсный двигатель используется там, где необходимо поддерживать высокий крутящий момент. на разных скоростях; например, в двухскоростных компрессорах для центрального кондиционеры.

    МНОГОСКОПНЫЕ ДВИГАТЕЛИ ВЕНТИЛЯТОРА

    Многоскоростные двигатели вентиляторов используются уже много лет. Они обычно намотать от двух до пяти ступеней скорости и задействовать вентиляторы и беличью клетку воздуходувки. Схематический чертеж трехскоростного двигателя показан на FGR. 37. Обратите внимание на то, что обмотка хода была выбрана для получения низкого, среднего и высокоскоростной.Пусковая обмотка подключена параллельно ходовой обмотке. раздел. Другой конец провода пусковой обмотки подсоединяется к внешнему маслонаполненный конденсатор. Этот двигатель изменяет скорость, добавляя индуктивность последовательно с ходовой обмоткой. Фактическая рабочая обмотка для этого двигателя между выводами отмечены высокий и общий. Обмотка, показанная между высокий и средний соединены последовательно с обмоткой главного хода.

    Когда поворотный переключатель установлен в положение средней скорости, индуктивное сопротивление этой катушки ограничивает количество тока, протекающего через ходовая обмотка.При уменьшении тока обмотки хода сила его магнитного поля уменьшается, и двигатель производит меньший крутящий момент. Этот вызывает большее скольжение, и скорость двигателя уменьшается.

    Если поворотный переключатель установлен в нижнее положение, индуктивность увеличивается. вставлены последовательно с ходовой обмоткой. Это приводит к меньшему току через обмотку хода и очередное снижение крутящего момента. Когда крутящий момент уменьшается, скорость двигателя снова уменьшается.

    Обычные скорости для четырехполюсного двигателя этого типа: 1625, 1500 и 1350. Об / мин. Обратите внимание, что этот двигатель не имеет широких диапазонов между скоростями, поскольку было бы в случае с последующим полюсным двигателем. Большинство асинхронных двигателей перегрев и повреждение обмотки двигателя, если скорость была уменьшена до этого степень. Однако этот тип двигателя имеет гораздо более высокое сопротивление обмоток. чем у большинства моторов. Рабочие обмотки большинства электродвигателей с расщепленной фазой имеют провод сопротивление от 1 до 4 Ом.Этот двигатель обычно имеет сопротивление От 10 до 15 Ом в обмотке. Это высокий импеданс обмоток что позволяет двигателю работать таким образом без повреждений.

    Поскольку этот двигатель предназначен для замедления при добавлении нагрузки, он не используется для работы с нагрузками с высоким крутящим моментом - только с нагрузками с низким крутящим моментом, такими как вентиляторы и воздуходувки.

    ОДНОФАЗНЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ

    Однофазные синхронные двигатели малы и развивают только дробную Лошадиные силы.Они работают по принципу вращающегося магнитного поля. разработан статором с расщепленными полюсами. Хотя они будут работать синхронно скорости, они не требуют постоянного тока возбуждения. Они используются там, где постоянная требуется скорость, например, в часовых двигателях, таймерах и записывающих приборах, и как движущая сила для маленьких вентиляторов, потому что они маленькие и недорогие. для производства. Есть два основных типа синхронных двигателей: Уоррен, или двигатель General Electric, и двигатель Holtz.Эти двигатели также упоминаются как гистерезисные двигатели.

    ==


    FGR. 38 Мотор Уоррена.

    ==


    FGR. 39 Мотор Holtz.

    ==


    FGR. 40 Якорь и щетки универсального двигателя.

    ==


    FGR. 41 Компенсирующая обмотка включена последовательно с обмотка возбуждения.

    ==

    WARREN MOTORS

    Двигатель Уоррена состоит из многослойного сердечника статора и одного катушка.Катушка обычно намотана для работы на переменном токе 120 В. Ядро содержит две опоры, каждая из которых разделена на две секции.

    Половина каждого полюсного наконечника содержит затеняющую катушку для вращения магнитное поле (FGR. 38). Поскольку статор разделен на два полюса, скорость синхронного поля составляет 3600 об / мин при подключении к 60 Гц.

    Разница между двигателями Уоррена и Хольца заключается в типе ротора. использовал. Ротор двигателя Уоррена построен путем укладки закаленных стальные пластины на валу ротора.Эти диски имеют высокий гистерезис. потеря. Пластины образуют две поперечины для ротора. Когда питание подключено к двигателю вращающееся магнитное поле индуцирует напряжение в роторе, и создается сильный пусковой крутящий момент, заставляющий ротор ускоряться до почти синхронной скорости. Как только двигатель разгонится до почти синхронного скорости, поток вращающегося магнитного поля следует по пути минимума реактивное сопротивление (магнитное сопротивление) через две поперечины.Это вызывает ротор синхронизируется с вращающимся магнитным полем, а двигатель работает со скоростью 3600 об / мин. Эти двигатели часто используются с небольшими зубчатыми передачами. снизить скорость до желаемого уровня.

    МОТОРЫ HOLTZ

    В двигателе Holtz используется ротор другого типа (FGR. 39). Этот ротор вырезан таким образом, чтобы образовалось шесть прорезей. Эти слоты образуют шесть выступающие (выступающие или выступающие) полюса ротора. Обмотка типа "беличья клетка" создается путем вставки металлической планки в нижнюю часть каждого слота.Когда питание подключено к двигателю, обмотка с короткозамкнутым ротором обеспечивает крутящий момент, необходимый для начала вращения ротора. Когда ротор приближается синхронная скорость, выступающие полюса синхронизируются с полюсами поля каждый полупериод. Это обеспечивает скорость ротора 1200 об / мин (одна треть от синхронная скорость) для двигателя.

    УНИВЕРСАЛЬНЫЕ ДВИГАТЕЛИ

    Универсальный двигатель часто называют двигателем переменного тока. это очень похож на двигатель серии постоянного тока по своей конструкции в том, что он содержит раневая арматура и кисти (FGR.40). Однако универсальный двигатель имеет добавление компенсирующей обмотки. Если был подключен двигатель постоянного тока к переменному току двигатель будет плохо работать по нескольким причинам. Обмотки якоря будут иметь большое индуктивное сопротивление. при подключении к переменному току. Кроме того, полевые столбы большинство машин постоянного тока содержат твердые металлические полюсные наконечники. Если бы поле было подключено к переменному току большое количество энергии будет потеряно из-за индукции вихревых токов в полюсах.Универсальные двигатели содержат ламинированный сердечник для предотвращения Эта проблема. Компенсирующая обмотка намотана на статор и функционирует для противодействия индуктивному сопротивлению обмотки якоря.

    Универсальный двигатель назван так потому, что он может работать от переменного или постоянного тока. Напряжение. При работе от постоянного тока компенсационная обмотка подключен последовательно с последовательной обмоткой возбуждения (FGR. 41).

    ==


    FGR.42 Компенсация проводимости.

    ==


    FGR. 43 Индуктивная компенсация.

    ==


    FGR. 44 Использование поля серии для установки кистей в нейтральной плоскости позиция.

    ==

    ПОДКЛЮЧЕНИЕ КОМПЕНСАЦИОННОЙ ОБМОТКИ ПЕРЕМЕННОГО ТОКА

    Когда универсальный двигатель работает от сети переменного тока, компенсирующий обмотку можно подключить двумя способами. Если он подключен последовательно с якорь, как показано на FGR.42, это называется компенсацией проводимости.

    Компенсирующую обмотку можно также подключить, закоротив ее выводы вместе. как показано в FGR. 43. При таком подключении обмотка действует как закороченная вторичная обмотка трансформатора. Наведенный ток позволяет обмотка должна работать при таком подключении. Эта связь известна как индуктивная компенсация. Индуктивная компенсация не может использоваться, когда двигатель подключен к постоянному току.

    НЕЙТРАЛЬНАЯ ПЛОСКОСТЬ

    Так как универсальный двигатель содержит намотанный якорь, коллектор и щетки, щетки должны быть установлены в положение нейтральной плоскости. Этот может выполняться в универсальном двигателе аналогично настройке нейтральная плоскость машины постоянного тока. При установке щеток на нейтраль положение плоскости в универсальном двигателе, последовательное или компенсирующее можно использовать обмотку. Чтобы установить кисти в нейтральную плоскость, используйте последовательная обмотка (FGR. 44), переменный ток подключен к якорю. ведет. К последовательной обмотке подключают вольтметр. Напряжение тогда наносится на арматуру. Затем положение щетки перемещается, пока вольтметр не подключенное к серии поле достигает нулевой позиции. (Нулевая позиция достигается, когда вольтметр достигает своей нижней точки.)

    ===


    FGR. 45: Использование компенсирующей обмотки для установки щеток в нейтральную плоскость позиция.

    ===

    Если для установки нейтральной плоскости используется компенсирующая обмотка, то попеременно на якорь снова подключается ток и подключается вольтметр к компенсационной обмотке (FGR. 45). Затем применяется переменный ток. к якорю, а щетки перемещают, пока вольтметр не покажет его максимальное или пиковое напряжение.

    РЕГУЛИРОВКА СКОРОСТИ

    Регулировка скорости универсального двигателя очень плохая.Поскольку это у серийного двигателя такая же плохая регулировка скорости, как у серийного двигателя постоянного тока. Если универсальный двигатель подключен к малой нагрузке или без нагрузки, его скорость практически неограничен. Этот двигатель нередко эксплуатируется при несколько тысяч оборотов в минуту. Универсальные двигатели используются в количество переносных устройств, отличающихся высокой мощностью и малым весом необходимы, например, буровые электродвигатели, пилы для профессионального использования и пылесосы. Универсальный двигатель способен производить высокую мощность в лошадиных силах для своего размера и веса, потому что его высокой рабочей скорости.

    ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ

    Направление вращения универсального двигателя можно изменить в таким же образом, как и изменение направления вращения двигателя постоянного тока. Чтобы изменить направление вращения, измените выводы якоря относительно к полю ведет.

    РЕЗЮМЕ

    • Не все однофазные двигатели работают по принципу вращающегося магнитного поле.

    • Двигатели с разделенной фазой запускаются как двухфазные двигатели, создавая противофазу. условие тока в обмотке хода и тока в пуске обмотка.

    • Сопротивление провода в пусковой обмотке пускового резистора. Асинхронный двигатель используется для создания разности фаз между ток в пусковой обмотке и ток в пусковой обмотке.

    • В асинхронном двигателе с конденсаторным пуском используется электролитический конденсатор переменного тока. для увеличения разности фаз между пусковым и рабочим током. Это вызывает увеличение пускового момента.

    • Максимальный пусковой момент для двигателя с расщепленной фазой достигается, когда Пусковой ток обмотки и ток рабочей обмотки сдвинуты по фазе на 90 ° с друг друга.

    • Большинство асинхронных двигателей с резистивным пуском и индукционные двигатели с конденсаторным пуском. двигатели используют центробежный переключатель для отключения пусковых обмоток, когда двигатель достигает примерно 75% скорости при полной нагрузке.

    • Конденсаторный двигатель с конденсаторным пуском работает как двухфазный двигатель. потому что и пусковая, и рабочая обмотки остаются под напряжением во время работы двигателя.

    • В большинстве двигателей с конденсаторным пуском используется масляный конденсатор переменного тока. соединены последовательно с пусковой обмоткой.

    • Конденсатор конденсаторного пускового конденсаторного двигателя помогает исправить коэффициент мощности.

    • Асинхронные двигатели с расщепленными полюсами работают по принципу вращающегося магнитное поле.

    • Вращающееся магнитное поле асинхронного двигателя с экранированными полюсами создается. путем размещения затемняющих петель или катушек на одной стороне полюсного наконечника.

    • Синхронная скорость возбуждения однофазного двигателя определяется количество полюсов статора и частота приложенного напряжения.

    • Последовательные полюсные двигатели используются, когда желательно изменение скорости двигателя. и должен поддерживаться высокий крутящий момент.

    • Двигатели многоскоростных вентиляторов состоят из последовательного соединения обмоток. с обмоткой главного хода.

    • Двигатели многоскоростных вентиляторов имеют обмотки статора с высоким сопротивлением для предотвращения их от перегрева при уменьшении их скорости.

    • Направление вращения для электродвигателей с расщепленной фазой изменяется реверсированием. пусковая обмотка по отношению к ходовой обмотке.

    • Двигатели с расщепленными полюсами обычно считаются нереверсивными.

    • Существует два типа однофазных синхронных двигателей: Уоррена и Holtz.

    • Однофазные синхронные двигатели иногда называют двигателями с гистерезисом.

    • Двигатель Уоррена работает со скоростью 3600 об / мин.

    • Двигатель Holtz работает со скоростью 1200 об / мин.

    • Универсальные двигатели работают от постоянного или переменного тока.

    • Универсальные двигатели содержат намотанный якорь и щетки.

    • Универсальные двигатели также называются двигателями серии переменного тока.

    • Универсальные двигатели имеют компенсирующую обмотку, которая помогает преодолевать индукционные реактивное сопротивление.

    • Направление вращения универсального двигателя можно изменить реверсированием. якорь ведет относительно проводов возбуждения.

    ВИКТОРИНА

    1. Какие три основных типа двигателей с расщепленной фазой?

    2.На сколько градусов сдвинуты по фазе напряжения в двухфазной системе. друг с другом?

    3. Как подключены пусковая и рабочая обмотки двигателя с расщепленной фазой? по отношению друг к другу?

    4. Для обеспечения максимального пускового момента в двигателе с расщепленной фазой, на сколько градусов не совпадает по фазе должны пускать и запускать токи обмотки быть друг с другом?

    5. В чем преимущество асинхронного двигателя с конденсаторным пуском перед двигатель индукционного пуска с резистивным пуском?

    6.В среднем, на сколько градусов не совпадают по фазе друг с другом пусковые и управляющие токи обмоток в асинхронном двигателе с резистивным пуском?

    7. Какое устройство используется для отключения пусковых обмоток цепи? в большинстве негерметичных асинхронных двигателей с конденсаторным пуском?

    8. Почему двигатель с расщепленной фазой продолжает работать после пусковых обмоток были отключены от цепи?

    9. Как можно изменить направление вращения двигателя с расщепленной фазой?

    10.Если двигатель с двойным напряжением и расщепленной фазой должен работать от высокого напряжения, как связаны между собой обмотки хода?

    11. При определении направления вращения двигателя с расщепленной фазой, следует ли смотреть на двигатель спереди или сзади?

    12. Какой тип двигателя с расщепленной фазой обычно не содержит центробежного? выключатель?

    13. Каков принцип работы конденсаторно-пускового конденсатора. запустить мотор?

    14.Что заставляет магнитное поле вращаться по индукции с заштрихованными полюсами мотор?

    15. Как изменить направление вращения асинхронного двигателя с экранированными полюсами? быть изменен?

    16. Как изменяется скорость последующего полюсного двигателя?

    17. Почему многоскоростной вентиляторный двигатель может работать на более низкой скорости, чем большинство других асинхронные двигатели без вреда для обмоток двигателя?

    18. Какова скорость работы мотора Уоррена?

    19.Какая скорость работы мотора Хольца?

    20. Почему двигатель серии переменного тока часто называют универсальным двигателем?

    21. Какова функция компенсирующей обмотки?

    22. Как меняется направление вращения универсального двигателя?

    23. Когда двигатель подключен к постоянному напряжению, как должна компенсировать обмотку подключать? 24. Объясните, как установить положение нейтральной плоскости. кистей, используя поле серии.

    25. Объясните, как установить положение нейтральной плоскости с помощью компенсирующего обмотка.

    ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ:

    Вы - подрядчик по электрике, и вас вызвали на дом. установить скважинный насос. Владелец дома купил насос, но делает не знаю как его подключить. Вы открываете крышку клеммной коробки и обнаружите, что двигатель имеет 8 клеммных выводов, помеченных с T1 по T8. Двигатель должен быть подключен к напряжению 240 В.В настоящее время T-выводы подключены следующим образом: T1, T3, T5 и T7 соединены вместе; и T2, T4, T6 и Т8 соединены вместе. Линия L1 подключена к группе клемм с T1, а линия L2 подключена к группе клемм с T2. Является нужно ли поменять провода для работы от 240 В? Если да, то как следует они связаны?

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *