- звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В
- Схемы подключения асинхронных электродвигателей
- Подключение двигателя звезда и треугольник 220 380
- Схемы подключения электродвигателя к электропитанию
- Возможные схемы подключения обмоток электродвигателей
- Использование частотного преобразователя
- Что важно знать о схемах подключения трехфазного электродвигателя на 220 вольт
- Переподключение с 380 вольт на 220
- Схема звезда-треугольник
- Как работает схема
- Другие подключения электродвигателя
- Включение трехфазного двигателя в однофазную сеть
- Использование магнитного пускателя
- Электродвигатель асинхронный: схемы звезда треугольник
- Электродвигатель асинхронный: устройство
- Как подключать «звезду» и «треугольник»?
- Подключение двигателя звезда и треугольник 220 380
- Выбор схемы соединения фаз электродвигателя
- Чем отличаются соединения звездой и треугольником
- Различия между «звездой» и «треугольником»
- Соединение «звездой» и его преимущества
- Соединение «треугольником» и его преимущества
- Тип соединения «звезда-треугольник»
- Как подключить электродвигатель с 380 на 220: способы и схемы
- Звезда и треугольник в электродвигателе: принцип подключения и отличия
- Электродвигатель 380 660 как подключить
- Схемы подключения трехфазных электродвигателей
- Как подключить электродвигатель к однофазной и трехфазной сети: Схема Звезда, Треугольник
- Подключение трехфазного электродвигателя к сети 220 (однофазной), 380 и 660В (трехфазной)
- Соединение обмоток электродвигателя «треугольником» и «звездой»
- Подключение двигателей к различным видам ПЧ
- Как подключить электродвигатель с 6 проводами
- Схема соединения обмоток электродвигателя по схеме «треугольник»
- Схема соединения обмоток электродвигателя по схеме «звезда»
- Определение выводов обмоток
- Что важно знать о схемах подключения трехфазного электродвигателя на 220 вольт
- Переподключение с 380 вольт на 220
- Схема звезда-треугольник
- Как работает схема
- Другие подключения электродвигателя
- Соединение звездой и треугольником — схема и разница трехфазного соеднинения
- Как подключить трёхфазный электродвигатель к сети 220В и 380В по схеме
- Схемы подключения электродвигателя к электропитанию
- Соединение звездой и треугольником обмоток электродвигателя
- Схема подключения трехфазного электродвигателя
- Как подключить асинхронный двигатель
- Подключение двигателя звезда / треугольник 380В / 220В | GoHz.com
- Можно ли подключить двигатель 380 В к трехфазному 220 В? — Выставка
- Обмотка детали
- с входом / выходом 220 В
- ЧРП (частотно-регулируемый привод) дает множество преимуществ, в том числе:
- Комбинация мощности, двигателя и частотно-регулируемого привода
- Частотно-регулируемый привод
- Проблемы использования частотно-регулируемых приводов в однофазных источниках питания
- Однофазный ЧРП
- Больше преимуществ от VFD
- Установка частотно-регулируемого привода
- Выбор частотно-регулируемого привода и требования к питанию
- Почему Уай? Почему Дельта? | Насосы и системы
- Подключение двигателя по схеме звезда-треугольник — Центр электротехники
- Соединения клеммной коробки электродвигателя
звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В
Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»
Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).
Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
и т.п.
Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:
1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.
В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.
Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.
В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
Возможные схемы подключения обмоток электродвигателей
Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.
Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.
Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).
Подключение электродвигателя по схеме звезда
Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.
Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.
Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.
Подключение электродвигателя по схеме треугольник
Название этой схемы также идёт от графического изображения (см. правый рисунок):
Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.
То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).
Подключение электродвигателя к трёхфазной сети на 380 В
Последовательность действий такова:
1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):
Двигатель для однофазной сети 220В
(~ 1, 220В)
Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)
Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)
Двигатель для трехфазной сети
3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя
Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.
— использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).
Устройство электромагнитного пускателя:
Магнитный пускатель устроен достаточно просто и состоит из следующих частей:
(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).
При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).
Типовая схема подключения электродвигателя с использованием пускателя:
При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).
5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса
Как подключить поплавковый выключатель к трёхфазному насосу
Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.
Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.
Подключение электродвигателя к однофазной сети 220 В
Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку
Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).
Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.
Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.
Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.
Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.
Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).
Использование частотного преобразователя
В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.
Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).
Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:
— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.
Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.
Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.
Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.
Данные насосы используются в качестве дозирующих насосов на пищевом производстве.
Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).
Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.
Схемы подключения асинхронных электродвигателей
Чтобы привести ротор электродвигателя в движение необходимо правильно подключить концы обмоток статора к трехфазной сети, где рабочее напряжение может быть:
- 220 вольт
- 380 вольт
- 660 вольт
Заказать новый электродвигатель по телефону
Асинхронные электродвигатели АИР предполагают два способа подключения к трехфазной промышленной сети – «треугольник» и «звезда». В основном электродвигатели АИР рассчитаны на 2 номинальных напряжения 220/380 В, либо 380/660 В и имеют два способа подключения к трехфазной промышленной сети: «звезда» и «треугольник»
220/380 220 В – «треугольник» 380 В – «звезда» | 380/660 380 В — «треугольник» 660 В — «звезда» |
Как правильно подключить шесть проводов электродвигателя?
Как правило двигатели имеют шесть выводов для возможности выбора схемы подключения: «звезда» либо «треугольник». Но встречаются и три вывода — уже соединенных внутри двигателя по схеме «звезда».
Схема подключения «звезда»
При подключении обмоток звездой начала обмоток подключаются к фазам, а концы обмоток собираются общую точку (0 точку).
Таким образом напряжение фазной обмотки составит 220В, а линейное напряжение между обмотками 380В. Основным преимуществом подключения электродвигателя по схеме звезда является:
- Плавный пуск
- Возможность перегрузки (недлительной)
- Повышенная надежность
При этом данная схема подключения обеспечит более низкую мощность от заявленной.
Схема подключения «треугольник»
При подключении треугольником последовательно конец одной обмотки соединяется с началом следующей обмотки.
Главными преимуществами такого подключения являются:
- Максимальная мощность
- Повышенный вращающий момент
- Увеличенные тяговые способности
Однако, электродвигатели подключенные по схеме звезда больше нагреваются.
Комбинированный тип подключения
Как уже было отмечено, подключение «звездой» обеспечивает более плавный пуск, но пр этом не достигается максимальная заявленная мощность электромотора. При подключении «треугольником» достигается полная мощность, но пусковой ток может повредить изоляцию. Поэтому для мощных двигателей (начиная от АИР100L2), часто применяют комбинированную схему подключения трехфазных электродвигателей «звезда-треугольник», когда запуск двигателя происходит по схеме «звезда», в рабочем состоянии он переключается на схему «треугольник». Переключение обеспечивается магнитным пускателем или пакетным переключателем.
Наиболее популярные модели асинхронных электродвигателей:
Подключение двигателя звезда и треугольник 220 380
Схемы подключения электродвигателя к электропитанию
Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»
Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).
Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.
Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:
1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.
В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.
Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.
В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.
Возможные схемы подключения обмоток электродвигателей
Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.
Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.
Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).
Подключение электродвигателя по схеме звезда
Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.
Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.
Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.
Подключение электродвигателя по схеме треугольник
Название этой схемы также идёт от графического изображения (см. правый рисунок):
Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.
То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).
Подключение электродвигателя к трёхфазной сети на 380 В
Последовательность действий такова:
1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):
3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя
Эти устройства при включении подают напряжение сразу на все 3 фазы.
Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.
— использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).
Устройство электромагнитного пускателя:
Магнитный пускатель устроен достаточно просто и состоит из следующих частей:
(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).
При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).
Типовая схема подключения электродвигателя с использованием пускателя:
При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).
5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса
Как подключить поплавковый выключатель к трёхфазному насосу
Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.
Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.
Подключение электродвигателя к однофазной сети 220 В
Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку
Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).
Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.
Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.
Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.
Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.
Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).
Использование частотного преобразователя
В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.
Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).
Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:
— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.
Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.
Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.
Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.
Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.
Данные насосы используются в качестве дозирующих насосов на пищевом производстве.
Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).
Что важно знать о схемах подключения трехфазного электродвигателя на 220 вольт
Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.
Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.
Переподключение с 380 вольт на 220
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Видео: Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.
Как работает схема
При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.
Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.
Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.
Другие подключения электродвигателя
Схем несколько:
- Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
- Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
- При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.
Рекомендуем:
Включение трехфазного двигателя в однофазную сеть
Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.
Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.
Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.
Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.
Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).
Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.
Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.
Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.
Использование магнитного пускателя
Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.
Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.
Схема подключения пускателя асинхронного двигателя электрического 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.
Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.
Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
Электродвигатель асинхронный: схемы звезда треугольник
Главная страница » Электродвигатель асинхронный: схемы звезда треугольник
Электродвигатель асинхронный – электромеханическое оборудование, широко распространённое в различных сферах деятельности, а потому знакомое многим. Между тем, даже учитывая тесную связь асинхронного электродвигателя с народом, редкий «сам себе электрик» способен раскрыть всю подноготную этих приборов. Например, далеко не каждый «держатель пассатижей» может дать точный совет: как соединить обмотки электродвигателя «треугольником»? Или как ставить перемычки схемы соединения обмоток двигателя «звездой»? Попробуем раскрыть эти два простых и одновременно сложных вопроса.
Электродвигатель асинхронный: устройство
Как говаривал Антон Павлович Чехов:
Начать повторение темы электрических асинхронных двигателей логично детальным обзором конструкции. Двигатели стандартного исполнения построены на базе следующих конструктивных элементов:
- алюминиевый корпус с элементами охлаждения и крепёжным шасси;
- статор – три катушки, намотанные медным проводом на кольцевой основе внутри корпуса и размещённые противоположно одна другой под угловым радиусом 120º;
- ротор – металлическая болванка, жёстко закреплённая на валу, вставляемая внутрь кольцевой основы статора;
- подшипники упорные для вала ротора – передний и задний;
- крышки корпуса – передняя и задняя, плюс крыльчатка для охлаждения;
- БРНО – верхняя часть корпуса в виде небольшой прямоугольной ниши с крышкой, где размещается клеммник крепления выводов обмоток статора.
Вот, собственно, вся конструкция. Большая часть асинхронных электродвигателей являются прообразом именно такого исполнения. Правда, встречаются иногда экземпляры несколько иной конфигурации. Но это уже исключение из правил.
Обозначение и разводка статорных обмоток
Остаются в эксплуатации ещё достаточно большое число асинхронных электродвигателей, где обозначение статорных обмоток выполнено по устаревшему стандарту.
Таким стандартом предусматривалась маркировка символом «С» и добавлением к нему цифры — номера вывода обмотки, обозначающего её начало либо конец.
При этом цифры 1, 2, 3 – всегда относятся к началу, а цифры 4, 5, 6, соответственно, обозначают концы. Например, маркеры «С1» и «С4» обозначают начало и конец первой статорной обмотки.
Маркировка концевых частей проводников, выводимых на клеммник БРНО: А – устаревшее обозначение, но всё ещё встречающееся на практике; В – современное обозначение, традиционно присутствующее на маркерах проводников новых моторовСовременные стандарты изменили эту маркировку. Теперь отмеченные выше символы заменены другими, соответствующими международному образцу (U1, V1, W1 – начальные точки, U2, V2, W2 – концевые точки) и традиционно встречаются при работе с асинхронными движками нового поколения.
Проводники, исходящие от каждой из обмоток статора, выводятся в область клеммной коробки, что находится на корпусе электродвигателя и подключаются к индивидуальной клемме.
В общей сложности количество индивидуальных клемм равно числу выведенных начальных и конечных проводов общей намотки. Обычно это 6 проводников и такое же число клемм.
Таким выглядит клеммник движка стандартной конфигурации. Шесть выводов соединяются латунными (медными) перемычками перед подключением мотора под соответствующее напряжениеМежду тем, встречаются также вариации развода проводников (редко и обычно на старых моторах), когда в область БРНО выведены 3 провода и присутствуют только 3 клеммы.
Как подключать «звезду» и «треугольник»?
Подключение асинхронного электродвигателя с выведенными на клеммную коробку шестью проводниками, выполняется стандартной методикой с помощью перемычек.
Размещая должным образом перемычки между индивидуальными клеммами, легко и просто установить необходимую схемную конфигурацию.
Так, чтобы создать интерфейс для подключения «звездой», следует начальные проводники обмоток (U1, V1, W1) оставить на индивидуальных клеммах одиночными, а клеммы концевых проводников (U2, V2, W3) соединить между собой перемычками.
Схема соединения «звезда». Отличается высокой потребностью линейного напряжения. Даёт плавный ход ротора в режиме запускаЕсли же потребуется создать схему соединения «треугольник», вариант размещения перемычек изменяется. Для соединения статорных обмоток треугольником нужно соединить начальные и концевые проводники обмоток по следующей схеме:
- начальная U1 – концевая W2
- начальная V1 – концевая U2
- начальная W1 – концевая V2
Подключение для обеих схем, конечно же, предполагается в трёхфазную сеть с напряжением 380 вольт. Особой разницы при выборе того или иного схемного варианта нет.
Однако следует учитывать большую потребность в линейном напряжении для схемы «звезда». Эту разницу, собственно, показывает маркировка «220/380» на технической пластине моторов.
Вариант последовательного соединения «звезда-треугольник» в рабочем режиме видится оптимальным пусковым методом 3-фазного асинхронного электродвигателя переменного тока. Этот вариант часто используется для плавного пуска мотора при малых начальных токах.
Первоначально подключение организуется по схеме «звезды». Затем, через некоторый промежуток времени, моментальным переключением выполняется соединение на «треугольник».
Подключение с учётом технической информации
Каждый асинхронный электродвигатель обязательно оснащается металлической пластиной, которая закреплена на боковине корпуса.
Такая пластина является своего рода панелью-идентификатором оборудования. Здесь размещается вся необходимая информация, требуемая для корректной установки изделия в сеть переменного тока.
Техническая пластина на боковине корпуса движка. Здесь отмечаются все важные параметры, требуемые для обеспечения нормальной работы электродвигателяЭтими сведениями не следует пренебрегать, включая мотор в цепь питания электрическим током. Нарушения условий, отмеченных на информационной пластине – это всегда первые причины выхода моторов из строя.
Что указывается на технической пластине асинхронного электродвигателя?
- Тип мотора (в данном случае – асинхронный).
- Число фаз и рабочая частота (3Ф / 50 Гц).
- Схема включения обмоток и напряжение (треугольник/звезда, 220/380).
- Рабочий ток (на «треугольнике» / на «звезде»)
- Мощность и число оборотов (кВт / об. мин).
- КПД и COS φ (% / коэффициент).
- Режим и класс изоляции (S1 – S10 / А, В, F, H).
- Производитель и год выпуска.
Обращаясь к технической пластине, электрик уже предварительно знает на каких условиях допустимо включать мотор в сеть.
С точки зрения подключения «звездой» или «треугольником», как правило, существующая информация даёт электрику знать, что в сеть 220В корректно подключение «треугольником», а на линию 380В асинхронный электродвигатель следует включать «звездой».
Испытывать мотор либо эксплуатировать следует только при условии разводки через защитный автоматический выключатель. При этом внедряемый в цепь асинхронного электродвигателя автомат следует корректно подбирать по току отсечки.
Трёхфазный асинхронный электродвигатель в сети 220В
Теоретически и практически тоже, асинхронный электродвигатель, рассчитанный на подключение к сети через три фазы, может работать в однофазной сети 220В.
Как правило, этот вариант актуален лишь для моторов мощностью не выше 1,5 кВт. Объясняется сие ограничение банальным дефицитом ёмкости дополнительного конденсатора. На большие мощности требуется ёмкость под высокие напряжения, измеряемая сотнями мкФ.
Применяя конденсатор, можно организовать работу трёхфазного двигателя в сети 220 вольт. Однако при этом теряется практически половина полезной мощности. Уровень КПД снижается до 25-30%Действительно, самый простой способ запуска трёхфазного асинхронного электродвигателя в однофазной сети 220-230В, это исполнение соединения через так называемый пусковой конденсатор.
То есть из трёх существующих клемм две объединяются в одну включением между ними конденсатора. Образованные таким образом две сетевых клеммы присоединяются к сети 220В.
Переключением сетевого провода на клеммах с подключенным конденсатором можно изменять направление вращения вала мотора.
Включением в трёхфазный клеммник конденсатора, схема подключения трансформируется в двухфазную. Но для чёткой работоспособности двигателя требуется мощный конденсаторНоминальная ёмкость конденсатора рассчитывается по формулам:
Сзв = 2800 * I / U
C тр = 4800 * I / U
где: C – искомая ёмкость; I – пусковой ток; U – напряжение.
Однако простота требует жертв. Так и здесь. При подходе к решению задачи пуска с помощью конденсаторов отмечается существенная потеря мощности мотора.
Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости (50-100 мкФ) с рабочим напряжением не менее 400-450В. Но даже в этом случае удаётся набрать мощность не более 50% от номинала.
Поскольку подобные решения используются чаще всего для асинхронных электродвигателей, которые предполагается запускать и отключать с частой периодичностью, логично применять схему, несколько доработанную по сравнению с традиционным упрощённым вариантом.
Схема для организации работы в сети 220 вольт с учётом частых включений и отключений. Применение нескольких конденсаторов позволяет в какой-то степени компенсировать потери мощностиМинимум потерь мощности даёт схема включения «треугольником» в отличие от схемы «звезды». Собственно, на этот вариант указывает и техническая информация, что размещается на технических пластинах асинхронных движков.
Как правило, на бирке именно схема «треугольника» соответствует рабочему напряжению 220В. Поэтому на случай выбора способа соединения, прежде всего, следует взглянуть на табличку технических параметров.
Нестандартные клеммники БРНО
Изредка встречаются конструкции асинхронных электродвигателей, где БРНО содержит клеммник на 3 вывода. Для таких моторов применяется схема разводки внутреннего исполнения.
То есть, та же «звезда» либо «треугольник» схематично выстраиваются соединениями непосредственно в области расположения статорных обмоток, куда доступ затруднён.
Вид нестандартного клеммника, какие могут встречаться на практике. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластинеКонфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Информация на технических табличках движков с нестандартными клеммниками обычно указывает схему внутреннего развода «звезда» и напряжение, при котором допустимо эксплуатировать электродвигатель асинхронного типа.
Видео включения мотора 380В на 220В
Видеороликом ниже демонстрируется, каким образом допустимо включить электрический двигатель с обмоткой под напряжение 380 вольт к сети с напряжением 220 вольт (бытовая сеть). Такая потребность — частое явление в бытовой практике.
Подключение двигателя звезда и треугольник 220 380
Произошёл тут такой случай. Принёс человек в ремонт новый двигатель, который проработал у него 10 секунд и задымил. Двигатель он подключил треугольником в обычную трехфазную сеть, а на шильдике двигателя есть схема, на которой написано: треугольник — 230 В. звезда — 400 В. В общем, подключил он неправильно, потому двигатель и сгорел.
Для тех, кто не понимает, почему нельзя делать так, как сделал сделал тот товарищ, спаливший двигатель, предназначена эта статья.
Вот всем известные схемы подключения треугольником (D) и звездой (Y):
Совершенно неважно как вы подключаете двигатель: звездой или треугольником. Важно только то, какое напряжение вы подаёте на обмотки двигателя. Будет ли это напряжение получаться как межфазное (треугольник) или как фазное (между фазой и нулевой точкой — звезда) — двигателю это совершенно неважно.
Если у вас есть двигатель с номинальным напряжением обмотки 220 В и есть две разные трёхфазные сети, у одной из которых линейное напряжение 380 В (220 В на фазу), а у другой — 220 В (127 В на фазу), то к первой вы можете подключать двигатель звездой, а ко второй — треугольником, разницы для двигателя не будет никакой, отличаться будут лишь токи, протекающие в проводниках на линии, ведущей к двигателю.
Линейное напряжение трёхфазной сети — это межфазное напряжение, именно оно обозначается на шильдиках двигателей. Фазное напряжение (между фазой и нейтралью) на шильдиках не обозначается.
Одновременно с этим, условно говоря, вы можете считать, что на шильдике обозначено фазное напряжение, но только в том случае, если собираетесь подключать двигатель только к одной фазе через конденсатор.
Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз (т.е. примерно в 1.73 раза, т.е. 220 х 1.73 = 380).
Для такого двигателя на шильдике будет написано: D/Y 220V / 380V, 4.9А / 2.8А. Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда.
Номинальное напряжение обмотки большинства двигателей при частоте тока 50 Гц обычно составляет либо 127 В , либо 230 В, либо 400 В, либо 690 В. Ну, или как было раньше: 220, 380, 660 В соответственно.
Теперь логичный вопрос:
если двигателю нет разницы по какой схеме он будет подключен, а важно лишь напряжение на обмотках, то зачем вообще делать двигатели с разным номинальным напряжением на этих самых обмотках?1. Исходя из естественного желания сэкономить, при подключении в трёхфазную сеть выгоднее использовать двигатели с бóльшим номинальным напряжением обмотки, поскольку это значительно удешевляет прокладку кабельных трасс, т.к. ведёт к снижению силы тока на силовых линиях, ведущих к двигателю (что видно на рисунке сверху: 2.8А против 4.85А — ну, и сечение проводов должно быть соответствующее)
2. Для двигателей со свободной нагрузкой на валу наиболее дешевым способом плавного пуска при подключении в трёхфазную сеть является пуск «звездой» с последующим переключением на «треугольник».
Третье условие явным образом вступает в противоречие с первым и вторым, поскольку для подключения к однофазной сети 230 В номинальное напряжение обмотки двигателя должно составлять те же самые 230 В.
В итоге получается следующая ситуация:
— при наличии в распоряжении трёхфазной сети 400 В нет никакого смысла использовать двигатели с номинальным напряжением обмотки 230 В, потому что придется прокладывать кабели большего сечения. Тем более, если нужен дешёвый плавный пуск, т.е. стартовать звездой, а затем переключаться на треугольник.
Если провода уже проложены, и они толстые, и куплены двигатели 230/400 — то тут нет проблемы, подключил звездой — и ничего страшного.
— при отсутствии трёхфазной сети надо выбирать такой двигатель, который имеет номинальное напряжение обмотки 230 В, чтобы при подключении треугольником в однофазную сеть через конденсатор он выдавал нужную мощность.
Двигатели малой мощности
D 230V / Y 400VДля того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V.
Соответственно, если нужно такой двигатель использовать в стране с более низким линейным напряжением, например, в США (где линейной напряжение 240 В, а фазное — 120 В при частоте тока 60 Гц), то по-нормальному подключить такой двигатель в их однофазную сеть через конденсатор не получится. Однако, по крайней мере, можно использовать 3-фазное подключение треугольником. Для такого подключения потребуется немного более высокое напряжение, чем 230 В (из-за частоты тока 60 Гц), но у них там как раз 240 В, что как раз подходит.
D 115V / Y 230V
Подключить такой двигатель к стандартной российской трёхфазной сети (все три фазы) можно только через преобразователь частоты переменного тока, поскольку на них есть возможность переключения линейного напряжения на выходе: 230 / 400 В.
В однофазную сеть можно подключить звездой через конденсатор. Тогда напряжение, подаваемое на каждое обмотку, будет составлять половину фазного напряжения сети (230 В / 2 = 115 В). Выглядит это вот так:
Двигатели мощности более 5 кВт
D 400V / Y 690VДля двигателей мощнее 5 кВт обычно не предусматривают возможность подключения в однофазную сеть, т.е. номинальное напряжение обмоток делают такое, которое соответствует линейному напряжению. Т.е. штатной схемой подключения таких двигателей в трёхфазную сеть является треугольник. В России и Европе это двигатели с номинальным напряжением обмоток 400В, т.е. где на шильдике написано D 400V / Y 690V.
Для определённых задач, где на валу двигателя находится свободная нагрузка (системы вентиляции, осевые насосы), ну, и вообще те задачи, где возможно регулирование скорости вращения вала только лишь напряжением (трансформатором), часто используют схему подключения «звезда» при старте с последующим переключением на «треугольник». Т.е. при старте на обмотку подаётся заниженное напряжение 230В вместо номинальных 400В, а затем происходит переключение на штатный режим (т.е. на треугольник). Из-за свободной нагрузки на валу момент вращения при старте на низком напряжении также будет ниже, т.е. пусковой ток будет не столь высок, как при старте на номинальном напряжении. Поэтому такой пуск двигателя называют «щадящим».
Следует помнить, что для нагрузок, требующих большого момента при запуске, подобный режим приведет напротив, к возрастанию тока в обмотках и последующим неприятным событиям.
Кроме того, надо иметь ввиду, что подключение двигателей даже со свободной нагрузкой на валу звездой для «щадящего старта» вовсе не означает, что если по такой схеме постоянно эксплуатировать двигатель (не переходя на треугольник), то такой режим станет «щадящим» для него. Низкий момент при старте ещё не означает, что заниженное напряжение годится для его нормальной работы, поскольку сам двигатель (со своими номинальными характеристиками) обычно как раз и подбирается под конкретную нагрузку. Поэтому постоянная эксплуатация двигателей на напряжении ниже номинального иногда приводит к их выходу из строя. Чтобы не было неприятностей двигатель всегда надо эксплуатировать на номинальном напряжении, а если требуется снизить обороты вращения вала, то тогда нужно использовать редукторы или преобразователи частоты переменного тока, а не пытаться решить вопрос самым дешёвым способом. К слову сказать, частотник тоже меняет не только частоту тока, но и напряжение, однако, он это делает с умом.
D 220V / Y 440VДвигатели мощностью выше 5 кВт, изготовленные в США, будут иметь номинальное напряжение обмотки 220 В, т.е. на шильдике будет написано D 220V / Y 440V (для 60 Гц). Подключать такие двигатели к российской трёхфазной сети 400 В следует звездой, а к российской однофазной сети через конденсатор — треугольником. Касательно величин напряжения, есть двигатели, где более подробно расписано подключение для сетей 50 Гц и 60 Гц, например вот так:
Выбор схемы соединения фаз электродвигателя
Для включения асинхронного электродвигателя в сеть его статорная обмотка должна быть соединена звездой или треугольником.Чтобы электродвигатель включить в сеть по схеме «звезда», нужно все концы фаз (С4, С5, С6) соединить электрически в одну точку, а все начала фаз (C1, С2, С3) присоединить к фазам сети. Правильное соединение концов фаз электродвигателя по схеме «звезда» показано на рис. 1, а.
Для включения электродвигателя по схеме «треугольник» начало первой фазы соединяют с конном второй и начало второй — с концом третьей, а начало третьей — с концом первой. Места соединений обмоток подключают к трем фазам сети. Правильное соединение концов фаз электродвигателя по схеме «треугольник» показано рис. 1, б.
Рис. 1. Схемы включения трехфазного асинхронного электродвигателя в сеть: а — фазы соединены звездой, б — фазы соединены треугольником
Соединение фаз двигателя по схеме «звезда»
Соединение фаз двигателя по схеме «треугольник»
Дли выбора схемы соединения фаз трехфазного асинхронного электродвигателя можно использовать данные таблицы 1.
Таблица 1. Выбор схемы соединения обмоток
Напряжение электрического двигателя, В | Напряжение сети, В | |
380/220 | 660/380 | |
380/220 | звезда | — |
660/380 | треугольник | звезда |
Из таблицы видно, что при подключении асинхронного двигателя с рабочим напряжением 380/220 В к сети с линейным напряжением 380 В соединять его обмотки можно только звездой! Соединять концы фаз такого электродвигателя по схеме «треугольник» нельзя. Неправильный выбор схемы соединения обмоток электродвигателя может привести к выходу его из строя во время работы.
Вариант соединения обмоток треугольником предусмотрен для подключения двигателей 660/380 В к сети с линейным напряжением 660В и фазным 380 В. В этом случае обмотки двигателя могут соединяться по схеме, как «звезда», так и «треугольник».
Такие двигатели могут включаться в сеть при помощи переключателя схем со звезды на треугольник (рис. 2). Это техническое решение позволяет уменьшить пусковой ток трехфазного асинхронного короткозамкнутого электродвигателя большой мощности. При этом сначала обмотки электродвигателя соединяют по схеме «звезда» (при нижнем положении ножей переключателя), потом, когда ротор двигателя наберет номинальную частоту вращения, его обмотки переключают в схему «треугольник» (верхнее положение ножей переключателя).
Рис. 2. Схема включения трехфазного электродвигателя в есть при помощи переключателя фаз со звезды на треугольник
Снижение пускового тока при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы «треугольник» (660В) каждая обмотка двигателя включается на напряжение в √3 раза меньше (380В). При этом потребляемый ток снижается в 3 раза. Снижается также в 3 раза и мощность, развиваемая электродвигателем при пуске.
Но, в связи со всем вышесказанным, такие схемные решения можно использовать только для двигателей с номинальным напряжением 660/380 В и включении их в сеть с таким же напряжением. При попытке включения электродвигателя с номинальным напряжением 380/220 В по такой схеме он выйдет из строя, т.к. его фазы нельзя включать в сеть «треугольником».
Номинальное напряжение электрического двигателя можно посмотреть на его корпусе, где в в виде металлической пластинки размещается его технический паспорт.
Для изменения направления вращения электродвигателя достаточно поменять местами две любые фазы сети независимо от схемы его включения. Для изменения направления вращения асинхронного электродвигателя применяют электрические аппараты ручного управления (реверсивные рубильники, пакетные переключатели) или аппараты дистанционного управления (реверсивные электромагнитные пускатели). Схема включения трехфазного асинхронного электродвигателя в сеть реверсивным рубильником показана на рис. 3.
Рис. 3. Схема включения трехфазного электродвигателя в сеть реверсивным рубильником
Чем отличаются соединения звездой и треугольником
Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.
Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.
Различия между «звездой» и «треугольником»
Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.
Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.
Соединение «звездой» и его преимущества
Реверсивная схема двигателя 380 на 220 Вольт
Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.
При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.
Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.
Основные преимущества применения схемы «звезда»:
- Устойчивый и длительный режим безостановочной работы двигателя;
- Повышенная надежность и долговечность, за счет снижения мощности оборудования;
- Максимальная плавность пуска электрического привода;
- Возможность воздействия кратковременной перегрузки;
- В процессе эксплуатации корпус оборудования не перегревается.
Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.
Подключение трехфазного двигателя к однофазной сети по схеме звезда
Соединение «треугольником» и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.
При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.
Основные преимущества применения схемы «треугольник»:
- Увеличение до максимального значения мощности электрооборудования;
- Использование пускового реостата;
- Повышенный вращающийся момент;
- Большие тяговые усилия.
Недостатки:
- Повышенный ток пуска;
- При длительной работе двигатель сильно греется.
Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Тип соединения «звезда-треугольник»
В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.
Схемы подключения звездой и треугольником
В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».
В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.
Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.
Основные преимущества комбинации:
- Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
- Возможность создания двух уровней мощности.
Как подключить электродвигатель с 380 на 220: способы и схемы
Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.
Общие правила
Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.
Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:
- 660/380 В;
- 380/220 В;
- 220/127 В.
Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.
Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой, будут иметь плавный пуск, а треугольник сможет выдать большую мощность.
Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.
Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.
Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.
Способы и схемы подключения
В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.
Без конденсаторов
Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.
Схема бесконденсаторного пуска треугольникПриведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.
Работа схемы производится следующим образом:
- при подаче напряжения на ввод провода подключаются к двум точкам мотора;
- напряжение на третью точку треугольника подается через времязадающую R-C цепочку;
- магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
- после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.
Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:
Схема бесконденсаторного пуска звездаС конденсаторами
Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий. Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.
Схема включения с конденсаторамиКак видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками, а к третей та же фаза подключается через контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.
Включение асинхронного электродвигателя происходит по такому принципу:
- Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
- После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
- Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.
Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.
С реверсом
Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.
Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:
Включение трехфазного двигателя с реверсомКак видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.
Используя пускатель
Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.
Схема включения через магнитный пускательКак видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор Спуск. При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.
Как подбирать конденсаторы?
Если вы собрались подключить электродвигатель, то выбор конденсатора осуществляется по таким принципам:
- Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
- Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
- Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:
Таблица: определение емкости конденсаторов
Мощность трехфазного электродвигателя, кВт | 0,4 | 0,6 | 0,8 | 1,1 | 1,5 | 2,2 |
Минимальная емкость конденсатора Ср , мкф | 40 | 60 | 80 | 100 | 150 | 230 |
Емкость пускового конденсатора (Сп), мкф | 80 | 120 | 160 | 200 | 250 | 300 |
Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:
Сраб = (2800*I)/U — для включения трехфазного двигателя звездой
Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником
где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.
Видео в помощь
Звезда и треугольник в электродвигателе: принцип подключения и отличия
Вся нагрузка в трёхфазных цепях соединяется по схеме звезда или треугольник. В зависимости от вида потребителей электроэнергии и напряжения в электросети и выбирают соответствующий вариант. Если говорить об электродвигателях, то от выбора варианта соединения обмоток зависит возможность его работы в конкретной сети с номинальными характеристиками. В статье мы рассмотрим, чем отличаются звезда и треугольник в электродвигателе, на что они влияют и какой принцип подключения проводов в клеммнике трёхфазного двигателя.
Теория
Как уже было сказано, схемы соединения звезда и треугольник характерны не только для электродвигателя, но и для обмоток трансформатора, нагревательных элементов (например, тэнов электрокотла) и другой нагрузки.
Чтобы понять почему эти схемы соединения элементов трёхфазной цепи так называются, нужно их несколько видоизменить.
В «звезде», нагрузка каждой из фаз соединена между собой одним из выводов, это называется нейтральная точка. В «треугольнике» каждый из выводов нагрузки подключается к разноимённым фазам.
Всё сказанное в статье далее справедливо для трёхфазных асинхронных и синхронных машин.
Рассмотрим этот вопрос на примере соединения обмоток трёхфазного трансформатора или трёхфазного двигателя (в этом контексте это не имеет значения).
На этом рисунке отличия более заметны, в «звезде» начала обмоток подключаются к фазным проводникам, а концы соединяются вместе, в большинстве случаев к этой же точке нагрузки подключается нулевой провод от питающего генератора или трансформатора.
Точкой обозначены начала обмоток.
То есть в «треугольнике» конец предыдущей обмотки и начало следующей соединяются, и к этой точке подключается питающая фаза. Если перепутать конец и начало — подключаемая машина не будет работать.
В чем разница
Если говорить о подключении однофазных потребителей, кратко разберем на примере трёх электротенов, то в «звезде», если сгорит один из них продолжат работать два оставшихся. Если сгорит два из трёх – вообще ни один не будет работать, поскольку они попарно подключаются на линейное напряжение.
В схеме треугольника даже при перегорании 2 тэнов – третий продолжит работать. В ней нет нулевого провода, его просто некуда подключать. А в «звезде» его подключают к нейтральной точке, и нужен он для уравнивания токов фаз и их симметрии в случае разной нагрузки по фазам (например, в одной из веток подключен 1 ТЭН, а в остальных по 2 параллельно).
Но если при таком соединении (с разной нагрузкой по фазам) отгорит ноль, то напряжения будут неодинаковы (там, где больше нагрузка просядет, а где меньше – возрастёт). Подробнее об этом мы писали в статье о перекосе фаз.
При этом нужно учесть, что подключать обычные однофазные приборы (220В) между фазами, на 380В, нельзя. Либо приборы должны быть рассчитаны на такое питание, либо сеть должна быть с Uлинейным 220В (как в электросетях с изолированной нейтралью некоторых специфичных объектов, например, кораблей).
Но, при подключении трёхфазного двигателя, ноль к средней точке звезды часто не подключают, так как это симметричная нагрузка.
Формулы мощности, тока и напряжения
Начнем с того что в схеме звезды есть два разных напряжения – линейное (между линейными или фазными проводами) и фазное (между фазой и нулём). Uлинейное в 1,73 (корень из 3) раз больше Uфазного. При этом линейный и фазный токи равны.
Uл=1,73*Uф
Iл=Iф
То есть линейное и фазное напряжение соотносятся так, что при линейном в 380В, фазное равно 220В.
В «треугольнике» Uлинейное и Uфазное равны, а токи отличаются в 1,73 раза.
Uл=Uф
Iл=1,73*Iф
Мощность в обоих случаях считают по одинаковым формулам:
- полная S = 3*Sф = 3*(Uл/√3)*I = √3*Uл*I;
- активная P = √3*Uл*I*cos φ;
- реактивная Q = √3*Uл*I*sin φ.
При подключении одной и той же нагрузки на те же Uфазное и Uлинейное, мощность подключённых приборов будет отличаться в 3 раза.
Допустим, есть двигатель, который работает от трёхфазной сети 380/220В, а его обмотки рассчитаны на подключение по «звезде» к электросети с Uлинейным в 660В. Тогда при подключении в «треугольник» питающее Uлинейное должно быть в 1,73 раза меньше, то есть 380В, что подходит для подключения к нашей сети.
Приведем расчеты, чтобы показать, какие отличия для двигателя будут при переключении обмоток с одной схемы на другую.
Допустим, что ток статора при подключении в треугольник в сеть 380В был 5А, тогда полная его мощность равняется:
S=1,73*380*5=3287 ВА
Переключим электродвигатель на «звезду» и мощность снизится в 3 раза, так как напряжение на каждой обмотке снизилось в 1,73 раза (было 380 на обмотку, а стало 220), и ток тоже в 1,73 раза: 1,73*1,73=3. Значит с учетом пониженных величин проведем расчет полной мощности.
S=1,73*380*(5/3)=1,73*380*1,67=1070 ВА
Как видите – мощность упала в 3 раза!
Но что будет, если есть другой электродвигатель и он работал в «звезде» в сети 380В и током статора в те же 5А, соответственно и обмотки рассчитаны для подключения в «треугольник» на 220В (3 фазы), но по какой-то причине их соединили именно в «треугольник» и подключили к 380В?
В этом случае мощность вырастет 3 раза, так как напряжение на обмотку теперь наоборот увеличилось в 1,73 раза и ток во столько же.
S=1,73*380*5*(3)=9861 ВА
Мощность двигателя стала больше номинальной в эти самые 3 раза. Значит он просто сгорит!
Поэтому нужно подключать электродвигатель по той схеме соединения обмоток, которая соответствует их номинальному напряжению.
Практика — как выбрать схему для конкретного случая
Чаще всего электрики работают с сетью 380/220В, так рассмотрим же как подключить, звездой или треугольником, электродвигатель к такой трёхфазной электросети.
В большинстве электродвигателей может быть изменена схема соединения обмоток, для этого в брно есть шесть клемм, расположены они таким образом, чтобы с помощью минимального набора перемычек можно было собрать нужную вам схему. Простыми словами: вывод начала первой обмотки расположен над концом третьей, начала второй, над концом первой, начало третьей над концом второй.
Как отличить два варианта подключения электродвигателя вы видите на рисунке ниже.
Поговорим о том, какую схему выбирать. Схема подключения катушек электродвигателя не имеет особого влияния на режим работы двигателя, при условии соответствия номинальным параметрам двигателя питающей сети. Для этого смотрим на шильдик и определяем, на какие напряжения рассчитана конкретно ваша электрическая машина.
Обычно маркировка имеет вид:
Δ/Y 220/380
Это расшифровывается так:
Если межфазное напряжение равно 220 – собирайте обмотки в треугольник, а если 380 – в звезду.
Чтобы просто ответить на вопрос «Как соединить обмотки у двигателя?» мы сделали для вас таблицу выбора схемы соединения:
Переключение со звезды на треугольник для плавного пуска
При запуске электродвигателя наблюдаются высокие пусковые токи. Поэтому для снижения пусковых токов асинхронных двигателей используется схема пуска с переключением обмоток со звезды на треугольник. При этом, как было сказано выше, электродвигатель должен быть рассчитан подключение в «треугольник» и работе под Uлинейным вашей сети.
Таким образом в наших трёхфазных электросетях (380/220В) для таких случаев используют двигатели номинальными «380/660» Вольт, для «Δ/Y» соответственно.
При пуске обмотки включаются «звездой» на пониженное напряжение 380В (относительно номинальных 660В), двигатель начинает набирать обороты и в определенный момент времени (обычно по таймеру, в усложненных вариантах — по сигналу датчиков тока и оборотов) обмотки переключаются в «треугольник» и работают уже на своих номинальных 380 вольтах.
На иллюстрации выше описан такой способ пуска двигателей, но в качестве примера изображен перекидной рубильник, на практике же используют два дополнительных контактора (КМ2 и КМ3), она хоть и сложнее обычной схемы подключения электродвигателя, но это не является её недостатком. Зато у неё целый ряд преимуществ:
- Меньше нагрузка на электросеть от пусковых токов.
- Соответственно меньшие просадки напряжения и уменьшается вероятность остановки сопутствующего оборудования.
- Мягкий пуск двигателя.
Есть два главных недостатка этого решения:
- Нужно прокладывать два трёхжильных кабеля от места расположения контакторов непосредственно до клемм двигателя.
- Падает пусковой момент.
Заключение
Как таковые различия в рабочих характеристиках при подключении одного и того же электродвигателя по схеме звезда или треугольник нет (он просто сгорит, если вы ошибетесь при выборе). Также, как и нет преимуществ и недостатков какой-либо из схем. Некоторые авторы приводят в качестве аргумента то, что в «звезде» ток меньше. Но при аналогичной мощности двух разных двигателей, один из которых рассчитан на подключение в «звезде», а второй в «треугольнике» к сети, например, 380В — ток будет одинаковым. А один и тот же двигатель нельзя переключать «как попало» и «непонятно для чего», так как он просто сгорит. Главное выбирать тот вариант, который соответствует напряжению питающей сети.
Надеемся, теперь вы стало больше понятно про то, что собой представляет схема звезда и треугольник в электродвигателе, какая разница в подключении каждым из способов и как выбрать схему для конкретного случая. Надеемся, предоставленная информация была для вас полезной и интересной!
Материалы по теме:
Электродвигатель 380 660 как подключить
Схемы подключения трехфазных электродвигателей
Чтобы привести ротор электродвигателя в движение необходимо правильно подключить концы обмоток статора к трехфазной сети, где рабочее напряжение может быть:
- 220 вольт
- 380 вольт
- 660 вольт
Асинхронные электродвигатели АИР предполагают два способа подключения к трехфазной промышленной сети – «треугольник» и «звезда». В основном электродвигатели АИР рассчитаны на 2 номинальных напряжения 220/380 В, либо 380/660 В и имеют два способа подключения к трехфазной промышленной сети: «звезда» и «треугольник»
220/380220 В – «треугольник»380 В – «звезда» | 380/660380 В — «треугольник»660 В — «звезда» |
Как правильно подключить шесть проводов электродвигателя?
Как правило двигатели имеют шесть выводов для возможности выбора схемы подключения: «звезда» либо «треугольник». Но встречаются и три вывода — уже соединенных внутри двигателя по схеме «звезда».
Схема подключения «звезда»
При подключении обмоток звездой начала обмоток подключаются к фазам, а концы обмоток собираются общую точку (0 точку).
Таким образом напряжение фазной обмотки составит 220В, а линейное напряжение между обмотками 380В. Основным преимуществом подключения электродвигателя по схеме звезда является:
- Плавный пуск
- Возможность перегрузки (недлительной)
- Повышенная надежность
При этом данная схема подключения обеспечит более низкую мощность от заявленной.
Схема подключения «треугольник»
При подключении треугольником последовательно конец одной обмотки соединяется с началом следующей обмотки.
Главными преимуществами такого подключения являются:
- Максимальная мощность
- Повышенный вращающий момент
- Увеличенные тяговые способности
Однако, электродвигатели подключенные по схеме звезда больше нагреваются.
Комбинированный тип подключения
Как уже было отмечено, подключение «звездой» обеспечивает более плавный пуск, но пр этом не достигается максимальная заявленная мощность электромотора. При подключении «треугольником» достигается полная мощность, но пусковой ток может повредить изоляцию.
Поэтому для мощных двигателей (начиная от АИР100L2), часто применяют комбинированную схему подключения трехфазных электродвигателей «звезда-треугольник», когда запуск двигателя происходит по схеме «звезда», в рабочем состоянии он переключается на схему «треугольник».
Переключение обеспечивается магнитным пускателем или пакетным переключателем.
Наиболее популярные модели асинхронных электродвигателей:
Схема подключения асинхронного двигателя обновлено: 14 февраля, 2020 автором: АИР Украины
Источник: https://xn--80aqy.com.ua/poleznoe/podklychenie-elektrodvigatelya/
Как подключить электродвигатель к однофазной и трехфазной сети: Схема Звезда, Треугольник
Подключение трехфазного электродвигателя АИР к трехфазной сети с напряжением 220/380В и 380/660 В — это упорядоченное, согласно схеме, соединение концов обмоток в клеммной коробке. От правильного монтажа напрямую зависит срок службы и эффективность оборудования.
Выделяют три схемы подключения трехфазного электродвигателя:
- «Звезда»
- «Треугольник»
- Комбинированное соединение
Также предусмотрено подключение асинхронного трехфазного электродвигателя к однофазной сети 220В при помощи конденсатора. Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке.
Как узнать, подключать Звездой или Треугольником?
У трехфазных двигателей АИР есть два номинальных напряжения: 220/380 в и 380/660В, которое указано на шильде. Это основной критерий выбора типа соединения асинхронных двигателей.
Схема подключения электродвигателя | Напряжение | |
Звезда | 380 В | 660 В |
Треугольник | 220 В | 380 В |
- Электродвигатели 220/380 — современные модели до 112 габарита — 7,5 кВт. Ранее выпускались до 315 габарита — до 132 кВт. Подключение к сети 220В треугольником, к 380В звездой.
- Электродвигатели 380/660 — встречается в моделях, мощностью от 4 кВт. Схема для 380В — треугольник, для 660В — звезда.
«Звезда» предусматривает, что концы обмоток статора замыкаются в одной точке, называемой нулевой точкой или нейтралью, а начала подключаются своим фазам – L. Поэтому двигатели средней мощности принято запускать именно «звездой». Однако при этом невозможно достичь паспортной мощности электродвигателя.
Преимущества схемы подключения «Звезда»:
- Плавный запуск
- Более надежная работа двигателя
- Допускается недлительная перегрузка
При подключении двигателя треугольником конец одной статорной обмотки последовательно соединяется с началом следующей. Однако подключение треугольником значительно увеличивает пусковые токи, что может привести к пробою изоляции; двигатель сильнее нагревается.
Преимущества схемы подключения «Треугольник»:
- Рабочая мощность соответствует паспортной
- Увеличенный крутящий момент
- Улучшенное тяговое усилие
«Звезда-треугольник» (комбинированная)
В случае с мощными электромоторами (начиная с 5,5/3000) важно обеспечить плавный пуск без перегрузок и дальнейшую работу на максимальной мощности. Такие двигатели чаще соединяют по схеме звезда-треугольник. Она подходит только для моделей с пометкой (Δ/Y), которая свидетельствует о возможности соединения двумя способами.
Комбинированная схема подключения обезопасит мотор от высоких пусковых токов и обеспечит паспортную мощность двигателя. Практически выглядит так: электромотор запускается по схеме звезда, а набрав обороты переключается на схему треугольник, либо автоматически, либо с помощью дополнительных устройств. При этом возможны скачки тока.
Запуск по схеме «звезда / треугольник» подходит для моторов с большими маховыми массами, у которых при номинальной скорости сразу набрасывается нагрузка.
Скачать чертежи подключения звезда треугольник 380/660
Подключение двигателя к однофазной сети 220В через конденсатор
Для использования асинхронного электродвигателя от бытовой электрической сети 220В применяют фазосдвигающий конденсатор. Таким образом достигается мягкий запуск агрегата. Методы подключения конденсаторов к бытовой сети 220В:
- с выключателем
- напрямую, без выключателя
- параллельное включение двух электролитов
Конденсатор для двигателя должен превышать его по напряжению как минимум в 1,5 раза. В противном случае возникнут скачки напряжения, что чревато поломками.
Расчет конденсатора для трехфазной сети
Правильный подбор конденсатора для подключения трехфазного двигателя к однофазной сети предполагает расчет емкости. Ее значение зависит от схемы подключения обмоток и других параметров.
Формула расчета емкости конденсатора для схемы «Звезда»
Формула расчета емкости конденсатора для схемы «Треугольник»
Где Емк — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В.
Скачать инструкцию, как подключить конденсатор
Проблемы с выбором и монтажом электродвигателя?
Менеджеры Слобожанского завода всегда готовы помочь купить асинхронный трехфазный электродвигатель любой мощности, разобраться с подключением и подобрать оптимальную схему под ваше оборудование и специфику применения.
Звоните и получите бесплатную консультацию в подключении электродвигателя от опытных специалистов СЛЭМЗ!
Источник: https://slemz.com.ua/news/vashno/shemy-podklyucheniya-elektrodvigatelya-zvezdoy-i-treugolnikom
Подключение трехфазного электродвигателя к сети 220 (однофазной), 380 и 660В (трехфазной)
В данной статье дан ответ на вопрос: «Как подключить трехфазный двигатель к сети 220, 330 или 660 В?». Будут подробно разобраны схемы подключения под определенную задачу возникшую при подключении двигателя к сети 220, 330 и 660 В.
Для использования трехфазного электродвигателя его необходимо подключить к сети 220, 380 или 660 В. К тому же, иногда, паспортные данные двигателя не соответствуют возлагаемой, на двигатель, задачи. Решением этих задач служат различного рода схемы подключения.
Существуют следующие схемы подключения :
— Схема — «Звезда» — Схема — «Треугольник» — Схема — «Звезда-треугольник» (Комбинированная схема подключения)
Все они имеют преимущества и недостатки, по этому каждая из схем подбирается индивидуально под определенную задачу для максимизации эффективности эксплуатации двигателя.
Схема подключения электродвигателя «Треугольник»
Данная схема используется, если двигатель нужно подключить к сети 220 В вместо 380 В (или к сети 380 В вместо 660 В) и применяется в том случае, если заводом-изготовителем предусмотрена возможность такого подключения. На шильдике двигателя должно быть написано «Δ / Y 220/380» или «Δ / Y 380/660».
Подключенный по схеме треугольник в случае «Δ / Y 220/380» двигатель использует всю заявленную в паспорте мощность, это позволяет использовать весь ресурс двигателя. Во время запуска в двигатель поступает большого значения в результате чего, может быть повреждена изоляция проводки.
Данная схема используется, если двигатель нужно подключить к сети 220 В вместо 380 В (или к сети 380 В вместо 660 В) и применяется в том случае, если заводом-изготовителем предусмотрена возможность такого подключения. На шильдике двигателя должно быть написано «Δ / Y 220/380» или «Δ / Y 380/660».
Следует учитывать, что для варианта «Δ / Y 380/660» подключение трехфазного электродвигателя АИР «треугольником» будет с некоторыми особенностями.
Схема подключения электродвигателя «Звезда»
Преимущественно все электродвигатели АИР, с конвейера завода, по умолчанию имеют подключение обмоток по схеме «звезда» и готовы работать в сети 380 или 660В. Для обеспечения работы электродвигателя с максимально возможным КПД. Подключение по схеме Звезда применяется для достижения плавности пуска электродвигателя, но только в случае если на шильдике указано «Δ / Y 380/660». Так же при подключение по данной схеме в случае 380/660 мощность двигателя снижается в полтора раза.
Схема подключения электродвигателя «Звезда-треугольник»
Комбинированная схема позволяет совместить в себе преимущества двух предыдущих схем, также нивелирует все их недостатки. Рекомендуется использовать это вид подключения для двигателей которые обладают большой мощностью.
Комбинация схемы заключается в том что включение двигателя происходит по схеме «звезда», а по достижению оптимального числа оборотов переключается на схему «треугольник». Таким образом пуск производится очень мягко, за счет низких пусковых токов, а после переключения мощность электродвигателя увеличивается в 1,5 раза и выходит на номинальные паспортные данные.
Электродвигатель подключен по схеме «звезда» если замкнуты ключи К1 и К3, а если замкнуты ключи К1 и К2 — схема «треугольник». Переключение между схемами происходит автоматически или вручную, для этого используют магнитный пускатель, пусковое реле или пакетный переключатель.
Если у Вас возникли вопросы по подключению электродвигателя к сети, Наш технический специалист всегда готов проконсультировать Вас по любому вопросу в телефонном режиме.
Источник: https://systemax.com.ua/a324867-podklyuchenie-trehfaznogo-elektrodvigatelya.html
Соединение обмоток электродвигателя «треугольником» и «звездой»
На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.
Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.
https://www.youtube.com/watch?v=PjZextDphQU
Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.
При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.
Как подключить электродвигатель правильно – знает опытный электрик.
Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.
Определение типа способа соединения
Выбор того или иного подсоединения зависит от:
- надежности энергосети;
- номинальной мощности;
- технических характеристик самого двигателя.
Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.
При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.
Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.
Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.
Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.
Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.
Зависимость выбора от напряжения
Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).
Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.
Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».
Так электромотор прослужит долго и проработает без сбоев.
Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.
Как снизить пусковые токи электродвигателя?
Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения.
Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью.
Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.
Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.
Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.
Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:
При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.
Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.
Опасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.
И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.
Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.
Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.
Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).
Источник: https://electriktop.ru/oborudovanie/soedinenie-zvezdoj-i-treugolnikom.html
Подключение двигателей к различным видам ПЧ
Рассмотрим схемы включения асинхронных двигателей «звезда» и «треугольник» в контексте их питания от преобразователей частоты. Для начала немного освежим в памяти теорию.
Что такое «звезда» и «треугольник»
Обычно используются асинхронные двигатели с тремя обмотками, которые можно подключить двумя способами — по схеме «звезда» (обозначается символом «Y») или «треугольник» («Δ» или «D»). Схема соединения должна обеспечивать нормальную работу двигателя при имеющемся напряжении питания.
Первое, от чего необходимо отталкиваться при выборе схемы — информация на шильдике двигателя. На нем указываются параметры для обеих схем. Наиболее важный параметр — напряжение питания. Напряжение «звезды» в 1,73 раза (точнее в квадратный корень из 3) больше, чем «треугольника».
Например, если указано, что напряжение питания двигателя, включенного по схеме «звезда», составляет 380 В, то можно точно сказать, даже не глядя на шильдик, что для включения по схеме «треугольник» необходимо напряжение 220 В. В данном случае напряжение 380 В соответствует линейному напряжению в стандартной сети, и двигатель можно подключать по схеме «звезда» через контактор либо через частотный преобразователь.
То же самое справедливо и для случаев, когда напряжение «треугольника», указанное на шильдике, равно 380 В. Тогда, умножая на 1,73, получаем напряжение «звезды» равным 660 В.
Эти два типа двигателей, отличающиеся напряжениями питания (220/380 и 380/660 В), в подавляющем большинстве случаев используются на практике и имеют свои особенности подключения, которые мы рассмотрим ниже.
Классическая схема «звезда» / «треугольник»
При питании «напрямую» от промышленной сети с линейным напряжением 380 В подойдут оба типа двигателей. Нужно лишь убедиться, что схема включения обмоток собрана на нужное напряжение.
Однако на практике для питания в схеме «звезда» / «треугольник» применяют второй тип приводов (380/660 В). Данная схема используется для уменьшения пускового тока мощных двигателей, который может превышать рабочий в несколько раз.
Несмотря на то, что этот ток кратковременный, в течение разгона питающая сеть и привод испытывают значительные электрические и механические перегрузки – ведь в первую долю секунды ток двигателя может в 10 раз превышать номинал, плавно снижаясь в процессе разгона.
Схема подключения «звезда» / «треугольник» приведена во многих источниках, поэтому лишь напомним коротко, как она работает.
Чтобы сделать процесс пуска более щадящим, сначала напряжение 380 В подают на обмотки двигателя, включенные по схеме «звезда». Поскольку рабочее напряжение этой схемы должно быть больше (660 В), двигатель работает на пониженной мощности. Через несколько секунд, после того, как привод раскрутится, включается «треугольник», для которого 380 В является рабочим напряжением, и двигатель выходит на номинальную мощность.
Классическую схему мы рассмотрели, а теперь разберём, в каких случаях использовать подключение двигателей в «звезде» и «треугольнике» при питании от преобразователя частоты.
Преобразователи частоты на 220 В
При питании преобразователя частоты от одной фазы (фазное напряжение 220 В) линейное напряжение на его выходе не может быть более 220 В. Поэтому для питания асинхронного двигателя от однофазного ПЧ нужно подключить обмотки привода с напряжениями 380/220 В по схеме «треугольник». Этот же двигатель, подключенный по схеме «звезда», будет работать с пониженной мощностью.
Преобразователи частоты на 380 В
Трехфазные ПЧ являются более универсальными с точки зрения подключения двигателей с разным напряжением питания. Главное – собрать в клеммнике (борно) двигателя схему на напряжение 380 В. Именно этот вариант используется в большинстве частотных преобразователей, работающих в промышленном оборудовании.
Пч с возможностью переключения «звезда» / «треугольник»
В некоторых преобразователях, работающих с мощными двигателями, имеется возможность оперативного переключения схемы работы. Это делается с целью расширения диапазона регулировки скорости двигателя вверх от номинальной.
Метод основан на том факте, что подключение «звездой» обеспечивает более высокий момент на малой скорости, а подключение «треугольником» — высокую скорость.
Можно задавать выходную частоту, на которой происходит переключение, время паузы (задержки) переключения, параметры двигателя для первого и второго режимов.
У частотных преобразователей такого типа имеются выходы для включения соответствующих контакторов, обеспечивающих формирование нужных схем включения.
Настройки ПЧ для схем «звезда» и «треугольник»
Когда выбирается схема подключения, нужно помнить о том, что некоторые параметры в настройках ПЧ чувствительны к выбору вида схемы, например, номинальное напряжение и номинальный ток.
Бывает так, что необходимо подключить двигатель, собранный по схеме «треугольник» на напряжение 220 В, к выходу трехфазного ПЧ, линейное напряжение которого при частоте 50 Гц равно 380 В. Понятно, что в этом случае двигатель нужно включить в «звезду», но иногда этого сделать невозможно.
Выход есть. Необходимо указать номинальную частоту двигателя равной не 50 Гц, как указано на шильдике, а 87 Гц (в 1,73 раза больше). Аналогичным образом нужно задать и максимальную выходную частоту преобразователя. В результате того, что отношение V/F на выходе ПЧ остается неизменным, на частоте 50 Гц напряжение на обмотках двигателя составит как раз 220 В. При этом верхнюю рабочую частоту двигателя необходимо установить на значение 50 Гц.
Преимуществом такого подключения является возможность повышения рабочей частоты двигателя выше 50 Гц, при этом вплоть до 87 Гц двигатель не будет терять рабочий момент. В данном случае важно следить за механическим износом системы и за нагревом привода.
Другие полезные материалы:
Обзор устройств плавного пуска Siemens
Назначение сетевых и моторных дросселей
FAQ по электродвигателям
Источник: https://tehprivod.su/poleznaya-informatsiya/podklyuchenie-dvigateley-k-razlichnym-vidam-pch.html
Как подключить электродвигатель с 6 проводами
Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т.е. всего 6 выводов которые подписываются следующим образом:
- С1 (U1) — начало первой обмотки, С4 (U2) — конец первой обмотки.
- С2 (V1) — начало второй обмотки, С5 (V2) — конец второй обмотки.
- С3 (W1) — начало третьей обмотки, С6 (W2) — конец третьей обмотки.
Условно на схемах каждая обмотка изображается следующим образом:
Начала и концы обмоток выводятся в клемную коробку электродвигателя в следующем порядке:
В зависимости от соединения этих выводов меняются такие параметры электродвигателя как напряжение питающей сети и номинальный ток статора. О том по какой схеме необходимо подключить обмотки электродвигателя можно узнать из паспортных данных.
Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y) их мы и разберем в данной статье.
Примечание: В клемной коробке некоторых электродвигателей можно увидеть только три вывода — это значит, что обмотки двигателя уже соединены внутри его статора.
Как правило внутри статора обмотки соединяются при ремонте электродвигателя (в случае если заводские обмотки сгорели). В таких двигателях обмотки, как правило, соединены по схеме «звезда» и рассчитаны на подключение в сеть 380 Вольт.
Для подключения такого двигателя необходимо просто подать три фазы на три его вывода.
Схема соединения обмоток электродвигателя по схеме «треугольник»
Что бы соединить обмотки электродвигателя по схеме «треугольник» необходимо: конец первой обмотки (С4/U2) соединить с началом второй (С2/V1) , конец второй (С5/V2) — с началом третьей (С3/W1) , а конец третьей обмотки (С6/W2) — с началом первой (С1/U1).
Условно на схеме это изображается следующим образом:
На выводы «A», «B» и «C» подается напряжение.
В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:
A, B, C — точки подключения питающего кабеля.
Схема соединения обмоток электродвигателя по схеме «звезда»
Что бы соединить обмотки электродвигателя по схеме «звезда» необходимо концы обмоток (С4/ U2, С5/V2 и С6/W2) соединить в общую точку, напряжение при этом подается на начала обмоток (С1/U1, С2/V1 и С3/W1).
Условно на схеме это изображается следующим образом:
В клемной коробке электродвигателя соединение обмоток по схеме «звезда» имеет следующий вид:
Определение выводов обмоток
Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:
При этом выводы обмоток не подписаны, что же делать? Без паники, этот вопрос вполне решаем.
Первое, что нужно сделать — это разделить выводы по парам, в каждой паре должны быть выводы относящиеся к одной обмотке, сделать это очень просто, нам понадобится тестер или двухполюсный указатель напряжения.
В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.
Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов.
В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test».
Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».
Таким же образом поступаем с оставшимися четырьмя выводами, так же разделив их на пары подписав их соответственно как V1,V2 и W1,W2. Как это делается можно увидеть на видео ниже.
Теперь, когда все выводы разделены по парам, необходимо определить реальные начала и концы обмоток. Сделать это можно двумя методами:
Первый и самый простой метод — метод подбора, может применяться для электродвигателей мощностью до 5 кВт. Для этого берем наши условные концы обмоток (U2,V2 и W2) и соединяем их, а на условные начала (U1,V1 и W1), кратковременно, желательно не более 30 секунд, подаем трехфазное напряжение:
Если двигатель запустился и работает нормально, значит начала и концы обмоток определены верно, если двигатель сильно гудит и не развивает должные обороты, значит где то есть ошибка. В этом случае необходимо всего лишь поменять любые два вывода одной обмотки местами, например U1 c U2 и запустить заново:
Если проблема не устранилась, возвращаем U1 и U2 на свои места и меняем местами следующие два вывода — V1 с V2:
Если двигатель заработал нормально, выводы определены верно, работа закончена, если нет — возвращаем V1 и V2 по своим местам и меняем местами оставшиеся выводы W1 с W2.
Второй способ: Соединяем последовательно вторую и третью обмотки т.е. соединяем вместе конец второй обмотки с началом третьей (выводы V2 с W1),а на первую обмотку к выводам U1 и U2 подаем пониженное переменное напряжение (не более 42 Вольт). При этом на выводах V1 и W2 так же должно появиться напряжение:
Если напряжение не появилось, значит вторая и третья обмотки соединены неверно, фактически оказались соединены вместе два начала (V1 с W1) или два конца (V2 c W2), в данном случае нам просто нужно поменять надписи на второй или на третьей обмотке, например V1 с V2. Затем аналогичным способом проверить первую обмотку, соединив ее последовательно со второй, а на третью подав напряжение. Данный способ представлен на следующем видео:
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Что важно знать о схемах подключения трехфазного электродвигателя на 220 вольт
Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.
Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.
Переподключение с 380 вольт на 220
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.
Как работает схема
При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.
Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.
Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.
Другие подключения электродвигателя
Схем несколько:
- Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
- Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
- При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.
Источник: https://electrik-ufa.ru/podklyuchenie/kak-podklyuchit-elektrodvigatel-s-6-provodami
Соединение звездой и треугольником — схема и разница трехфазного соеднинения
Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.
Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.
Различия между «звездой» и «треугольником»
Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.
Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.
Соединение «звездой» и его преимущества
Реверсивная схема двигателя 380 на 220 Вольт
Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.
При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.
Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.
Основные преимущества применения схемы «звезда»:
- Устойчивый и длительный режим безостановочной работы двигателя;
- Повышенная надежность и долговечность, за счет снижения мощности оборудования;
- Максимальная плавность пуска электрического привода;
- Возможность воздействия кратковременной перегрузки;
- В процессе эксплуатации корпус оборудования не перегревается.
Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.
Подключение трехфазного двигателя к однофазной сети по схеме звезда
Соединение «треугольником» и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.
При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.
Основные преимущества применения схемы «треугольник»:
- Увеличение до максимального значения мощности электрооборудования;
- Использование пускового реостата;
- Повышенный вращающийся момент;
- Большие тяговые усилия.
Недостатки:
- Повышенный ток пуска;
- При длительной работе двигатель сильно греется.
Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Тип соединения «звезда-треугольник»
В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.
Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».
Схемы подключения звездой и треугольником
В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».
В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.
Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.
Основные преимущества комбинации:
- Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
- Возможность создания двух уровней мощности.
Блиц-советы
- В момент пуска электродвигателя, его ток пуска в 7 раз больше рабочего тока.
- Мощность в 1,5 раза больше при соединении обмоток методом «треугольника».
- Для создания плавного пуска и защиты от перегрузок двигателя, часто используются частотные провода.
- При использовании метода соединения «звездой», особое внимание уделяют отсутствию «перекоса фаза», иначе оборудование может выйти из строя.
- Линейные и фазные напряжения при соединении «треугольник» – равны между собой, как и линейные и фазные токи в соединении «звездой».
- Для подключения двигателя к бытовой сети зачастую применяют фазосдвигающий конденсатор.
Источник: https://housetronic.ru/electro/soedinenie.html
Как подключить трёхфазный электродвигатель к сети 220В и 380В по схеме
Подключить обычный двухфазный электроприбор к питающей сети сможет любой человек, имеющий самые начальные представления об электротехнике. Гораздо сложнее подключение трёхфазного двигателя. Здесь потребуются более глубокие познания о принципе его работы, порядке соединения питающих жил, учесть параметры электросети. В данной статье рассмотрим, как подключить электродвигатель с тремя фазами самостоятельно, не обращаясь за помощью к специалистам.
Что нужно знать о двигателе перед подключением
Трёхфазный двигатель, как понятно из названия, создан для работы от электросети, имеющей три фазы. В быту подобные устройства встречаются намного реже, чем однофазные электромоторы. Однако, у них есть одно существенное преимущество – лучший показатель КПД. Поэтому трёхфазную схему обычно применяют для изготовления мощных двигателей, используемых в промышленных установках. В быту такой мотор может применяться в различных станках домашней мастерской, системах вентиляции, водоподачи.
Трёхфазный электродвигатель бывает по способу работы двух типов:
- Синхронный имеет повышенные скорости работы, но требует для своего разгона дополнительных затрат энергии. Изначально он работает в асинхронном режиме, пока не достигает требуемых оборотов, и не переходит в синхронную стадию. Синхронные моторы позволяют постепенно снижать или наращивать обороты. Однако, они сложны в изготовлении, вследствие чего имеют большую себестоимость. Это обусловило их небольшое распространение, по сравнению с асинхронными вариантами трёхфазных электромоторов.
- Асинхронный электродвигатель не допускает регулировки оборотов в процессе работы. Максимальная скорость его вращения также несколько ниже. Но подобные моторы более просты по своей конструкции, не такие дорогие, и отличаются большей надёжностью и ремонтопригодностью. Благодаря этим преимуществам, они используются гораздо чаще, как в промышленных производствах, так и в быту.
Трёхфазные моторы, выпускаемые современной промышленностью, имеют различные эксплуатационно-технические характеристики. Вся необходимая информация указывается на корпусе устройства:
- Тип – синхронный или асинхронный.
- Напряжение и частота питающей сети.
- Максимальная мощность мотора.
- Число развиваемых оборотов за минуту.
Более подробная информация относительно технических параметров даётся в прилагаемом к электродвигателю техпаспорте. Конструктивно устройство состоит из следующих основных элементов:
- Корпус, служащий основой для крепления остальных деталей.
- Статор.
- Ротор, отделённый от статора воздушным пространством.
- Обмотка, состоящая из трёх проводников, располагающихся по окружности под углом 120о.
- Шкив вала, служащий для передачи крутящего момента внешним рабочим механизмам.
Концы всех трёх обмоток двигателя выведены в распредкоробку, расположенную в верхней части корпуса. Трёхфазные электромоторы бывают рассчитанными только на одно напряжение, например, на 380В, либо на два – на 220 и на 380 вольт.
Для устройств, работающих с двумя типами напряжения, в распредкоробку выводятся сразу шесть концов, а для моторов, предназначенных только для одного типа напряжения – три.
На внутренней поверхности крышки коробки наносится схема подсоединения выводов к питающей электросети.
Две схемы подключения трёхфазного двигателя
- Звезда. Концы обмоток соединяются промеж собой, и подключаются к «нулю», а начала их присоединяются к трём фазам питающей электросети. Схематично в плане такое подключение выглядит как звезда с тремя лучами.Подключение электродвигателя схема «Звезда»
- Треугольник. Все обмотки объединяются между собой по кругу: конец одной присоединяется к началу следующей. Каждое из таких соединений подключается к питающей фазе. Нулевого выхода при подобном варианте подключения не предусматривается.Подключение электродвигателя схема: «Треугольник»
Подключение двигателя должно производиться чётко по схеме, очень важно не перепутать концы и начала обмоток. Все они должны работать одинаково, когда ток по ним двигается в одном направлении.
Если же у одной любой обмотки выход и вход при подключении перепутаются, то создаваемое ей электромагнитное поле будет иметь обратное направление, чем у двух оставшихся. Мотор потеряет треть своей установленной мощности, будет постоянно перегреваться.
Как результат – повышенный износ и скорый выход из строя.
Схема включения трёхфазного электродвигателя на 220В
Трёхфазные моторы предназначаются для подключения к сети, имеющей также три выхода фаз. При работе от однофазного питания, выдаваемая агрегатом мощность будет на 30% ниже установленной. Кроме того, далеко не каждый трёхфазник подходит для однофазной цепи.
Имеются также и различия в схемах включения таких электромоторов в 220-вольтную сеть. Но в быту далеко не всегда имеется возможность запитать мотор от трёхфазной проводки.
Непосредственно к жилым домам и в квартиры, согласно стандартам СНиП, обычно не подводится 380В.
Электродвигатели с возможностью подключения и к двум типам электрической цепи, имеют различные технические характеристики, касающиеся рабочего напряжения. От этого зависит схема их подключения к 220В, и показатели потери рабочих мощностей. Установить, как подключить определённый тип мотора, можно по обозначению на шильдике корпуса:
Обозначение | Тип подключения | Потери мощности |
127/220 | «звезда» | 30% |
220/380 | «треугольник», «звезда» | 30% |
380/660 | «треугольник» | 70% |
В последнем случае, при подключении трёхфазного двигателя к однофазной цепи потеря составит 2/3 от установленной мощности. Поэтому, моторы, с обозначением 380/660 запитывать от 220 вольт, хотя и возможно, но абсолютно нецелесообразно. Для подключения двигателя к однофазной цепи используются два варианта:
- С помощью преобразователя частот. Данный прибор способен преобразовывать одну фазу, имеющуюся в сети 220-вольтовой сети, в три фазы с таким же напряжением. Однако, вследствие высокой стоимости преобразователя, в быту такой вариант используется редко.
- Посредством конденсатора. Такой метод более распространён из-за своей простоты и доступности. Именно его подробнее рассмотрим далее.
Подключение трёхфазного электродвигателя потребует использования конденсаторов для переменного тока. Без них электричество от одной фазы будет проходить по обмоткам, но вращения ротора не происходит. Чтобы создать смещение фазы, получить крутящий момент магнитного поля, к одной из обмоток подключаются конденсаторы. Важный момент – использовать конденсаторы постоянного тока для переменной сети нельзя, из-за высокой вероятности их взрыва в процессе работы.
Всего в схеме присутствуют два их типа: С1 – пусковой, и С2 – рабочий. Номинальное напряжение у каждого из них должно быть не менее 300В. В идеале, лучше взять устройства с ещё большим показателем – свыше 350В.
В продаже можно встретить конденсаторы, специально предназначаемые для запуска электродвигателя. Они имеют соответствующее обозначение, и использовать их как рабочие запрещено.
Минимально необходимая ёмкость конденсаторов зависит от мощности электродвигателя, и показана в таблице в микрофарадах:
Мощность двигателя | 0,4 кВт | 0,6 кВт | 0,8 кВт | 1,1 кВт | 1,5 кВт | 2,2 кВт |
Ёмкость С1 (пускового) в номинальном режиме | 80 | 120 | 160 | 200 | 250 | 300 |
Ёмкость С1 (пускового) в недогруженном режиме | 20 | 35 | 45 | 60 | 80 | 100 |
Ёмкость С2 (рабочего) в номинальном режиме | 40 | 60 | 80 | 100 | 150 | 230 |
Ёмкость С2 (рабочего) в недогруженном режиме | 25 | 40 | 60 | 80 | 130 | 200 |
Сама схема подключения трёхфазных электродвигателей с использованием конденсаторов, как в варианте «звезды», так и «треугольника», будет выглядеть весьма просто:
Для управления пусковым конденсатором, предназначенного для страгивания с места и разгона 3-х фазного двигателя, используют выключатель. На схеме, представленной выше, он обозначен словом «Разгон». После набора мотором необходимых оборотов и выхода его на рабочий режим, кнопка управления отключается. При наличии достаточных навыков в обращении с электротехникой, ручное управление можно заменить на автоматическое реле, либо на таймер отключения.
Подключение трёхфазного двигателя на 380В
Схема подключения трёхфазного электродвигателя к сети 380 вольт ещё проще. В наличии имеем три вывода обмотки, расположенных в распредкоробке корпуса, и также три фазы питающей электросети. Для двигателя, имеющего обозначение 220/380, выводы его обмоток соединяются «звездой», а подключение нуля не требуется.
Сменить направление вращения вала двигателя 380В можно, просто поменяв своими местами две обмотки, какие конкретно – значения не имеет. Как видим, подключить трёхфазный мотор можно и к сети в 220, и в 380 вольт.
Сделать это не представит особых трудностей для человека, имеющие начальные навыки обращения с электроприборами.
Источник: https://vodatyt.ru/elektrika/podklyuchenie-tryohfaznogo-dvigatelya.html
Схемы подключения электродвигателя к электропитанию
Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?» Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).
Например:- зачем шесть контактов в двигателе?- а почему контактов всего три?- что такое «звезда» и «треугольник»?- а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?- а как измерить ток в обмотках?- что такое пускатель?и т.п.
Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока: 1. Однофазная сеть 220 В,2.
Трехфазная сеть 220 В (обычно используется на кораблях),3. Трехфазная сеть 220В/380В,4. Трехфазная сеть 380В/660В.Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.
В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода. Как определить напряжение в вашей сети?Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.
В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.
Возможные схемы подключения обмоток электродвигателей
Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными.
В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.
Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.
Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).
Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.
Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.
Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник».
Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.
Подключение электродвигателя по схеме треугольник
Название этой схемы также идёт от графического изображения (см. правый рисунок):
Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.
То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).
Подключение электродвигателя к трёхфазной сети на 380 В
Последовательность действий такова:
1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):
Двигатель для однофазной сети 220В
(~ 1, 220В)
Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)
Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)
Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)
3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя
Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты. — использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида). Устройство электромагнитного пускателя: Магнитный пускатель устроен достаточно просто и состоит из следующих частей: (1) Катушка электромагнита(2) Пружина(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).
При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).
Типовая схема подключения электродвигателя с использованием пускателя:При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).
5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса
Как подключить поплавковый выключатель к трёхфазному насосу
Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.
Самый простой способ – использовать для автоматизации магнитный пускатель.В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя.
При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.
Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к.
для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть). Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.
Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В. Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В.
То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.
Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.
Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).
Использование частотного преобразователя
В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя. Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).
Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения: — регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),- при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях), — при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток. Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя. Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя. Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя. Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях. Данные насосы используются в качестве дозирующих насосов на пищевом производстве.
Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).Технический директорООО «Насосы Ампика»
Моисеев Юрий.
Источник: https://www.ampika.ru/sovety-po-vyboru-nasosov/skhemy-podklyucheniya-ehlektrodvigatelya-k-ehlektropitaniyu/
Соединение звездой и треугольником обмоток электродвигателя
Здравствуйте, уважаемые гости и посетители сайта «Заметки электрика».
В прошлой статье я рассказал Вам про применение асинхронного двигателя и его устройство, а также подробно познакомились с двумя разновидностями асинхронного двигателя.
Сегодня я расскажу Вам про соединение звездой и треугольникомобмоток асинхронных двигателей, т.к. это один из распространенных вопросов, который мне задают на личную почту.
Вспомним вкратце принцип действия асинхронного двигателя. Питание такого двигателя осуществляется от сети трехфазного переменного напряжения. В статоре имеются 3 обмотки, которые сдвинуты относительно друг друга на 120 электрических градуса. Это сделано с целью создания вращающегося магнитного поля.
Обозначаются вывода обмоток статора асинхронных двигателей следующим образом:
С1, С2, С3 – начала обмоток, С4, С5, С6 – конец обмоток. Но сейчас все чаще применяется новая маркировка выводов по ГОСТу 26772-85. U1, V1, W1 — начала обмоток, U2, V2, W2 – конец обмоток.
Выводы фазных обмоток асинхронного двигателя выводятся на клеммник или колодку и располагаются таким образом, чтобы соединения звездой или треугольником было удобно выполнить без перекрещивания с помощью специальных перемычек.
Клеммник, его еще называют «борно», чаще всего устанавливается сверху, реже – сбоку. Некоторые клеммники можно разворачивать на 180 градусов, для удобства подводки питающих кабелей.
Всего на клеммник может быть выведено 3 или 6 выводов фазных обмоток статора.
Разберем каждый случай отдельно.
Пример
Если в клеммник выведено 6 выводов обмоток статора, то асинхронный двигатель можно подключить в сеть на 2 разных уровня напряжения, отличающихся на величину в 1,73 раза (√3).
Для наглядности рассмотрим пример. Допустим, у нас имеется электродвигатель, на табличке которого указано напряжение 220/380 (В).
Что это значит?
А это значит, что если в сети уровень линейного напряжения составляет 380 (В), то обмотки статора необходимо соединить в схему звезды.
Соединение звездой
Соединение звездой фазных обмоток статора асинхронного двигателя выполняется следующим образом. Концы всех трех обмоток нужно соединить в одну точку с помощью специальной перемычки, о которой я говорил чуть выше. А на их начала подать трехфазное напряжение сети.
Из рисунка выше видно, что напряжение на фазной обмотке составляет 220 (В), а линейное напряжение между двумя фазными обмотками составляет 380 (В).
На клеммнике соединение звездой обмоток будет выглядеть следующим образом.
Соединение треугольником
Вернемся к нашему примеру.
Если в сети уровень линейного напряжения составляет 220 (В), то обмотки статора необходимо соединить в схему треугольника.
Соединение треугольником фазных обмоток статора асинхронного двигателя выполняется следующим образом.
- конец обмотки фазы «А» C4 (U2) необходимо соединить с началом обмотки фазы «В» С2 (V1)
- конец обмотки фазы «В» С5 (V2) необходимо соединить с началом обмотки фазы «С» С3 (W1)
- конец обмотки фазы «С» С6 (W2) необходимо соединить с началом обмотки фазы «А» С1 (U1)
Места их соединения подключаются к соответствующим фазам питающего трехфазного напряжения.
Из рисунка видно, что при линейном напряжении сети 220 (В) напряжение на фазной обмотке составляет тоже 220 (В).
На клеммнике при соединении треугольником обмоток статора асинхронного двигателя специальные перемычки нужно установить следующим образом:
В нашем примере при соединении звездой и треугольником напряжение на каждой фазной обмотке асинхронного двигателя будет 220 (В).
Частный случай
Бывают ситуации, когда на клеммник асинхронного двигателя выведено всего 3 вывода, вместо 6. В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной (торцевой) его части.
Такой асинхронный двигатель можно включать в сеть только на одно напряжение, указанное на табличке с техническими данными.
В нашем примере обмотки статора асинхронного двигателя соединяются по схеме звезда и его можно включать в сеть напряжением 380 (В).
Выводы
В конце данной статьи про соединение звездой и треугольником сделаю вывод, основанный на опыте эксплуатации электродвигателей.
При соединении звездой обмоток асинхронного электродвигателя наблюдается более мягкий запуск и плавная его работа, а также возможность кратковременной перегрузки.
При соединении треугольником обмоток асинхронного электродвигателя происходит достижение его максимальной мощности, но во время пуска пусковые токи имеют большое значение. Также замечено, что при соединении треугольником двигатель больше нагревается (выявлено опытным путем с помощью тепловизора при одной и той же нагрузке).
В связи с вышесказанным, принято асинхронные двигатели средней мощности и выше запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника. Эту схему мы с Вами рассмотрим в ближайших статьях. Следите за обновлениями на сайте.
Источник: http://zametkielectrika.ru/soedinenie-zvezdoj-i-treugolnikom/
Схема подключения трехфазного электродвигателя
Здравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 вольт и схема подключения трехфазного двигателя на 380 вольт.
Для начала немного разберемся, что такое три фазы и для чего они нужны. В обычной жизни три фазы нужны только для того, чтобы не прокладывать по квартире или по дому провода большого сечения. Но когда речь идет о двигателях, то здесь три фазы нужны для создания кругового магнитного поля и как результат, более высокого КПД.
Двигатели бывают синхронные и асинхронные. Если очень грубо, то синхронные двигатели имеют большой пусковой момент и возможность плавной регулировки оборотов, но более сложные в изготовлении. Там, где эти характеристики не нужны, получили распространение асинхронные двигатели.
Нижеизложенный материал подходит для обоих типов двигателей, но в бóльшей степени относится к асинхронным.
Что нужно знать о двигателе? На всех моторах есть шильдики с информацией, где указаны основные характеристики двигателя. Как правило, двигатели выпускаются сразу на два напряжения.
Хотя если у вас двигатель на одно напряжение, то при сильном желании его можно переделать на два. Это возможно из-за конструктивной особенности. Все асинхронные двигатели имеют минимум три обмотки.
Начала и концы этих обмоток выводятся в коробку БРНО (блок расключения (или распределения) начал обмоток) и в неё же, как правило, вкладывается паспорт двигателя:
Если двигатель на два напряжения, то в БРНО будет шесть выводов. Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. Как их оттуда «достать» в этой статье мы рассматривать не будем.
Итак, какие двигатели нам подойдут. Для включения трёхфазного двигателя на 220 вольт подойдут только те, где есть напряжение 220 вольт, а именно 127/220 или 220/380 вольт. Как я уже говорил, двигатель имеет три независимых обмотки и в зависимости от схемы соединения они способны работать на двух напряжениях. Схемы эти называются «треугольник» и «звезда»:
Думаю, даже не нужно объяснять, почему они так называются. Нужно обратить внимание, что у обмоток есть начало и конец и это не просто слова. Если, к примеру, лампочке неважно, куда подключить фазу, а куда ноль, то в двигателе при неправильном подключении возникнет «короткое замыкание» магнитного потока.
Сразу двигатель не сгорит, но как минимум не будет вращаться, как максимум потеряет 33% своей мощности, начнёт сильно греться и, в итоге, сгорит. В то же время, нет чёткого определения, что «вот это начало», а «вот это конец». Тут речь идет скорее об однонаправленности обмоток. Дам небольшой пример.
Представим, что у нас есть три трубки в некоем сосуде. Примем за начала этих трубок обозначения с заглавными буквами (A1, B1, C1), а за концы со строчными (a1, b1, c1) Теперь, если мы подадим воду в начала трубок, то вода закрутится по часовой стрелке, а если в концы трубок, то против часовой. Ключевое слово здесь «примем». То есть, от того назовём мы три однонаправленных вывода обмотки началом или концом меняется только направление вращения.
А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Эта обмотка начнёт работать «против течения». В итоге, неважно, какой именно вывод мы называем началом, а какой концом, важно, чтобы при подаче фаз на концы или начала обмоток не произошло замыкания магнитных потоков, создаваемых обмотками, то есть, совпало направление обмоток, или ещё точнее, направление магнитных потоков, которые создают обмотки.
В идеале, для трёхфазного двигателя желательно использовать три фазы, потому что конденсаторное включение в однофазную сеть даёт потерю мощности порядка 30%.
Ну, а теперь непосредственно к практике. Смотрим на шильдик двигателя. Если напряжение на двигателе 127/220 вольт, то схема соединения будет «звезда», если 220/380 – «треугольник».
Если напряжения другие, например, 380/660, то для включения двигателя в сеть 220 вольт такой двигатель не подойдет. Точнее, двигатель напряжением 380/660 можно включить, но потери мощности здесь уже будут более 70%.
Как правило, на внутренней стороне крышки коробки БРНО указано, как надо соединить выводы двигателя, чтобы получить нужную схему. Посмотрите ещё раз внимательно на схему соединения:
Что мы здесь видим: при включении треугольником напряжение 220 вольт подаётся на одну обмотку, а при включении звездой — 380 вольт подаётся на две последовательно соединённых обмотки, что в результате даёт те же 220 вольт на одну обмотку. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.
Существует два метода включения трехфазного двигателя в однофазную сеть.
- Использовать частотный преобразователь, который преобразует одну фазу 220 вольт в три фазы 220 вольт (в этой статье мы рассматривать такой метод не будем)
- Использовать конденсаторы (этот метод мы и рассмотрим более подробно).
Схема включения трехфазного двигателя на 220 вольт
Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.
А это более наглядная картинка:
Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:
Ток для расчёта мы возьмём с шильдика двигателя:
Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:
Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.
Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.
Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:
Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»
Подключение трехфазного двигателя на 380 вольт
Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник. Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо.
То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами.
А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.
Смена направления вращения вала трехфазного двигателя
Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.
На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен.
Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток.
В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее).
Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.
Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.
И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки. Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.
Источник: https://uelektrika.ru/ustanovka-i-podklyuchenie/skhema-podklyucheniya-trekhfaznogo-yelekt/
Как подключить асинхронный двигатель
Дорогие читатели, а вы знаете как подключить асинхронный двигатель?
Имею в виду, можете определить по шильдику, когда надо подключить обмотки электродвигателя звездой, а когда треугольником?
В этой статье я подробно расскажу как подключить асинхронный двигатель. А также Вы узнаете много разных нюансов при подключении электродвигателя.
А вы знали, что если двигатель рассчитан на напряжение 380/660В- треугольник/звезда, и если его подключить по схеме звезда на напряжение 380 вольт, то в определённых условиях он сгорит. Стало интереснее? Тогда советую ознакомиться со статьёй.
Перед чтением этой статьи рекомендую прочитать статью «Что такое мощность».
Как подключить асинхронный двигатель
Специалист перед подключением электродвигателя всегда поглядит на его шильдик и ознакомится со схемой подключения обмоток электродвигателя.
Шильдик асинхронного электродвигателя выглядит примерно вот так:
По информации на шильдике мы делаем вывод, что если у нас напряжение 380 вольт, то подключаем электродвигатель по схеме треугольник. Если у нас 660 вольт, то по схеме звезда.
Так же бывают двигатели на 220/380 вольт:
По шильдику видно, что если у нас напряжение в сети 220 вольт, то подключаем треугольником. Следовательно, если 380 вольт, то звездой.
Теперь Вы уже хотя бы понимаете, как подключить асинхронный двигатель, ориентируясь на шильдик.
Почему сгорит электродвигатель при неправильном соединенииСейчас я вкратце расскажу, почему электродвигатель, у которого обмотки на 380/660 треугольник/звезда, нельзя подключать звездой на 380 вольт.
Давайте представим, что в данный момент у нас линейное напряжение равно 380 вольт.
Что такое линейное напряжение, а фазное? Не знаете? Сейчас расскажу!
Линейное напряжение – это напряжение между линейными проводами (фазами), а фазное между линейным проводом и нейтральным.
Дело в том, что при соединении обмоток треугольником, на каждую обмотку приходится линейное напряжение 380 вольт,
а при соединении звездой фазное — 220 вольт.
В итоге нам надо поддерживать требуемую мощность на валу двигателя, а напряжение упало с 380 вольт до 220 вольт (переключили обмотки с треугольника на звезду), что же делать? Ток всё сделает за нас. Он начнёт расти.
Вот пример:
Это формула для однофазной сети, но для понимания сути пойдёт.
P=UI
Где, P- мощность, U-напряжение, I-ток.
Подставим в нашу формулу выдуманные значения и получим следующее: 440=220*2, а теперь уменьшим напряжение в два раза, 440=110*4. Увидели? Напряжение уменьшили в два раза, но, чтобы поддержать заданную мощность у нас вырос ток в два раза.
Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)При соединении обмоток электродвигателя треугольником фазный ток в 1.73 раза меньше линейного.
Давайте приведу пример: На шильдике электродвигателя указан ток 30А при соединении обмоток треугольником и напряжением 380 вольт. 30 ампер — это линейный ток, значит, чтобы получить фазный, нам надо 30/1.73. В итоге фазный ток равен 17,3 Ампера. Т.е. номинальный ток для обмотки двигателя 17,3 Ампера.
А теперь мы переключим двигатель с треугольника на звезду, но нагрузка на валу двигателя остаётся таже самая.
При соединении электродвигателя звездой линейный ток будет равен фазному. Напряжение на обмотке уменьшится в 1.73 раза. Следовательно на обмотку будет подаваться уже не 380 вольт, а 220.
В результате по обмотке будет протекать не 17,3 А, а целых 30 Ампер. Почему?
Потому что ток будет компенсировать падение напряжения на обмотке, которое у нас упало в 1,73 раза. Значит ток вырастит в 1,73 раза. Двигатель греется и если отсутствует защита — сгорает. А двигатель стоит немалых денег, поэтому Вы должны знать как подключить асинхронный двигатель!
Еще один пример для понимания. Обратите внимание на следующий шильдик электродвигателя:
Электродвигатель треугольник/звезда: 220 вольт/380 вольт: 38,3/22,2 Ампера.
Соединяем двигатель треугольником и подаём напряжение 220 вольт. Ток (линейный) по шильдику равен 38,3 Ампер. Следовательно, фазный будет равен 38,3/1,73= 22,2 Ампер. Т.е мы определили, что фазный номинальный ток для обмотки = 22,2 Ампер. Поехали дальше…
А теперь соединяем обмотки электродвигателя звездой и подаём напряжение 380 Вольт. Ток будет равен 22,2 Ампер. В звезде линейный ток равен фазному току.
Вывод:
При треугольнике и питающем напряжении 220 вольт, фазный ток равен 22,2 Ампер.
При звезде и питающем напряжении 380 вольт, фазный ток равен 22,2 Ампер. Следовательно мощность у двигателя будет одинаковая при таких подключениях.
А, что если мы соединим этот двигатель звездой и подадим напряжение 220 вольт. На обмотку будет приходиться уже 127 Вольт. Поэтому ток будет компенсировать падение напряжение на обмотке в 1,73 раза и будет равен 38,3 Ампер. А обмотка у нас рассчитана на 22,2 Ампер. Двигатель сгорит.
Схема подключения обмоток электродвигателя звездойВот так выглядит борно электродвигателя и здесь обмотки соединены звездой. Т.е. концы обмоток соединены в одной точке.
Мои коллеги-инженеры сталкивались с такими случаями, когда перемычки кидали на начало обмоток, куда подключался питающий кабель. Сразу возникало короткое замыкание.
Фазное и линейное напряжение при соединении обмоток в звезду разное, а ток одинаковый.
А теперь давайте найдём полную мощность, развиваемую электродвигателем.
Полная мощность в трёхфазной системе равна сумме полных мощностей трёх фаз:
И теперь формула полной мощности будет выглядеть вот так:
А чтобы найти активную мощность применим следующую формулу:
где cosф- коэффициент мощности, n- КПДИз формулы активной мощности выразим ток:
где cosф- коэффициент мощности, n- КПДСхема подключения обмоток электродвигателя треугольникомВот так выглядит борно электродвигателя и здесь обмотки соединены треугольником. Т.е. конец обмотки соединён с началом следующей обмотки.
Фазное и линейное напряжение равны. Линейный ток в 1,73 раза больше фазного.
Формула полной мощности будет выглядеть вот так:
Если обратить внимание на формулу полной мощности при подключении звездой, то мы заметим, что формулы полной мощности одинаковые.
А чтобы найти активную мощность применим следующую формулу:
где cosф- коэффициент мощности, n- КПДИз формулы активной мощности выразим ток:
где cosф- коэффициент мощности, n- КПДВнимательный читатель должен был заметить, что формула мощности одинаковая при подключении треугольником и при подключении звездой. Так и есть, просто, чтобы поддержать необходимую мощность, у нас будет меняться ток.
Но чтобы двигатель не сгорел при переключении с треугольника на звезду, надо уменьшить нагрузку на валу двигателя до тех пор, пока фазный ток не станет равный фазному току при подключении треугольником.
Поэтому и говорят, что мощность при подключении обмоток электродвигателя звездой меньше, чем при соединении треугольником.
Почему при пуске применяют схему звезда-треугольникФормула мощности в момент пуска не действует, т.к. двигатель не вращается – ЭДС Самоиндукции отсутствует (индуктивное сопротивление).
По факту у нас есть обмотка с очень маленьким сопротивлением и напряжение, подаваемое на двигатель. И ток здесь рассчитывается по закону Ома. Чем меньше у нас подаваемое напряжение на обмотку электродвигателя, тем меньше будет ток в обмотке.
А мы помним, что при треугольнике у нас на обмотку подаётся линейное напряжение, а при звезде напряжение будет в 1.73 раза меньше чем на треугольнике. Следовательно, и пусковые токи будут меньше.
Но не забываем, что закон Ома действует только в момент пуска электродвигателя. Когда двигатель выходит на номинальные обороты, ему необходимо поддерживать мощность, которая присутствует на валу. А так как напряжение при звезде меньше в 1.73 раза, то начинает подниматься ток, чтобы компенсировать падение напряжения на обмотках электродвигателя.
Будьте внимательны!!!
Бывает попадаются шильдики электродвигателей, которые путают электриков, и они могут допустить ошибку при подключении. Например: Написана буква V, под ней нарисован треугольник, а внизу два напряжения 400 Вольт на 50 Герц и 460 Вольт на 60 Герц. Специалист думает, что буква V-это значок звезды, а так как у него напряжение 400 Вольт, то подключает звездой. А на самом деле этот движок рассчитан на одно лишь подключение- треугольником. А буква V обозначает напряжение.
Подводим итоги:
- При треугольнике линейное и фазное напряжение равны (т.е на обмотку подаётся линейное напряжение), а линейный ток больше фазного в 1,73 раза.
- При звезде фазное напряжение на обмотке в 1,73 раза меньше линейного, а линейный ток равен фазному.
- Если нагрузка на валу двигателя не меняется и мы делаем переключение с треугольника на звезду, то ток начнёт расти. Ток растёт, потому что при звезде у нас уменьшилось напряжение на обмотке в 1,73 раза. И, чтобы компенсировать падение напряжения, начинает увеличиваться ток.
- Звезду применяют для уменьшения пусковых токов. В момент пуска формула мощности не действует, а действует закон Ома. Чем меньше напряжение, тем меньше ток.
Подключение двигателя звезда / треугольник 380В / 220В | GoHz.com
Если двигатель спроектирован для работы по схеме звезды от трехфазного источника питания 380 В, то он не может быть подключен по схеме треугольника к «тому же» источнику питания. Это было бы эквивалентно приложению 380 вольт к обмоткам 220 в, так что двигатель явно выйдет из строя.
Обратите внимание, что в схеме «звезда» каждая обмотка получает корень 3 от приложенного напряжения (или 380 / 1,732). Соединение по треугольнику означает, что каждая обмотка получает напряжение фаза-фаза EG 380 В.
Если двигатель рассчитан на 380 В — «соединение треугольником», то он может быть подключен звездой или треугольником, поскольку подключение двигателя с номиналом 380 В, треугольник, звездой снизит напряжение на обмотках до 220 В, что является нормальным и часто используется в схеме «звезда /». Запуск по схеме треугольника для уменьшения пускового тока.Разумеется, все 6 обмоток двигателя должны быть доступны.
Как указано выше, вы можете взять двигатель 380 В, 3-фазный, соединенный звездой, и запустить его как двигатель 220 В, соединенный трехфазным треугольником. Возвращаясь к основам, это ток, управляемый напряжением, который создает магнитный поток. Плотность потока (зависит от многих факторов) является функцией тока и напряжения. Ток контролируется импедансом цепи и нагрузкой на двигатель. Поскольку большая часть изоляции, используемой в двигателях, рассчитана на 1000 В плюс, напряжение не является проблемой, пока сопротивление не станет достаточно низким, чтобы превысить ограничение тока на проводниках до точки, где температура разрушит изоляцию.Мы подключили 380 В к 525 В и наоборот в аварийной ситуации. КПД и коэффициент мощности НЕ будут соответствовать проектным, и вы должны это понимать. Настроить защиту сложно, и безопасность прежде всего, пожалуйста.
Таким образом, вы можете подавать любое напряжение на двигатель, если оно не превышает уровень изоляции и ограничения по току этого конкретного двигателя.
При замыкании имеются однофазные входы для трехфазных частотно-регулируемых приводов (VFD). Очень часто я получаю запрос, что они не могут разогнать двигатель до полной нагрузки без превышения данных, указанных на паспортной табличке.Небольшие двигатели, для которых были разработаны эти частотно-регулируемые приводы, обычно соединяются звездой. Поскольку ЧРП не может генерировать шину постоянного тока выше пикового напряжения на входе, вы никогда не сможете получить 380 В на входе 220 В. Таким образом, ЧРП выдает три фазы 220В. Двигатель должен быть подключен по схеме треугольника для работы с полной нагрузкой / мощностью.
Можно ли подключить двигатель 380 В к трехфазному 220 В? — Выставка
19 июля 2018 г.
Как подключить 380В к 220В? Можно ли подключить двигатель 380 В к трехфазному 220 В? Какая смена власти?
На паспортной табличке указано номинальное напряжение 380 В, и асинхронный двигатель, подключенный звездой, может быть преобразован в соединение треугольником путем преобразования обмотки в соединение треугольником.Источник питания — трехфазный двигатель 220В, мощность — постоянная.
Измените метод:
На рисунке ниже схематически изображена распределительная коробка двигателя. Левая сторона — это метод звездообразного соединения. Соединительный элемент снимается и принимает форму правильной фигуры.
Принцип:
Мы знаем, что ключом к нормальной работе двигателя является то, что номинальное напряжение подается на каждую фазную обмотку. Когда напряжение высокое, ток становится большим, и обмотка сгорает; если он низкий, ток слишком мал для создания достаточного крутящего момента.
Схема подключения обмотки двигателя при трехфазном соединении звездой 380 В показана на рисунке ниже.
Трехфазные обмотки соединены звездой, и линейное напряжение 380 В, приложенное к каждой фазе напряжения обмотки (фазное напряжение), составляет
380Vx1 / √3 = 220V.
Для двигателя, соединенного звездой, хотя напряжение источника питания составляет 380 В, напряжение, получаемое каждой обмоткой, фактически составляет 220 В. Другими словами, фазное напряжение двигателя, подключенного звездой 380 В, составляет 220 В.
Когда обмотки двигателя соединены треугольником (принцип подключения см. На рисунке ниже), напряжение, получаемое каждой обмоткой, также составляет 220 В. Если напряжение питания по-прежнему составляет 380 В, очевидно, что фазное напряжение обмотки станет 380 В, и двигатель не будет работать должным образом.
Мощность двигателя двух соединений также не изменилась. Обмотки двух соединений одинаковы, напряжение 220 В, и, конечно, ток, протекающий через обмотки, будет одинаковым, поэтому вырабатываемая мощность одинакова.
Обмотка детали
Чтобы понять, как работают двигатели звезда-треугольник и двигатели с запуском звезда-треугольник, мы должны обсудить подключение двигателя и терминологию запуска применительно к трехфазным двигателям. Самый простой и экономичный способ запустить трехфазный асинхронный двигатель с короткозамкнутым ротором — использовать пускатель полного напряжения. Этот метод запуска обозначается как:
.Запуск от полного напряжения или
Запуск от сети (ATL) или
Запуск от сети (DOL)
Двигатель, рассчитанный на работу с одним напряжением, требует только трех выводов и подходит для пуска при полном напряжении.Внутренние соединения обмоток двигателя могут быть соединены звездой (Y) (также известной как звезда (A) или треугольник (). Этот тип двигателя не требует схемы соединений, потому что электрик просто подключает три провода двигателя (которые могут быть обозначены T1, T2 и T3) к соответствующим клеммам пускателя, которые подключаются к линиям электропитания, L1, L2 и L3. Схему подключения см. На рисунке ниже.
Многие производители оригинального оборудования и большинство дистрибьюторов хотят иметь в наличии двигатели, которые могут использоваться с различными источниками питания.По этой причине мы находим много двигателей, рассчитанных на двойное напряжение. Наиболее распространенным бытовым двигателем в корпусах NEMA является 9-выводный двухвольтный двигатель с номинальным напряжением 230/460 В. Обратите внимание, соотношение напряжений 1: 2. Для работы на 230 В катушки подключаются параллельно; для работы на 460 В последовательно (см. схему ниже).
Во многих зарубежных странах есть источники питания на 380 вольт и 220 вольт, 50 герц; поэтому было бы желательно иметь двигатели с такими комбинациями напряжений.Бывает так, что соотношение между двигателем, соединенным треугольником, и двигателем, соединенным звездой, составляет 1 3 или 1: 1,173 или 220: 380 вольт, как показано на следующих схемах. Этот тип двигателя имеет шесть выводов, обозначенных, как показано ниже.
Вышеупомянутый подключенный двигатель также подходит для пуска с пониженным напряжением, известного как звезда-треугольник или звезда-треугольник, от источника питания 220 В.В пусковом режиме специальный магнитный пускатель соединяет обмотки двигателя звездой. Обратите внимание, что при соединении звездой двигатель должен иметь напряжение 380 В для развития момента полной нагрузки; но, поскольку мы подаем только 220 вольт, двигатель будет развивать только 33% крутящего момента и потребляет только 33% от нормального пускового тока. По истечении заданного времени пускатель переключает обмотки двигателя с звезды на треугольник, что является соединением для работы при полном напряжении.
Обратите внимание, что на следующем рисунке один из контакторов «S» показан пунктирной линией, поскольку некоторые производители пускателей используют только два контактора вместо трех.Также обратите внимание, что двигатель 3/50/220/380 можно также назвать двигателем 3/50/220 с пуском звезда-треугольник.
Контакторы 1M и «S» замыкаются во время запуска | |
Контакторы 1M и 2M замыкаются во время работы, S-контакторы размыкаются |
Не всегда понятно, чего хочет покупатель. Типичный запрос на трехфазный двигатель может указывать, что источник питания составляет 50 Гц, 220/380 вольт.Обычно это означает 380 вольт, трехфазный / 220 вольт, однофазный.
Если требуется двигатель 3/50/220/380, заказчик может захотеть использовать двигатель от источника питания 220 В с пускателем звезда-треугольник. Он также может продавать двигатели в разные страны с питанием 220 или 380 вольт.
Изредка попадаются заявки на двигатели 3/50/380/660. Мы не можем предоставить такой двигатель с номинальными размерами NEMA, если заказчику не нужен двигатель на 380 В, подходящий для запуска по схеме звезды или треугольника.Причина, по которой мы не можем предоставить такой двигатель, заключается в том, что наша система изоляции с произвольной обмоткой, используемая в двигателях корпуса NEMA, одобрена только для напряжения 600 вольт плюс 10%. Согласно диаграмме, озаглавленной «Мировые поставки электроэнергии», есть только две страны, Финляндия и Восточная Германия, которые имеют источник питания на 660 В. Есть также некоторые электростанции, которые, как правило, используют распределение 660 В. оборудование.
Есть также некоторые дистрибьюторы или производители оригинального оборудования, которые хотели бы иметь в наличии двигатели с двойным напряжением, соединенными звездой и треугольником, например 3/50/220/440.Этот тип двигателя требует двенадцати выводов и подключается параллельно звезда-треугольник для низкого напряжения и последовательно звезда-треугольник для высокого напряжения. См. Рисунок ниже.
220 В |
440 Вольт |
Деталь обмотки. В этом методе использовалась только часть (обычно половина, но иногда и две трети) обмотки двигателя, увеличивая импеданс, наблюдаемый в энергосистеме.Его следует использовать только для восстановления напряжения, и его нельзя оставлять на пусковом соединении более чем на 2–3 секунды. Предполагается, что двигатель не будет ускоряться при пусковом соединении и может даже не вращаться.
Начало обмотки детали
Стартовые характеристики:
- Пусковой ток составляет 60-75% от нормального, в зависимости от конкретного соединения обмоток.
- Пусковой момент очень низкий (может даже не вращать вал).
- Очень сильный нагрев обмотки при пуске.
Приложения:
Если в энергосистеме есть автоматическое восстановление напряжения, и нормальный бросок тока может вызвать недопустимое падение напряжения. Не должно оставаться на стартовом соединении более 2–3 секунд.
Однофазный частотно-регулируемый приводс входом / выходом 220 В
Этот документ является общим руководством или учебным пособием по установке частотно-регулируемых приводов на однофазных источниках питания. Два обсуждаемых напряжения питания будут включать системы однопроводного заземления (SWER) 220 В (230 В, 240 В) и 480 В.Мощность однофазных частотно-регулируемых приводоввключает: 1 л.с., 2 л.с., 3 л.с. и 5 л.с., которые вы можете купить такие однофазные частотно-регулируемые приводы на ATO.com .
ЧРП (частотно-регулируемый привод) дает множество преимуществ, в том числе:
- Плавный запуск двигателя и снижение нагрузки, снижение механических нагрузок и уменьшение гидравлического удара с помощью насосов.
- Значительно уменьшите пусковой ток с 600-800% до <110-150% для двигателей с номиналом FLC.
- Автоматизация и управление технологическим процессом с использованием встроенной электроники для обеспечения систем постоянного давления / расхода для орошения или других насосных приложений.
- Возможность контролировать скорость мотора.
- Экономия энергии: Существенная экономия энергии может быть достигнута при нагрузках с вентиляторами и насосами.
Комбинация мощности, двигателя и частотно-регулируемого привода
Требуемый частотно-регулируемый привод будет зависеть как от двигателя, так и от доступного источника питания.Общее правило, о котором следует помнить, заключается в том, что частотно-регулируемый привод может преобразовывать однофазное питание в трехфазное, но он не может обеспечивать более высокое выходное напряжение, чем то, которое вы вводите. Поэтому, если у вас есть только однофазный вход источника питания 220 В, вы не можете получить трехфазное напряжение 415 В. выход. Он будет обеспечивать только трехфазный выход 220 В. Если у вас есть источник питания 480 В, вы можете выводить трехфазный 415 В — более низкое напряжение.
В основном у вас могут быть 4 ситуации:
Блок питания | Двигатель | Комментарии |
220 В однофазный | 220 В треугольник / 415 В звезда | Частотно-регулируемый привод 220В; подключить мотор для 220V Delta |
220 В однофазный | 415 В, треугольник | Для двигателя, рассчитанного только на 415 В, потребуется повышающий трансформатор для увеличения входного напряжения до> 415 В и частотно-регулируемый привод на 415 В с дросселем шины постоянного тока. |
480 В, однофазный, однопроводной, заземление, возврат | 415 В, треугольник | Частотно-регулируемый привод 480 В с дросселем звена постоянного тока; подключить двигатель для 415V Delta |
480 В, однофазный, однопроводной, заземление, возврат | 220 В треугольник / 415 В звезда | Частотно-регулируемый привод 480 В с дросселем звена постоянного тока; подключить двигатель для 415V Star |
Частотно-регулируемый привод
Стандартный частотно-регулируемый привод разработан для работы как от однофазного, так и от трехфазного источника питания, что делает его идеальным для однопроводных заземляющих обратных линий или однофазных систем питания.
- Стандартный частотно-регулируемый привод может работать от однофазного источника питания 480 В переменного тока (однопроводной заземляющий возврат) и обеспечивать управляемый трехфазный выход 415 В на двигатель.
- Стандартный частотно-регулируемый привод (или аналог) может работать от однофазного источника питания 220 В переменного тока и обеспечивать управляемый трехфазный выход 220 В на двигатель.
Это особенно важно, когда двигатель 415 В звезда / 220 В треугольник используется в однофазной системе питания 220 В.
Например. 1,5 кВт; 3,4 А 415 В, звезда
Соединение звездой:
IL = IP
VL = 3 x VP
При соединении треугольником:
VL = VP
IL = 3 x IP
Следовательно, линейный ток или ток полной нагрузки двигателя при однофазном подключении 220 В, треугольник, равен 5.9Ампер. Требуется частотно-регулируемый привод с непрерывной выходной мощностью 5,9 А.
Проблемы использования частотно-регулируемых приводов в однофазных источниках питания
Эксплуатация частотно-регулируемого привода на однофазной линии питания проста, но вы должны знать о некоторых проблемах и о том, как их можно решить.
1. Соответствие требованиям ЭМС:
Все частотно-регулируемые приводы удовлетворяют требованиям определенных стандартов. Для достижения этих стандартов необходимо установить оборудование в соответствии с инструкциями производителя.Для этого могут потребоваться экранированные кабели частотно-регулируемого привода от частотно-регулируемого привода к двигателю. Для установок, чувствительных к радиопомехам, могут потребоваться дополнительные меры. Доступны дополнительные меры и альтернативы экранированным кабелям частотно-регулируемого привода, например, высокопроизводительный выходной фильтр.
2. Гармоники
Все частотно-регулируемые приводы генерируют в сети те или иные гармоники, которые значительно увеличиваются при работе от однофазного источника питания и, в частности, при однопроводном заземлении или в сельской местности, где нагрузка на меньшие источники питания может быть относительно высокой.Дроссель шины постоянного тока является обязательным для преобразователей частоты, работающих от источника питания с однопроводным заземлением. Когда речь идет о гармониках, необходимо принимать во внимание размер трансформатора и нагрузку частотно-регулируемого привода / двигателя на источник питания. Влияние чрезмерных гармоник может вызвать перегрев электрических компонентов, таких как трансформаторы и кабели. Для двигателей меньшего размера, работающих от однофазного источника питания 220 В, гармоники несколько ниже, и дроссель шины постоянного тока может не потребоваться.
3. Температурный режим
Поскольку однопроводные системы обратного заземления используются только в сельской местности, где могут наблюдаться более высокие температуры окружающей среды, необходимо учитывать температуру окружающей среды. Некоторые производители предлагают частотно-регулируемые приводы с постоянной температурой окружающей среды 50 ° C. Также доступен закрытый частотно-регулируемый привод со степенью защиты IP66, поэтому оборудование можно монтировать прямо на стене без дополнительного ограждения. Это способствует лучшему охлаждению и более низким внутренним рабочим температурам.
4. Дроссель шины постоянного тока
Дроссель шины постоянного тока обязателен для работы от источника питания с однопроводным заземлением 480 В и некоторых однофазных установок на 220 В в зависимости от размера двигателя.Дроссель шины постоянного тока дает множество преимуществ, в том числе:
- Снижение гармоник линии электропередачи
- Улучшенный коэффициент мощности
- Переходный фильтр
- Снижение пиковых пусковых токов
Поскольку частотно-регулируемый привод действует как инвертор и вырабатывает трехфазный источник питания из однофазного источника, ожидается, что ток на входе будет выше, чем на выходе.Поэтому важно определить, какой уровень тока питания требуется для предполагаемого двигателя. Ориентировочно допустимое среднеквадратичное значение переменного линейного тока в 1,84 раза превышает фазный ток двигателя.
6. Рейтинг ЧРП
Когда частотно-регулируемый привод работает от однофазного источника питания с однопроводным заземлением, стандартный частотно-регулируемый привод должен иметь соответствующие характеристики. Другие соображения при выборе наиболее подходящего частотно-регулируемого привода — это температура окружающей среды и тип нагрузки. Производители ваших частотно-регулируемых приводов могут помочь с выбором правильного частотно-регулируемого привода для вашего приложения.ЧРП следует выбирать в зависимости от тока полной нагрузки при подключении двигателя.
7. Пригодность двигателя
Двигатель должен подходить для работы с частотно-регулируемым приводом и соответствовать определенным стандартам.
Однофазный ЧРП
ЧРП работает от однофазной линии питания, подключенной к L1 и L2.
1. Однопроводное заземление на 480 В: преобразователь частоты принимает однофазное питание переменного тока 480 В и преобразует его в трехфазный выход, подходящий для стандартного трехфазного двигателя 415 В.
2. Однофазное питание 220 В: преобразователь частоты принимает однофазное питание переменного тока 220 В и преобразует его в трехфазный выход, подходящий для стандартного трехфазного двигателя 220 В (см. Однофазный в трехфазный частотно-регулируемый привод).
Больше преимуществ от VFD
На самом деле VFD делает больше, чем просто преобразует однофазное питание в трехфазное. Частотно-регулируемый привод управляет формой выходного сигнала, позволяя регулировать скорость, изменяя частоту двигателя от 0 до 200 Гц.Нормальная частота сети составляет 50 Гц, поэтому частотно-регулируемый привод позволяет при желании увеличить скорость двигателя. С полным контролем скорости двигателя вы можете напрямую управлять нагрузкой, обеспечивая ручное или автоматическое управление процессом, например давлением или расходом воды. ЧРП также полностью контролирует скорость разгона и замедления двигателя, обеспечивая плавный управляемый плавный пуск и плавный останов.
ЧРП имеет прочный корпус IP66 и температуру 50 ° C.
- Допускает непосредственный монтаж рядом с двигателем (требуется защита от солнечных лучей)
- Защита от попадания пыли и влаги
- Более эффективное охлаждение и снижение внутренней рабочей температуры
- Увеличенный срок службы электронных компонентов
- Нет воздушных фильтров, которые нужно чистить, что устраняет неудобства, связанные с перегревом из-за плохой вентиляции.
- Прочный металлический корпус
В ЧРП встроена технология для обеспечения автоматизированных систем управления и взаимодействия с внешними системами управления.
В том числе:
- Цифровые и аналоговые входы / выходы для дистанционного управления и взаимодействия с системами управления.
- ПИД-регулирование для автоматизированного управления технологическим процессом, например, системы постоянного давления.
- Режим гибернации для автоматического включения и выключения вывода по запросу.
Установка частотно-регулируемого привода
Как показано на рисунке, установка частотно-регулируемого привода проста.
Регулировка скорости может осуществляться вручную с помощью имеющихся средств управления или удаленного потенциометра скорости. Система управления давлением может быть легко реализована с использованием внутреннего ПИД-регулирования частотно-регулируемого привода и внешнего датчика давления.
Подробные сведения об установке, в частности с использованием экранированных кабелей двигателя, см. В руководстве по эксплуатации.
Выбор частотно-регулируемого привода и требования к питанию
За помощью в выборе подходящего частотно-регулируемого привода обращайтесь к своим поставщикам.
Факторы, которые необходимо учитывать:
- Паспортная табличка двигателя: ток и напряжение полной нагрузки (FLC).
- Тип нагрузки.
- Окружение:
- Степень защиты корпуса IP.
- Температура окружающей среды.
- Защита от солнечного света и других источников тепла.
- Фактическое напряжение питания.
- Соответствующее снижение номинальных характеристик для однофазной работы.
- Имеется адекватная производственная мощность.
- Преобразователь частоты Требуются дополнительные опции.
- Особые требования от производителя двигателя или насоса.
Почему Уай? Почему Дельта? | Насосы и системы
Вы, наверное, заметили, что трехфазные двигатели могут иметь различное количество выводов, выходящих из распределительной коробки. Самые распространенные числа — три, шесть, девять или двенадцать.
Обратите внимание, что все эти числа кратны трем, поскольку их комбинации должны соответствовать трем входящим фазам.Эти комбинации проводов предназначены для работы с одним или двумя напряжениями и соединениями обмоток звезда, треугольник или звезда / треугольник. Двенадцатипроводный двигатель может работать как с двойным напряжением, так и со схемой звезда / треугольник. Мы подробно рассмотрим каждый из них чуть позже.
Какова цель этих двух соединений и почему двигатели намотаны звездой, треугольником или их комбинацией? Комбинация звезда / треугольник дает несколько преимуществ, и мы рассмотрим их в этой колонке.
Почему двигатели с одним и двумя напряжениями намотаны звездой или треугольником? Почему бы просто не стандартизировать одно или другое? Хотя схемы подключения звезды и треугольника довольно просты, фактические обмотки двигателя намного сложнее. Часто подключение будет зависеть от производственного процесса.
Например, соединение звезда требует меньше витков, чем соединение треугольником (1,732: 2) для достижения тех же электрических характеристик. Это упрощает намотку двигателей меньшего размера с узкими пазами статора.С другой стороны, часть выводов в соединении треугольником с двойным напряжением может быть меньшего диаметра, чем у соединения звезды. Это снижает стоимость проволоки и часто упрощает производство. Инженер крупного производителя двигателей недавно сказал мне: «Это жонглирование количеством витков, количеством цепей и размером провода».
Трехпроводные двигатели
Обмотки статора трехвыводного двигателя могут быть соединены треугольником или звездой (см. Рисунок 1).Эти двигатели намотаны на одно напряжение, и в процессе производства обмотки подключаются по схеме звезды или треугольника.
Входящее питание подключается к клеммам T1, T2 и T3. Преимущество этой конструкции состоит в том, что ошибки при электромонтаже во время установки обычно исключаются из-за предварительно подключенных обмоток. Правильное направление вращения еще необходимо проверить.
Двигатели с шестью выводами
Двигатель с шестью выводами намотан таким образом, чтобы обмотки можно было соединять по схеме звезды или треугольника (см. Рисунок 2).Если выводы T4, T5 и T6 соединены вместе и питание подается на выводы T1, T2 и T3, соединение звездой достигается. Если выводы T1 и T6, T2 и T4 и T3 и T5 соединены вместе и питание подается на вершины, соединение является треугольником.
В США соотношение высокого и низкого напряжения составляет 2: 1 (460 вольт: 230 вольт), но в Европе оно составляет √3: 1 (380 вольт: 220 вольт). Это позволяет Европе воспользоваться преимуществом 1.732 соотношение напряжений между соединениями звезда и треугольник (обсуждается в части 1) и используйте их для двойного напряжения. Поскольку импеданс соединения звездой в три раза больше, чем у соединения треугольником, высокое напряжение подключается звездой, а низкое напряжение — треугольником.
Еще одно применение шестипроводного двигателя, используемого в США и Европе, — это метод пуска при низком напряжении, известный как пуск звезды / треугольник. В этом приложении используется специальный стартер для соединения обмоток звездой во время пуска и переключения их на треугольник после того, как двигатель достигнет определенной скорости.
Более низкое пусковое напряжение снижает пусковой ток примерно до 1/3 от нормального. Пусковой крутящий момент также существенно снижается, поэтому скорость перехода от звезды к треугольнику будет зависеть от инерции нагрузки. Центробежные насосы и вентиляторы часто могут достичь полной скорости перед переключением в режим работы Delta.
Двигатели с девятью выводами
Двигатели с девятью выводами могут быть подключены по схеме звезды или треугольника, но это решение принимается производителями.Их цель — обеспечить работу с двумя напряжениями в приложениях с соотношением напряжений 2: 1. На рис. 3 показаны подключения различных выводов.
Обратите внимание, что обмотки статора «звезда» и «треугольник» состоят из шести отдельных цепей. Если бы каждый из открытых выводов был соединен вместе (T4 и T7, T5 и T8 и T6 и T9), фазные катушки были бы включены последовательно, и приложенное фазное напряжение на T1, T2 и T3 было бы 460 вольт.Если фазное напряжение составляет 230 вольт, выводы должны быть соединены таким образом, чтобы образовались две параллельные цепи звезды или треугольника.
Поскольку эта диаграмма может быть сложной, я представлю ее другим способом и покажу только соединение звезды. На рисунке 4 показано последовательное соединение звездой, рассчитанное на напряжение 460 вольт. Обратите внимание, что соединения такие же, как указано выше, а выводы T7, T8 и T9 соединены в звезду.
Рисунок 4.Последовательное соединение звездойПрямоугольники представляют собой катушки обмотки, и для простоты их по две на цепь. Если предположить, что сопротивление каждой цепи составляет 10 Ом, общее сопротивление в каждой фазе составит 20 Ом. В последовательной цепи сопротивление представляет собой сумму отдельных сопротивлений. Если двигатель должен работать от 230 вольт, сопротивление в цепи должно быть уменьшено, чтобы выходная мощность оставалась прежней.
На рис. 5 показаны те же наборы обмоток, что и на рис. 4, но подключенные на 230 вольт.В этом примере обмотки в T7, T8 и T9 подключены параллельно T1, T2 и T3. Если вы внимательно посмотрите на соединения с правой стороны, вы увидите, что они образуют две параллельные схемы звезды. В параллельной цепи сопротивление ведет себя иначе, чем в последовательной цепи.
Рисунок 5. Параллельное соединение звездой.Каждая из фаз по-прежнему проходит через два сопротивления 10 Ом, но общее сопротивление сильно отличается.Это величина, обратная сумме обратных величин каждого из двух сопротивлений [R = 1 / (1 / R1 + 1 / R2)] или 5 Ом.
При сопротивлении 5 Ом ток в параллельной цепи будет вдвое больше, чем в последовательной цепи. Следовательно, мощность (ватты) остается одинаковой для обоих напряжений. Соединения треугольником обеспечивают одинаковые последовательные и параллельные конфигурации.
Двигатели с двенадцатью выводами
Двигатель с двенадцатью выводами сочетает в себе возможности конструкции с шестью и девятью выводами. Он обеспечивает возможность двойного напряжения и возможность выбора конфигурации звезды или треугольника.Следовательно, один и тот же двигатель может быть спроектирован так, чтобы поддерживать соотношение напряжений 2: 1 и 1,732: 1. P&S
Подключение двигателя по схеме звезда-треугольник — Центр электротехники
Для статера звезда-треугольник соединение двигателя должно иметь 6 кабелей от панели управления и 6 клемм на асинхронном двигателе (U1, U2, V1, V2, W1, W3). мы должны полностью понять суть ВОЛШЕБНОГО ТРЕУГОЛЬНИКА ЗВЕЗДА ДЕЛЬТА.
Подробнее о статере звезда-дельта читайте в моем последнем посте об этом. Из этой треугольной диаграммы мы можем определить правильную фазу, заделку кабеля для правого вывода и направление вращения. Как мы знаем, статер звезда-треугольник очень сложен, если мы не полностью понимаем концепцию и их метод. На этот раз я хочу поделиться своей техникой при выполнении задачи по подключению и подключению к статеру звезда-треугольник для асинхронного двигателя.
Не волнуйтесь, это просто и легко, если мы понимаем основные концепции.Я подробно объясняю, шаг за шагом, как это сделать: D
Что такое соединение звезда-треугольник?
Магический треугольник звезда-дельта
Когда мы обращаемся к этой схеме, мы видим правильный вывод обмотки для каждой фазы: * ВНИМАНИЕ : Пожалуйста, обратитесь к паспортной табличке двигателя, чтобы подтвердить нумерацию обмоток (U1, U2, V1, V2, W1, W2 ) и моторное соединение обмотки.
Почему это так важно? Потому что у каждого производства свой стиль нумерации и подключения моторов.
Звезда-треугольник, фаза и клеммы
КРАСНАЯ ФАЗА: U1 и W2 ЖЕЛТАЯ ФАЗА: U2 и V1 СИНЯЯ ФАЗА: V2 и W1 Итак … исходя из этой формулы, мы должны подключать двигатель в соответствии с цветовым кодом фазы.
См. Мой пример ниже: —
Мы можем сослаться на полную проводку схемы пускателя звезда-треугольник ниже. Если вы хотите изменить их вращение по часовой или против часовой стрелки, вам нужно изменить две фазы (КРАСНУЮ или СИНЮЮ) на контакторе треугольника. Я делюсь техникой, как чтобы изменить ротацию в моем следующем посте.
Если вы хотите вращать двигатель по часовой стрелке, цвета фаз — КРАСНЫЙ, ЖЕЛТЫЙ, СИНИЙ. Но если вы хотите вращение против часовой стрелки, цвета фаз — СИНИЙ, ЖЕЛТЫЙ, КРАСНЫЙ. к моему посту про управление диаграммой звезда-дельта
Соединения клеммной коробки электродвигателя
В Великобритании номинальное напряжение составляет 400 вольт, 3 фазы, 50 Гц. Обычно на паспортных табличках электродвигателей мы видим 220–240 / 380–415 вольт для двигателей меньшего размера или 380–415 / 660–720 вольт для двигателей большего размера.Небольшие двигатели обычно используются с прямым пуском, поскольку пусковой ток не является проблемой. Имея двигатель 230/400 В, треугольник / звезда, мы можем использовать либо напряжение, либо однофазный входной инвертор, который имеет трехфазный выход 230 В на двигатель.
Более крупные двигатели могут быть запущены напрямую, но высокий пусковой ток может быть проблемой, поэтому традиционно используется пускатель звезда / треугольник, и это должно быть исполнение по схеме треугольник / звезда на 400/690 Вольт.
Во многих случаях сейчас мы видим использование устройств плавного пуска и инверторов, которые по своей сути снижают пусковой ток до более управляемых уровней.
Нет стандарта, который бы указывал, где это переключение, но обычно это около 4 кВт, и двигатели, большие или маленькие, могут быть изготовлены для любой конфигурации.
При поиске замены двигателя
необходимо учитывать следующее.- При каком напряжении питания будет работать двигатель?
- Какой способ запуска мне нужен?
Если это запасной двигатель, не предполагайте, что это будет то же соединение, что и у оригинала.Перед подключением всегда проверяйте паспортную табличку на предмет способа подключения.
При замене электродвигателя самым важным является правильное подключение клеммной коробки к требуемому напряжению перед запуском электродвигателя в работу.
Ниже представлена схема соединений звезда / треугольник. Соединение звездой для 400 В для стандартных двигателей IEC от 0,09 кВт до 3 кВт и 690 В для двигателей мощностью 4 кВт и выше. Соединение треугольником для 230 В для стандартных двигателей IEC от 0,09 кВт до 3 кВт и 400 В для двигателей мощностью 4 кВт и выше.
Соединение ЗВЕЗДА И ТРЕУГОЛЬНИК
Трехфазные электродвигатели с короткозамкнутым ротором
Чтобы изменить направление вращения, поменяйте местами любые два впускных провода срока службы (L1, L2, L3)
Grantham Electrical может помочь вам найти решение для большинства требуемых напряжений и частот. В качестве альтернативы мы можем предложить перемотку или получить новый двигатель в соответствии с вашими конкретными требованиями.