Подбор насоса по напору и расходу: Подбор насосов по характеристикам

Содержание

Подбор насосов по характеристикам

Подбор центробежного насоса

Для подбора центробежного насоса используют графическую зависимость напора от подачи, которая индивидуальна для каждой модели и приводится в каталогах производителей.

Методика подбора центробежного насоса зависит от возложенных на него задач. Чтобы подобрать повысительный насос — задаются подачей и с оси абсцисс проводят перпендикуляр на кривую характеристики насоса, полученная рабочая точка определит напор при заданной подаче.

Циркуляционный насос подбирают, накладывая на характеристику насоса, гидравлическую характеристику циркуляционного кольца, отображающую зависимость потерь напора от протекающего расхода. Рабочая точка будет находиться в точке пересечения характеристик насоса и циркуляционного кольца.

Если заданным параметрам соответствует несколько моделей, выбирают менее мощный насос работающий в режиме с большим КПД. Подбирая центробежный насос для сети с изменяющимся расходом воды, лучше отдать предпочтение модели с более пологой напорной характеристикой и широким диапазоном подачи.

Шумовые характеристики, часто становятся преобладающим параметром при подборе насосов для установки в жилых домах. В таких случаях рекомендуется выбрать насос с электродвигателем меньшей мощности и частотой вращения не более 1500 оборотов в минуту.

Подбор циркуляционных насосов

Насосы подбираются по графической характеристике отображающей зависимость напора, развиваемого насосом от расхода воды проходящего через него. На графическую характеристику насоса наносят рабочую точку системы, которая находится на пересечении расчётного расхода и напора. Рабочая точка системы должна находиться либо на кривой насосной характеристики, либо немножко выше неё и как можно ближе к точке насосной характеристики с максимальным КПД. Если несколько насосов отвечает заданным характеристикам, следует отдать предпочтение насосу меньшей мощности, а если расход будет изменяться в широком диапазоне следует выбрать насос с пологой рабочей характеристикой.

Выбирая циркуляционный насос для системы отопления или горячего водоснабжения, следует учесть возможную гидравлическую разбалансированность, основное проявление которой заключается в неудовлетворительной циркуляции воды через отдалённые от насосного узла циркуляционные кольца. Выбрав насос с запасом по расходу и напору можно компенсировать незначительную гидравлическую разбалансированность, поэтому при подборе циркуляционного насоса для системы отопления рекомендуют выбирать насос с 10-20% запасом по напору и 20-30% запасом по расходу. При этом следует учесть, что при увеличении расхода в 1,3 раза потери напора в системе возрастут в 1,3*1,3=1,7 раза.

Для систем отопления с радиаторными термостатическими клапанами допускается незначительный дефицит расхода насоса, обоснованный 10% увеличением площади поверхности отопительных приборов и нелинейностью уменьшения теплоотдачи отопительного прибора с изменением расхода.

Циркуляционные насосы с электронными регуляторами частоты вращения рабочего колеса позволяют существенно сократить расходы на электроэнергию в системах с динамическим гидравлическим режимом.

Шумовые характеристики насоса, часто становятся преобладающим фактором при выборе циркуляционных насосов, устанавливаемых в инженерных системах жилых домов, для установки в помещениях с постоянным пребыванием людей или смежных с ними помещениях, рекомендуется отдать предпочтение насосам с мокрым ротором, так как они отличаются наиболее тихой работой.

Что еще влияет на выбор

На подбор насоса для системы отопления, кроме основных его параметров (напора и подачи) могут влиять и некоторые другие факторы, например, такие как: производитель, качество изготовления, долговечность, максимальная температура эксплуатации, стоимость, и др. Зачастую они связаны между собой.

Качественные насосы надежных производителей, таких как «Grundfos», «Wilo», «DAB», «Lowara», «Ebara» и «Pedrollo», обычно, имеют большую стоимость. Китайские или отечественные модели, как правило, намного дешевле. Еще один параметр технической характеристики, который может быть важным при выборе циркуляционного насоса – максимально допустимая температура его эксплуатации, которая также должна быть в его паспорте или инструкции по эксплуатации. Это особенно важно, если насос предполагается установить в системе отопления с твердотопливным котлом на подающей трубе. Максимально допустимая температура эксплуатации его, в этом случае, должна быть не менее 110оС. Если же, он будет устанавливаться на обратной магистрали, то этот параметр не столь важен, так как температура теплоносителя в этом месте редко превышает 70оС.

Все вопросы о продукции Вы можете задать нашим специалистам по телефону +7(495)644-42-05 и они подберут наиболее подходящий для Вас вариант по выгодной цене!

Подбор насосов Grundfos и Wilo онлайн по напору и расходу

Подбор насоса по напору и расходу онлайн

  • По графику
  • Онлайн по напору и расходу
  • По параметрам профессионалами

По графику

Для любого насоса производитель предоставляет кривые рабочих характеристик: Кривая рабочих характеристик насоса Grundfos CR 1-10 A-A-A-E-HQQE (Арт. 96529478)

По графику можно определить максимальный расход (Q) и напор (H), в данном случае Q = 2,35 м3/ч и H = 60 м. По этим характеристикам подбираются подходящие модели в разделе каталога Насосы для водоснабжения и водоотведения.

Подбор онлайн по напору и расходу

Самый быстрый способ подбора — это использование фильтров в разделе каталога Насосы для водоснабжения и водоотведения.

Параметры, по которым можно произвести фильтрацию:

  • Цена
  • Производитель (Grundfos или Wilo)
  • Назначение
  • Материал корпуса
  • Допустимое рабочее давление
  • Максимальная температура перекачиваемой жидкости
  • Напор (максимальный и номинальный)
  • Расход (максимальный и номинальный)
  • Диаметр и тип присоединения напорного и всасывающего патрубков
  • Наличие частотного преобразователя
  • Напряжение питания
  • Мощность

Преимущества:

  • Скорость подбора
  • Не нужно регистрироваться или отправлять контактные данные
  • Отобранные модели имеют подробное описание
  • В каталоге представлено около 30 000 насосов, поэтому всегда можно подобрать несколько подходящих вариантов

Недостатки:

  • Неполный выбор — не у всех моделей в каталоге указаны параметры фильтрации. Часть моделей, которая тоже подошла бы вам — будет недоступна. Например, вместо 150 подходящих насосов, вы сможете отобрать только 50
  • Ограниченность фильтров — нельзя отобрать насосы по наличию поплавкового выключателя, количеству ступеней и другим подробным характеристикам

Подбор профессионалами по параметрам

Прикрепить файлы

В процессе подбора инженеры будут опираться не только на технические характеристики, но и собственный опыт. Вариантов будет больше, чем при фильтрации в каталоге, кроме того, вы сэкономите время на самостоятельном подборе.

Заполните короткую форму ниже. Возможно инженерам потребуется уточнение некоторых деталей, поэтому укажите контакты для связи. Время подбора от 15 минут (для простых случаев).

Преимущества подбора насоса инженерами «ПроТепло»

Сохраните страницу, чтобы не потерять:

  • ВКонтакте
  • Facebook
  • Одноклассники
  • Мой Мир
  • Twitter
  • Viber
  • WhatsApp

КАК Спроектировать насосную систему

предыдущий

Что такое полный напор

Общий напор и подача являются основными критериями, которые используются для сравнения одного насоса с другим или для выбора центробежного насоса для применения.

Общий напор связан с давлением нагнетания насоса. Почему мы не можем просто использовать давление нагнетания? Давление — знакомое понятие, мы знакомы с ним в нашей повседневной жизни. Например, огнетушители находятся под давлением 60 фунтов на квадратный дюйм (413 кПа), мы обеспечиваем давление воздуха в наших велосипедных и автомобильных шинах 35 фунтов на квадратный дюйм (241 кПа). По уважительным причинам производители насосов не используют давление нагнетания в качестве критерия для выбора насоса. Одна из причин в том, что они не знают, как вы будете использовать насос. Они не знают, какой расход вам нужен, а расход центробежного насоса не фиксирован. Давление нагнетания зависит от давления на стороне всасывания насоса. Если источник воды для насоса находится ниже или выше всасывания насоса, при одинаковом расходе вы получите разное давление нагнетания. Поэтому для устранения этой проблемы предпочтительнее использовать разницу давлений между входом и выходом насоса.

Производители пошли еще дальше: величина давления, которое может создать насос, будет зависеть от плотности жидкости, для раствора соленой воды, который плотнее чистой воды, давление будет выше для того же расход. Опять же, производитель не знает, какой тип жидкости находится в вашей системе, поэтому критерий, не зависящий от плотности, очень полезен. Есть такой критерий, он называется ОБЩИЙ НАПОР и определяется как разница в напоре между входом и выходом насоса.

Напор нагнетания можно измерить, присоединив трубку к напорной стороне насоса и измерив высоту жидкости в трубке относительно всасывания насоса. Трубка должна быть довольно высокой для типичного бытового насоса. Если давление нагнетания составляет 40 фунтов на квадратный дюйм, высота трубы должна быть 92 фута. Это непрактичный метод, но он помогает объяснить, как напор связан с общим напором и как напор связан с давлением. Вы делаете то же самое, чтобы измерить высоту всасывания. Разница между ними и есть общий напор насоса.

Рисунок 25

Жидкость в измерительной трубке на стороне нагнетания или всасывания насоса будет подниматься на одинаковую высоту для всех жидкостей независимо от плотности. Довольно удивительное заявление, и вот почему. Насос ничего не знает о напоре, напор — это понятие, которое мы используем, чтобы облегчить себе жизнь. Насос создает давление, и разница в давлении на насосе представляет собой количество энергии давления, доступной для системы. Если жидкость плотная, например, раствор соли, на выходе насоса будет создаваться большее давление, чем если бы жидкостью была чистая вода. Сравните два бака с одинаковой цилиндрической формой, одинаковым объемом и уровнем жидкости, бак с более плотной жидкостью будет иметь более высокое давление на дне. Но статический напор поверхности жидкости по отношению к дну одинаков. Полный напор ведет себя так же, как статический напор, даже если жидкость более плотная, общий напор по сравнению с менее плотной жидкостью, такой как чистая вода, будет таким же. Это удивительный факт, посмотрите этот эксперимент на видео, которое показывает эту идею в действии.

По этим причинам производители насосов выбрали общий напор в качестве основного параметра, характеризующего доступную энергию насоса.

Какая связь между напором и общим напором?

Общий напор — это высота, на которую жидкость поднимается со стороны нагнетания насоса, за вычетом высоты, на которую она поднимается со стороны всасывания (см. Рисунок 25). Почему меньше высота на стороне всасывания? Потому что нам нужен только вклад энергии насоса, а не энергия, которая ему подводится.

Что такое голова? Сначала разберемся с единицей энергии. Энергия может быть выражена в футо-фунтах, что равно количеству силы, необходимой для подъема предмета, умноженной на вертикальное расстояние. Хорошим примером является поднятие тяжестей. Если вы поднимете 100 фунтов (445 ньютонов) вверх 6 футов (1,83 м), необходимая энергия составляет 6 x 100 = 600 фут-фунт-сила (814 Н-м).

Напор определяется как энергия, деленная на вес перемещенного объекта. Для тяжелоатлета энергия делится перемещенным весом 6 х 100/100 = 6 футов (1,83 м), поэтому количество энергии на фунт гантель, которую должен предоставить тяжелоатлет, составляет 6 футов. Это не очень полезно знать для тяжелоатлета, но мы увидим, насколько он полезен для вытеснения жидкости.

Рисунок 26

Вам может быть интересно узнать, что 324 футофунта энергии эквивалентны 1 калории. Это означает, что наш тяжелоатлет тратит 600/324 = 1,8 калории каждый раз, когда он поднимает этот вес на 6 футов, это немного.


На следующем рисунке показано, сколько энергии требуется для перемещения одного галлона воды по вертикали.

Рисунок 27


На следующем рисунке показано, сколько напора требуется для выполнения той же работы.

Рисунок 28


Если мы используем энергию для описания того, какую работу должен совершить насос, чтобы вытеснить объем жидкости нам нужно знать вес. Если мы используем голову, нам нужно знать только вертикальное расстояние движения. Это очень полезно для жидкостей, потому что перекачка — это непрерывный процесс, обычно когда вы перекачиваете оставить насос включенным, вы не запускаете и не останавливаете насос на каждый фунт вытесненной жидкости. Нас в основном интересует установление непрерывного расхода.

Другим очень полезным аспектом использования напора является то, что перепад высот или статический напор можно использовать как одну часть значения полного напора, а другую часть как напор трения. показано на следующем рисунке. На одном изображена фрикционная головка на стороне нагнетания, а на другом — фрикционная головка на стороне всасывания.

Какой статический напор требуется для перекачки воды с первого этажа на второй или на высоту 15 футов? Помните, что вы также должны учитывать уровень воды во всасывающем резервуаре. Если уровень воды на 10 футов ниже всасывающего патрубка насоса, то статический напор составит 10 + 15 = 25 футов. Следовательно, общий напор должен быть не менее 25 футов плюс потеря напора жидкости, проходящей по трубам, на трение.

Рисунок 29


Как определить фрикционный напор

Фрикционный напор – это величина потерь энергии из-за трения жидкости, движущейся по трубам и фитингам. Для перемещения жидкости против трения требуется сила, точно так же, как требуется сила, чтобы поднять вес. Сила действует в том же направлении, что и движущаяся жидкость, и энергия расходуется. Точно так же, как напор рассчитывался для подъема определенного веса, напор трения рассчитывается с помощью силы, необходимой для преодоления трения, умноженной на смещение (длину трубы), деленной на вес вытесненной жидкости. Эти расчеты были сделаны для нас, и вы можете найти значения потери напора на трение в Таблице 1 для различных размеров труб и скоростей потока.

Таблица 1

Загрузите версию для печати (британские или метрические единицы).

В таблице 1 приведены скорость потока и потеря напора на трение для воды, перемещаемой по трубе с типичная скорость 10 футов/с. Я выбрал 10 футов/с в качестве целевой скорости, потому что она не слишком велика. что создало бы большое трение, а не слишком малое, что замедлило бы ход событий. Если скорость меньше, то потери на трение будут меньше, а если скорость больше, потери будут быть больше, чем показано в таблице 1. Для всасывающей стороны насоса желательно быть более консервативным и размер труб для более низкая скорость, например, от 4 до 7 футов в секунду. Вот почему вы обычно видите большую трубу размер на стороне всасывания насоса больше, чем на стороне нагнетания. Эмпирическое правило заключается в том, чтобы сделать всасывающую трубу такого же размера или на один размер больше, чем всасывающий патрубок.

Зачем возиться со скоростью, разве недостаточно информации о расходе для описания движения жидкости через система. В зависимости от того, насколько сложна ваша система, если выпускная труба имеет постоянный диаметр, то скорость хотя снаружи будет такой же. Тогда, если вы знаете расход, исходя из таблиц потерь на трение, Вы можете рассчитать потери на трение только по скорости потока. Если диаметр нагнетательного патрубка изменится, то скорость будет меняться при том же расходе, а более высокая или более низкая скорость означает более высокую или более низкую потери на трение в этой части системы. Затем вам нужно будет использовать скорость для расчета потери напора на трение в этой части трубы. Вы можете найти калькулятор скорости веб-приложения здесь https://www.pumpfundamentals.com/web-apps.htm

Если вы хотите увидеть диаграмму расхода для 5 фут/с (британская или метрическая система) и 15 фут/с (британская или метрическая система), загрузите их здесь.

Те из вас, кто хотел бы самостоятельно рассчитать скорость, могут скачать формулы и образец расчета здесь.

Желающие рассчитать трение в трубах могут скачать пример здесь.

Веб-приложение для измерения потерь на трение в трубах доступно здесь https://www.pumpfundamentals.com/web-apps.htm


Кривая производительности или характеристика насоса

Кривая характеристики насоса похожа на предыдущую показанную кривую, которую я также назвал характеристической кривой, показывающей взаимосвязь между давлением нагнетания и расходом (см. рис. 21) . Как я уже упоминал, это непрактичный способ описания производительности, потому что вам нужно знать давление всасывания, используемое для построения кривой. На рис. 30 показана типичная кривая зависимости полного напора от расхода. Это тип кривой, которую все производители насосов публикуют для каждой модели насоса при заданной рабочей скорости.

Не все производители предоставят вам характеристику насоса. Тем не менее, кривая существует, и если вы настаиваете, вы, вероятно, сможете ее получить. Вообще говоря, чем больше вы платите, тем больше технической информации вы получаете.

Рисунок 30


Как выбрать центробежный насос

Маловероятно, что центробежный насос, купленный в готовом виде, точно удовлетворит ваши требования к расходу. Скорость потока, которую вы получаете, зависит от физических характеристик вашей системы, таких как трение, которое зависит от длины и размера труб, и перепада высот, который зависит от здания и местоположения. Изготовитель насоса не имеет возможности узнать, каковы будут эти ограничения. Вот почему купить центробежный насос сложнее, чем купить объемный насос, который будет обеспечивать номинальный расход независимо от того, в какую систему вы его установите.

Основными факторами, влияющими на подачу центробежного насоса, являются:

— трение, которое зависит от длины трубы и диаметра

— статический напор, который зависит от разницы высоты нагнетания конца трубы и высоты напора. высота поверхности жидкости всасывающего бака

— вязкость жидкости, если жидкость отличается от воды.

Для выбора центробежного насоса необходимо выполнить следующие шаги:

1. Определить расход

Чтобы подобрать размер и выбрать центробежный насос, сначала определите расход. Если вы владелец дома, выясните, какое из ваших применений воды является самым большим потребителем. Во многих случаях это будет ванна, для которой требуется примерно 10 галлонов в минуту (0,6 л/с). В промышленных условиях скорость потока часто зависит от производительности предприятия. Выбор правильного расхода может быть таким же простым, как определение того, что для заполнения резервуара за разумное время требуется 100 галлонов в минуту (6,3 л/с), или же расход может зависеть от некоторого взаимодействия между процессами, которое необходимо тщательно проанализировать.

2. Определите статический напор

Это вопрос измерения высоты между поверхностью жидкости всасывающего бака и высотой конца нагнетательной трубы или отметкой поверхности жидкости в нагнетательном баке.

3. Определите напор трения

Напор трения зависит от расхода, размера и длины трубы. Это рассчитывается на основе значений в таблицах, представленных здесь (см. Таблицу 1). Для жидкостей, отличных от воды, вязкость будет важным фактором, и Таблица 1 неприменима.

4. Рассчитайте общий напор

Общий напор представляет собой сумму статического напора (помните, что статический напор может быть положительным или отрицательным) и напора на трение.

5. Выберите насос

Вы можете выбрать насос на основе информации из каталога производителя насоса, используя требуемый общий напор и расход, а также пригодность для применения.

Пример расчета общего напора

Пример 1. Расчет насоса для домашнего использования

Опыт подсказывает мне, что для того, чтобы наполнить ванну за разумное время, требуется скорость потока 10 галлонов в минуту. Согласно Таблице 1 размер медных трубок должен быть где-то между 1/2″ и 3/4″, я выбираю 3/4″. распределитель, от этого распределителя на первом этаже будет отвод 3/4″ до уровня второго этажа, где находится ванна. На всасывании я буду использовать трубу диаметром 1”, всасывающая труба 30 футов в длину (см. рис. 30)

Рисунок 31

Потери на трение на стороне всасывания насоса

В соответствии с расчетами или использованием таблиц, которые здесь не представлены, потери на трение для трубы диаметром 1 дюйм составляют 0,068 фута на фут трубы. В этом случае расстояние составляет 30 футов. Потери на трение в футов составляет 30 x 0,068 = 2,4 фута. В фитингах есть некоторые потери на трение, предположим, что консервативная оценка составляет 30% потерь на трение в трубе, потери на трение в фитингах составляют = 0,3 x 2,4 = 0,7 фута. Если на линии всасывания имеется обратный клапан, потери на трение в обратном клапане необходимо добавить к потерям на трение в трубе. Типичное значение потерь на трение для обратного клапана составляет 5 футов. Струйному насосу не требуется Поэтому я предполагаю, что на всасывании этой системы нет обратного клапана. Тогда общие потери на трение для всасывающей стороны составляют 2,4 + 0,7 = 3,1 фута.

Вы можете найти потери на трение для трубы диаметром 1 дюйм при расходе 10 галлонов в минуту в справочнике Cameron Hydraulic, следующий рисунок является выдержкой:

Потери на трение на стороне нагнетания насоса

В соответствии с расчетами или использованием таблиц, которые здесь не представлены, потери на трение для трубы 3/4″ составляют потери на трение 0,23 фута на фут трубы. В этом случае расстояния равны 10 футам главного распределителя и еще 20 футов от главного распределителя до ванны общей длиной 30 футов. Тогда потери на трение в футах составляют 30 x 0,23 = 6,9.ноги. В фитингах есть некоторые потери на трение, предположим, что консервативная оценка составляет 30% от потерь на трение трубы, потери на трение в фитингах = 0,3 x 6,9 = 2,1 фута. Тогда общие потери на трение для нагнетательной стороны составляют 6,9 + 2,1 = 9 футов.

Вы можете найти потери на трение для трубы диаметром 0,75 дюйма при 10 галлонах в минуту в справочнике Cameron Hydraulic, из которого приведена следующая цифра:

Тогда общие потери на трение в трубопроводе в системе равны 9+ 3,1 = 12,1 фута.

Статический напор согласно рис. 41 составляет 35 футов. Следовательно, общий напор равен 35 + 12,1 = 47 футов. Теперь мы можем пойти в магазин и купить насос с общим напором не менее 47 футов при производительности 10 галлонов в минуту. Иногда общий напор называют полным динамическим напором (T.D.H.), он имеет то же значение. Номинал помпы должен быть как можно ближе к этим двум цифрам без лишних слов. В качестве рекомендации допускается отклонение плюс-минус 15% от общего напора. В потоке вы также можете разрешить изменение, но вы можете заплатить больше, чем вам нужно.

Для тех из вас, кто хотел бы самостоятельно рассчитать трение в фитингах, загрузите пример расчета здесь.

Какая мощность насоса? Производитель оценивает насос при оптимальном общем напоре и подаче, эта точка также известна как точка наилучшего КПД или B.E.P.. При такой подаче насос работает с максимальной эффективностью, вибрация и шум минимальны. . Конечно, насос может работать с другими расходами, выше или ниже номинального, но срок службы насоса пострадает, если вы будете работать слишком далеко от его нормального номинального значения. Поэтому ориентируйтесь на максимальную вариацию плюс-минус 15% от общего напора. 9

Рисунок 32 аккумулятор.

На следующих рисунках показаны различные распространенные системы водоснабжения и указаны значения статического напора, напора на трение и полного напора насоса.

Рассчитайте давление на выходе насоса из общего напора насоса

Чтобы рассчитать давление на дне бассейна, вам нужно знать высоту воды над вами. Неважно, бассейн это или озеро, высота — это то, что определяет, какой вес жидкости находится над ним и, следовательно, давление.

Давление равно силе, деленной на поверхность. Он часто выражается в фунтах на квадратный дюйм или в фунтах на квадратный дюйм. Сила равна весу воды. Плотность воды составляет 62,3 фунта на кубический фут.

Вес воды в резервуаре А равен произведению плотности на ее объем.

Объем резервуара равен площади поперечного сечения A, умноженной на высоту H. A:

Объем V: A x H:

Вес воды W A :

Следовательно, давление:

Это давление в фунтах на квадратный фут, требуется еще один шаг, чтобы получить давление в фунтах на квадратный дюйм или psi. В футе 12 дюймов, следовательно, в квадратном футе 12×12 = 144 дюйма.

Давление p на дне резервуара A в фунтах на квадратный дюйм составляет:

Если вы выполните расчет для резервуаров B и C, вы получите точно такой же результат, давление на дне всех этих резервуаров составляет 4,3 фунта на квадратный дюйм. .

Общая зависимость давления от высоты резервуара:

SG или удельный вес — это еще один способ выражения плотности, это отношение плотности жидкости к плотности воды, поэтому вода будет иметь SG =1. Более плотные жидкости будут иметь значение больше 1, а более легкие жидкости — значение меньше 1. Полезность удельного веса заключается в том, что он не имеет единиц измерения, поскольку он является сравнительной мерой плотности или отношения плотностей, поэтому удельный вес будет иметь такое же значение. независимо от того, какую систему единиц мы используем, имперскую или метрическую

Для тех из вас, кто хотел бы увидеть, как обнаруживается эта общая взаимосвязь, перейдите к Приложению E в pdf-версии этой статьи.

Мы можем измерить напор на стороне нагнетания насоса, подключив трубку и измерив высоту жидкости в трубке. Поскольку трубка на самом деле представляет собой всего лишь узкий резервуар, мы можем использовать уравнение зависимости давления от высоты резервуара.

для определения давления нагнетания. В качестве альтернативы, если мы установим манометр на нагнетании насоса, мы сможем рассчитать напор нагнетания.

Мы можем рассчитать давление нагнетания насоса на основе общего напора, который мы получаем из характеристической кривой насоса. Этот расчет полезен, если вы хотите устранить неполадки в вашем насосе или проверить, производит ли он количество энергии давления, которое производитель заявляет при вашем рабочем расходе.

Рисунок 37

Например, если характеристическая кривая насоса показана на рисунке 39, а расход в системе составляет 20 галлонов в минуту. Тогда общий напор равен 100 футам.

Установка показана на рис. 37, это система бытового водоснабжения, которая берет воду из неглубокого колодца на 15 футов ниже места всасывания насоса.

Насос должен создавать подъемную силу, чтобы поднять воду до всасывающего патрубка. Это означает, что давление на всасывании насоса будет отрицательным (относительно атмосферного).

Почему это давление меньше атмосферного или низкое? Если вы возьмете соломинку, наполните ее водой, закроете один конец кончиком пальца и перевернете вверх дном, вы заметите, что жидкость не выходит из соломинки, попробуйте!. Жидкость тянется вниз под действием силы тяжести и создает небольшое давление под кончиком пальца. Жидкость поддерживается в равновесии, потому что низкое давление и вес жидкости точно уравновешиваются силой атмосферного давления, направленной вверх.

То же явление происходит при всасывании насоса, всасывающего жидкость из низкого источника. Как и в соломинке, давление вблизи всасывающего патрубка насоса должно быть низким, чтобы жидкость могла поддерживаться.

Чтобы рассчитать напор на напоре, мы определяем общий напор по характеристической кривой и вычитаем это значение из напора на всасывании, это дает напор на нагнетании, который мы затем преобразуем в давление.

Мы знаем, что насос должен генерировать 15 футов подъема на всасывании насоса, подъем является отрицательным статическим напором. На самом деле она должна быть чуть больше 15 футов, поскольку из-за трения потребуется более высокая высота всасывания. Но давайте предположим, что размер трубы большой и потери на трение малы.

Рисунок 39

Общая головка = 100 = H D — H S

или

H D = 100 + H S

99999999 9000 3 D разница между напором на нагнетании H D и напором на всасывании H S . H S равно 15 футам, потому что это лифт, поэтому:

H D = 100 + (-15) = 85 футов

Давление нагнетания будет:

Теперь вы можете проверить свой насос, чтобы убедиться, что измеренное давление нагнетания соответствует прогнозируемому. Если нет, то может быть что-то не так с насосом.

Примечание: вы должны быть осторожны при размещении манометра, если он намного выше, чем всасывание насоса, скажем, выше 2 футов, вы будете показывать меньшее давление, чем на самом деле есть на насосе. Также следует учитывать разницу в скоростном напоре нагнетания насоса и всасывания, но обычно она невелика.

Насосная компания Goulds предлагает очень хорошее руководство по подбору насосов для бытовых систем водоснабжения. Посмотрите на другой способ, как можно подойти к этой теме.

вернуться к началу

Copyright 2019, PumpFundamentals.com

Как читать характеристику насоса: полное руководство

Как читать кривую производительности насоса, остается темой, вызывающей большой интерес в пищевой, молочной, фармацевтической и перерабатывающей промышленности , поэтому в этом посте мы представляем важную информацию о двух наших самых популярных стилях — центробежном и принудительном смещении.

Кривая производительности насоса поможет вам выбрать правильный насос для конкретных нужд вашей области применения.
Кривая центробежного насоса

Поскольку время производственного цикла увеличивается, правильный выбор насоса с первого раза становится важнее, чем когда-либо. В то же время, понимание всего диапазона возможностей каждого насоса в конкретных условиях эксплуатации дает вам окно для ваших вариантов, поэтому вы не ограничены лишь несколькими вариантами в процессе выбора.

Также называемая кривой выбора насоса, кривой эффективности насоса или кривой производительности насоса, диаграмма кривой насоса предоставляет информацию, необходимую для определения способности насоса создавать поток в условиях, влияющих на производительность насоса . Точное чтение характеристик насоса поможет вам выбрать правильный насос на основе таких параметров применения, как:

  • Напор (давление воды)
  • Поток (объем жидкости, который вы должны перекачать за определенный период времени)

Насос должен создавать достаточный перепад давления, чтобы компенсировать потери напора, возникающие в трубопроводных системах из-за трения, клапанов и фитингов. Кривая насоса показывает два коэффициента производительности по осям X, Y, чтобы вы могли видеть объем жидкости, который насос может перекачивать при различных условиях давления.  

В этом объяснении характеристики насоса также рассматриваются такие переменные, как:

  • Об/мин
  • Размер крыльчатки в зависимости от производительности насоса
  • Мощность
  • Эффективность
  • Чистый положительный напор на всасывании (NPSH) в центробежных и поршневых насосах

Например, если вы знаете, какой расход требуется для вашего приложения, вы найдете расход в галлонах в минуту (или час) вдоль нижнюю горизонтальную линию кривой, а затем нарисуйте линию до требуемого напора/PSI. Кривая покажет, будет ли выбранный вами насос работать в данном приложении.

1. КАК СЧИТАТЬ ХАРАКТЕРИСТИКИ ЦЕНТРОБЕЖНОГО НАСОСА?

Кривые обычно включают показатели производительности, основанные на давлении, расходе, мощности в л.с., подстройке рабочего колеса и требуемом чистом положительном напоре на всасывании (NPSHr).

Кривые центробежного насоса полезны, поскольку они показывают показатели производительности насоса на основе напора (давления), создаваемого насосом, и расхода воды через насос. Скорость потока зависит от скорости насоса, диаметра рабочего колеса и напора.

Что такое голова?

Напор — это высота, на которую насос может поднять воду прямо вверх. Вода создает давление или сопротивление с предсказуемой скоростью, поэтому мы можем рассчитать напор как перепад давления, который насос должен преодолеть, чтобы поднять воду.

Общепринятыми единицами измерения являются футы головы и фунты на квадратный дюйм. (Калькулятор характеристик насоса может предлагать различные единицы измерения, такие как бар или метры напора). Как показано на рис. 1, каждые 2,31 фута напора равны 1 фунту на квадратный дюйм.

Рис. 1. Каждые 2,31 фута напора создают давление в 1 PSI.

Формула для фунтов на квадратный дюйм: футы головы/2,31 = 9 фунтов на квадратный дюйм0430

Расход — это объем воды, который насос может перекачать при заданном давлении . Расход указан на горизонтальной оси в единицах, таких как галлоны в минуту или галлоны в час, как показано на Рис. 2.

Рис. 2. Базовая кривая производительности центробежных насосов показывает диапазон производительности. На этой кривой напор измеряется в фунтах на квадратный дюйм; расход измеряется в галлонах в час. Учитывая взаимосвязь между напором и PSI, мы можем взглянуть на кривую выборки по-другому и сказать, что при напоре 184,8 фута (80 фунтов на квадратный дюйм X 2,31 фута) насос будет генерировать расход 1321 галлон в час.

Что такое общий динамический напор?

Хотя кривые насоса помогают выбрать правильный насос для работы, сначала необходимо узнать общий динамический напор для применения.

Общий динамический напор (TDH) представляет собой количество напора или давления на стороне всасывания насоса (также называемое статическим подъемом) плюс сумма 1) высоты, на которую должна перекачиваться жидкость, плюс 2) потери на трение, вызванные шероховатость или коррозия внутренней трубы.

TDH = статическая высота + статическая подъемная сила + потери на трение

  • Статический подъем — это высота, на которую поднимается вода перед тем, как она достигнет всасывающей стороны насоса.
  • Статическая высота — это максимальная высота, достигаемая трубой на стороне нагнетания насоса.
  • Потери на трение (или потери напора) — это потери на трение в трубе при заданном расходе.

Узнайте больше о центробежных насосах и основных расчетах.

Как использовать кривые производительности насоса при выборе оборудования: основы

Допустим, вы хотите узнать скорость потока, которую вы можете получить от насоса на рисунке 3 при частоте 60 Гц, когда расчетное давление составляет 80 фунтов на квадратный дюйм. В этом случае кривая показывает, что насос может достигать скорости потока 1321 галлон в час при давлении нагнетания 80 фунтов на квадратный дюйм.

Рис. 3. На этой кривой производительности насоса насос может создавать давление нагнетания 80 фунтов на квадратный дюйм при расходе 1321 галлон в час. Диаграммы характеристик насоса показывают расход по горизонтальной оси и давление по вертикальной оси.

Чтение кривых центробежных насосов, содержащих дополнительную информацию

Поскольку некоторые центробежные насосы работают в диапазоне мощностей в лошадиных силах, их кривые будут содержать дополнительную информацию. На рис. 4, например, показан насос мощностью от 2 до 10 лошадиных сил в зависимости от желаемой производительности.

Рис. 4. Насосы с регулируемой мощностью могут работать в различных сочетаниях напор/поток и с различными размерами рабочего колеса.

Дополнительные кривые см. в кривых производительности Alfa Laval LKH.

Размер трима крыльчатки

Размер крыльчатки — еще одна переменная, влияющая на соответствие требованиям к производительности. На приведенной выше кривой показаны размеры отделки крыльчатки в правом конце каждой кривой в диапазоне от минимального 4,33 дюйма до максимального 6,42 дюйма.

Уменьшение размера рабочего колеса позволяет ограничить насос определенными требованиями к производительности . Приведенная выше кривая показывает максимальную производительность насоса с рабочим колесом с полной настройкой, минимальную производительность насоса с рабочим колесом с минимальной настройкой и производительность, обеспечиваемую рабочим колесом с расчетной настройкой или с наибольшей настройкой рабочего колеса, соответствующей расчетным условиям. Рабочие колеса обычно обрезаются на 0,20 дюйма (или 5 мм) за раз.

Размер крыльчатки также является важным фактором при работе с жидкостями, чувствительными к сдвигу, или жидкостями, вязкость которых меняется под давлением.

Требуется/имеется чистый положительный напор на всасывании

В дополнение к давлению и расходу кривая в нижней части рис. 4 показывает NPSHr, что означает требуемый чистый положительный напор на всасывании. NPSHr — это минимальное давление, необходимое на стороне всасывания насоса, чтобы избежать кавитации или попадания воздуха в поток жидкости. NPSHr определяется насосом. Всегда хочется НПШа>НПШр.

NPSHa, где «а» означает , доступный , определяется технологическим трубопроводом.

Вы всегда хотите, чтобы NPSH был больше, чем NPSHr. Без достаточного положительного всасывания насос будет кавитировать, что повлияет на производительность и срок службы насоса.

Переменные КПД и производительности

Хороший КПД насоса означает, что насос не тратит энергию впустую для поддержания своей производительности. Ни один насос не эффективен на 100%, однако в работе ему приходится выполнять перекачку жидкостей.

При выборе комбинации насоса и двигателя учитывайте не только общую текущую потребность, но и будущую потребность, чтобы убедиться, что ваш выбор соответствует изменяющимся требованиям. С этой целью s s адаптация насоса к переменным характеристикам, а не к максимальной эффективности, является обычной практикой.

Например, , в то время как середина кривой эффективности насоса обычно находится там, где насос работает с максимальной эффективностью с точки зрения давления и скорости потока , движение вправо по кривой выше показывает увеличение мощности, необходимой для поддержания потока скорость по мере увеличения напора. Например, для расхода 40 галлонов в минуту при напоре 80 футов требуется 2 л.с., но для поддержания расхода 40 галлонов в минуту при напоре 110 футов потребуется двигатель мощностью 3 л. с.

Вы можете проверить насосные системы, используя рабочие характеристики насосов. Как только вы определите точку наилучшего КПД (BEP) для вашего приложения, вы можете внести коррективы для повышения общей эффективности системы, например, добавить частотно-регулируемый привод (VFD) и изменить диаметр рабочего колеса насоса. Управление расходом путем регулировки скорости насоса с помощью частотно-регулируемого привода вместо напорных клапанов может привести к повышению эффективности и большей экономии энергии.

При параллельном использовании насосов можно увеличить подачу при том же напоре. Как показано на рис. 5, параллельное использование насосов дает скорость потока, которая является суммой скоростей потока насоса A и насоса B.

Наконец, кривые насосов с регулируемой скоростью показывают расход при различных оборотах в минуту, как показано на рис. 6.

рис. 5. Предположим, два одинаковых насоса, при параллельном использовании расход удваивается. Системная кривая показывает скорость потери давления. По мере увеличения расхода потери давления увеличиваются. Рисунок 6

2. Как читать кривую поршневого насоса

Насос прямого вытеснения (PD) производит один и тот же расход при заданной скорости (в оборотах в минуту — об/мин) независимо от давления нагнетания. Кривые объемного насоса дают вам информацию, необходимую для определения способности насоса создавать поток в условиях, влияющих на производительность насоса.

Насосы PD выпускаются в различных механических конструкциях, вот некоторые из них:

  • Насосы с кольцевым поршнем
  • Роторные насосы
  • Двухвинтовые насосы
  • Винтовые насосы

Кривая поршневого насоса отвечает на несколько важных вопросов в процессе выбора насоса:

  1. На какой расход рассчитан насос?
  2. Насколько проскальзывание влияет на производительность насоса?
  3. Сколько л.с. требуется для ожидаемого давления?
Кривые отвечают на эти вопросы, отображая пересечения нескольких важных переменных, включая производительность, рабочую мощность, мощность вязкости и требуемый чистый положительный напор на всасывании (NPSHr).

Производительность

Производительность, как показано на рис. 7, представляет собой объем жидкости, который насос может вытеснить при числе оборотов в минуту.

По мере увеличения числа оборотов поток насоса увеличивается с 0 галлонов в минуту или (галлонов в минуту) при 0 оборотах в минуту до примерно 130 галлонов в минуту при 500 оборотах в минуту. Помните, что некоторые калькуляторы кривых производительности могут включать такие единицы измерения, как литры в минуту (л/мин), поэтому при использовании калькуляторов проверяйте единицы расчета.

Рис. 7 . Кривая PD насоса показывает производительность насоса на горизонтальных линиях в единицах в минуту. В этом примере кривая показывает галлонов в минуту (GPM) и литров в минуту (LPM) в левом поле, а вертикальные линии указывают скорость насоса в оборотов в минуту (RPM) .
Рисунок 7

Важность вязкости при выборе насоса

Объемные насосы обеспечивают постоянную подачу жидкости при заданной скорости насоса. Однако при увеличении вязкости увеличивается сопротивление потоку, поэтому для поддержания потока в системе при более высокой вязкости насосам требуется большая мощность.

Низкая вязкость также влияет на производительность насоса в виде проскальзывания. Проскальзывание – это внутренняя рециркуляция жидкости с низкой вязкостью со стороны нагнетания насоса обратно на сторону всасывания насоса. Величина проскальзывания в насосе PD зависит от вязкости жидкости и давления нагнетания.

По мере увеличения давления нагнетания, сохраняя постоянную вязкость, больше жидкости просачивается со стороны нагнетания на сторону всасывания насоса, поэтому насос должен вращаться с более высокими оборотами для поддержания производительности.

На рис. 8 кривая объемного насоса показывает влияние вязкости на проскальзывание с коррекционной диаграммой. При изменении вязкости и давления поправка на проскальзывание указывает на то, что пропускная способность падает с максимума примерно 7 галлонов в минуту до минимума примерно 3,5 галлонов в минуту. Когда вязкость превышает 1000 сП, проскальзывание в жидкостных гигиенических насосах практически не происходит. Если проскальзывание не является фактором, используйте линию 0 PSI для определения расхода.

Поскольку насосы PD создают поток для перекачивания жидкостей с относительно высокой вязкостью, выбор насоса PD требует анализа трех основных факторов, влияющих на перекачку жидкости:

Динамическая вязкость жидкости , плотность и реакция на сдвиг .

Рис. 8. Поправка на проскальзывание учитывает изменения производительности насоса с учетом вязкости жидкости (сопротивления потоку) и давления нагнетания.
Рисунок 8
Динамическая вязкость

Динамическая вязкость является мерой сопротивления жидкости течению. Только на основании здравого смысла мы можем представить, что вода менее вязкая или устойчивая к течению, чем кукурузный сироп, поэтому кукурузный сироп имеет более высокую вязкость, чем вода. Мы измеряем внутреннее сопротивление потоку как абсолютную вязкость (также называемую динамической вязкостью). Очень важно, чтобы используемая вязкость соответствовала условиям сдвига «в насосе» или скорости сдвига 800 или более с-1 (инверсные секунды). Как показывает следующее сравнение, различия в вязкости сильно различаются в зависимости от жидкости:

  • При комнатной температуре абсолютная вязкость воды составляет около 1 сП
  • При комнатной температуре абсолютная вязкость кукурузного сиропа составляет около 5000 сП
Плотность вес жидкости по объему.
Вода менее плотная, чем, например, кукурузный сироп, поэтому, если вы поместите равные объемы воды и кукурузного сиропа рядом, кукурузный сироп будет весить больше, чем вода. Кроме того, из-за различий в плотности воды и кукурузного сиропа вода будет плавать поверх кукурузного сиропа, если его смешать. Следующее сравнение показывает разницу в плотности воды и кукурузного сиропа в килограммах на кубический метр:

  • Плотность воды: 1 г/см³ или 997 кг/м³
  • Плотность кукурузного сиропа: 1,38 г/см³ или 1380 кг/м³
Сдвиг

Чувствительные к сдвигу жидкости при изменении вязкости, 3 например, когда они ударяются о рабочее колесо внутри насоса. Некоторые жидкости становятся менее вязкими при увеличении силы (так называемое разжижение при сдвиге), в то время как другие становятся более вязкими при увеличении силы (так называемое загущение при сдвиге).

Для сравнения, ньютоновские жидкости, такие как вода, не изменяют своей вязкости независимо от усилия сдвига.

Однако вязкость чувствительных к сдвигу веществ в технологической линии меняется. Обычные вещества, чувствительные к сдвигу, включают кетчуп, шампуни и полимеры; по мере увеличения сдвига во время обработки кетчупа вязкость кетчупа снижается.

Продолжая пример обработки кетчупа, в следующем разделе обсуждается дополнительная важная информация о характеристиках насоса: рабочая мощность л.с. (WHP), мощность вязкости (VHP) и требуемый чистый положительный напор на всасывании (NPSHr).

Тормозная мощность

При выборе размера насоса PD важно выбрать правильную тормозную мощность. Тормозная мощность (BHP) — это мощность, необходимая насосу для преодоления давления нагнетания. BHP определяется путем сложения рабочей мощности (WHP) и вязкостной мощности (VHP).

BHP = WHP + VHP

Чтобы правильно проанализировать тормозную мощность, необходимо сравнить рабочую мощность с вязкостной мощностью.

Рабочая мощность

Рабочая мощность (WHP) — это мощность, необходимая выбранному насосу PD для достижения желаемого расхода с учетом ожидаемого падения давления на компонентах системы. Такие компоненты, как клапаны, теплообменники и фильтры/фильтры, и это лишь некоторые из них. WHP иногда называют внешней мощностью.

Чтобы определить WHP, найдите пересечение ожидаемого перепада давления (PSI) и числа оборотов в минуту, как показано на рис. 9. Вспомните, что требуемое число оборотов в минуту было результатом требуемого расхода в сочетании с поправкой на проскальзывание, если таковая имеется.

Рис. 9. Рабочая мощность (WHP) — мощность, необходимая для работы объемного насоса. По мере увеличения давления со стороны нагнетания насоса для работы насоса требуется дополнительная мощность. Например, при 300 об/мин и 150 PSI насосу требуется 6,7 рабочей мощности.
Рисунок 9
Вязкость, мощность в л.с.

Поддержание производительности насоса при различной вязкости требует соблюдения минимальной мощности, как показано на рис. 10. Существует определенная минимальная мощность, необходимая для обеспечения вращения вращающихся частей насоса, с учетом вязкости жидкости в насосе. . VHP иногда называют внутренней мощностью л.с.

Чтобы получить требуемую мощность для приложения, добавьте WHP и VHP.

  • WHP = 6,7
  • VHP = 4
  • Требуемая мощность 6,7 + 4 = 10,7
Рис. внутри насоса. При 300 об/мин и вязкости 500 сП насосу требуется 4 VHP.
Рисунок 10

ПОСЛЕДУЮЩИЕ ШАГИ

Как переработчику вам нужен насос, который безопасно и эффективно перекачивает продукт из точки А в точку Б. Но при таком большом разнообразии насосов, двигателей и областей применения выбрать правильный насос может быть сложно.

Вот где мы входим!

CSI известна как эксперт в области спецификации, определения размеров и поставки насосной техники для гигиеничных промышленных процессов. Поговорите с нашей опытной командой насосов сегодня и будьте уверены в своей следующей покупке насоса!

Связаться с CSI

О CSI

Компания Central States Industrial Equipment (CSI) является лидером в области дистрибьюции гигиенических труб, клапанов, фитингов, насосов, теплообменников и расходных материалов для техобслуживания для гигиеничных промышленных процессоров с четырьмя распределительными предприятиями в США.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *