Подбор конденсатора: РАСЧЕТ ЕМКОСТИ КОНДЕНСАТОРОВ ДЛЯ ТРЕХФАЗНОГО И ОДНОФАЗНОГО ДВИГАТЕЛЯ ПРИ ПОДКЛЮЧЕНИИ В ОДНОФАЗНУЮ СЕТЬ

Подбор конденсаторов НСК

Конденсаторы воздушного охлаждения BC

  • ПРОВЕРКА
  • ПОДБОР
Производительность, кВт
Уровень звукового давления, дБ(А)20…60
2BCHBCMBCLBCR150163250263363463ABCDY
Введите наименование:
Расстояние от источника шума, м
Тип вентиляторов
Хладагент R507AR404AR407CR134AR22
Температура воздуха,°С15…50
Температура конденсации,°С23…80
Температурный напор (ΔТ), К8…20
Высота над уровнем моря, м
0. ..3000
0600800100012001400160018002000
Перегрев (ΔТh), К25…55
Опоры для гор. установки НетДа
Переохлаждение, K

Наименование
модели
Производ-ть,
кВт
Отклонение,
%
Ур.зв.давления,
дБ(А)
Энерго-ние,
кВт
Стоимость,
евро с НДС

Производительность, кВт
Уровень звукового давления, дБ(А)
Площадь поверхности, м2
Внутренний объем, л
Тип вентиляторов
Расход воздуха, м3
Количество вентиляторов
Частота вращения вентиляторов, об. /мин.
Электропитание
Подключение (D, Y)
Энергопотребление, кВт
Стоимость с НДС, евро

Подбор конденсаторов | АО «‎Элеконд»

Ведущий производитель конденсаторов в России

г. Сарапул, ул. Калинина д.3

Смотреть на карте

[email protected]

Отдел маркетинга

+7 (34147) 2-99-89

Отдел маркетинга

+7 (34147) 2-99-77

Отдел сбыта

Подбор конденсаторов

Расширенный подбор

Расширенный подбор

Задать параметры конденсаторов

{{/back}} {{#reset}}

Сброс параметров

{{/reset}}

Найдено серий конденсаторов: {{total}}

{{#list}}

{{name_txt}}

Uном = {{u}}

Сном = {{c}}

характеристики {{name_txt}}

подбор параметров {{name_txt}}

{{/list}}

Выберите параметры

Тип изделия

Напряжение, В

Ёмкость, мкФ

Тип выводов

Диаметр, мм

Длина, мм

Высота, мм

Ширина, мм

Расширенный подбор

Участник проекта
ПРОИЗВОДИТЕЛЬНОСТЬ. РФ

Член промышленно-экономической
Ассоциации Удмуртии «Развитие»

Политика конфиденциальности

АО «Элеконд»‎

  • О компании
  • Дипломы и сертификаты
  • Пресс-релиз
  • Закупки
  • Новости
  • Вакансии

Продукция

Конденсаторы

–  Алюминиевые оксидно-электролитические

–  Танталовые объёмно-пористые

–  Танталовые оксидно-полупроводниковые

–  Ниобиевые оксидно-полупроводниковые

Суперконденсаторы

Модули суперконденсаторые

Фольга алюминиевая

–  Анодная низковольтная

–  Анодная высоковольтная

–  Катодная

Автомобильные компоненты

–  Свечи зажигания

–  Резинотехнические изделия

–  Автомобильная светотехника

Электротехническая продукция

–  Многофункциональное устройство (МФУ)

Полимерная упаковка

Контакты

Отдел маркетинга

+7 (34147) 2-99-89

elecond-market@elcudm. ru

Приёмная

+7 (34147) 4-27-53

[email protected]

«Линия доверия»

[email protected]

Компания

  • О компании

Качество

  • Сертификаты качества
  • Политика в области качества

Раскрытие (опубликование) информации

  • Сведения для акционеров

Бухгалтерская (финансовая) отчетность

  • Годовая
  • Финансовая
  • Квартальная
  • Раскрытие информации сетевой организацией (услуги по передаче электроэнергии)
  • Результаты проведения специальной оценки условий труда
  • Охрана окружающей среды
  • Политика противодействия коррупции
  • Политика в области охраны труда
  • Политика в отношении обработки персональных данных
  • Социальная ответственность

Дипломы и сертификаты

  • Дипломы участия в выставках
  • Сертификаты качества
  • Пресс-релиз
  • Закупки

Патенты

  • Товарные знаки
  • Производство конденсаторов
  • Защита окружающей среды
  • Вакансии
  • Газета “Заводская новь”

Продукция

Конденсаторы

Алюминиевые оксидно-электролитические

Танталовые объёмно-пористые

Танталовые оксидно-полупроводниковые

Ниобиевые оксидно-полупроводниковые

  • Условное обозначение конденсаторов
  • Рекомендации по применению танталовых чип-конденсаторов

Суперконденсаторы

Малогабаритные

Мощностные

Модули суперконденсаторные

Малогабаритные

Мощностные

Алюминиевая фольга

  • Анодная низковольтная
  • Анодная Высоковольтная
  • Катодная
  • Основные параметры
  • Тестирование фольги
  • Упаковка фольги
  • Условное обозначение

Автомобильные компоненты

  • Свечи зажигания искровые
  • Резинотехнические изделия
  • Автомобильная светотехника

Электротехническая продукция

  • Многофункциональное устройство (МФУ)
  • Полимерная упаковка

Услуги

  • Лабораторные измерения

Загрузки

  • PDF-каталог «Конденсаторы» (62. 50 mb)
  • PDF-каталог «Суперконденсаторы и модули» (1.40 mb)
  • Буклет «АО «Элеконд»

Контакты

  • Реализация продукции
  • Краткий телефонный справочник
  • Дилеры
  • Должностные лица
  • Реквизиты
  • Схема проезда

Получить цены на Подбор конденсаторов

Для получения цен, пожалуйста, заполните поля ниже.

Имя

Email

Телефон

Организация

Политика сайта

Я ознакомлен(а) с политикой сайта и согласен(а) на обработку персональных данных.

Получить счет на Подбор конденсаторов

Имя

Email

Телефон

Организация

Файл

Политика сайта

Я ознакомлен(а) с политикой сайта и согласен(а) на обработку персональных данных.

Задать вопрос специалисту

Имя

Email

Телефон

Организация

Сообщение

Политика сайта

Я ознакомлен(а) с политикой сайта и согласен(а) на обработку персональных данных.

Задать вопрос специалисту

Имя

Email

Телефон

Организация

Сообщение

Политика сайта

Я ознакомлен(а) с политикой сайта и согласен(а) на обработку персональных данных.

Базовая электроника – выбор конденсатора, номиналы конденсаторов

В предыдущей статье мы рассмотрели различные типы конденсаторов. Теперь давайте обсудим выбор конденсатора для данного приложения. Как правило, выбор конденсатора не является сложной задачей, если только у вас нет конкретных требований к схеме. Инженеры часто имеют номинальную емкость, рассчитанную для схемы, или должны использовать емкость с ИС или активным компонентом. Большинство ИС (например, 555, ИС микроконтроллеров и т. д.) имеют рекомендуемые значения емкости, указанные в их спецификациях для различных приложений.

Если нет особых требований к схеме, и если требуемая емкость указана в пикофарадах, можно использовать керамический конденсатор. Если требуемая емкость указана в нанофарадах, можно слепо доверять конденсаторам MLC (Multilayer Ceramic). Если необходимая емкость измеряется в микрофарадах, обычно выбирают конденсаторы с алюминиевым электролитом. Для более широкого диапазона температур и надежности можно использовать стеклянные и слюдяные конденсаторы.

Помимо номинальной емкости, вторым наиболее важным параметром, который необходимо обязательно учитывать, является номинальное напряжение. Номинальное напряжение конденсатора всегда должно как минимум в 1,5 или 2 раза превышать максимальное напряжение, которое может возникнуть в цепи. Конденсаторы не так надежны, как резисторы. Они легко повреждаются, когда приложенное напряжение приближается к максимальному значению.

Если цепь имеет особые требования, необходимо учитывать множество других факторов. Различные типы конденсаторов предпочтительны для конкретных цепей и приложений. Предпочтительные области применения различных типов конденсаторов приведены в следующей таблице:

Помимо пригодности различных конденсаторов для конкретных применений, другие важные факторы, которые, возможно, необходимо учитывать, включают следующее:

  • Допуск проверить, зависит ли работа схемы от прецизионной емкости. Конденсатор с наименьшим допуском следует использовать, если требуется узкая емкость. Емкость конденсатора никогда не выйдет за пределы его номинального допуска, если только он не будет поврежден из-за чрезмерного напряжения или условий окружающей среды.
  • Диапазон рабочих температур и температурный коэффициент — Если цепь чувствительна к температуре или емкость не должна изменяться сверх определенного предела в диапазоне температур, необходимо учитывать диапазон рабочих температур и температурный коэффициент. Степень изменения емкости следует рассчитывать на основе температурного коэффициента и температурной кривой. С температурной чувствительностью схемы также можно справиться, используя вместе конденсаторы с положительным и отрицательным температурными коэффициентами. В этом случае необходимо рассчитать максимальное изменение емкости в диапазоне температур.
  • Зависимость от частоты — Емкость многих конденсаторов зависит от частоты и может не подходить для определенного диапазона частот. В зависимости от схемы следует учитывать зависимость емкости от частоты.
  • Эксплуатационные потери – Эксплуатационные потери могут быть важным фактором, когда в цепях требуется энергоэффективность (например, в цепях с батарейным питанием). Для таких цепей следует тщательно выбирать конденсаторы с учетом их коэффициента рассеяния (типичные потери энергии в процентах), диэлектрической абсорбции, тока утечки или сопротивления изоляции, а также собственной индуктивности. Все эти потери должны быть сведены к минимуму, чтобы повысить эффективность и срок службы батареи схемы.
  • Пульсирующий ток и Импульсное напряжение — это очень важные проверки. Цепь должна быть рассчитана на пульсирующие напряжения и максимальный пульсирующий ток. Следует выбрать конденсатор с соответствующим током пульсаций и номинальным рабочим напряжением.
  • Полярность и обратное напряжение – Если в цепи используется электролитический конденсатор, он должен быть подключен в правильном направлении. Его номинальное обратное напряжение должно быть как минимум в два раза больше возможного обратного напряжения в этой ветви цепи.

Стандартные номиналы конденсаторов
Конденсаторы также доступны со стандартными номиналами в соответствии с серией E, как и резисторы. Чтобы узнать больше о стандартных значениях резисторов, конденсаторов, катушек индуктивности и стабилитронов, ознакомьтесь со следующей статьей «Базовая электроника 08 — показания, допуски и номинальная мощность резисторов».

Стандартных значений для конденсаторов меньше, чем для резисторов. Как правило, конденсаторы доступны только в серии E-6 со стандартными номиналами (10, 15, 22, 33, 47 и 68), за которыми следует определенное количество нулей.

Последовательная и параллельная комбинация конденсаторов
В стандартной серии E может быть невозможно получить точное значение желаемой емкости. В таких случаях можно использовать последовательную или параллельную комбинацию конденсаторов, чтобы получить желаемую емкость в цепи. При последовательном соединении конденсаторов эквивалентная емкость определяется следующим уравнением:

1/C серии = 1/C 1 + 1/C 2 + 1/C 3 + . . . .

При параллельном соединении конденсаторов эквивалентная емкость определяется как

C Параллельное = C 1 + C 2 + C 3 + . . . .

Уравнение для последовательного соединения емкостей получено из того факта, что сумма падений напряжения на всех последовательно соединенных емкостях будет равна приложенному напряжению, а ток через них останется одним и тем же. Уравнение для последовательной комбинации емкостей получается следующим образом:

В Итого = В С1 + В С2 + В С3 + . . . .
1/C Серия * ∫i.dt = 1/C 1 * ∫i.dt + 1/C 2 * ∫i.dt + 1/C 3 * ∫i.dt + . . .
1/C серия = 1/C 1 + 1/C 2 + 1/C 3 + . . . .

Уравнение для параллельной комбинации емкостей получено из того факта, что сумма токов через все параллельно соединенные емкости будет равна общему току, а напряжение на них останется одним и тем же. Уравнение для параллельной комбинации емкостей получается следующим образом:

Я = i1 + i2 + i3 + . . . .
C Параллельный * dV/dt = C 1 * dV/dt + C 2 * dV/dt + C 3 * dV/dt + . . . . .
С Параллельный = С 1 + С 2 + С 3 + . . . .

Считывание пакетов резисторов
В прошлом для обозначения значения, допуска и рабочего напряжения конденсаторов использовались цветовые коды и различные типы числовых кодов. Сегодня емкость, допуск и рабочее напряжение напечатаны на корпусе конденсаторов или указаны стандартными кодами BS1852 или BS EN 60062. В этих системах кодирования значение, допуск и рабочее напряжение конденсатора обозначаются двух- или трехзначными цифровыми кодами, за которыми следует буква. Значение емкости всегда указывается в пикофарадах. Если код двузначный, то это прямое значение емкости в пикофарадах, а если код трехзначный, то первые две цифры обозначают число (серия Е-6), а третья цифра обозначает множитель. давая окончательное значение емкости в пикофарадах. Для обозначения допуска конденсатора может использоваться буква. Допуски, обозначенные разными буквами, приведены в следующей таблице:

Например, если на конденсаторе напечатано 47F, это означает, что его значение емкости составляет 47 pF, а его допуск составляет один процент. Точно так же, если на конденсаторе напечатано 472 Дж, это означает, что его значение емкости составляет 4700 пФ или 4,7 нФ, а его допуск составляет пять процентов. Буквенные коды общедоступных емкостей перечислены в следующей таблице:

Керамические конденсаторы имеют дополнительные коды, состоящие из цифры между двумя буквами, для обозначения диапазона температур и температурного коэффициента. Буквы и цифры в этих кодах имеют следующие обозначения:

Номинальное напряжение обозначается числом, выражающим рабочее напряжение в вольтах. Например, цифра «50» указывает на рабочее напряжение 50 В.

В следующей статье мы поговорим о суперконденсаторах.


Рубрики: Учебные пособия

 




Как правильно выбрать конденсаторы

Конденсатор есть везде. В источниках питания, светодиодном освещении, в коммерческой электронике, в обработке сигналов и т. д. вам нужен конденсатор. Какова его конкретная роль в принципе? Конденсатор выполняет несколько функций. Это устранит проблемы с шумом в цепи, работая как фильтр. Это основная часть низкочастотных, высокочастотных, полосовых, полосовых заградительных фильтров и так далее. Также очень важно при выпрямлении получить прямолинейное напряжение постоянного тока. В источниках питания конденсатор действует как устройство накопления энергии. Много приложений для этой простой электронной части. Я больше не буду обсуждать здесь, из чего состоят конденсаторы, а просто сосредоточусь на том, как выбирать конденсаторы.

Как выбрать конденсаторы – важные факторы

Существуют важные параметры, которые необходимо учитывать при выборе конденсатора для вашей схемы. Либо хочешь на чип, либо на сквозной. Либо пленочный, либо электролитический и так далее. Давайте обсудим все соображения здесь.

1. Как выбрать конденсатор

Емкость

Емкость – это электрическое свойство конденсатора. Таким образом, это соображение номер один при выборе конденсатора. Какая емкость вам нужна? Ну, это зависит от вашего приложения. Если вы собираетесь фильтровать на выходе выпрямленное напряжение, то вам наверняка понадобится большая емкость. Однако, если конденсатор предназначен только для фильтрации шума сигнала в слабой сигнальной цепи, тогда подойдет небольшая емкость от пико до нанофарад. Итак, знайте свое приложение.

Предположим, приложение действительно предназначено для фильтрации выпрямленного напряжения, тогда вам нужна большая емкость в сотни микрофарад. Вы можете делать пробы и ошибки, пока напряжение пульсаций не будет соответствовать требованиям. Или вы можете сделать расчеты для начала.

Для мостового и двухполупериодного выпрямителя требуемая емкость может быть рассчитана, как показано ниже.

Cmin = ток нагрузки / (напряжение пульсаций x частота)

Где;

Cmin – минимальная необходимая емкость

Ток нагрузки — это просто нагрузка выпрямителя

Напряжение пульсаций — это размах колебаний напряжения при измерении на выходе выпрямителя

Частота — для мостового и двухполупериодного выпрямителя это удвоенная частота сети.

Пример:

Ниже схема представляет собой мостовой выпрямитель с входным напряжением 120 В (среднеквадратичное значение) при частоте 60 Гц, током нагрузки 2 А и требуемым напряжением пульсаций 43 В от пика до пика. Мы оценим, какой должна быть минимальная емкость, необходимая для C1.

Цепь мостового выпрямителя

Cmin = Ток нагрузки / (Напряжение пульсаций X Частота)

Cmin = 2A / (43 В X 2 X 60 Гц) = 387 мкФ

На основе приведенного ниже моделирования размах напряжения пульсаций при использовании 387 мкФ равен 35,5 В. Оно близко к 43В. Поскольку результатом расчета является минимальная емкость, при выборе емкости с более высоким значением напряжение пульсаций еще больше уменьшится.

2.

Допуск – также фактор при выборе конденсатора

Помимо емкости, при выборе конденсатора следует учитывать допуск. Если ваше приложение очень критично, рассмотрите очень маленький допуск. Конденсаторы поставляются с несколькими вариантами допуска, такими как 5%, 10% и 20%. Это ваш звонок, что есть что. Более высокий допуск в большинстве случаев дешевле, чем деталь с более низким допуском. Вы всегда можете использовать часть с допуском 20% и просто добавить больше запаса в свой дизайн.

3. Как выбрать конденсаторы

Номинальное напряжение

Конденсатор повреждается при перенапряжении. Таким образом, при выборе конденсатора необходимо учитывать напряжение. Вам нужно знать уровень напряжения, где конденсатор должен быть установлен. Конденсатор в большинстве случаев устанавливается параллельно цепи, устройству или подсхеме. Хотя случаев последовательной установки конденсатора немного. В своих конструкциях я не допускаю перенапряжения более 75% . Это означает, что если фактическое напряжение цепи составляет 10 В, минимальное напряжение конденсатора, которое я выберу, равно 13,33 В (10 В/0,75). Однако такого напряжения нет. Итак, я перейду на следующий более высокий уровень, который составляет 16 В. Можно ли использовать 20В, 25В или даже выше? Ответ положительный. Это зависит от вашего бюджета, потому что чем выше напряжение, тем дороже конденсатор. Это также будет зависеть от требований к физическому размеру. Физический размер конденсатора в большинстве случаев прямо пропорционален номинальному напряжению.

Например, в приведенном выше образце схемы максимальный уровень напряжения на конденсаторе соответствует пиковому уровню 120 В (среднеквадратичное значение), которое составляет около 170 В (1,41 X 120 В). Итак, номинальное напряжение конденсатора должно быть 226,67 В (170/0,75). И я выберу стандартное значение, близкое к этому.

4. Выбор конденсатора

Номинальный ток – Знайте пульсирующий ток

Если вы не увлекаетесь электроникой или не работаете в полевых условиях в течение некоторого времени, вы можете не знать термин пульсирующий ток. Это термин, обозначающий ток, который будет проходить через конденсатор. В идеальном случае на конденсатор не будет протекать ток, когда он установлен на линии постоянного напряжения. Однако, если фактическое напряжение на конденсаторе не является чистым постоянным током, например, есть небольшие колебания напряжения, это приведет к пульсациям тока. Для схемы малой мощности и изменения напряжения очень незначительны, вам не следует беспокоиться об этом номинальном токе пульсации.

Однако для конденсаторов, установленных для фильтрации пульсирующего постоянного тока от выпрямителя, пульсирующий ток имеет решающее значение. Чем выше нагрузка, тем выше ток пульсаций. Итак, как выбрать конденсаторы для этого приложения? Для выпрямления в большинстве случаев требуется большая емкость, чтобы получить напряжение, близкое к прямолинейному. Таким образом, первым вариантом является рассмотрение электролитического конденсатора. В некоторых приложениях, где ток пульсаций очень высок, электролитический конденсатор больше не будет работать, так как его ток пульсаций меньше. В этом случае выбираются пленочные конденсаторы, так как они имеют очень высокий номинальный пульсирующий ток. Недостатком, однако, является то, что емкость ограничена несколькими микрофарадами, поэтому нужно больше их параллельно. Учитывая приведенную ниже схему выпрямителя, конденсатор фильтра 330 мкФ и нагрузку 2 А от источника переменного тока 120 В (среднеквадратичное значение) при частоте 60 Гц. Это то же самое, что и приведенная выше схема, но перерисованная и смоделированная в LTspice. LTspice — это бесплатный инструмент моделирования цепей от Linear Technology. Если вы хотите узнать, как выполнять моделирование в LTspice, прочитайте статью Учебники по моделированию цепей LTSpice для начинающих.

Смоделированный пульсирующий ток равен 3,4592A .

Двухполупериодный выпрямитель

Если вы не знакомы с моделированием, вы можете оценить фактические пульсации тока, используя приведенное ниже уравнение.

Пульсация = C X dV X Частота

Где;

Iripple – это фактический пульсирующий ток, протекающий через конденсатор

C – емкость в цепи

dV – это изменение входного напряжения от нуля до максимума

Frequency – это частота переменного напряжения (не частота выпрямленного сигнала)

Выполним расчет приведенных выше данных:

Пульсация = C X dV X Частота

Пульсация = 330 мкФ X (170В-0В) X 60Гц = 3. 366A

900 02 Расчетное значение очень близко к симуляции результат. Тогда я рассмотрю здесь максимальное текущее напряжение 75%. Итак, выбранный конденсатор должен иметь номинал пульсаций тока не менее 4,5А (3,366А/0,75).

5.

Учитывайте рабочую температуру при выборе конденсаторов

Факторы окружающей среды также необходимо учитывать при выборе конденсаторов. Если ваш продукт будет подвергаться воздействию температуры окружающей среды 100°C, не используйте конденсатор, рассчитанный только на 85°C. Аналогичным образом, если минимальная температура окружающей среды составляет -30°C, не используйте конденсатор, который может выдерживать температуру только -20°C.

Эта спецификация кажется очень простой. Однако, если конденсатор подвергается воздействию очень высокого пульсирующего тока, произойдет внутренний нагрев, что приведет к повышению температуры выше температуры окружающей среды. Значит, нужен больший запас по рабочей температуре. Например, максимальная температура окружающей среды, в которой будет устанавливаться изделие, составляет 60°C. Не просто выберите конденсатор, который может выдержать 60’C. Выберите, возможно, температурный рейтинг 105’C. Это даст достаточный запас за счет внутреннего нагрева.

6.

Как выбрать конденсаторы Материал диэлектрика

В чип-резисторах вы столкнетесь с этой опцией при просмотре онлайн-распространителей, таких как Mouser и Digikey. Что означает этот параметр? Это диэлектрический материал, используемый при изготовлении конденсатора. Я не могу подробно останавливаться на физике конструкции конденсатора, но в своих проектах я всегда рассматриваю диэлектрик X7R, NP0 или C0G. Обычно они имеют более высокий температурный диапазон. Ниже приведены несколько образцов X7R, NP0 или C0G в сравнении только с X5R.

X7R, NP0/C0G Диэлектрический материал X5R Диэлектрический материал

7. Как выбрать конденсаторы

с учетом срока службы Ожидаемый срок службы

Срок службы конденсатора или ожидаемый срок службы — это период времени, в течение которого конденсатор будет оставаться работоспособным в соответствии с проектом. Это критично для электролитических конденсаторов. Для керамических конденсаторов это не проблема, и, вероятно, не стоит обращать на это внимание при выборе конденсаторов для небольших сигнальных цепей. Для него все еще существует предел жизни, но его более чем достаточно, чтобы выдержать весь жизненный цикл продукта. В отличие от электролитических конденсаторов, если они не будут должным образом оценены, они выйдут из строя до окончания жизненного цикла продукта, а этого не должно происходить. Пульсации тока сокращают срок службы конденсатора. Так что лучше управляй. В таблицах данных или от поставщиков есть справочные расчеты срока службы конденсатора. Это простые уравнения, которые вы можете использовать при выборе конденсатора в отношении ожидаемого срока службы. Некоторые также дают график для облегчения понимания. Ниже образец расчета и графика взяты из таблицы данных KEMET. KEMET является одним из ведущих производителей конденсаторов.

Расчет ожидаемого срока службы конденсатора

8.

Физические размеры и способ монтажа — факторы, влияющие на выбор конденсатора

Последнее, но не менее важное, о чем следует подумать, — это физические размеры, а также способ монтажа. Иногда выбор конденсатора диктуется доступным пространством. Чип-конденсаторы имеют небольшие размеры, но с ограниченным значением емкости. С другой стороны, электролитические конденсаторы имеют большую емкость, но они громоздки. Вы собираетесь использовать поверхностный монтаж или деталь со сквозным отверстием? Ну, это зависит от вас. Оцените свои требования к пространству, прежде чем заходить далеко в других параметрах.

Образец технических характеристик конденсатора

Ниже приведены номинальные характеристики конденсатора, которые я взял со страницы электроники Mouser. Он имеет емкость, напряжение, допуск, пульсирующий ток, рабочую температуру, физические размеры, ориентацию монтажа и срок службы. Но обратите внимание, указанный срок службы — это только базовый срок службы или срок службы под нагрузкой при максимально допустимой рабочей температуре.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *