- Звезда треугольник — особенности соединений в установках трехфазного тока. Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры
- Почему сгорит электродвигатель при неправильном соединении
- Сравнения схем подключения между собой
- Основные различия между схемами
- Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)
- Подключение двигателя «звездой» и «треугольником» в сетях с разным номинальным напряжением
- Оптимальный выбор подключения электродвигателя
- Особенности работы электромотора при подключении разными способами
- Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную
- Краткая сравнительная таблица
- Преимущества и недостатки «треугольника»
- Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник»
- Практика — как выбрать схему для конкретного случая
- Определение типа способа соединения
- Звезда треугольник — особенности соединений в установках трехфазного тока. Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры
- Почему сгорит электродвигатель при неправильном соединении
- Сравнения схем подключения между собой
- Основные различия между схемами
- Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)
- Подключение двигателя «звездой» и «треугольником» в сетях с разным номинальным напряжением
- Оптимальный выбор подключения электродвигателя
- Особенности работы электромотора при подключении разными способами
- Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную
- Краткая сравнительная таблица
- Преимущества и недостатки «треугольника»
- Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник»
- Практика — как выбрать схему для конкретного случая
- Определение типа способа соединения
- DSTAR — Перенапряжение группы воздушных линий «звезда-треугольник»
- Содержание
- Что такое трехфазный трансформатор?
- Что такое трехфазная электрическая система?
- Значение закона индукции Фарадея
- Различные типы трехфазных трансформаторов
- Конструкция трехфазного трансформатора
- Конфигурации с трехфазным трансформатором
- Характеристики напряжения и тока
- Схемы обмоток трехфазного трансформатора
- Конфигурация «звезда-звезда» (Y-Y)
- Конфигурация треугольник-треугольник (Δ-Δ)
- Конфигурация звезда-треугольник или звезда-треугольник (Y-Δ)
- Конфигурация треугольник-звезда или треугольник-звезда (Δ-Y)
- Соединение «открытый треугольник» (V-V)
- Соединение Scott-T (T-T)
- Соединение треугольником высокой ветви
- Применение трехфазных трансформаторов
- Часто задаваемые вопросы
Звезда треугольник — особенности соединений в установках трехфазного тока. Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры
Так как при соединении треугольником начало одной фазной обмотки соединяют с концом следующей, то напряжение обмотки +312 Вольт распределится между обмоткой с напряжением -156 Вольт и выводом. В результате на выводе обмотки с напряжением +312 Вольт будет +156 Вольт, а на выводе обмотки с напряжением -156 Вольт будет 0 Вольт. У нас остается третья обмотка с напряжением -156 Вольт, и на выводе у нее так и останется -156 Вольт. В результате получаем напряжения на выходе в рассмотренный нами момент +156, -156, 0 Вольт (а было +312, -156, -156 Вольт).
Получившееся линейное напряжение +156-(-156) = +312 Вольт (это амплитудное значение). После перевода в действующее значение получим 220 Вольт. Почему не рассматривается 0 Вольт? Нужно понимать что частота 50 Герц ни куда не пропала, и там где ноль, через мгновение будет +156, еще через мгновение -156. И такое чередование будет постоянным. Но вернемся к рассматриваемому моменту времени. С падением линейного напряжения с 380 до 220 Вольт разобрались. Теперь объясним, почему произошло увеличение силы тока. На самом деле все просто. Уменьшив напряжение для передачи первоначальной мощности нам нужно пропорционально увеличить силу тока.
При переходе с треугольника на звезду происходит обратная трансформация. Чтобы это увидеть на схеме, нужно найти напряжения обмоток на втором трансформаторе, подключенном по схеме треугольник звезда. Посчитав разности потенциалов начал и концов обмоток мы вернемся к изначальным +312, -156, -156 Вольт.
Для того чтобы подтвердить наши расчеты и наглядно увидеть сдвиг фаз вернемся к программе Multisim и подключим к фазам осциллограф.
К выводу A осциллографа xsc1 подключена фаза, идущая от генератора с обмотками по схеме звезда. К остальным трем выводам данного осциллографа подключены фазы после трансформации звезда треугольник. Как видно после трансформации синусоида фазы сместилась на 30°. И если подвести курсор к амплитудному значению ≈ +310 Вольт канала A, то на остальных каналах, относящихся к фазам после трансформации будет приблизительно +155, -155 и 0 Вольт. То есть то же, что мы просчитывали ранее, показал осциллограф.
Для анализа обратной трансформации к выводу A осциллографа xsc2 мы подключили ту же фазу от генератора, а остальные выводы соединили с фазами после трансформатора со схемой треугольник звезда. В результате пропал сдвиг и синусоиды фаз вернули свои амплитуды 312 Вольт. Правда если обратите внимание синусоиды фаз после трансформации отразились зеркально по отношению к синусоидам фаз после генератора. Для того, чтобы отразить обратно, достаточно поменять местами выводы обмоток по схеме звезда.
Как видно применяя различные комбинации «звезды» и «треугольника» с одинаковыми индуктивностями первичных и вторичных обмоток можно от одного напряжения переходить к другому. А для того, чтобы все это наглядно увидеть, достаточно воспользоваться программой для моделирования цифровых и аналоговых электронных схем. В нашем случае моделирование производилось в среде программы Multisim.
Почему сгорит электродвигатель при неправильном соединении
Сейчас я вкратце расскажу, почему электродвигатель, у которого обмотки на 380/660 треугольник/звезда, нельзя подключать звездой на 380 вольт.
Давайте представим, что в данный момент у нас линейное напряжение равно 380 вольт.
Что такое линейное напряжение, а фазное? Не знаете? Сейчас расскажу!
Линейное напряжение – это напряжение между линейными проводами (фазами), а фазное между линейным проводом и нейтральным.
Дело в том, что при соединении обмоток треугольником, на каждую обмотку приходится линейное напряжение 380 вольт,
а при соединении звездой фазное — 220 вольт.
В итоге нам надо поддерживать требуемую мощность на валу двигателя, а напряжение упало с 380 вольт до 220 вольт (переключили обмотки с треугольника на звезду), что же делать? Ток всё сделает за нас. Он начнёт расти.
Вот пример:
Это формула для однофазной сети, но для понимания сути пойдёт.
P=UI
Где, P- мощность, U-напряжение, I-ток.
Подставим в нашу формулу выдуманные значения и получим следующее: 440=220*2, а теперь уменьшим напряжение в два раза, 440=110*4. Увидели? Напряжение уменьшили в два раза, но, чтобы поддержать заданную мощность у нас вырос ток в два раза.
Сравнения схем подключения между собой
Чтобы сравнить обе схемы между собой, надо посчитать электрическую мощность, развиваемую электродвигателем при том или ином включении. Для этого надо рассмотреть понятия линейного (Iлин) и фазного (Iфаз) токов. Фазным током называется ток, протекающий по обмотке фазы. Линейный ток протекает по проводнику, подключенному к выводу обмотки.
В сетях до 1000 вольт источником электричества является трансформатор , вторичная обмотка которого включена «звездой» (в противном случае невозможно организовать нулевой провод) или генератор, обмотки которого соединены по той же схеме.
Из рисунка видно, что при соединении «звездой» токи в проводниках и токи в обмотках электродвигателя равны. Ток в фазе определяется фазным напряжением:
где Z – сопротивление обмотки одной фазы, их можно принять равными. Можно записать, что
.
Для соединения «треугольником» токи другие – они определяются линейными напряжениями, приложенными к сопротивлению Z:
.
Следовательно, для данного случая
.
Теперь можно сравнить полную мощность (
), потребляемую электродвигателями с разной схемой.
- для соединения «звездой» полная мощность равна
- для соединения «треугольником» полная мощность равна
.
Таким образом, при включении «звездой» электродвигатель развивает мощность в три раза ниже, чем при соединении в треугольник. Это также ведет к другим положительным последствиям:
- уменьшаются пусковые токи;
- работа двигателя и его пуск становятся более плавными;
- электромотор хорошо справляется с кратковременными перегрузками;
- тепловой режим асинхронного двигателя становится более щадящим.
Обратная сторона медали – двигатель с обмотками «звездой» не может развивать максимальную мощность. В некоторых случаях вращающего момента может не хватить даже для раскрутки ротора.
Основные различия между схемами
Ключевая разница между двумя видами соединений заключается в том, что при применении одной питающей электросети появляется возможность переключать различные значения напряжения на подсоединяемом приборе. В основном используется соединение обмоточных деталей по типу «звезды».
Применение подключения по треугольному принципу необходимо при включении в трехфазную цепь механизмов большой мощности, имеющих максимальные пусковые токи.
К главным плюсам соединения обмоточных элементов по схеме «звезды» относят такие параметры данного типа коммутации:
- понижение мощностного параметра для увеличения надежности эксплуатируемого прибора;
- стойкость и стабильность системы при беспрерывной работе привода;
- вероятность плавного включения электромотора;
- отсутствие нагрева корпуса агрегатов.
Схема переключения «звезда треугольник» асинхронного двигателя
Обратите внимание! Некоторые приборы в электрике имеют в своем составе внутреннее подсоединение концов обмоток в «звезду». Такие агрегаты не предназначены для использования при других вариантах соединения обмоток, и их нельзя переключить в сети.
Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)
При соединении обмоток электродвигателя треугольником фазный ток в 1.73 раза меньше линейного.
Давайте приведу пример: На шильдике электродвигателя указан ток 30А при соединении обмоток треугольником и напряжением 380 вольт. 30 ампер — это линейный ток, значит, чтобы получить фазный, нам надо 30/1.73. В итоге фазный ток равен 17,3 Ампера. Т.е. номинальный ток для обмотки двигателя 17,3 Ампера.
А теперь мы переключим двигатель с треугольника на звезду, но нагрузка на валу двигателя остаётся таже самая.
При соединении электродвигателя звездой линейный ток будет равен фазному. Напряжение на обмотке уменьшится в 1.73 раза. Следовательно на обмотку будет подаваться уже не 380 вольт, а 220.
В результате по обмотке будет протекать не 17,3 А, а целых 30 Ампер. Почему?
Потому что ток будет компенсировать падение напряжения на обмотке, которое у нас упало в 1,73 раза. Значит ток вырастит в 1,73 раза. Двигатель греется и если отсутствует защита — сгорает. А двигатель стоит немалых денег, поэтому Вы должны знать как подключить асинхронный двигатель!
Еще один пример для понимания. Обратите внимание на следующий шильдик электродвигателя:
Электродвигатель треугольник/звезда: 220 вольт/380 вольт: 38,3/22,2 Ампера.
Соединяем двигатель треугольником и подаём напряжение 220 вольт. Ток (линейный) по шильдику равен 38,3 Ампер. Следовательно, фазный будет равен 38,3/1,73= 22,2 Ампер. Т.е мы определили, что фазный номинальный ток для обмотки = 22,2 Ампер. Поехали дальше…
А теперь соединяем обмотки электродвигателя звездой и подаём напряжение 380 Вольт. Ток будет равен 22,2 Ампер. В звезде линейный ток равен фазному току.
Вывод:
При треугольнике и питающем напряжении 220 вольт, фазный ток равен 22,2 Ампер.
При звезде и питающем напряжении 380 вольт, фазный ток равен 22,2 Ампер. Следовательно мощность у двигателя будет одинаковая при таких подключениях.
А, что если мы соединим этот двигатель звездой и подадим напряжение 220 вольт. На обмотку будет приходиться уже 127 Вольт. Поэтому ток будет компенсировать падение напряжение на обмотке в 1,73 раза и будет равен 38,3 Ампер. А обмотка у нас рассчитана на 22,2 Ампер. Двигатель сгорит.
Подключение двигателя «звездой» и «треугольником» в сетях с разным номинальным напряжением
В соответствии с номинальным питающим напряжением асинхронные трехфазные двигатели отечественного производства подразделены на две категории: для работы от сетей 220/127 В и 380/220 В. Двигатели, рассчитанные на работу от сети 220/127 В имеют небольшую мощность — на сегодняшний день их применение сильно ограничено.
Электромоторы, рассчитанные на номинальное напряжение 380/220 В распространены повсеместно. Независимо от номинального напряжения при установке мотора используется правило: более низкие значения напряжения используются при подключении в «треугольник», высокие – исключительно в соединениях статорных обмоток по схеме «звезда».
То есть, напряжение в 220 В подается на «треугольник», 380 В – на «звезду», в противном случае мотор быстро перегорит.
Основные технические характеристики агрегата, включая рекомендованную схему подключения и возможность ее изменения отображаются на бирке мотора и его техническом паспорте. Наличие метки вида Δ/Y указывает на возможность соединения обмоток и «звездой», и «треугольником». Чтобы минимизировать потери мощности, неизбежные при работе от однофазных бытовых сетей, мотор такого типа лучше подключать «треугольником».
Безопасность домашней электросети достигается установкой разных устройств защиты. Узнать всё об одном из таких приспособлений — УЗО, поможет полезная статья.
Знаком Y обозначают двигатели, где возможность подключения в «треугольник» не предусмотрена. В распределительной коробке таких моделей вместо 6 контактов находятся только три, соединение трех других выполнено под корпусом.
Подключение трехфазных асинхронных двигателей с номинальным питающим напряжением 220/127 В к стандартным однофазным сетям выполняют только по типу «звезды». Подключение агрегата, рассчитанного на низкое питающее напряжение в «треугольник» быстро приведет его в негодность.
Оптимальный выбор подключения электродвигателя
Преобразование «звезды» в «треугольник» в асинхронном электродвигателе, а также способность к ремонту обмоток электродвигателя, и сравнительно с другими двигателями невысокая стоимость в совокупности со стойкостью к механическим воздействиям сделали этот вид двигателей наиболее популярными. Основным параметром, который характеризует достоинство асинхронных двигателей, является простота в конструкции. При всех достоинствах этого типа электрических двигателей он имеет и отрицательные моменты при эксплуатации.
На практике трехфазные асинхронные электродвигатели к сети могут присоединяться по схеме «звезда» и «треугольник». Подключение «звездой» — это когда концы статорной обмотки обираются в одну точку, и напряжение сети 380 вольт подается на начало каждой из обмоток, схематично этот вид соединения обозначается знаком (Y).
Если в коммутирующей коробке подключения электродвигателя выбирается вариант «треугольник», надо статорные обмотки соединить последовательно:
- конец первой обмотки — с началом второй;
- подсоединение конца «второй» — с началом третьей;
- конец третьей — с началом первой.
Особенности работы электромотора при подключении разными способами
Подключение электродвигателя «треугольником» и «звездой» характеризуется определенным набором своих преимуществ и недостатков.
Соединение обмоток двигателя в «звезду» обеспечивает более мягкий запуск. При этом происходит значительная потеря мощности агрегата. По этой схеме также производится подключение всех электромоторов отечественного происхождения на 380В.
Подключение «треугольник» обеспечивает выходную мощность до 70% от номинальной, но пусковые токи при этом достигают значительных величин и двигатель может выйти из строя. Эта схема – единственно правильный вариант для подключения к российским электросетям импортных электромоторов европейского производства, рассчитанных на номинальное напряжение 400/690.
Функцию пуска для схем переключения «звезда»-«треугольник» используют только для двигателей с пометкой Δ/Y, в которых реализована возможность обоих вариантов соединения. Запуск двигателя производят при подключении «звездой», чтобы уменьшить пусковой ток. Когда двигатель разгонится, производится переключение в «треугольник», чтобы получить максимально возможную выходную мощность.
Применение комбинированного способа неизбежно связано со скачками токов. В момент переключение между схемами подача тока прекращается, скорость вращения ротора снижается, в некоторых случаях происходит ее резкое снижение. Через некоторое время скорость вращения восстанавливается.
Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную
Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.
Шильдик двигателя 220 / 380 В 0,37 кВт
На оборотной стороне крышки борно, как обычно, приведена схема:
Схема подключения 220 – 380 на крышке двигателя
Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:
Клеммы двигателя в подключены в схеме “Звезда”
Откручиваем гайки М4, снимаем перемычки и провода питания:
Разбираем схему, откидываем провода
Собираем схему в треугольник, на пониженное напряжение 220 В:
Собираем треугольную схему на 220 В
Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!
Кстати, по частотникам планирую цикл статей, подписывайтесь!
Краткая сравнительная таблица
Оба варианта используют в сфере электрики. Это проверенные системы обмоток, позволяющие сохранить мощность, а также сократить износ.
Сравнивать схемы лучше, используя одни и те же свойства – становится понятнее, почему следует выбирать тот или иной вариант.
Критерий | Звезда | Треугольник |
Напряжение | 330 В | 220 или 380 В |
Количество выводных проводов | 3 | 6 |
Мнение экспертаКарнаух Екатерина ВладимировнаЗакончила Национальный университет кораблестроения, специальность «Экономика предприятия»Существует альтернативный вариант, когда схема сочетает оба типа обмотки. То есть происходит переключение со звезды на треугольник или наоборот. Этот прием подходит для фазных двигателей с пусковым ротором.
Преимущества и недостатки «треугольника»
Использование этого типа подключения позволяет создать неразрывный контур в электроцепи. Такое название схема получила из-за своей эргономической формы, хотя ее вполне можно именовать и кругом. Среди достоинств «треугольника» стоит отметить:
- Достигается максимальная мощность агрегата во время работы.
- Применяется реостат для пуска мотора.
- Значительно увеличивается крутящий момент.
- Создается мощное тяговое усилие.
Среди недостатков можно отметить лишь высокие значения пусковых токов, а также активное тепловыделение во время работы. Этот тип соединения широко применяется в мощных механизмах, в которых присутствуют большие токи нагрузки. Именно благодаря этому увеличивается ЭДС, влияющая на мощность вращающего момента. Также следует сказать, что существует еще одна схема подключения, называемая «разомкнутый треугольник». Она используется в выпрямительных установках, предназначенных для получения токов тройной частоты.
Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник»
С помощью снижения пускового момента и ограничения пускового тока используют метод пуска асинхронного двигателя переключение «звезда – треугольник». В первый момент пуска, напряжение к статорным обмоткам подключается по схеме «звезда» (Y). Как только двигатель разгоняется, его питание включается по схеме «треугольник» (∆).
Преимущества
Некоторые трехфазные двигатели на низкое напряжение с мощностью выше 5 кВт рассчитывают на напряжение 400 В при включении по схеме «треугольник» (∆) или на 690 В при включении по схеме «звезда» (Y). Такая схема включения дает возможность производить пуск двигателя при меньшем напряжении. При пуске двигателя по схеме «звезда – треугольник» удается уменьшить пусковой ток, до 1/3 от тока прямого пуска от сети. Пуск по схеме «звезда – треугольник» особенно подходит для механизмов с большими маховыми массами, когда нагрузка набрасывается уже после разгона двигателя до номинальной скорости.
Недостатки пуска асинхронного двигателя переключением «звезда – треугольник»
При пуске двигателя переключением «звезда – треугольник» происходит также снижение пускового момента, приблизительно на 33%. Данный метод можно использовать только для трехфазных асинхронных двигателей, которые имеют возможность подключения по схеме «треугольник». В таком варианте существует опасность переключения на «треугольник» при слишком низкой частоте вращения, что вызовет рост тока до такого же уровня, что и ток при «прямом» пуске DOL.
Во время переключения со «звезды» на «треугольник» асинхронный электродвигатель может быстро снизить скорость вращения, для увеличения которой также потребуется резкое увеличение тока. На рисунке показана схема запуска двигателя с помощью пускателей KM1, KM2, KM3. Пускатель KM1,КМ2 включает электродвигатель по схеме «звезда». Через время, отведенное на запуск и выход двигателя на 50% номинальной скорости, отключается пускатель КМ2 и включается КМ3, переключая двигатель на «треугольник».
Пусковой момент и ток при пуске переключением «звезда – треугольник» значительно ниже, чем при прямом пуске.
Сравнение способа прямого пуска DOL и пуска с переключением «звезда – треугольник»
В данных диаграммах показаны пусковые токи для насоса, с трехфазным асинхронным двигателем мощностью 7,5 кВт методом прямого пуска (DOL) и пуска переключением «звезда – треугольник», соответственно. На рисунке видно, что способ прямого пуска DOL отличается большими пусковыми токами, но который через некоторое время уменьшается и становится постоянным.
Способ пуска переключением «звезда – треугольник» отличается меньшими низким пусковыми токами. Однако, в момент запуска при переходе от «звезды» к «треугольнику» происходят скачки токов. Во время пуска по схеме «звезда», через (t = 0,3 с), величина тока снижается. Однако, во время переключения со «звезды» на «треугольнику», через время t = 1,7 с, величина тока достигает уровня пускового тока при прямом пуске. Более того, скачок тока может стать ещё больше, так как во время переключения на двигатель не подаётся напряжение и двигатель теряет скорость перед подачей полного напряжения.
Практика — как выбрать схему для конкретного случая
Чаще всего электрики работают с сетью 380/220В, так рассмотрим же как подключить, звездой или треугольником, электродвигатель к такой трёхфазной электросети.
В большинстве электродвигателей может быть изменена схема соединения обмоток, для этого в брно есть шесть клемм, расположены они таким образом, чтобы с помощью минимального набора перемычек можно было собрать нужную вам схему. Простыми словами: вывод начала первой обмотки расположен над концом третьей, начала второй, над концом первой, начало третьей над концом второй.
Как отличить два варианта подключения электродвигателя вы видите на рисунке ниже.
Поговорим о том, какую схему выбирать. Схема подключения катушек электродвигателя не имеет особого влияния на режим работы двигателя, при условии соответствия номинальным параметрам двигателя питающей сети. Для этого смотрим на шильдик и определяем, на какие напряжения рассчитана конкретно ваша электрическая машина.
Обычно маркировка имеет вид:
Δ/Y 220/380
Это расшифровывается так:
Если межфазное напряжение равно 220 – собирайте обмотки в треугольник, а если 380 – в звезду.
Чтобы просто ответить на вопрос «Как соединить обмотки у двигателя?» мы сделали для вас таблицу выбора схемы соединения:
Определение типа способа соединения
Выбор того или иного подсоединения зависит от:
- надежности энергосети;
- номинальной мощности;
- технических характеристик самого двигателя.
Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.
При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.
Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.
Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.
Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.
Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.
Источники
- https://poweredhouse.ru/zvezda-treugolnik-osobennosti-skhem-soedinenij/
- https://PermjEnergosbyt-lk.ru/montazh/rele-puska-dvigatelya-zvezda-treugolnik.html
- https://rusenergetics.ru/oborudovanie/zvezda-treugolnik
- https://SdelaySam-SvoimiRukami.ru/4588-podkljuchenie-trehfaznogo-dvigatelja-po-sheme-zvezdy-i-treugolnika.html
- https://electrobox.su/podklyucheniya/podklyuchenie-trehfaznogo-dvigatelya-zvezdoj-i-treugolnikom.html
- https://SamElectric.ru/promyshlennoe-2/podklyuchenie-dvigatelya-zvezdoj-i-treugolnikom-shemy-i-primery.html
- https://kupi-elektriku.ru/osnovy-elektrotexniki/shemy-podklyucheniya-trehfaznogo-dvigatelya-zvezda-i-treugol-nik-pravila-ispol-zovaniya-i-raznica-mezhdu-nimi/
- https://oooevna.ru/vybor-shemy-soedinenia-faz-elektrodvigatela-soedinenie-obmotkok-zvezdoj-i-treugolnikom/
- https://svoedelo.net/kak-podklyuchit-asinkhronnyy-dvigatel. html
- https://odinelectric.ru/equipment/shemy-podkljuchenija-obmotok-elektrodvigatelja-zvezdoj-i-treugolnikom
- https://lampa-ekb.ru/sovety/shema-zvezda.html
- https://pohozhie.ru/nauka/tochnye/podklyuchenie-treugolnikom-i-zvezdoj
Звезда треугольник — особенности соединений в установках трехфазного тока. Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры
Так как при соединении треугольником начало одной фазной обмотки соединяют с концом следующей, то напряжение обмотки +312 Вольт распределится между обмоткой с напряжением -156 Вольт и выводом. В результате на выводе обмотки с напряжением +312 Вольт будет +156 Вольт, а на выводе обмотки с напряжением -156 Вольт будет 0 Вольт. У нас остается третья обмотка с напряжением -156 Вольт, и на выводе у нее так и останется -156 Вольт. В результате получаем напряжения на выходе в рассмотренный нами момент +156, -156, 0 Вольт (а было +312, -156, -156 Вольт).
Получившееся линейное напряжение +156-(-156) = +312 Вольт (это амплитудное значение). После перевода в действующее значение получим 220 Вольт. Почему не рассматривается 0 Вольт? Нужно понимать что частота 50 Герц ни куда не пропала, и там где ноль, через мгновение будет +156, еще через мгновение -156. И такое чередование будет постоянным. Но вернемся к рассматриваемому моменту времени. С падением линейного напряжения с 380 до 220 Вольт разобрались. Теперь объясним, почему произошло увеличение силы тока. На самом деле все просто. Уменьшив напряжение для передачи первоначальной мощности нам нужно пропорционально увеличить силу тока.
При переходе с треугольника на звезду происходит обратная трансформация. Чтобы это увидеть на схеме, нужно найти напряжения обмоток на втором трансформаторе, подключенном по схеме треугольник звезда. Посчитав разности потенциалов начал и концов обмоток мы вернемся к изначальным +312, -156, -156 Вольт.
Для того чтобы подтвердить наши расчеты и наглядно увидеть сдвиг фаз вернемся к программе Multisim и подключим к фазам осциллограф.
К выводу A осциллографа xsc1 подключена фаза, идущая от генератора с обмотками по схеме звезда. К остальным трем выводам данного осциллографа подключены фазы после трансформации звезда треугольник. Как видно после трансформации синусоида фазы сместилась на 30°. И если подвести курсор к амплитудному значению ≈ +310 Вольт канала A, то на остальных каналах, относящихся к фазам после трансформации будет приблизительно +155, -155 и 0 Вольт. То есть то же, что мы просчитывали ранее, показал осциллограф.
Для анализа обратной трансформации к выводу A осциллографа xsc2 мы подключили ту же фазу от генератора, а остальные выводы соединили с фазами после трансформатора со схемой треугольник звезда. В результате пропал сдвиг и синусоиды фаз вернули свои амплитуды 312 Вольт. Правда если обратите внимание синусоиды фаз после трансформации отразились зеркально по отношению к синусоидам фаз после генератора. Для того, чтобы отразить обратно, достаточно поменять местами выводы обмоток по схеме звезда.
Как видно применяя различные комбинации «звезды» и «треугольника» с одинаковыми индуктивностями первичных и вторичных обмоток можно от одного напряжения переходить к другому. А для того, чтобы все это наглядно увидеть, достаточно воспользоваться программой для моделирования цифровых и аналоговых электронных схем. В нашем случае моделирование производилось в среде программы Multisim.
Почему сгорит электродвигатель при неправильном соединении
Сейчас я вкратце расскажу, почему электродвигатель, у которого обмотки на 380/660 треугольник/звезда, нельзя подключать звездой на 380 вольт.
Давайте представим, что в данный момент у нас линейное напряжение равно 380 вольт.
Что такое линейное напряжение, а фазное? Не знаете? Сейчас расскажу!
Линейное напряжение – это напряжение между линейными проводами (фазами), а фазное между линейным проводом и нейтральным.
Дело в том, что при соединении обмоток треугольником, на каждую обмотку приходится линейное напряжение 380 вольт,
а при соединении звездой фазное — 220 вольт.
В итоге нам надо поддерживать требуемую мощность на валу двигателя, а напряжение упало с 380 вольт до 220 вольт (переключили обмотки с треугольника на звезду), что же делать? Ток всё сделает за нас. Он начнёт расти.
Вот пример:
Это формула для однофазной сети, но для понимания сути пойдёт.
P=UI
Где, P- мощность, U-напряжение, I-ток.
Подставим в нашу формулу выдуманные значения и получим следующее: 440=220*2, а теперь уменьшим напряжение в два раза, 440=110*4. Увидели? Напряжение уменьшили в два раза, но, чтобы поддержать заданную мощность у нас вырос ток в два раза.
Сравнения схем подключения между собой
Чтобы сравнить обе схемы между собой, надо посчитать электрическую мощность, развиваемую электродвигателем при том или ином включении. Для этого надо рассмотреть понятия линейного (Iлин) и фазного (Iфаз) токов. Фазным током называется ток, протекающий по обмотке фазы. Линейный ток протекает по проводнику, подключенному к выводу обмотки.
В сетях до 1000 вольт источником электричества является трансформатор , вторичная обмотка которого включена «звездой» (в противном случае невозможно организовать нулевой провод) или генератор, обмотки которого соединены по той же схеме.
Из рисунка видно, что при соединении «звездой» токи в проводниках и токи в обмотках электродвигателя равны. Ток в фазе определяется фазным напряжением:
где Z – сопротивление обмотки одной фазы, их можно принять равными. Можно записать, что
.
Для соединения «треугольником» токи другие – они определяются линейными напряжениями, приложенными к сопротивлению Z:
.
Следовательно, для данного случая
.
Теперь можно сравнить полную мощность (
), потребляемую электродвигателями с разной схемой.
- для соединения «звездой» полная мощность равна
- для соединения «треугольником» полная мощность равна
.
Таким образом, при включении «звездой» электродвигатель развивает мощность в три раза ниже, чем при соединении в треугольник. Это также ведет к другим положительным последствиям:
- уменьшаются пусковые токи;
- работа двигателя и его пуск становятся более плавными;
- электромотор хорошо справляется с кратковременными перегрузками;
- тепловой режим асинхронного двигателя становится более щадящим.
Обратная сторона медали – двигатель с обмотками «звездой» не может развивать максимальную мощность. В некоторых случаях вращающего момента может не хватить даже для раскрутки ротора.
Основные различия между схемами
Ключевая разница между двумя видами соединений заключается в том, что при применении одной питающей электросети появляется возможность переключать различные значения напряжения на подсоединяемом приборе. В основном используется соединение обмоточных деталей по типу «звезды».
Применение подключения по треугольному принципу необходимо при включении в трехфазную цепь механизмов большой мощности, имеющих максимальные пусковые токи.
К главным плюсам соединения обмоточных элементов по схеме «звезды» относят такие параметры данного типа коммутации:
- понижение мощностного параметра для увеличения надежности эксплуатируемого прибора;
- стойкость и стабильность системы при беспрерывной работе привода;
- вероятность плавного включения электромотора;
- отсутствие нагрева корпуса агрегатов.
Схема переключения «звезда треугольник» асинхронного двигателя
Обратите внимание! Некоторые приборы в электрике имеют в своем составе внутреннее подсоединение концов обмоток в «звезду». Такие агрегаты не предназначены для использования при других вариантах соединения обмоток, и их нельзя переключить в сети.
Почему при подключении звездой, ток не становится меньше (при неизменной нагрузке)
При соединении обмоток электродвигателя треугольником фазный ток в 1.73 раза меньше линейного.
Давайте приведу пример: На шильдике электродвигателя указан ток 30А при соединении обмоток треугольником и напряжением 380 вольт. 30 ампер — это линейный ток, значит, чтобы получить фазный, нам надо 30/1.73. В итоге фазный ток равен 17,3 Ампера. Т.е. номинальный ток для обмотки двигателя 17,3 Ампера.
А теперь мы переключим двигатель с треугольника на звезду, но нагрузка на валу двигателя остаётся таже самая.
При соединении электродвигателя звездой линейный ток будет равен фазному. Напряжение на обмотке уменьшится в 1.73 раза. Следовательно на обмотку будет подаваться уже не 380 вольт, а 220.
В результате по обмотке будет протекать не 17,3 А, а целых 30 Ампер. Почему?
Потому что ток будет компенсировать падение напряжения на обмотке, которое у нас упало в 1,73 раза. Значит ток вырастит в 1,73 раза. Двигатель греется и если отсутствует защита — сгорает. А двигатель стоит немалых денег, поэтому Вы должны знать как подключить асинхронный двигатель!
Еще один пример для понимания. Обратите внимание на следующий шильдик электродвигателя:
Электродвигатель треугольник/звезда: 220 вольт/380 вольт: 38,3/22,2 Ампера.
Соединяем двигатель треугольником и подаём напряжение 220 вольт. Ток (линейный) по шильдику равен 38,3 Ампер. Следовательно, фазный будет равен 38,3/1,73= 22,2 Ампер. Т.е мы определили, что фазный номинальный ток для обмотки = 22,2 Ампер. Поехали дальше…
А теперь соединяем обмотки электродвигателя звездой и подаём напряжение 380 Вольт. Ток будет равен 22,2 Ампер. В звезде линейный ток равен фазному току.
Вывод:
При треугольнике и питающем напряжении 220 вольт, фазный ток равен 22,2 Ампер.
При звезде и питающем напряжении 380 вольт, фазный ток равен 22,2 Ампер. Следовательно мощность у двигателя будет одинаковая при таких подключениях.
А, что если мы соединим этот двигатель звездой и подадим напряжение 220 вольт. На обмотку будет приходиться уже 127 Вольт. Поэтому ток будет компенсировать падение напряжение на обмотке в 1,73 раза и будет равен 38,3 Ампер. А обмотка у нас рассчитана на 22,2 Ампер. Двигатель сгорит.
Подключение двигателя «звездой» и «треугольником» в сетях с разным номинальным напряжением
В соответствии с номинальным питающим напряжением асинхронные трехфазные двигатели отечественного производства подразделены на две категории: для работы от сетей 220/127 В и 380/220 В. Двигатели, рассчитанные на работу от сети 220/127 В имеют небольшую мощность — на сегодняшний день их применение сильно ограничено.
Электромоторы, рассчитанные на номинальное напряжение 380/220 В распространены повсеместно. Независимо от номинального напряжения при установке мотора используется правило: более низкие значения напряжения используются при подключении в «треугольник», высокие – исключительно в соединениях статорных обмоток по схеме «звезда».
То есть, напряжение в 220 В подается на «треугольник», 380 В – на «звезду», в противном случае мотор быстро перегорит.
Основные технические характеристики агрегата, включая рекомендованную схему подключения и возможность ее изменения отображаются на бирке мотора и его техническом паспорте. Наличие метки вида Δ/Y указывает на возможность соединения обмоток и «звездой», и «треугольником». Чтобы минимизировать потери мощности, неизбежные при работе от однофазных бытовых сетей, мотор такого типа лучше подключать «треугольником».
Безопасность домашней электросети достигается установкой разных устройств защиты. Узнать всё об одном из таких приспособлений — УЗО, поможет полезная статья.
Знаком Y обозначают двигатели, где возможность подключения в «треугольник» не предусмотрена. В распределительной коробке таких моделей вместо 6 контактов находятся только три, соединение трех других выполнено под корпусом.
Подключение трехфазных асинхронных двигателей с номинальным питающим напряжением 220/127 В к стандартным однофазным сетям выполняют только по типу «звезды». Подключение агрегата, рассчитанного на низкое питающее напряжение в «треугольник» быстро приведет его в негодность.
Оптимальный выбор подключения электродвигателя
Преобразование «звезды» в «треугольник» в асинхронном электродвигателе, а также способность к ремонту обмоток электродвигателя, и сравнительно с другими двигателями невысокая стоимость в совокупности со стойкостью к механическим воздействиям сделали этот вид двигателей наиболее популярными. Основным параметром, который характеризует достоинство асинхронных двигателей, является простота в конструкции. При всех достоинствах этого типа электрических двигателей он имеет и отрицательные моменты при эксплуатации.
На практике трехфазные асинхронные электродвигатели к сети могут присоединяться по схеме «звезда» и «треугольник». Подключение «звездой» — это когда концы статорной обмотки обираются в одну точку, и напряжение сети 380 вольт подается на начало каждой из обмоток, схематично этот вид соединения обозначается знаком (Y).
Если в коммутирующей коробке подключения электродвигателя выбирается вариант «треугольник», надо статорные обмотки соединить последовательно:
- конец первой обмотки — с началом второй;
- подсоединение конца «второй» — с началом третьей;
- конец третьей — с началом первой.
Особенности работы электромотора при подключении разными способами
Подключение электродвигателя «треугольником» и «звездой» характеризуется определенным набором своих преимуществ и недостатков.
Соединение обмоток двигателя в «звезду» обеспечивает более мягкий запуск. При этом происходит значительная потеря мощности агрегата. По этой схеме также производится подключение всех электромоторов отечественного происхождения на 380В.
Подключение «треугольник» обеспечивает выходную мощность до 70% от номинальной, но пусковые токи при этом достигают значительных величин и двигатель может выйти из строя. Эта схема – единственно правильный вариант для подключения к российским электросетям импортных электромоторов европейского производства, рассчитанных на номинальное напряжение 400/690.
Функцию пуска для схем переключения «звезда»-«треугольник» используют только для двигателей с пометкой Δ/Y, в которых реализована возможность обоих вариантов соединения. Запуск двигателя производят при подключении «звездой», чтобы уменьшить пусковой ток. Когда двигатель разгонится, производится переключение в «треугольник», чтобы получить максимально возможную выходную мощность.
Применение комбинированного способа неизбежно связано со скачками токов. В момент переключение между схемами подача тока прекращается, скорость вращения ротора снижается, в некоторых случаях происходит ее резкое снижение. Через некоторое время скорость вращения восстанавливается.
Как переключить схему двигателя в “Звезду” и в “Треугольник” вручную
Если не нужна никакая автоматика, а двигатель работает постоянно в “Звезде” или в “Треугольнике”, то используя рожковый ключ, можно переключить схему соединения обмоток вручную.
Шильдик двигателя 220 / 380 В 0,37 кВт
На оборотной стороне крышки борно, как обычно, приведена схема:
Схема подключения 220 – 380 на крышке двигателя
Двигатель питался напрямую от трехфазной сети 380 В через контактор и был собран в “Звезду:
Клеммы двигателя в подключены в схеме “Звезда”
Откручиваем гайки М4, снимаем перемычки и провода питания:
Разбираем схему, откидываем провода
Собираем схему в треугольник, на пониженное напряжение 220 В:
Собираем треугольную схему на 220 В
Переделка понадобилась в связи с тем, что нужно изменить скорость вращения двигателя, а для этого применить частотник. А частотники на такую мощность, как правило, однофазные. В результате – поехали!
Кстати, по частотникам планирую цикл статей, подписывайтесь!
Краткая сравнительная таблица
Оба варианта используют в сфере электрики. Это проверенные системы обмоток, позволяющие сохранить мощность, а также сократить износ.
Сравнивать схемы лучше, используя одни и те же свойства – становится понятнее, почему следует выбирать тот или иной вариант.
Критерий | Звезда | Треугольник |
Напряжение | 330 В | 220 или 380 В |
Количество выводных проводов | 3 | 6 |
Мнение экспертаКарнаух Екатерина ВладимировнаЗакончила Национальный университет кораблестроения, специальность «Экономика предприятия»Существует альтернативный вариант, когда схема сочетает оба типа обмотки. То есть происходит переключение со звезды на треугольник или наоборот. Этот прием подходит для фазных двигателей с пусковым ротором.
Преимущества и недостатки «треугольника»
Использование этого типа подключения позволяет создать неразрывный контур в электроцепи. Такое название схема получила из-за своей эргономической формы, хотя ее вполне можно именовать и кругом. Среди достоинств «треугольника» стоит отметить:
- Достигается максимальная мощность агрегата во время работы.
- Применяется реостат для пуска мотора.
- Значительно увеличивается крутящий момент.
- Создается мощное тяговое усилие.
Среди недостатков можно отметить лишь высокие значения пусковых токов, а также активное тепловыделение во время работы. Этот тип соединения широко применяется в мощных механизмах, в которых присутствуют большие токи нагрузки. Именно благодаря этому увеличивается ЭДС, влияющая на мощность вращающего момента. Также следует сказать, что существует еще одна схема подключения, называемая «разомкнутый треугольник». Она используется в выпрямительных установках, предназначенных для получения токов тройной частоты.
Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник»
С помощью снижения пускового момента и ограничения пускового тока используют метод пуска асинхронного двигателя переключение «звезда – треугольник». В первый момент пуска, напряжение к статорным обмоткам подключается по схеме «звезда» (Y). Как только двигатель разгоняется, его питание включается по схеме «треугольник» (∆).
Преимущества
Некоторые трехфазные двигатели на низкое напряжение с мощностью выше 5 кВт рассчитывают на напряжение 400 В при включении по схеме «треугольник» (∆) или на 690 В при включении по схеме «звезда» (Y). Такая схема включения дает возможность производить пуск двигателя при меньшем напряжении. При пуске двигателя по схеме «звезда – треугольник» удается уменьшить пусковой ток, до 1/3 от тока прямого пуска от сети. Пуск по схеме «звезда – треугольник» особенно подходит для механизмов с большими маховыми массами, когда нагрузка набрасывается уже после разгона двигателя до номинальной скорости.
Недостатки пуска асинхронного двигателя переключением «звезда – треугольник»
При пуске двигателя переключением «звезда – треугольник» происходит также снижение пускового момента, приблизительно на 33%. Данный метод можно использовать только для трехфазных асинхронных двигателей, которые имеют возможность подключения по схеме «треугольник». В таком варианте существует опасность переключения на «треугольник» при слишком низкой частоте вращения, что вызовет рост тока до такого же уровня, что и ток при «прямом» пуске DOL.
Во время переключения со «звезды» на «треугольник» асинхронный электродвигатель может быстро снизить скорость вращения, для увеличения которой также потребуется резкое увеличение тока. На рисунке показана схема запуска двигателя с помощью пускателей KM1, KM2, KM3. Пускатель KM1,КМ2 включает электродвигатель по схеме «звезда». Через время, отведенное на запуск и выход двигателя на 50% номинальной скорости, отключается пускатель КМ2 и включается КМ3, переключая двигатель на «треугольник».
Пусковой момент и ток при пуске переключением «звезда – треугольник» значительно ниже, чем при прямом пуске.
Сравнение способа прямого пуска DOL и пуска с переключением «звезда – треугольник»
В данных диаграммах показаны пусковые токи для насоса, с трехфазным асинхронным двигателем мощностью 7,5 кВт методом прямого пуска (DOL) и пуска переключением «звезда – треугольник», соответственно. На рисунке видно, что способ прямого пуска DOL отличается большими пусковыми токами, но который через некоторое время уменьшается и становится постоянным.
Способ пуска переключением «звезда – треугольник» отличается меньшими низким пусковыми токами. Однако, в момент запуска при переходе от «звезды» к «треугольнику» происходят скачки токов. Во время пуска по схеме «звезда», через (t = 0,3 с), величина тока снижается. Однако, во время переключения со «звезды» на «треугольнику», через время t = 1,7 с, величина тока достигает уровня пускового тока при прямом пуске. Более того, скачок тока может стать ещё больше, так как во время переключения на двигатель не подаётся напряжение и двигатель теряет скорость перед подачей полного напряжения.
Практика — как выбрать схему для конкретного случая
Чаще всего электрики работают с сетью 380/220В, так рассмотрим же как подключить, звездой или треугольником, электродвигатель к такой трёхфазной электросети.
В большинстве электродвигателей может быть изменена схема соединения обмоток, для этого в брно есть шесть клемм, расположены они таким образом, чтобы с помощью минимального набора перемычек можно было собрать нужную вам схему. Простыми словами: вывод начала первой обмотки расположен над концом третьей, начала второй, над концом первой, начало третьей над концом второй.
Как отличить два варианта подключения электродвигателя вы видите на рисунке ниже.
Поговорим о том, какую схему выбирать. Схема подключения катушек электродвигателя не имеет особого влияния на режим работы двигателя, при условии соответствия номинальным параметрам двигателя питающей сети. Для этого смотрим на шильдик и определяем, на какие напряжения рассчитана конкретно ваша электрическая машина.
Обычно маркировка имеет вид:
Δ/Y 220/380
Это расшифровывается так:
Если межфазное напряжение равно 220 – собирайте обмотки в треугольник, а если 380 – в звезду.
Чтобы просто ответить на вопрос «Как соединить обмотки у двигателя?» мы сделали для вас таблицу выбора схемы соединения:
Определение типа способа соединения
Выбор того или иного подсоединения зависит от:
- надежности энергосети;
- номинальной мощности;
- технических характеристик самого двигателя.
Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.
При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.
Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.
Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.
Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.
Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.
Источники
- https://poweredhouse.ru/zvezda-treugolnik-osobennosti-skhem-soedinenij/
- https://PermjEnergosbyt-lk.ru/montazh/rele-puska-dvigatelya-zvezda-treugolnik.html
- https://rusenergetics.ru/oborudovanie/zvezda-treugolnik
- https://SdelaySam-SvoimiRukami.ru/4588-podkljuchenie-trehfaznogo-dvigatelja-po-sheme-zvezdy-i-treugolnika.html
- https://electrobox.su/podklyucheniya/podklyuchenie-trehfaznogo-dvigatelya-zvezdoj-i-treugolnikom.html
- https://SamElectric.ru/promyshlennoe-2/podklyuchenie-dvigatelya-zvezdoj-i-treugolnikom-shemy-i-primery.html
- https://kupi-elektriku.ru/osnovy-elektrotexniki/shemy-podklyucheniya-trehfaznogo-dvigatelya-zvezda-i-treugol-nik-pravila-ispol-zovaniya-i-raznica-mezhdu-nimi/
- https://oooevna.ru/vybor-shemy-soedinenia-faz-elektrodvigatela-soedinenie-obmotkok-zvezdoj-i-treugolnikom/
- https://svoedelo.net/kak-podklyuchit-asinkhronnyy-dvigatel. html
- https://odinelectric.ru/equipment/shemy-podkljuchenija-obmotok-elektrodvigatelja-zvezdoj-i-treugolnikom
- https://lampa-ekb.ru/sovety/shema-zvezda.html
- https://pohozhie.ru/nauka/tochnye/podklyuchenie-treugolnikom-i-zvezdoj
DSTAR — Перенапряжение группы воздушных линий «звезда-треугольник»
Поэтапное переключение трехфазных батарей трансформаторов типа «звезда-треугольник» может создать проблемы с перенапряжением и вывести из строя разрядники или трансформаторы. Эта тема была исследована в рамках исследования DSTAR, в результате чего были разработаны рекомендации по методам переключения, защите от перенапряжения и способности разрядников выдерживать эти перенапряжения. Это исследование даже обнаружило ранее не зарегистрированное явление перенапряжения, создающее экстремальные величины перенапряжения, что является очевидной причиной многочисленных отказов трансформаторов, о которых сообщалось в полевых условиях. Пример этого недавно открытого явления перенапряжения показан ниже.
Напряжение фаза-земля на группе из трех опорных распределительных трансформаторов с малыми потерями мощностью 25 кВА, соединенных по схеме «звезда-треугольник». Одна фаза была предварительно закрыта, вторая первичная фаза была закрыта в 21 мс на графике, показанном выше.
Перенапряжения батареи «звезда-треугольник» являются результатом одного из следующих явлений:
- Сдвиг нейтрали — Сдвиг нейтрали — это прежде всего явление 60 Гц, которое происходит при неравномерной нагрузке на вторичные фазы и только на одну первичную фаза отключена от источника. Состояние открытой фазы и несбалансированная вторичная нагрузка в сочетании с вторичной обмоткой трансформатора, соединенной треугольником соединения, вызывают большой сдвиг потенциала нейтрали банков относительно земли. А большое напряжение, в 2,65 раза превышающее нормальное напряжение фаза-земля, может появляются между разомкнутой фазой батареи и землей (нейтраль фидера), если неравномерность нагрузки достаточно велика.
- Феррорезонанс — Феррорезонанс представляет собой сложное нелинейное взаимодействие между характеристики насыщения трансформаторов и емкость. Большинство часто задействованная емкость представляет собой внутреннюю емкость заземления обмотки. из трансформаторов. Если есть воздушная линия или кабели, подключенные к блок трансформаторов, после разомкнутой точки, линии или кабеля емкость также может способствовать взаимодействию. Для феррорезонанса к происходит, на блоке трансформатора не должно быть нагрузки или она должна быть небольшой. Это в в отличие от перенапряжения при переключении нейтрали, для которого необходима значительная нагрузка. подарок.
- Нестабильность нейтрали, вызванная насыщением — Нестабильность нейтрали, вызванная насыщением, характеризуется вспышками высокочастотных колебаний напряжения, которые возникают, когда вторая фаза батареи замыкается во время подачи питания. Это вызвано
резким насыщением трансформаторов во время броска тока, что, в свою очередь, вызывает
нейтральное напряжение колебаться.
Проект был основан как на полномасштабных полевых испытаниях, так и на компьютерном моделировании. Испытания включали трансформаторы с сердечником из кремниевой стали и аморфного металла мощностью от 10 кВА до 100 кВА. Пофазное переключение выполнялось с широким диапазоном нагрузок, приложенных к берегам звезда-треугольник.
Подробные рекомендации по проектированию, эксплуатации и защите батарей типа «звезда-треугольник» представлены в заключительном отчете, который можно использовать для минимизации рисков отказа трансформатора и проблем безопасности из-за возможного выхода из строя разрядников.
Содержание. передавать электрическую энергию между цепями. Во вторичной цепи магнитный поток индуцирует электродвижущую силу (ЭДС), повышая (увеличивая) или понижая (понижая) напряжения без изменения частоты. Существуют различные виды электрических систем, поэтому трансформаторы должны работать вместе с совместимыми системами. Трехфазный трансформатор работает с трехфазной электрической системой переменного тока, чтобы обеспечить потребителей стабильной и безопасной для устройства электроэнергией. В зависимости от отрасли или области применения размер, конструкция, вольт-амперный номинал и несущая способность трехфазного трансформатора будут различаться.
Содержание
- Что такое трехфазный трансформатор?
- Что такое трехфазная электрическая система?
- Различные типы трехфазных трансформаторов
- Трансформатор трехфазный состав
- Конфигурации с трехфазным трансформатором
- Применение трехфазных трансформаторов
- Часто задаваемые вопросы
Автотрансформатор
Постоянное напряжение
Трансформатор тока
Трансформатор безопасности
Однофазные трансформаторы
Трехфазные трансформаторы
Трансформаторы напряжения
Что такое трехфазный трансформатор?
В некоторых выпрямительных трансформаторах постоянного тока трансформаторы напряжения могут быть сконструированы для однофазного или двух-, трех-, шести- и даже сложных комбинаций до 24-х фаз. В процессах производства, распределения и передачи электроэнергии может использоваться трехфазная сеть, обозначаемая как 3φ или 3 фазы. Трехфазный трансформатор работает от трехфазного источника питания, и первичная и вторичная обмотки имеют три набора обмоток.
Рисунок 2: Трехфазный трансформатор с тремя наборами обмоток на первичной и вторичной сторонах
Что такое трехфазная электрическая система?
Трехфазные и однофазные электрические системы используют переменный ток (AC). Переменный ток обычно имеет синусоидальную форму, но также могут генерироваться другие формы волны, такие как прямоугольные, треугольные и сложные волны. Сигналы переменного тока обладают тремя важными свойствами: амплитудой, периодом и частотой. Амплитуда описывает величину волны. Период — это когда происходит одно полное колебание, а частота — это количество циклов, возникающих в секунду.
Полное колебание переменного тока имеет как пик, так и впадину. Для обычного цикла 360° эти точки находятся на 90° и 270°. Однофазная система имеет один пик и впадину в пределах одного проводника, и эти точки испытывают максимальные величины, но в противоположных направлениях. С другой стороны, трехфазные системы имеют три пика и впадины на трех проводниках. Напряжения и токи опережают или отстают друг от друга на 120° (см. рис. 2).
Значение закона индукции Фарадея
Работа всех типов трансформаторов подчиняется закону индукции Фарадея – он гласит, что величина ЭДС, индуцированной в цепи, прямо пропорциональна скорости изменения магнитного потока, отсекающего по цепи.
Следовательно, проводник, помещенный рядом с изменяющимся магнитным полем, например, от электромагнита с питанием от переменного тока, будет иметь электрический ток. Электромагнитные цепи такого типа называются первичными обмотками.
По мере того, как электрический ток схлопывается и непрерывно генерируется с определенной частотой, магнитное поле схлопывается и воссоздается аналогичным образом. Это переменное магнитное поле индуцирует ток в проводниках, перерезанных этим потоком; тогда они называются вторичными обмотками. Частота одинакова на обеих обмотках.
Различные типы трехфазных трансформаторов
Трехфазные трансформаторы можно разделить на категории в зависимости от их конструкции. Существует два типа трехфазных трансформаторов: стержневые с первичной и вторичной обмотками, намотанными на один сердечник, и оболочковые трансформаторы, объединяющие три однофазных трансформатора.
С сердечником
В трехфазных трансформаторах с сердечником сердечник имеет три ветви в одной плоскости. Каждое звено содержит первичную и вторичную обмотки, и эти обмотки равномерно распределены между тремя ветвями. Нередко можно услышать об обмотках высокого напряжения (ВН) и низкого напряжения (НН).
Поскольку обмотку низкого напряжения легче изолировать, эти обмотки располагаются ближе к сердечнику, чем катушки более высокого напряжения. Последние обмотки наматываются вокруг первых, между ними находится изоляционный материал. Эта конструкция имеет обмотки, магнитно связанные друг с другом, при этом одна обмотка использует другую пару ветвей в качестве обратных путей для своего магнитного потока (см. Рисунок 3).
Корпусный
Корпусный трехфазный трансформатор состоит из трех отдельных однофазных трансформаторов. Три фазы этого трансформатора имеют практически независимые магнитные поля, а сердечник этого трансформатора имеет пять ветвей, как показано на рисунке 3.9.0003
Обмотки ВН и НН располагаются вокруг трех главных ветвей. Как и в трехфазном устройстве с сердечником, катушка низкого напряжения находится ближе всего к сердечнику. Две крайние ветви служат обратными путями потока.
Магнитный поток делится пополам, когда поле приближается к ярму. Обычно внешние конечности и хомут вдвое меньше основных конечностей. Вы можете уменьшить высоту трансформатора, уменьшив размер ярма.
Рис. 3: Трансформаторы с кожухом (A) и сердечником (B)
Конструкция трехфазного трансформатора
Помимо сердечника и обмоток, в трансформаторе есть и другие важные части, как описано ниже:
- Изоляция: Эта часть действует как барьер, отделяющий обмотки от сердечника.
- Трансформаторное масло: Трансформаторное масло выполняет две основные функции: изоляция и охлаждение. Изоляционные свойства масла предотвращают короткое замыкание и искрение. Это масло действует как охлаждающая жидкость, отводя тепло от сердечника и обмоток.
- Термометры: Термометры контролируют температуру масла.
- Системы сброса давления: Системы сброса давления являются частью протокола безопасности. Они разряжают ситуации избыточного давления, когда масло вспыхивает из-за коротких замыканий.
- Охладитель: Система охлаждения охлаждает охлаждающую жидкость. Он охлаждает горячее масло через трубки с водяным или воздушным охлаждением. Затем охлаждающая жидкость возвращается в сердечник и обмотки.
- Бак: Бак защищает обмотки и сердечник трансформатора от внешних воздействий и удерживает охлаждающую жидкость.
- Расширитель масла: Расширитель масла представляет собой сосуд, устанавливаемый отдельно от бака. Он помогает удерживать масло после того, как оно расширилось из-за нагрева обмоток и сердечника.
- Регуляторы напряжения: Регуляторы напряжения изменяют выходное напряжение, которое имеет тенденцию к снижению в условиях нагрузки. Изменение числа витков с помощью переключателя ответвлений регулирует коэффициент напряжения.
- Газовое реле: Газовые реле имеют другое название – реле Бухгольца. Он удерживает выпущенный газ, пузырящийся из бака трансформатора, и появление этого свободного газа указывает на наличие проблемы с трансформатором.
- Сапуны: Сапуны обеспечивают сухость трансформаторного масла. Эти сапуны удаляют влагу из воздушных карманов над уровнем масла расширителя.
Конфигурации с трехфазным трансформатором
Эти трехфазные машины имеют два важных соединения; конфигурации звезды и треугольника.
Конфигурация «звезда» также называется соединением «звезда». У него четыре вывода, но три обмотки. Три обмотки образуют три фазы цепи, а четвертая клемма — это клемма, где встречаются остальные три обмотки; это общая нейтральная точка.
Соединение треугольником, также известное как сетчатое соединение, представляет собой соединение трех обмоток, концы которых соединены, образуя замкнутый контур. Он имеет три клеммы и обмотки без нейронной точки, вместо этого используются заземляющие соединения. Соединение по схеме «треугольник» настраивается в высокоуровневые системы путем заземления средней точки одной фазы, как показано на рис. 4.
Рис. 4: Соединения по схеме «звезда» и «треугольник»
Характеристики напряжения и тока
Существуют плюсы и минусы использования схемы подключения трехфазных трансформаторов по схеме «звезда» или «треугольник». Понимание фазных и линейных токов и напряжений имеет первостепенное значение для выбора правильной системы для ваших приложений.
Фазные токи и напряжения измеряются на одном компоненте, тогда как параметры линии измеряются на двух клеммах. Таблица 1 демонстрирует отношения между этими характеристиками:
Соединение | Фазное напряжение | Напряжение сети | Фазный ток | Сетевой ток |
Звезда | ПО = ВЛ / √3 | ВЛ = √3 * ВП | ИП = ИЛ | ИЛ = ИП |
Дельта | ВП = ВЛ | ВЛ = ВП | IP = IL / √3 | IP = √3 * IL |
Таблица 1: Характеристики трехфазного напряжения и тока
- ВЛ: Линейное напряжение (линейное напряжение)
- VP: фазное напряжение (фазное напряжение)
- IL: линейный ток
- IP: фазный ток
В дополнение к напряжениям и токам, для расчета трехфазного трансформатора потребуется еще один параметр для правильного расчета устройства – коэффициент трансформации (TR). Поскольку трансформатор представляет собой линейную машину, напряжения во вторичных обмотках можно определить с помощью первичных напряжений и коэффициента трансформации. Это отношение витков вторичной и первичной обмоток.
Схемы обмоток трехфазного трансформатора
Первичная и вторичная обмотки трехфазного трансформатора могут иметь разную или одинаковую конфигурацию. Четыре основных перестановки включают в себя:
Конфигурация «звезда-звезда» (Y-Y)
Первичная и вторичная катушки намотаны по системе «звезда». Основное преимущество заключается в том, что с двух сторон трансформатора имеется нейтральная клемма, позволяющая выполнить заземление. Заземление устраняет искажения формы волны. Без заземления работа такого трансформатора удовлетворительна, если три нагрузки на трех фазах сбалансированы. Это в основном для небольших трансформаторов высокого напряжения.
TR = VS / VP = NS / NP = IP / IS
- VS: Вторичное напряжение
- VP: Первичное напряжение
- IS: Вторичный ток
- IP: Первичный ток
Это соединение уменьшает количество витков, поскольку фазное напряжение составляет 1/√3 линейного напряжения.
Рис. 5: Соединение звезда-звезда
Конфигурация треугольник-треугольник (Δ-Δ)
Первичная и вторичная катушки расположены по схеме треугольник. Эта система предназначена для больших трансформаторов низкого напряжения и использует большее количество витков, чем тип Y-Y. Одним из преимуществ этого соединения является то, что оно совместимо с несимметричными нагрузками на фазы. Еще одним преимуществом является то, что даже когда трансформатор отключен, его 3-фазные нагрузки могут оставаться запитанными. Обычно это конфигурация открытого треугольника с уменьшенной мощностью.
В конфигурации треугольник-треугольник:
TR = VS / VP = NS / NP = IP / IS
- VS: Вторичное напряжение
- VP: Первичное напряжение
- IS: Вторичный ток
- IP: Первичный ток
Рис. 6. Конфигурация треугольник-треугольник
Конфигурация звезда-треугольник или звезда-треугольник (Y-Δ)
В этой конфигурации первичная обмотка соединена звездой и заземлена на нейтральном выводе. Второстепенные витки соединяются в треугольную систему. Его основная область применения — понижение напряжения на стороне подстанции электропередачи.
Вторичное и первичное линейное напряжение имеют отношение, которое в 1/√3 раза превышает коэффициент трансформации устройства. Существует также 30-градусный сдвиг между первичным и вторичным линейным напряжением.
Конфигурация треугольник-звезда или треугольник-звезда (Δ-Y)
Первичная обмотка подключается по схеме треугольник, а вторичная — по схеме заземленной звезды. Он в основном используется в повышающих трансформаторах, расположенных там, где начинается линия передачи. Вторичное и первичное линейные напряжения имеют отношение, которое в √3 раза превышает коэффициент трансформации устройства. Существует также 30-градусный сдвиг между первичным и вторичным линейным напряжением, как в трансформаторе звезда-треугольник.
Рисунок 7: Конфигурация «треугольник-звезда»
Помимо четырех основных перестановок существуют еще две конфигурации. Эти другие являются продуктом изменения первичной обмотки треугольником и звездой. Они включают в себя:
Соединение «открытый треугольник» (V-V)
В этой системе два трансформатора. Соединение V-V вступает в силу, когда один из трансформаторов отключен, но по-прежнему требуется обычная работа нагрузки. Обслуживание будет продолжаться до тех пор, пока не потребуется ремонт или замена установленной в таких случаях.
Эта конфигурация может поддерживать небольшие трехфазные нагрузки, когда установка полного блока трехфазных трансформаторов не требуется. Его пропускная способность составляет 57,7% от полного соединения треугольник-треугольник.
Соединение Scott-T (T-T)
В этой системе обмотки трехфазного трансформатора используются два трансформатора. У одного есть центральные отводы на первичной и вторичной обмотках, известный как главный трансформатор. Другой трансформатор, называемый тизерным трансформатором, имеет отвод 0,87. Тизерный трансформатор работает при 87% номинального напряжения.
Используется при соединении трехфазной системы с двухфазной. Питание электрической печи, работающей от двухфазной системы, является типичным применением соединения Т-Т.
Соединение треугольником высокой ветви
Соединение треугольником высокой ветви происходит, когда вторичная сторона, соединенная треугольником, имеет отвод от центра; затем этот кран соединяется с землей. Такая конфигурация обеспечивает 3-фазное питание (соединение треугольником) и 1-фазное питание.
Это соединение используется как в коммерческих, так и в жилых системах распределения. Потребители могут получать 240 В (линейное напряжение) для больших машин или 120 В (фазное напряжение) для меньшего оборудования или освещения, не требуя дополнительного трансформатора.
Применение трехфазных трансформаторов
Трехфазные трансформаторы — это универсальные машины, которые находят применение во многих областях. Некоторые из наиболее распространенных применений включают:
- В процессах производства и передачи электроэнергии используются трехфазные трансформаторы.
- Трехфазные трансформаторы могут повышать/понижать напряжение во многих отраслях промышленности. Эти трансформаторы широко используются в горнодобывающей, полиграфической, текстильной, лифтовой, промышленной автоматизации и нефтехимии, а также в некоторых других областях.
- Поскольку трехфазный трансформатор может исключить шум и высокочастотные импульсные помехи из своей внутренней связи, они необходимы при изготовлении прецизионных станков. Присутствует в мощных промышленных системах нагрузки, таких как электроприводы и выпрямители, а также в другом оборудовании.
Часто задаваемые вопросы
Может ли трехфазный трансформатор использовать однофазный источник для подачи трехфазного питания?
Невозможно преобразовать однофазные входные напряжения для подачи трехфазной мощности на выходе трансформатора. Фазосдвигающие машины или фазопреобразователи типа конденсаторов и реакторов необходимы при преобразовании однофазной системы в трехфазную.