- Мощность одной секции чугунного радиатора отопления квт: таблица
- Расчет количества секций биметаллического радиатора
- Расчет количества секций радиаторов отопления
- Сколько секций батарей на 1 кв метр. Расчетная роль потолка и пола. Способы расчета количества секций батареи.
- Расчет исходя из площади помещения
- Особенности проведения расчетов
- Порядок расчета мощности радиаторов отопления
- Необходимая величина тепловой мощности радиатора
- Расчет радиаторов отопления по площади
- Как посчитать секции радиатора по объему помещения
- Корректировка результатов
- Расчет разных типов радиаторов
- Корректировка в зависимости от режима отопительной системы
- Зависимость мощности радиаторов от подключения и места расположения
- Определение количества радиаторов для однотрубных систем
- Итоги
- Расчет количества секций радиаторов отопления: разбор 3-х различных подходов + примеры
- Расчет радиаторов отопления в доме
- Расчет радиаторов отопления
- Расчет количества секций радиаторов отопления
- Калькулятор расчета количества секций радиаторов отопления: делаем правильный расчет количества секций на комнату
- Системы охлаждения трансформатора и объяснение методов
- Что такое нагреватели PTC? | GMN
- Нагрузочные банки, устанавливаемые на радиатор | ASCO Power Technologies
- | ASCO Power Technologies
- 5200-2083-005
- Подстанция трансформаторы-блочные и открытого типа
- Krenz & Company — F26H
Мощность одной секции чугунного радиатора отопления квт: таблица
Чугунные радиаторы до сих пор являются одним из самых распространённых средств отопления в отечественных квартирах. Их заслуженно можно назвать ветеранами отопительного фронта – ведь этот вид обогревающих устройств был изобретён ещё в 1857 году французским учёным Францем Сан-Галли. С тех пор они широко используются для обогрева помещений и до сих пор остаются актуальными.
Такая популярность чугунных батарей объясняется очень просто – они удобны, эффективны и стоимость их невысока.
Читайте также: Чугунная батарея вес одной секции?
Рассмотрим подробнее их преимущества перед другими типами обогревающих приборов:
- Высокая теплопередача – они очень эффективно отдают тепло, обогревая помещение;
- Долговечность – изделия такого типа могут служить до 100 лет;
- Нетребовательность к условиям эксплуатации;
- Нетребовательность к качеству теплоносителя;
- Низкое гидравлическое сопротивление – внутренняя поверхность не создаёт излишнего трения при движении жидкости. Поэтому нет необходимости в принудительной циркуляции;
- Стойкость к образованию коррозии.
Однако радиаторы из чугуна имеют и ряд недостатков:
- Очень высокая хрупкость, что усложняет их транспортировку и монтаж. Достаточно одного удара для того, чтобы появилась трещина;
- Очень большая масса – чугун является очень тяжёлым материалом, что создаёт сложности при транспортировке изделий и их монтаже. Необходим расчёт прочности стены, куда монтируется прибор – если она сможет справиться с нагрузкой, нужно проектировать дополнительные напольные крепления;
- Неэстетичный внешний вид – как правило, отечественные изделия выглядят очень непривлекательно, рёбра имеют зернистую поверхность и их сложно органично вписать в хорошо оформленный интерьер;
- Неудобство ухода – сложная конфигурация становится причиной скоплений пыли в труднодоступных местах, из которых её сложно удалять.
Необходимо заметить, что чугунные радиаторы нагревают не только методом конвекции, но и лучевым методом, нагревая приборы вблизи себя – они в свою очередь нагревают пространство вокруг.
Принцип действия чугунных радиаторов
Принцип действия изделий этого типа достаточно несложен. Прибор состоит из отдельных частей с внутренними каналами – они соединяются между собой с помощью ниппелей и прокладок из резины или паронита. Секции располагаются вертикально для увеличения теплоотдачи.
Радиатор подключается к системе отопления, в которой циркулирует горячий теплоноситель – чаще всего вода. Теплоноситель, циркулируя по каналам внутри радиатора, нагревает его. А радиатор в свою очередь нагревает помещение, в котором он установлен.
Такие изделия являются очень инертными – они крайне медленно нагреваются, что является существенным недостатком. Однако, вследствие той же инертности, они очень медленно остывают, что является неоспоримым достоинством. Поэтому нет никакого смысла устанавливать на них регуляторы температуры – они будут попросту бесполезны.
Как упоминалось выше, чугун очень нетребователен к качеству теплоносителя – это очень актуально в наших условиях, где жидкость в системе может в себе нести камешки, куски окалины, ржавчину и другие мелкие посторонние предметы. Всё это никак не влияет на срок службы батарей – может немного истираться внутренняя поверхность, но это совершенно несущественно.
Расчёт мощности чугунных радиаторов
Самым главным показателем эффективности работы батарей отопления считается мощность или тепловой поток – она характеризует способность прибора обогреть помещение данного объёма.
Для того, чтобы паспортная мощность изделия соответствовала реальной, необходимо разницу между температурой нагревающей жидкости в магистрали и температурой обогреваемого помещения не более 50 градусов Цельсия.
Некоторые указывают мощность для разницы температур в 70 градусов Цельсия, но это не корректно, поскольку не всегда представляется возможность обеспечить такую разницу.Мощность чугунных радиаторов измеряется в киловаттах (кВт) и она зависит от их размеров. Конструкция чугунных батарей состоит из отдельных секций, поэтому определение мощности зависит от её величины для одной секции.
В зависимости от марки батарей, размеры одной секции могут различаться, соответственно, показатель теплового потока тоже может быть разным. Нижеприведённая таблица даёт некоторое представление о характеристиках одной секции для разных марок батарей отопления из чугуна.
Сравнение характеристик одной секции у различных марок чугунных батарей отопления
В приведённой таблице мы видим, что тепловой поток секции батарей из чугуна может колебаться в пределах от 0,12 кВт до 0,16 кВт.
Читайте также: Секции чугунной батареи отопления, как уменьшить количество?
Зная эту величину, мы можем рассчитать, сколько секций понадобится для радиатора отопления, чтобы обогреть помещение заданного объёма.
- Для начала необходимо вычислить объём комнаты – для этого умножаем её длину на ширину и на высоту;
- Нужно определиться с тем, какая мощность необходима для обогрева 1 м3 нашего помещения. Существуют нормы теплового потока для зданий заданного типа:
- Для зданий панельного типа – 0,041 кВт на м3;
- Для домов из кирпича с теплоизоляцией стен и стеклопакетами на окнах – 0,034 кВт на м3;
- Для зданий, возведённых с соблюдением современных требований – 0,020 034 кВт на м3.
- Умножаем величину теплового потока, который нужен для обогрева одного кубического метра, на объём нашего помещения. Найденная величина будет мощностью, которая требуется на обогрев всей комнаты;
- Определяем тип батареи отопления и, сверяясь с таблицей, узнаём величину теплового потока одной его секции;
- Значение мощности, необходимой на обогрев заданного помещения, делим на мощность одной секции. Полученная величина будет количеством секций чугунного радиатора, которое необходимо для обогрева комнаты заданного типа и объёма.
Заключение
Устанавливая в своём доме чугунные батареи, следует с максимальной точностью рассчитать их необходимую мощность и в зависимости от этого выбирать необходимое количество секций. Если расчётами пренебречь, есть риск, что отопление жилья будет недостаточно эффективным. Это существенно понижает уровень комфорта в доме, что, согласитесь, довольно неприятно. Лучше потратить время и силы на то, чтобы в вашем доме царили тепло и уют.
Расчет количества секций биметаллического радиатора
Выбирая радиатор отопления очень важно сразу правильно рассчитать необходимое количество секций. Это создаст в помещении полный комфорт и не нужно будет вносить изменения в систему обогрева.
Выбор приборов отопления достаточно большой, и каждый найдет среди устройств те, которые соответствуют параметрам помещения.
Почему именно биметаллические батареи
Многие потребители ищут формулу, как рассчитать количество секций биметаллического радиатора. Спрос на модели из биметалла достаточно высокий, на это есть немало причин:
- Универсальность. Модели из биметалла подходят для частных домов, квартир в многоэтажных домах, коммерческих объектов. Они выдерживают любую нагрузку и отличаются надежностью.
- Устойчивость к коррозии.
- Превосходная работа на любом теплоносителе.
- Стильный минималистичный дизайн. Такие батареи гармонируют с любыми интерьерами.
- Большой выбор конструкций. Есть возможность купить цельную батарею или приобрести определенное количество секций.
- Хорошая теплоотдача.
Все преимущества таких радиаторов перечислить сразу сложно – это займет немало времени. Основные достоинства биметаллических батарей: надежность, высокое качество, универсальность.
Базовый расчет
Покупая секции поштучно, можно собрать конструкцию нужной мощности. Такая батарея будет полностью отвечать потребностям объекта. Существует базовая формула для расчета нужного количества секций, она применяется в 90% случаев. Именно по ней часто подбирают радиаторы для квартир, частных домов, офисов.
Формула выглядит так:
W = 100 * S / P
В этом расчете S является площадью помещения, а P – мощностью отдельно взятой секции. Число 100 остается неизменным, это количество Вт на 1 м2 площади территории. W – это число секций. Мощность отдельной секции зависит от особенностей конфигурации и составляет 100-200 Вт. Эту информацию надо уточнять в документации к радиатору.
При расчете вычисления производятся последовательно: сначала умножение площади помещения на 100, потом – деление на мощность одной секции. Полученный результат округляется, обычно округление производится в большую сторону, чтобы в помещении было комфортно даже при резком падении температуры.
Эта формула имеет несколько нюансов, поэтому ее нельзя применять везде. Например, подразумевается, что в средней квартире высота потолка не превышает 3 м. Формула работает, если высота потолков в жилище – от 2,2 до 3,0 м. На объектах, которые отличаются по параметрам, требуется другой расчет. Также указанная формула грешит неточностями – она довольно приблизительная. Чтобы вычислить точно необходимое количество тепла, нужно принять во внимание еще множество параметров.
Устанавливая секции в квартире, частном доме, офисе, рекомендуется использовать несколько батарей. Например, если для отопления требуется 18 секций, то лучше поставить 2 радиатора по 9 секций или три по 6.
Формула для расчета по объему
Как рассчитать количество секций биметаллического радиатора, если высота потолков довольно большая? Для таких случаев придумана специальная формула. Если на объекте потолки выше 2,6 м, можно использовать следующий вид расчетов:
S * H * 41 / P
Батарея подбирается с учетом произведения площади помещения на высоту (S*H). Далее полученное число делится на число 41, если речь идет о панельном доме. Для дома из кирпича можно использовать число 38 – именно сколько Вт нужно на обогрев 1 м3 в доме из более теплого материала. Число P – это мощность секции радиатора.
Если в помещении установлены герметичные пластиковые стеклопакеты, то можно вместо 41 и 38 Вт использовать 34 Вт. Однако этот параметр весьма условный, лучше проконсультироваться со специалистом.
Когда нужна повышенная точность
Для экономии тепла и максимального комфорта требуется повышенная точность при расчетах. Здесь можно применять формулу:
100 * S * ((K1 + K2 + K3 + K4 + K5 + K6 + K7)/7) / P
Число 100 отражает необходимое количество Вт на 1 м2 помещения. Здесь не идет речь о промышленных площадках, которые требуют расчета тепла на 1 м3, но высота потолков отражена в коэффициенте. S – это площадь объекта, для которого производится расчет. Далее учитывается множество различных коэффициентов:
- поправка на остекление;
- поправка на теплоизоляцию стен на объекте;
- соотношение точность площади стеклопакетов к площади пола в квартире, офисе;
- учет самой холодной температуры;
- количество наружных стен;
- учет типа помещения;
- высота потолка.
Число 7, вынесенное за скобки, обозначает количество коэффициентов, которые были перечислены выше. Вместо P надо вставить значение мощности одной секции. С учетом коэффициентов обычно получается больше секций, чем без дополнительных данных. Зная значение поправок, можно выбрать оптимальный радиатор отопления.
Остекление и теплоизоляция
При проведении точных расчетов по формуле учитываю поправку на остекление теплоизоляцию стен. Если на объекте установлено обычно двойное стекло, то значение поправки будет 1,27. При герметичном двойном стеклопакете параметр К1 равен 1,0. Если установлен тройной герметичный стеклопакет, то К1 равен 0,85. При увеличении количества стекол в стеклопакете параметр снижают на 0,25 пунктов.
Теплоизоляция стен тоже имеет значение, она отражена в коэффициенте К2. При стандартной теплоизоляции помещение плохо защищено от холода, в этом случае параметр составляет 1,27. Улучшенная теплоизоляция в квартире или доме позволяет использовать коэффициент 1,0. Если использована отличная изоляция, то К2 составит 0,85.
Еще один важный пункт – К3. В нем отражено соотношение площади окон к площади пола. Известно, что стекло лучше пропускает холод, чем стена. В квартирах и офисах с большими окнами требуется более мощный обогрев. Когда площадь окон составляет около 40% от площади пола, можно использовать коэффициент 1,1. Далее при снижении площади на каждые 10% параметр уменьшается на 0,1%.
Температура, тип помещения, высота потолков
При выборе радиатора для дома или офиса было бы ошибкой не учитывать климатическую зону, а точнее – наиболее низкую температуру в самый холодный месяц. Если температура опускается до -35, надо использовать коэффициент 1,5. При повышении температуры на 5 градусов параметр К4 можно уменьшать на 0,2. Если температура падает, то коэффициент, наоборот, увеличивается на 0,2.
Также принимается в расчет тип помещения, в котором используется батарея. Если это отапливаемое жилое помещение, то используется параметр 0,8. Коэффициент К6 для неотапливаемых чердаков – 1,0.
К5 обозначает количество наружных стен. Чем больше стен, тем больше «мостиков холода». Если это только одна наружная стенка, то применяется коэффициент 1,1, если четыре – то уже 1,4. Важно обязательно учитывать этот нюанс, чтобы в помещении не было холодно.
Имеет значение и высота потолков в квартире, офисе. Для объектов с высотой потолков 2,5 м используется параметр 1,0. При увеличении высоты на 5 метров коэффициент растет на 0,05. Этого достаточно, чтобы можно было обогреть территорию. Высота потолков прописывается в параметре К7. При расчетах надо обязательно учесть мощность секции радиатора – она может быть разной.
Также можно просто доверить расчет специалистам – они точно не ошибутся и подберут оптимальный по мощности радиатор.
Расчет количества секций радиаторов отопления
Для климатической зоны Украины уже давно рассчитана потребляемая тепловая мощность при стандартных условиях. Стандартные условия подразумевают: комнату с одным окном (обычным), одной дверью, одной внешней стеною. Для одного кубического метра такой жилплощади принято брать 41 Вт тепловой мощности. Исходя из этих данных не трудно рассчитать необходимое количество секций радиатора, зная его тепловую мощность.
Для примера, можно взять комнату 5 на 6 м и со стандартной высотою потолка, которая равна 2,7 м. Сначала надо рассчитать обьем помещения. Итак 5*6*2,7= 81 м3. Не стоит забывать, что если входная дверь в комнату выполнена в виде арки, которая не закривается, к обьему комнаты обьязательно следует додать обьем соседнего помещения. Когда обьем Вам известен, умножаем его на 41 Ватт: 81 * 41 = 3321. Полученное число, это и есть тепловая энергия, необходимая для обогрева нашего помещения.
Если Вы уже решили, какие радиаторы будете использовать и Вам известна их тепловая мощность, довольно просто рассчитать количество секций. Также можно отталкиваться от желанного колличества секций, манипулируюя их тепловой мощностью. Для примера возьмем радиаторы отопления с тепловой отдачей 1 секции равной 200 Ватт. Обьем комнаты разделяем на мощность 1 секции: 3321 / 200 = 16.605. Полученное число округляем до большего, итак для обогрева нашего помещения нам понадобится 17 секций радиатора отопления, мощностью 200 Ватт каждая. Если у Вас установлены чугунные батареи с межосевим расстоянием 600 мм, и температура в помещении Вас устраивает, но Вы хотите заменить их на новые радиаторы, можно рассчитать необходимое количество секций новых батарей. Теплоотдача одной секции такой чугунной батареи составляет 150 Ватт. Соответственно 150 умножаем на количество установленных у Вас секций и получаем число тепловой энергии отопления вашего помещения. Отталкиваясь от этого числа находим выше описаным способом количество секций новых радиаторов.
Этот нехитрый расчет произведен за условия, что температура теплоносителя не ниже 70 C. Если температура теплоносителя ниже, стоит увеличить число секций радиатора. Также, при рассчетах, необходимо учесть тепловие потери помещения. Установка стеклопакета уменьшит теплопотери на 15-20%, а установка декоративной панели, закрывающей радиатор, уменьшит теплоотдачу радиатора на 20-30%. Также стоит учитывать расположение Вашей комнаты — угловая или нет, первый или последний этаж, а также степень утепления стен.
Сколько секций батарей на 1 кв метр. Расчетная роль потолка и пола. Способы расчета количества секций батареи.
Для каждого хозяина дома очень важно осуществить правильный расчет радиаторов отопления. Недостаточное количество секций будет способствовать тому, что радиаторы не смогут обогреть помещение наиболее эффективным и оптимальным образом. Если же приобрести радиаторы, обладающие слишком большим количеством секций, то отопительная система будет весьма неэкономичной, используя лишнюю мощность радиаторов отопления.
Если вам необходимо сменить отопительную систему или установить новую, то расчет количества секций радиаторов отопления будет играть очень важную роль. Если помещения в вашем доме или квартире стандартного типа, то подойдут и более простые расчеты. Однако иногда для получения наиболее высокого результата необходимо соблюдать кое-какие особенности и нюансы, касающиеся таких параметров, как мощность радиатора отопления на помещение и давление в батареях отопления.
Расчет исходя из площади помещения
Разберемся, как рассчитать батареи отопления. Ориентируясь на такие параметры, как общая площадь помещения, можно осуществить предварительный расчет батарей отопления на площадь. Данное вычисление довольно простое. Однако если у вас в помещении высокие потолки, то его за основу брать нельзя. На каждый квадратный метр площади потребуется около 100 ватт мощности в час. Таким образом, расчет секций батарей отопления позволит вычислить, какое количество тепла понадобится для обогрева всего помещения.
Как рассчитать количество радиаторов отопления? К примеру, площадь нашего помещения составляет 25 кв. метров. Умножаем общую площадь помещения на 100 ватт и получаем мощность батареи отопления в 2500 ватт. То есть 2,5 кВатт в час необходимо для обогрева помещения с площадью в 25 кв. метров. Полученный результат делим на значение тепла, которое способна выделить одна секция отопительного радиатора. К примеру, в документации отопительного прибора указано, что одна секция выделяет в час 180 Ватт тепла.
Таким образом, расчет мощности радиаторов отопления будет выглядеть так: 2500 Вт / 180 Вт = 13,88. Полученный результат округляем и получаем цифру 14. Значит, для обогрева помещения в 25 кв. метров потребуется радиатор с 14 секциями.
Также потребуется учесть различные тепловые потери. Комната, которая находится в углу дома, или комната с балконом будет нагреваться медленнее, а также быстрее отдавать тепло. В таком случае, расчет теплоотдачи радиатора батарей отопления должен производиться с некоторым запасом. Желательно, чтобы такой запас составлял около 20%.
Расчет батарей отопления может быть произведен и с учетом объема помещения. В таком случае, не только общая площадь помещения играет роль, но также и высота потолков. Как рассчитать радиаторы отопления? Расчет производится примерно по такому же принципу, как и в предыдущей ситуации. Для начала необходимо выявить, какое количество тепла понадобится, а также — как рассчитать количество батарей отопления и их секций.
Например, необходимо вычислить нужно количество тепла для комнаты, которая обладает площадью в 20 кв. метров, а высота потолков в ней составляет 3 метра. Умножаем 20 кв. метров на 3 метра высоты и получим 60 кубических метров общего объема помещения. На каждый кубометр необходимо около 41 Вт тепла – так говорят данные и рекомендации СНИП.
Производим расчет мощности батарей отопления дальше. Умножаем 60 кв. метров на 41 Вт и получаем 2460 Вт. Также делим эту цифру на ту тепловую мощность, которую излучает одна секция радиатора отопления. Например, в документации отопительного прибора указано, что одна секция выделяет в час около 170 Вт тепла.
2460 Вт делим на 170 Вт и получим цифру 14,47. Ее мы тоже округляем, таким образом, для обогрева помещения с объемом в 60 кубометров, понадобится 15-секционный радиатор отопления.
Можно сделать наиболее точный расчет количества радиаторов отопления. Такое может понадобиться для частных домов с нестандартными помещениями и комнатами.
КТ = 100Вт/кв.м. х П х К1 х К2 х К3 х К4 х К5 х К6 х К7
Кт – это количество тепла, которое необходимо для определенного помещения;
П – общая площадь помещения;
К1 – это коэффициент, который учитывает, насколько остеклены проемы для окон.
Если окно с простым остеклением двойного типа, то кф. составляет 1.27.
Для окна со стеклопакетом двойного типа – 1.00.
Для тройного стеклопакета кф. составляет 0.87.
К2 – это кф. стеновой теплоизоляции.
Если теплоизоляция довольно низкая, то берется кф. в 1.27.
Для хорошей теплоизоляции – кф. = 1.0.
Для отличной теплоизоляции кф. равен 0.85.
К3 – это соотношение площади пола и площади окон в комнате.
Для 50% он будет равен 1,2.
Для 40% — 1,1.
Для 30% — 1.0.
Для 20% — 0.9.
Для 10% — 0.8.
К4 – это кф., учитывающий среднюю температуру в помещении во время самой холодной недели в году.
Для температуры в -35 градусов он будет равен значению 1,5.
Для -25 – кф. = 1.3.
Для -20 – 1.1.
Для -15 – 0.9.
Для -10 – 0.7.
К5 – это коэффициент, который поможет выявить потребность тепла с учетом того, сколько наружных стен есть у помещения.
Для помещения с одной стеной кф. составляет 1.1.
Две стены – 1.2.
Три стены 1.3.
К6 – учитывает тип помещений, которые расположены над нашим помещением.
Если чердак не отапливается, то он составляет 1.0.
Если чердак отапливается, то кф. равен 0.9.
Если выше расположено жилое помещение, которое отапливается, то за основу берется кф. в 0.7.
К7 – это учет высоты потолков в помещении.
Для высоты потолков в 2,5м, кф. будет равен 1,0.
При высоте потолков в 3 метра кф. равен 1,05.
Если высота потолков составляет 3,5 метра, то берется за основу кф. в 1,1.
При 4 метрах – 1,15.
Результат, вычисленный по данной формуле, необходимо разделить на тепло, которое выдает одна секция радиатора отопления, и округлить результат, который мы получили.
Чтобы отопительная система работала эффективно, мало просто расставить батареи по комнатам. Нужно обязательно рассчитать их количество, с учетом площади и объема помещений и мощности печи или котла. Немаловажно учесть и вид батареи.
На сегодняшний день
промышленностью производится несколько видов радиаторов, которые выполняются из разных материалов, имеют различные формы и, конечно же, характеристики. Для эффективности обогрева дома, покупая их, нужно учесть все минусы и плюсы моделей, представленных на рынке.Каждому владельцу недвижимости хотелось бы, не обращаясь к специалистам, знать, как рассчитать количество радиаторов отопления самостоятельно, для конкретного жилища.
Калькулятор расчета количества секций радиатора отопления
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках
Установите ползунком значение площади помещения, м²
100 Вт на кв. м
Сколько внешних стен в помещении?
Одна две три четыре
В какую сторону света смотрят внешние стены
Север, Северо-Восток, Восток Юг, Юго-Запад, Запад
Укажите степень утепленности внешних стен
Внешние стены не утеплены Средняя степень утепления Внешние стены имеют качественное утепление
Укажите среднюю температуру воздуха в регионе в самую холодную декаду года
35 °С и ниже от — 25 °С до — 35 °С до — 20 °С до — 15 °С не ниже — 10 °С
Укажите высоту потолка в помещении
До 2,7 м 2,8 ÷ 3,0 м 3,1 ÷ 3,5 м 3,6 ÷ 4,0 м более 4,1 м
Что располагается над помещением?
Холодный чердак или неотапливаемое и не утепленное помещение утепленные чердак или иное помещение отапливаемое помещение
Укажите тип установленных окон
Обычные деревянные рамы с двойным остеклением Окна с однокамерным (2 стекла) стеклопакетом Окна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением
Укажите количество окон в помещении
Укажите высоту окна, м
Укажите ширину окна, м
Выберите схему подключения батарей
Укажите особенности установки радиаторов
Радиатор располжен открыто на стене или не прикрыт подоконником Радиатор полностью прикрыт сверху подоконником или полкой Радиатор установлен в стеновой нише Радиатор частично прикрыт фронтальным декоративным экраном Радиатор полностью закрыт декоративным кожухом
Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым
Введите паспортную тепловую мощность одной секции выбранной модели радиатора
Виды радиаторовВ продаже присутствуют как всем уже знакомые чугунные виды батарей, но значительно усовершенствованные, так и современные экземпляры, выполненные из алюминия, стали и, так называемые , биметаллические радиаторы.
Современные варианты батарей изготавливаются в разнообразных дизайнерских решениях, и имеют многочисленные оттенки и цвета, поэтому можно легко выбрать те модели, которые больше подходят для конкретного интерьера. Однако, нельзя забывать и о технических характеристиках приборов.
Но есть у них и слабая сторона — приемлемы они только для систем отопления с достаточно высоким давлением, а значит , для строений, подключенных к центральному отоплению. Для зданий с автономным отопительным снабжением они не подходят и от них лучше отказаться.
- Стоит поговорить и о чугунных радиаторах. Несмотря на их большой «исторический стаж», они не теряют своей востребованности. Тем более, что сегодня можно приобрести чугунные варианты, выполненные в различном дизайне, и их легко можно подобрать для любого дизайнерского оформления. Более того, производятся такие радиаторы, которые вполне могут стать дополнением или даже украшением помещения.
Эти батареи подойдут как для автономного, так и для центрального отопления, и под любой теплоноситель. Они дольше, чем биметаллические прогреваются, но и более длительное время остывают, что способствует большей теплоотдаче и сохранению тепла в помещении. Единственным условием долгосрочной их эксплуатации является качественный монтаж при установке.
Трубчатые варианты более дорогостоящие, они нагреваются медленнее панельных, и, соответственно, дольше сохраняют температуру.
Панельные — быстро нагревающиеся батареи. Они намного дешевле трубчатых по цене, тоже неплохо обогревают комнаты, но в процессе их быстрого остывания, выхолаживается и помещение. Поэтому эти батареи в автономном отоплении не экономичны, так как требуют практически постоянного притока тепловой энергии.
Эти характеристики обоих типов стальных батарей и будут напрямую влиять на количество точек их размещения.
Стальные радиаторы имеют респектабельный вид, поэтому неплохо вписываются в любой стиль оформления помещения. Они не собирают на своей поверхности пыль и легко приводятся в порядок.
Но, приобретая их, необходимо учитывать один их недостаток — это требовательность алюминия к качеству теплоносителя, поэтому они больше подходят только для автономного отопления.
Для того, чтобы рассчитать, сколько радиаторов понадобится на каждую из комнат, придется учесть многие нюансы, как связанные с характеристиками батарей, так и другие, влияющие на сохранность тепла в помещениях.
Проведение расчетов количества секцийЧтобы теплоотдача и нагревательная эффективность была должного уровня, при расчете размера радиаторов нужно учесть нормативы их установки, а отнюдь не опираться на размеры оконных проемов , под которыми они устанавливаются.
На теплоотдачу влияет не ее размер, а мощность каждой отдельной секции, которые собраны в один радиатор. Поэтому лучшим вариантом будет разместить несколько небольших батарей, распределив их по комнате, нежели одну большую. Это можно объяснить тем, что тепло будет поступать в помещение из разных точек и равномерно прогревать его.
Каждое отдельное помещение имеет свою площадь и объем , от этих параметров и будет зависеть расчет количества секций, устанавливаемых в нем .
Расчет на основании площади помещения
Узнать нужную мощность для обогрева помещения можно, умножив на 100 Вт размер его площади (в квадратных метрах).
- На 20% увеличивают мощность радиатора в том случае, если две стены помещения выходят на улицу, и в нем находится одно окно — это может быть торцевая комната.
- На 30% придется увеличить мощность, если комната имеет те же характеристики, как в предыдущем случае, но в ней устроено два окна.
- Если же окно или окна комнаты выходят на северо-восток или север, а значит , в ней бывает минимальное количество солнечного света, мощность нужно увеличить еще на 10%.
- Устанавливаемый радиатор в нишу под окном, имеет сниженную теплоотдачу, в этом случае придется увеличить мощность еще на 5%.
- Если радиатор закрывается экраном в эстетических целях, то снижается теплоотдача на 15%, и ее также нужно восполнить, увеличив мощность на эту величину.
Экраны на радиаторах — это красиво, но они заберут до 15% мощности
Удельная мощность секции радиатора обязательно указывается в паспорте, который производитель прилагает к изделию.
Зная эти требования, можно рассчитать необходимое количество секций, разделив полученное суммарное значение требуемой тепловой мощности с учетом всех указанных компенсирующих поправок, на удельную теплоотдачу одной секции батареи.
Полученный результат расчетов округляется до целого числа, но только в большую сторону. Допустим, получилось восемь секций. И тут, возвращаясь к вышесказанному, нужно отметить, что для лучшего обогрева и распределения тепла, радиатор можно разделить на две части, по четыре секции каждая, которые устанавливают в разных местах помещения.
Нужно отметить, что такие расчеты подходят для определения количества секций для помещений, оснащенных центральным отоплением, теплоноситель в котором имеет температуру не больше 70 градусов.
Этот расчет считается достаточно точным , но можно произвести расчет и по-другому.
Расчет радиаторов, исходя из объема помещения
- Стандартом считается соотношение тепловой мощности в 41 Вт на 1 куб. метр объема помещения, при условии нахождения в нем одной двери, окна и внешней стены.
Чтобы результат был виден наглядно, для примера можно рассчитать нужное количество батарей для комнаты площадью 16 кв. м.и потолком, высотой 2 ,5 метра:
16 × 2,5= 40 куб .м .
41 × 40=1640 Вт.
Зная теплоотдачу одной секции (ее указывают в паспорте), можно без труда определить количество батарей. Например, теплоотдача равна 170 Вт, и идет следующий расчет :
1640 / 170 = 9,6.
После округления получается цифра 10 — это и будет нужное количество секций отопительных элементов на комнату.
- Если комната соединяется с соседним помещением проемом , не имеющим двери, то необходимо считать общую площадь двух комнат, только тогда будет выявлена точное количество батарей для эффективности отопления.
- Если теплоноситель имеет температуру ниже 70 градусов, количество секций в батареи придется пропорционально увеличить.
- При установленных в комнате стеклопакетах, значительно снижаются тепловые потери, поэтому и количество секций в каждом радиаторе может быть меньше.
- Если в помещениях установлены старые чугунные батареи, которые вполне справлялись с созданием нужного микроклимата, но есть планы поменять их на какие-то современные, то посчитать, сколько их понадобится, будет очень просто.Одна чугунная секция имеет постоянную теплоотдачу в 150 Вт. Поэтому количество установленных чугунных секций нужно умножить на 150, а полученное число делится на теплоотдачу, указанную на секции новых батарей.
Видео-советы специалистов — как выбрать и рассчитать радиаторы отопления
Если вы не рассчитываете на свои силы, можно обратиться к специалистам, которые произведут точный расчет и сделают анализ с учетом всех параметров:
- особенности погодных условий региона, где расположено строение;
- температурные климатические показатели на на чало и окончание отопительного сезона;
- материал, из которого возведено строение и наличие качественного утепления;
- количество окон и материал, из которого изготовлены рамы;
- высота отапливаемых помещений;
- эффективность установленной системы отопления.
Зная все вышеперечисленные параметры, специалисты-теплотехники по имеющейся у них программе расчёта с легкостью высчитают нужное количество батарей. Такой просчет с учетом всех нюансов вашего дома гарантированно сделает его уютным и теплым .
1.
2.
3.
Когда проектируется система теплоснабжения для частного дома или квартиры, расположенной в новостройке, необходимо знать, как рассчитать мощность радиаторов отопления, чтобы определить требуемое количество секций для каждой комнаты и подсобных помещений. В статье приводится несколько несложных вариантов вычислений.
Особенности проведения расчетов
Расчет мощности радиатора отопления сопряжен с рядом проблем. Дело в том, что на протяжении отопительного сезона температура за окном постоянно меняется, а соответственно отличаются потери тепла. Так при 30 градусах мороза и сильном северном ветре, они будут гораздо больше, чем при — 5 градусах, да еще при безветренной погоде.Многих владельцев недвижимости волнует, что неправильно рассчитанная тепловая мощность радиаторов отопления может привести к тому, что в морозы в доме будет холодно, а в теплую погоду придется держать нараспашку форточки целый день и таким образом отапливать улицу (детальнее: » «).
Однако имеется понятие, которое называется температурный график. Благодаря чему температура теплоносителя в отопительной системе меняется в зависимости от погоды на улице. По мере того, как будет расти температура воздуха на улице, повышается теплоотдача каждой из секций батареи. А раз так, то относительно любого отопительного оборудования можно говорить о средней величине теплоотдачи.
Что касается жильцов частных домовладений, то после установки современного электрического или газового теплоагрегата или отопления с применением тепловых насосов они не должны волноваться о том, какую температуру имеет теплоноситель, циркулирующий в контуре отопительной конструкции.
Созданное с применением новейших технологий тепловое оборудование позволяет управлять им при помощи термостатов и корректировать мощность батарей в соответствии с потребностями. Наличие современного котла не требует контроля над температурой теплоносителя, но, чтобы установить радиаторы отопления расчет мощности все равно потребуется.
Порядок расчета мощности радиаторов отопления
Все расчеты, связанные с обустройством отопительной конструкции, неразрывно связаны с таким понятием как тепловая мощность. Вариантов как рассчитать мощность радиатора отопления существует несколько. При этом следует отметить, что у приборов от известных и хорошо себя зарекомендовавших производителей данный параметр всегда указывается в прилагаемых к ним документах (прочитайте также: » «).Чтобы выполнить расчет биметаллических отопительных радиаторов или чугунных батарей, исходя из тепловой мощности, необходимо разделить требуемое количество тепла на величину 0,2 КВт. В результате будет получено количество секций, которые нужно приобрести, чтобы обеспечить обогрев комнаты (детальнее: » «).
Если чугунные радиаторы (см. фото) не имеют промывочных кранов специалисты рекомендуют принимать в расчет 130-150 ватт на каждую секцию, учитывая . Даже когда они первоначально отдают тепла больше, чем требуется, появившиеся в них загрязнения понизят теплоотдачу.
Как показала практика, батареи желательно монтировать с запасом около 20%. Дело в том, что при наступлении экстремальных холодов чрезмерной жары в доме не будет. Также поможет бороться с повышенной теплоотдачей дроссель на подводке. Покупка лишних нескольких секций и регулятора не сильно отразится на семейном бюджете, а тепло в доме в морозы будет обеспечено.
Необходимая величина тепловой мощности радиатора
При расчете отопительной батареи непременно нужно знать требуемую тепловую мощность, чтобы в доме было комфортно жить. Как рассчитать мощность радиатора отопления или других отопительных приборов для теплоснабжения квартиры или дома, интересует многих потребителей.- Способ согласно СНиП предполагает, что на один «квадрат» площади требуется 100 ватт.
Но в данном случае следует учитывать ряд нюансов:
— теплопотери зависят от качества теплоизоляции. Например, для обогрева энергоэффективного дома, оборудованного системой рекуперации тепла со стенами, сделанными из сип-панелей, потребуется тепловая мощность меньше, чем в 2 раза;
— создатели санитарных норм и правил при их разработке ориентировались на стандартную высоту потолка 2,5-2,7 метра, а ведь этот параметр может равняться 3 или 3,5 метра;
— этот вариант, позволяющий рассчитать мощность радиатора отопления и теплоотдачу, верен только при условии примерной температуры 20°C в квартире и на улице — 20°C. Подобная картина типична для населенных пунктов, расположенных в европейской части России. Если дом находится в Якутии, тепла потребуется гораздо больше. - Способ расчета, исходя из объема, не считается сложным. Для каждого кубометра помещения требуется 40 ватт тепловой мощности. Если размеры комнаты составляют 3х5 метра, а высота потолка 3 метра, тогда потребуется 3х5х3х40 = 1800 ватт тепла. И хотя погрешности, связанные с высотой помещений в этом варианте расчетов устранены, он все еще не является точным.
- Уточненный способ расчета по объему с учетом большего количества переменных дает
более реальный результат. Базовым значением остаются все те же 40 ватт на один кубометр объема.
Когда производится уточненный расчет тепловой мощности радиатора и требуемой величины теплоотдачи, следует учитывать, что:
— одна дверь наружу отнимает 200 ватт, а каждое окно — 100 ватт;
— если квартира угловая или торцевая, применяется поправочный коэффициент 1,1 — 1,3 в зависимости от вида материала стен и их толщины;
— для частных домовладений коэффициент составляет 1,5;
— для южных регионов берут коэффициент 0,7 — 0,9, а для Якутии и Чукотки применяют поправку от 1,5 до 2.
В качестве примера для проведения расчета взята угловая комната с одним окном и дверью в частном кирпичном доме размером 3х5 метров с трехметровым потолком на севере России. Средняя температура за окном зимой в январе составляет — 30,4°C.
- определяют объем помещения и требуемую мощность — 3х5х3х40 = 1800 ватт;
- окно и дверь увеличивают результат на 300 ватт, итого получают 2100 ватт;
- с учетом углового расположения и того, что дом частный будет 2100х1,3х1,5 = 4095 ватт;
- прежний итог умножают на региональный коэффициент 4095х1,7 и получают 6962 ватт.
Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.
Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.
Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.
Расчет радиаторов отопления по площади
Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:
- для средней климатической полосы на отопление 1м 2 жилого помещения требуется 60-100Вт;
- для областей выше 60 о требуется 150-200Вт.
Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м 2 , потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.
Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»
Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.
Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.
Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.
Как посчитать секции радиатора по объему помещения
При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:
Рассчитаем все для того же помещения площадью 16м 2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м 3 .
- В панельном доме. Требуемое на отопление тепло 43,2м 3 *41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
- В кирпичном доме. Тепла нужно 43,2м 3 *34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).
Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.
Корректировка результатов
Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.
Окна
На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:
- соотношение площади окна к площади пола:
- 10% — 0,8
- 20% — 0,9
- 30% — 1,0
- 40% — 1,1
- 50% — 1,2
- остекление:
- трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
- обычный двухкамерный стеклопакет — 1,0
- обычные двойные рамы — 1,27.
Стены и кровля
Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.
Степень теплоизоляции:
- кирпичные стены толщиной в два кирпича считаются нормой — 1,0
- недостаточная (отсутствует) — 1,27
- хорошая — 0,8
Наличие наружных стен:
- внутреннее помещение — без потерь, коэффициент 1,0
- одна — 1,1
- две — 1,2
- три — 1,3
На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).
Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.
Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.
Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.
Климатические факторы
Можно внести корректировки в зависимости от средних температур зимой:
- -10 о С и выше — 0,7
- -15 о С — 0,9
- -20 о С — 1,1
- -25 о С — 1,3
- -30 о С — 1,5
Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.
Расчет разных типов радиаторов
Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1л/мин примерно равен мощности в 1кВт (1000Вт).
Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя
Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.
Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.
- алюминиевые — 190Вт
- биметаллические — 185Вт
- чугунные — 145Вт.
Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.
При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м 2 площади. Тогда на помещение 16м 2 нужно: 16м 2 /1,8м 2 =8,88шт. Округляем — нужны 9 секций.
Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:
- биметаллический радиатор — 1,8м 2
- алюминиевый — 1,9-2,0м 2
- чугунный — 1,4-1,5м 2 .
Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.
Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м 2 . Считаем количество секций стандартного размера: 16м 2 /2м 2 =8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.
Корректировка в зависимости от режима отопительной системы
Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90 о С, в обратке — 70 о С (обозначается 90/70) в помещении при этом должно быть 20 о С. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.
Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.
Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м 2 . Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м 2 . Потому нам потребуется 16м 2 /1,5м 2 =10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:
- высокотемпературная 90/70/20- (90+70)/2-20=60 о С;
- низкотемпературный 55/45/20 — (55+45)/2-20=30 о С.
То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м 2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.
При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20 о С а, например, 25 о С просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55 о С. Теперь находим соотношение 60 о С/55 о С=1,1. Чтобы обеспечить температуру в 25 о С нужно 11шт*1,1=12,1шт.
Зависимость мощности радиаторов от подключения и места расположения
Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.
Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.
Определение количества радиаторов для однотрубных систем
Есть еще один очень важный момент: все вышеизложенное справедливо для , когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.
Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.
Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.
Итоги
Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.
Расчет количества радиаторов отопления производят исходя из следующих данных: 41 Ватт тепловой мощности на 1 куб.м. при наличии в помещении по одному: окну, двери, внешней стены, т.е. стандартных условий.
Рассчитаем, например, количество радиаторов для комнаты размерами 3х4 м высотой потолка в 2,7 м. Прежде всего, определим объем комнаты: 3х4х2,7=32,4 м3
Затем найдем тепловую мощность, умножением найденного объема на 41 – 32,4*41 = 1328,4 Ватт. Если, допустим, теплоотдача от одной секции нового радиатора 180 Ватт, можно без труда рассчитать и требуемое количество радиаторов: 1328,4:180 = 6,3 (7 – после округления). Для обогрева выбранного помещения нужно 7 секций радиаторов, каждая по 180 Ватт.
Нужно учитывать следующее: если помещение не закрывается дверью, при расчете суммируют площади самого и соседнего помещений. Этот расчет производится для принятой средней температуры теплоносителя 70˚ С, более низкая температура требует соответственного увеличения количества секций. Если в комнате установлен стеклопакет, то количество секций уменьшается, т.к. он снижает потери тепла, примерно, на 15-20%.
В случае угловой комнаты, ее теплопотери увеличиваются на 20%. На теплопотери, а значит и на количество секций, влияет этажность, степень утепления стен, декоративные панели на радиаторах (только они могут привести к потере теплоотдачи на 20-30%).
Если уже установленные в комнате чугунные батареи необходимо заменить на другой какой-то вид радиаторов, то их количество можно подсчитать очень легко, поскольку у чугунных радиаторов постоянные теплоотдача (150 Вт) и межосевое расстояние (600 мм): количество секций чугунных батарей умножают на 150 Вт и делят на теплоотдачу одной секции нового радиатора. Затем можно сделать необходимые поправки на холод и жару.
Для более точных расчетов используется формула расчета количества радиаторов отопления .
Есть несколько подходов к вычислению количества радиаторов отопления. стандартный, примерный («на глаз»), объемный.
Стандартный
В соответствии со «СНП» на 1 кв.м. нужно 100 Ватт теплоотдачи радиатора отопления. Тогда мощность вычисляют по формуле.
P = мощность одной секции радиатора, S = площадь отапливаемого помещения.
Допустим, что площадь помещения составляет 25 кв.м. а мощность одной секции радиатоpа 180 Ватт, тогда:
25х100:180=13,9, т.е. понадобится 14 секций.
Если помещение угловое или находится в торце, полученное число нужно еще помножить на коэффициент 1,2.
Примерный
Поскольку радиаторы изготавливаются массово, и у них – стандартные размеры, то принято считать, что при высоте потолка в 2,7 м на 1,8 кв.м. нужна одна секция. Скажем, для комнаты площадью 25 кв.м. понадобится – 25:1,8=13,9 т.е. 14 секций. При мощности менее 50Ватт этот способ не рекомендуется применять из-за больших погрешностей.
Объемный
При этом способе расчет ведется на основе объема помещения. Известно, что секция радиатора, имеющая мощность 200 ватт, может обогреть 5 куб.м. Если размеры комнаты будут 4х5х2,7, то 4х5х2,7:5=10,8, т.е. для такой комнаты нужно купить 11 секций мощностью 200 Ватт.
Чтобы при расчете оценить все условия в полном объеме лучше обратиться к специалистам.
Расчет количества секций радиаторов отопления: разбор 3-х различных подходов + примеры
Правильный расчет радиаторов отопления — довольно важная задача для каждого домовладельца. Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечет неоправданно высокие расходы на отопление. Поэтому при замене старой отопительной системы или монтаже новой необходимо знать как рассчитать радиаторы отопления. Для стандартных помещений можно воспользоваться самыми простыми расчетами, однако иногда возникает необходимость учесть различные нюансы, чтобы получить максимально точный результат.
Расчет по площади помещения
Предварительный расчет можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простое вычисление, которое подходит для комнат с низкими потолками (2,40-2,60 м). Согласно строительным нормам для обогрева понадобится 100 Вт тепловой мощности на каждый квадратный метр помещения.
Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м. расчетная тепловая мощность составит 2000 Вт (20 кв.м Х 100 Вт) или 2 кВт.
Правильный расчет радиаторов отопления необходим, чтобы гарантировать достаточное количество тепла в доме
Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять:
2000 Вт / 170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.
Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчетной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.
Расчет радиаторов отопления в доме
Существуют разные методы расчёта количества радиаторов отопления. На это влияют и материал, из которого построено здание, и климатическая зона, где расположен дом, и температура носителя, и особенности теплоотдачи самого радиатора, а так же много других факторов. Рассмотрим подробнее технологию правильного расчета количества радиаторов отопления для частных домов, ведь от этого зависит эффективность работы, а так же экономичность отопительной системы дома.
Самым демократичным способом является расчёт радиатора исходя из мощности на квадратный метр. В средней полосе России зимний показатель составляет 50−100 ватт, в регионах Сибири и Урала 100−200 ватт. Стандартные 8-секционные чугунные батареи с межосевым расстояние 50 см имеют теплоотдачу 120−150 ватт на одну секцию . Биметаллические радиации имеют мощность около 200 ватт, что немного повыше. Если мы имеем ввиду стандартный водный теплоноситель, то для комнаты в 18−20 м 2 со стандартной высотой потолков в 2,5−2,7 м понадобится два чугунных радиатора по 8-м секций.
От чего зависит количество радиаторов
Формула и пример расчета
Учитывая вышеперечисленные факторы, можно сделать расчёт. На 1 м 2 понадобится 100 Вт, соответственно, на отопление комнаты в 18м 2 нужно затратить 1800 Вт. Одна батарея из 8-ми чугунных секций выделяет 120 Вт. Делим 1800 на 120 и получаем 15 секций . Это весьма средний показатель.
В частном доме с собственным водонагревателем мощность теплоносителя высчитывается по максимуму. Тогда 1800 делим на 150 и получаем 12 секций. Столько нам понадобится для обогрева комнаты в 18м 2. Существует весьма сложная формула, по которой можно рассчитать точное количество секций в радиаторе.
Формула выглядит так:
- q 1 — это вид остекления: тройной стеклопакет 0,85 двойной стеклопакет 1 обычное стекло 1,27
- q 2 — теплоизоляция стен: современная теплоизоляция 0,85 стена в 2 кирпича 1 плохая изоляция 1,27
- q 3 — отношение площади окон к площади пола: 10% 0,8 20% 0,9 30% 1,1 40% 1,2
- q 4 — минимальная температура снаружи: -10 0 С 0,7 -15 0 С 0,9 -20 0 С 1,1 -25 0 С 1,3 -35 0 С 1,5
- q 5 — количество наружных стен: одна 1,1 две (угловая) 1,2 три 1,3 четыре 1,4
- q 6 — тип помещения над расчётным: обогреваемое помещение 0,8 отапливаемый чердак 0,9 холодный чердак 1
- q 7 — высота потолков: 2,5 м — 1 3 м — 1,05 3,5м — 1,1 4м — 1,15 4,5м — 1,2
Проведём расчёт для угловой комнаты 20 м 2 с высотой потолка 3 м, двумя 2-х створчатыми окнами с тройным стеклопакетом, стенками в 2 кирпича, расположенной под холодным чердаком в доме в подмосковном посёлке, где зимой температура опускается до 20 0 С.
Получится 1844,9 Вт. Разделим на 150 Вт и получим 12,3 или 12 секций.
Радиаторы делаются из трёх видов металла: чугунные, алюминиевые и биметаллические. Чугунные и алюминиевые радиаторы имеют одинаковую теплоотдачу, но нагретый чугун остывает медленнее алюминия. Биметаллические батареи имеют большую теплоотдачу, чем чугунные, но они быстрее остывают. Стальные радиаторы имеют высокую теплоотдачу, но они подвержены коррозии.
Самой комфортной для человеческого организма температурой в помещении принято считать 21 0 С. Однако для хорошего крепкого сна больше подходит температура не выше 18 0 С, поэтому немалую роль играет и назначение отапливаемого помещения. И если в зале площадью 20 м 2 нужно установить 12 секций батареи . то в аналогичном спальном помещении предпочтительнее установить 10 батарей, и человеку в такой комнате будет комфортно спать. В угловом помещении такой же площади смело размещайте 16 батарей . и Вам не будет жарко. Т. е. расчёт радиаторов в помещении весьма индивидуален, и можно давать только приблизительные рекомендации, сколько секций необходимо установить в той или иной комнате. Главное, произвести установку грамотно, и тепло всегда будет в вашем доме.
Расчет радиаторов в двухтрубной системе (видео)
Источники: http://termosyst.ru/radiatory-otopleniya/raschet-kolichestva-radiatorov.php, http://aqua-rmnt.com/otoplenie/raschety/raschet-radiatorov-otopleniya.html, http://teplo.guru/radiatory/vybor/raschet-radiatorov-otopleniya-v-dome.html
Расчет радиаторов отопления
Наиболее простой способ обеспечить теплом жилые помещения квартиры или дома предполагает установку дополнительных радиаторов отопления или батарей. Идея неплохая, но бесконтрольное наращивание секций обогрева может превратить жилье в сауну, а любые попытки сэкономить на радиаторах приведут к переохлаждению и отсыреванию помещения. Чтобы угадать золотую середину, нужно просто выполнить оценочный расчет радиаторов отопления, определить теплопроизводительность одной секции и потребное количество для квартиры.
Варианты конструкций радиаторов отопления
Перед тем как рассчитать количество секций радиатора, необходимо получить теплотехнические характеристики отопительной поверхности. В первую очередь они зависят от размеров и материала корпуса. В современных системах отопления частных домов и квартир используется несколько типов радиаторов:
- Чугунные батареи, набранные из литых секций. Обладают высокой тепловой инерцией и хорошей стойкостью к окислению воздухом и теплоносителем. Средняя теплоотдача составляет около 160 Вт на секцию;
- Стальные радиаторы обеспечивают наихудшую теплоотдачу, всего около 80-85 Вт на условную секцию, но проще, дешевле и надежнее чугунных систем;
- Алюминиевые секции обеспечивают самую высокую теплоотдачу, более 200 Вт на одну ячейку или секцию. Алюминиевые сплавы подвержены сильной электрохимической и газовой коррозии, поэтому используются ограниченно;
- В биметаллических или сталь-алюминиевых радиаторах высокий уровень теплоотдачи, составляющий до 200 Вт на секцию, сочетается с прочностью и долговечностью батареи, даже при повышенной температуре теплоносителя.
Из-за небольших размеров, высокой теплоотдачи и приятного внешнего вида более всего используются для построения систем отопления биметаллические радиаторы. Поэтому большинство рекомендаций и методик подбора отопительных приборов направлены на то, чтобы рассчитать биметаллические радиаторы отопления. Но, по сути, методика и способ расчета секций биметаллических радиаторов отопления при необходимости может быть перенесен на алюминиевые и даже чугунные батареи, с поправкой на линейные размеры и коэффициент теплопередачи от разогретой металлической поверхности в более холодный воздух.
Общая методика расчета радиаторов отопления
Чтобы не перегружать методику расчета ненужными подробностями и деталями, специалистами был предложен простейший расчет радиатора отопления по площади помещения. Для обеспечения нормального теплового баланса в зимнее время расчет по площади подразумевает обеспечение тепловой мощности из нормы в 100 Вт на квадратный метр помещения.
Зная общую площадь конкретного помещения, потребность в определенном количестве секций рассчитываем следующим образом:
- Умножаем площадь комнаты на потребную мощность для одного квадратного метра. Расчет дает общую тепловую мощность для системы обогрева одной комнаты. Например, для помещения в 15 м2 потребуется 15∙0,1=1,5 кВт тепловой энергии;
- Выбираем из паспортных данных на изделие значение теплоотдачи или отдаваемую мощность для 1 секции биметаллического радиатора, например, 190 Вт на секцию;
- Выполняем расчет радиатора отопления по площади 1500:190=7,89, с округлением получаем, что по расчету для отопления комнаты требуется 8 секций.
Важно! На самом деле методика расчета по площадям дает достоверный результат только для стандартных потолков в 270 см.
При подсчете потребной мощности для более высоких помещений используется расчет мощности нагревателя и определение потребного количества секций, исходя из объемной тепловой нагрузки. Например, для кирпичных и пенобетонных построек радиаторы отопления должны отдавать в воздух не менее 34 Вт/м3, для жилья из бетонных панелей используется норматив в 41 Вт/м3.
Таким образом, комната в 15 м2 с высотой потолков 2,7 м имеет объем 40,5-41 м3. Для расчета отопления кирпичной постройки будет достаточно 1360 Вт/ч или 7 секций радиатора. Но данный расчет радиаторов отопления является предварительным или теоретическим, не учитывающим множество практических факторов, влияющих на качество отопления.
Определение поправок к расчету радиатора
Чтобы получить максимально приближенный к реальности результат расчета потребной мощности радиаторов отопления и количества секций, потребуется учесть целый ряд поправочных коэффициентов.
Наиболее важные из поправок:
- Наличие внешних факторов, таких как расположение комнаты в здании, количество в помещении внешних стен, качество утепления;
- Внутренние факторы – высота потолков, площадь остекления, схема подключения радиаторов;
- Тепловая эффективность для жидкостных систем отопления.
Все перечисленные факторы, в зависимости от положительного или отрицательного влияния, учитываются в виде значений больше, равному или меньше единицы.
Тепловая мощность нагревателя будет рассчитываться по формуле:
P=Pтеор∙Кэф∙Красп∙ Ку∙Кклим∙Кокон∙Кокон2∙Крад∙Крад_эк
где Pтеор – теоретическая мощность согласно расчета по действующим нормам, Кэф — коэффициент эффективности радиатора, Красп, Ку, Кклим – поправки на расположение помещения в здании и климатический пояс, Кокон, Кокон2 – поправки на параметры остекления комнаты, Крад1, Крад_эк – коэффициенты, учитывающие особенности расположения радиаторов.
Прежде всего, необходимо уточнить тепловую эффективность системы радиаторов. Эта поправка из таблицы учета теплового напора радиатора. Расчет теплового напора выполняется по формуле:
Р=(Твх-Твых)/2-Тпом
где Р— численное значение напора, Твх, Твых, – температура горячей воды на входе и выходе из радиатора, Тпом – температура воздуха в комнате. Выполнив расчет напора из таблицы, можно выбрать поправочный коэффициент Кэф.
Таким способом в расчете радиатора пытаются самым примитивным образом, без сложнейших формул теплопередачи учесть два важных фактора – энергоемкость теплоносителя и эффективность отдачи тепла в воздух.
Определение поправок для учета внешних факторов
Наибольшее влияние на теплопотери оказывает расположение комнаты в здании. Для учета в расчете используем поправку Красп. Для одной комнаты с одной наружной стеной Красп=1, для двух, трех или всех четырех стен для расчета мощности радиатора принимают значения 1,2-1,4 соответственно.
Поправкой Ку учитывается качество утепления наружных стен, Ку=1 для кирпичной кладки в 50 см, Ку=0.85 для утепленной стены и Ку =1,27 при отсутствии утепления.
Буквой Кклим обозначают поправочный коэффициент для учета в расчете различных климатических поясов. В качестве определяющей температуры выбирают наиболее низкую температуру воздуха на местности. Для Т=-30оС поправка Кклим равна 1,5, для мороза от 20 до 30 градусов Кклим=1,3, для остальных случаев в расчете радиаторов отопления принимают Кклим=1,0-1,2.
Учет конструктивных особенностей комнаты
Известно, что чем больше площадь остекления, тем больше тепловые потери на отопление. Для учета данного фактора применяется два критерия: Кокон – тип оконных рам и Н — площадь остекления. Для старого варианта остекления двойным стеклом в деревянной раме Кокон=1,27, для однокамерного и двухкамерного стеклопакета принимают Кокон =1 и Кокон=0,85, соответственно.
Площадь остекления учитывается в расчете по так называемому приведенному коэффициенту, равному соотношению площади пола к площади окон. Для десятипроцентного остекления Кокон2=0,8, для сорокапроцентного остекления Кокон2=1,2.
Огромное влияние на качество отопления оказывает правильное расположение радиаторов. Существует шесть наиболее распространенных схем подключения батареи из 7-10 биметаллических секций.
В первом случае подвод и отвод горячей воды выполняется с разных сторон отопителя, горячая вода подается с верхней доли, остывшая вода с нижней части батареи. Расчет отопления и практические измерения показывают, что эффективность использования подвода тепла в данном случае максимальна, поэтому Крад=1. Если подвод и обратку установить с одной стороны, эффективность передачи тепла немного снижается, но еще достаточно высока, Крад=1,03.
Значительно ухудшается теплопередача при организации подвода горячей воды снизу для следующих четырех схем:
- Наиболее неэффективная схема — подвод и отвод теплоносителя с одной стороны при подаче горячей воды с нижней доли радиатора. Неважно, будет ли остывшая вода отводиться сверху или снизу, в этом случае для расчета отопления принимают Крад=1,28;
- Подвод кипятка в радиатор с нижней части одной стороны, отвод остывшей воды с верхней доли противоположной стороны, для расчета мощности радиатора Крад=1,25;
- Трубы с горячей и остывшей водой находятся в нижней части радиатора на одной линии с противоположных сторон, Крад=1,13.
Как видно из приведенных данных, неудачный расчет и проектирование расположения подводов к батарее может уменьшить эффективность работы батареи на 25-28%.
Кроме правильного расположения подводов, большое значение имеет степень экранирования теплоотдачи. Например, для полностью открытого обогревателя Крад_эк=0,9, что говорит о полном использовании возможности теплообмена. Для остальных случаев – перекрытия подоконником, нахождения в стеновой нише и установлении фронтальных декоративных экранов для расчета отопления Крад_эк принимают значения 1-1,2.
Заключение
Остается выбрать необходимые значения поправок и перемножить по вышеприведенной формуле. Если ручной способ показался вам сложным и трудоемким, подсчитать мощность отопителя можно по одному из онлайн калькуляторов или специализированных программ, которые могут учитывать огромное количество дополнительных факторов, таких как место расположения батарей, толщину краски и даже характеристики системы вентиляции комнаты.
Расчет количества секций радиаторов отопления
Скорее всего Вы уже решили для себя Какие радиаторы отопления лучше, но необходим расчет количества секций. Как его выполнить безошибочно и точно, учесть все погрешности и теплопотери?
Существует несколько вариантов расчета:
- по площади помещения
- и полный расчет включающий все факторы.
Рассмотрим каждый из них
Расчет количества секций радиаторов отопления по объему
Чаще всего используется значение, рекомендованное СНиП, для домов панельного типа на 1 куб.метр объема требуется 41 Вт тепловой мощности.
Если у Вас квартира в современном доме, со стеклопакетами, утепленными наружными стенами и откосами из гипсокартона, то для расчета уже используется значение тепловой мощности 34вт на 1куб.метр объема.
Пример расчета количества секций:
Комната 4*5м, высота потолка 2,65м
Получаем 4*5*2,65=53 куб.м Объем комнаты и умножаем на 41вт. Итого, требуемая тепловая мощность для обогрева: 2173Вт.
Исходя из полученных данных, не трудно рассчитать количество секций радиаторов. Для этого необходимо знать теплоотдачу одной секции, выбранного Вами радиатора.
Допустим:
Чугунный МС-140, одна секция 140Вт
Global 500,170Вт
Sira RS, 190Вт
Тут следует заметить, что производитель или продавец, часто указывает завышенную теплоотдачу, рассчитанную при повышенной температуре теплоносителя в системе. Поэтому ориентируйтесь на меньшее значение, указанное в паспорте на изделие.
Продолжим расчет: 2173 Вт делим на теплоотдачу одной секции 170Вт, получаем 2173Вт/170Вт=12,78 секций. Округляем в сторону целого числа, и получаем 12 или 14 секций.
Некоторые продавцы предлагают услугу по сборке радиаторов с необходимым числом секций, то есть 13. Но это уже будет не заводская сборка.
Этот метод, как и следующий является приблизительным.
Расчет количества секций радиаторов отопления по площади помещения
Является актуальным для высоты потолков помещения 2,45-2,6 метра. Принимается равным, что для обогрева 1кв.метра площади достаточно 100Вт.
То есть для комнаты 18 кв.метров, требуется 18кв.м*100Вт=1800Вт тепловой мощности.
Делим на теплоотдачу одной секции: 1800Вт/170Вт=10,59, то есть 11 секций.
В какую сторону лучше округлить результаты расчетов?
Комната угловая или с балконом, то к расчетам добавляем 20%
Если батарея будет устанавливаться за экраном или в нишу, то потери тепла могут достигать 15-20%
Но в то же время, для кухни, можно смело округлить в меньшую сторону, до 10 секций.
Кроме того, на кухне, очень часто монтируется электрический теплый пол. А это минимум 120 Вт тепловой помощи с одного квадратного метра.
Точный расчет количества секций радиаторов
Определяем требуемую тепловую мощность радиатора по формуле
Qт= 100ватт/м2 х S(помещения)м2 х q1 х q2 х q3 х q4 х q5 х q6 х q7
Где учитываются следующие коэффициенты:
Вид остекления (q1)
- Тройной стеклопакет q1=0,85
- Двойной стеклопакет q1=1,0
- Обычное(двойное) остекленение q1=1,27
Теплоизоляция стен (q2)
- Качественная современная изоляция q2=0,85
- Кирпич (в 2 кирпича) или утеплитель q3= 1,0
- Плохая изоляция q3=1,27
Отношение площади окон к площади пола в помещении (q3)
Минимальная температура снаружи помещения (q4)
Количество наружных стен (q5)
- Одна (обычно) q5=1,1
- Две (угловая квартира) q5=1,2
Тип помещения над расчетным (q6)
- Обогреваемое помещение q6=0,8
- Отапливаемый чердак q6=0,9
- Холодный чердак q6=1,0
Высота потолков (q7)
Пример расчета:
100 вт/м2*18м2*0,85 (тройной стеклопакет)*1 (кирпич)*0,8
(2,1 м2 окно/18м2*100%=12%)*1,5(-35)*
1,1(одна наружная)*0,8(обогреваемое,квартира)*1(2,7м)=1616Вт
Плохая теплоизоляция стен увеличит это значение до 2052 Вт!
количество секций радиатора отопления: 1616Вт/170Вт=9,51 (10 секций)
Мы рассмотрели 3 варианта расчета требуемой тепловой мощности и на основании этого получили возможность расчета необходимого количества секций радиаторов отопления. Но тут следует отметить, что для того чтобы радиатор выдал паспортную мощность его следует правильно установить. Как это сделать правильно или проконтролировать не всегда грамотных работников ЖЭКа, читайте в следующих статьях на официальном сайте Школы ремонта Remontofil
Калькулятор расчета количества секций радиаторов отопления: делаем правильный расчет количества секций на комнату
В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.
Калькулятор расчета количества секций радиаторов отопленияВ этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.
Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.
Калькулятор расчета количества секций радиаторов отопленияПерейти к расчётам
Укажите запрашиваемые данные и нажмите
«РАССЧИТАТЬ ПАРАМЕТРЫ РАДИАТОРА ОТОПЛЕНИЯ»
КЛИМАТИЧЕСКИЕ УСЛОВИЯ РЕГИОНА
ГЕОМЕТРИЯ ПОМЕЩЕНИЯ
Площадь помещения, м²
ДРУГИЕ ВАЖНЫЕ ОСОБЕННОСТИ ПОМЕЩЕНИЯ
Внешние стены смотрят на:
Положение внешней стены относительно зимней розы ветров
ТИП, КОЛИЧЕСТВО И РАЗМЕРЫ ОКОН В ПОМЕЩЕНИИ
Высота окна, м Ширина окна, мТип установленных окон
ДВЕРИ НА УЛИЦУ ИЛИ В ХОЛОДНЫЕ ПОМЕЩЕНИЯ
ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ И РАСПОЛОЖЕНИЯ РАДИАТОРОВ
Планируемая схема врезки радиаторов в контур отопления
Планируемое размещение радиатора на стене
ВЫБОР НАПРАВЛЕНИЯ РАСЧЕТА
ЧТО ТРЕБУЕТСЯ РАССЧИТАТЬ?
Паспортная мощность одной секции радиатора, Ватт (только для разборных моделей) Некоторые разъяснения по работе с калькуляторомЧасто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты. Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов. А ведь все это имеет определенное значение.
В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.
— Площадь помещения – хозяевам известна.
— Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами. В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.
— Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.
— Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.
— Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.
— Степень утепления стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.
— Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.
— Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.
— Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.
— Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.
— Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления. В результате будет получено требуемое количество секций для размещения в данном помещении. Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.
В расчетное значение уже заложен необходимый эксплуатационный резерв.
алюминиевый радиатор отопления
Что необходимо еще знать про радиаторы отопления?
При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным, алюминиевым и биметаллическим радиаторам отопления.
Системы охлаждения трансформатора и объяснение методов
Классификация охлаждения трансформатора, выраженная буквами, обозначает тип используемой системы охлаждения.
Тепло — одна из основных причин выхода из строя трансформатора. Основным источником тепловыделения в трансформаторах являются потери меди в обмотках и сердечнике (ИК-потери).
Если тепло внутри трансформатора не рассеивается должным образом, температура трансформатора будет постоянно повышаться, что может повредить изоляцию.
Трансформатор, работающий при температуре всего на 10 ° C выше своей номинальной, сокращает срок его службы на 50%. Легко понять, почему необходимо понимать, как охлаждаются трансформаторы и как обнаруживать проблемы в их системах охлаждения.
ANSI и IEEE требуют, чтобы класс охлаждения каждого трансформатора был указан на его паспортной табличке. Классификация охлаждения трансформатора, выраженная буквами, обозначает тип используемой системы охлаждения. Трансформаторы могут иметь несколько значений нагрузки, соответствующих нескольким ступеням охлаждения.
Сухие трансформаторы
Фото: Сухие трансформаторы обычно устанавливаются внутри помещений, но не всегда.
Сухие трансформаторы имеют катушки, расположенные на открытом воздухе, и в первую очередь зависят от конвекционных токов, создаваемых теплом трансформатора, чтобы создать воздушный поток через катушки, чтобы оставаться холодным.
Жалюзи или экранированные отверстия используются для направления потока холодного воздуха через катушки трансформатора. Вентиляторы часто используются для принудительной циркуляции воздуха через корпус.
Номинальная мощность в кВА сухого трансформатора с вентиляторным охлаждением увеличена на 33% по сравнению с самоохлаждающимся сухим трансформатором той же конструкции.
Важно содержать корпуса трансформаторов сухого типа в чистоте, а пространство вокруг них — свободным. Предметы, размещенные рядом с трансформатором или напротив него, будут ограничивать теплопередачу вокруг корпуса.
По мере накопления грязи на охлаждающих поверхностях воздуху вокруг трансформатора становится все труднее отводить тепло. В результате со временем температура трансформатора медленно и незаметно повышается, сокращая срок службы.
Классы охлаждения сухих трансформаторов соответствуют стандарту ANSI / IEEE C57.12.01. Ниже приведены некоторые общие примеры:
AA
Вентилируемые трансформаторы с самоохлаждением. Эти трансформаторы имеют вентиляционные отверстия, расположенные на внешних стенках корпуса. Нет вентиляторов для нагнетания воздуха в корпус и из него, как правило, без внешних ребер или радиаторов. Более холодный воздух поступает в нижние отверстия, нагревается по мере прохождения обмоток и выходит из верхних вентиляционных отверстий.
AFA
Самоохлаждающийся (A) и дополнительно охлаждаемый принудительной циркуляцией воздуха (FA). Эти трансформаторы имеют вентиляционные отверстия только для входов и выходов вентиляторов. Обычно нет дополнительных вентиляционных отверстий для естественной циркуляции воздуха.
AA / FA
Вентилируемый, с самоохлаждением (как класс AA). Эти трансформаторы имеют вентилятор или вентиляторы, обеспечивающие дополнительное принудительное воздушное охлаждение. Вентиляторы могут быть подключены к автоматическому запуску при достижении заданного значения температуры.Эти трансформаторы обычно имеют двойную номинальную нагрузку: одну для AA (естественный поток воздуха с самоохлаждением) и большую номинальную нагрузку для FA (принудительный поток воздуха).
ANV
Самоохлаждающийся (A), невентилируемый (NV). У этих трансформаторов нет вентиляционных отверстий или вентиляторов на корпусе, и они не герметизированы, чтобы исключить миграцию наружного воздуха, но нет никаких положений, которые преднамеренно позволяли бы наружному воздуху входить и выходить. Охлаждение осуществляется за счет естественной циркуляции воздуха вокруг шкафа. Этот трансформатор может иметь ребра определенного типа, прикрепленные снаружи корпуса для увеличения площади поверхности для дополнительного охлаждения.
GA
Герметичный с внутренним газом (G) и с самоохлаждением (A). Эти трансформаторы обычно содержат газ, например азот, SF6 или фреон, для обеспечения высокой диэлектрической проницаемости и хорошего отвода тепла. Охлаждение происходит за счет естественной циркуляции воздуха снаружи шкафа. Вентиляторы для циркуляции охлаждающего воздуха отсутствуют; однако снаружи могут быть прикреплены ребра для охлаждения. Корпус герметичен для предотвращения утечки.
Трансформаторы с жидкостным охлаждением
Фото: Трансформатор ABB с жидкостным заполнением.
Трансформаторы, заполненные жидкостью, имеют катушки, погруженные в изолирующую среду, обычно в масло, которая служит как изолятором, так и обеспечивает хорошую среду для отвода избыточного тепла.
Поскольку трансформаторное масло ухудшается из-за старения и попадания влаги, образцы трансформаторного масла следует периодически отбирать и анализировать в соответствии с методами испытаний изоляционного масла ASTM.
Классы охлаждения трансформаторов с жидкостным охлаждением претерпели значительные изменения в Соединенных Штатах после выхода стандарта IEEE C57.12.00-2000 принято четырехбуквенное обозначение современных силовых трансформаторов.
Обозначения современных классов охлаждения (2000 и более поздние версии)
Первое письмо : Внутренняя охлаждающая среда, контактирующая с обмотками
- O : Минеральное масло или синтетическая изоляционная жидкость с температурой воспламенения.
- K : Изоляционная жидкость с температурой воспламенения> 300C
- L : Изоляционная жидкость с неизмеримой температурой возгорания
Второе письмо : Циркуляционный механизм для внутреннего охлаждающего средства
- N : Естественная конвекция потока через охлаждающее оборудование и обмотки
- F : Принудительная циркуляция через охлаждающее оборудование (охлаждающие насосы), поток естественной конвекции в обмотках (непрямой поток)
- D : Принудительная циркуляция через охлаждающее оборудование, направленная от охлаждающего оборудования, по крайней мере, в основные обмотки
Третье письмо : Внешняя охлаждающая среда
Четвертая буква : Механизм для внешней охлаждающей жидкости
- N : Естественная конвекция
- F : Принудительная конвекция
Примеры классов охлаждения трансформатора
Ниже мы рассмотрим некоторые примеры классов охлаждения современных жидкостных трансформаторов вместе с их обозначениями до ANSI / IEEE C57.12.00–2000:
ОНАН (ОА)
Погружной в масло, с самоохлаждением. Обмотки и сердечник трансформатора погружены в какой-либо тип масла и имеют самоохлаждение за счет естественной циркуляции воздуха вокруг внешнего корпуса. К кожуху могут быть прикреплены ребра или радиаторы для облегчения охлаждения.
ONAN / ONAF (OA / FA)
С жидкостным охлаждением, самоохлаждение / принудительное воздушное охлаждение. То же, что и OA, с добавлением вентиляторов. Вентиляторы обычно устанавливаются на радиаторы отопления. Трансформатор обычно имеет две номинальные нагрузки: одну при выключенных вентиляторах (OA) и большую номинальную при работающих вентиляторах (FA).Вентиляторы могут быть подключены к автоматическому запуску при заданной температуре.
ONAN / ONAF / ONAF (OA / FA / FA)
С жидкостным погружением, самоохлаждение / принудительное воздушное охлаждение / принудительное воздушное охлаждение. То же, что OA / FA, с дополнительным набором вентиляторов. Обычно существует три номинальных нагрузки, соответствующих каждому приращению охлаждения. Повышенные характеристики достигаются за счет увеличения количества охлаждающего воздуха над частями охлаждающих поверхностей. Обычно к баку прикреплены радиаторы для охлаждения.Две группы вентиляторов могут быть подключены к автоматическому запуску на предварительно заданных уровнях при повышении температуры. Масляных насосов нет. Течение масла через обмотки трансформатора происходит по естественному принципу конвекции.
ONAN / ONAF / OFAF (OA / FA / FOA)
С жидкостным погружением, самоохлаждение / принудительное воздушное охлаждение / принудительное жидкостное охлаждение и принудительное воздушное охлаждение. Обмотки и сердечник погружены в какое-либо масло. Этот трансформатор обычно имеет радиаторы, прикрепленные к корпусу. Трансформатор имеет самоохлаждение (ОА), естественную вентиляцию, принудительное воздушное охлаждение ТВС (вентиляторы) и принудительное масляное охлаждение (насосы) с дополнительным принудительным воздушным охлаждением (FOA) (дополнительные вентиляторы).Трансформатор имеет три значения нагрузки, соответствующие каждой ступени охлаждения. Вентиляторы и насосы могут быть подключены к автоматическому запуску на предварительно заданных уровнях при повышении температуры.
ONAN / ONAF / OFAF (OA / FA / FOA)
С жидкостным погружением, самоохлаждение / принудительное воздушное охлаждение / принудительное жидкостное охлаждение и принудительное воздушное охлаждение. Обмотки и сердечник погружены в какое-либо масло. Этот трансформатор обычно имеет радиаторы, прикрепленные к корпусу. Трансформатор имеет самоохлаждение (ОА), естественную вентиляцию, принудительное воздушное охлаждение ТВС (вентиляторы) и принудительное масляное охлаждение (насосы) с дополнительным принудительным воздушным охлаждением (FOA) (дополнительные вентиляторы).Трансформатор имеет три значения нагрузки, соответствующие каждой ступени охлаждения. Вентиляторы и насосы могут быть подключены к автоматическому запуску на предварительно заданных уровнях при повышении температуры.
ONWF (OW)
Катушка и сердечник трансформатора погружены в масло. Обычно масляно-водяной теплообменник (радиатор) крепится снаружи бака. Охлаждающая вода перекачивается через теплообменник, но масло течет только за счет естественной циркуляции. Когда масло нагревается обмотками, оно поднимается вверх и выходит по трубопроводу к радиатору.По мере охлаждения масло спускается через радиатор и снова попадает в бак трансформатора внизу.
ONWF / ONAN (OW / A)
Катушка и сердечник трансформатора погружены в масло. У этого трансформатора два номинала. Охлаждение для одного номинала (OW) получается, как описано ранее. Рейтинг самоохлаждения (A) получен за счет естественной циркуляции воздуха по резервуару и охлаждающим поверхностям.
OFAF (FOA)
Погружной с принудительным жидкостным охлаждением и принудительным воздушным охлаждением. Этот трансформатор обычно имеет только один номинал. Трансформатор охлаждается путем прокачки масла (нагнетаемого масла) через радиатор, обычно прикрепленный к внешней стороне бака. Кроме того, воздух нагнетается вентиляторами над охлаждающей поверхностью.
OFWF (FOW)
С жидкостным погружением, принудительное жидкостное охлаждение, водяное охлаждение. Этот трансформатор охлаждается масляно-водяным теплообменником, обычно устанавливаемым отдельно от бака. Как трансформаторное масло, так и охлаждающая вода прокачиваются (нагнетаются) через теплообменник для охлаждения.
Старые обозначения классов охлаждения (до 2000 г.) | |
---|---|
A | Воздух |
FA | Принудительный воздух (вентиляторы) |
O | Масло |
G | Газ |
W | Водно-масляный теплообменник |
Примеры | |
AA / FA | Окружающий воздух / Принудительный воздух |
Комментарии
Войдите или зарегистрируйтесь, чтобы оставить комментарий.Что такое нагреватели PTC? | GMN
Ваш обогреватель когда-нибудь переставал работать, когда он вам нужен больше всего? Вы слышали о перегреве автомобильных сидений или о горячих точках? На протяжении десятилетий мы полагались на нагреватели с фиксированным сопротивлением для большинства наших нужд. Безопасность остается основной проблемой, когда одноточечный датчик «принимает» температуру всего нагревателя. Несмотря на различные проблемы, с которыми сталкиваются традиционные обогреватели, мы продолжаем широко применять их в различных отраслях промышленности. Однако теперь фирменная табличка GM может решить все эти проблемы — PTC-обогрев — технология, обеспечивающая безопасность передних сидений.
Этим постом мы начинаем новую серию блогов, состоящую из четырех частей, чтобы ответить на ваши животрепещущие вопросы — что, почему, где и как использовать нагреватели PTC.
Нагреватели с положительным температурным коэффициентом (PTC) — это саморегулирующиеся нагреватели, которые работают в разомкнутом контуре без каких-либо внешних средств диагностики. В то время как в традиционных нагревателях с фиксированным сопротивлением для генерации тепла используются провода и катушки, в нагревателях PTC используются токопроводящие краски, напечатанные на тонких гибких подложках на основе полимера. Обладая высокими показателями надежности и эффективности, они идеально подходят для продуктов, требующих более безопасного, быстрого и равномерного нагрева.Свойства материала позволяют нагревателю с положительным температурным коэффициентом работать как собственный датчик, устраняя необходимость в каких-либо внешних элементах управления с обратной связью. В результате нагреватель исключает риск перегрева.
НагревателиPTC используют материалы с положительным температурным коэффициентом, то есть материалы, которые демонстрируют положительное изменение сопротивления в ответ на повышение температуры. С повышением температуры электрическое сопротивление материала также увеличивается, что ограничивает ток.Проще говоря, материал пропускает ток, когда он холодный, и ограничивает прохождение тока при повышении пороговой температуры.
Нагреватели PTC сначала потребляют полную мощность для быстрого нагрева и достижения оптимальной температуры. По мере увеличения тепла одновременно снижается и энергопотребление. Эта динамическая система отопления не только эффективна, но и экономична по времени и энергии. Нагреватели PTC могут быть разработаны для работы в диапазоне от -40 ° C до 70 ° C (от -40 ° F до 158 ° F). Пороговая температура настраивается на этапе проектирования.Возможны нагреватели с несколькими температурными зонами, а удельная мощность может быть изменена с помощью простых модификаций.
Обладая поразительным сочетанием характеристик и функциональности, проводящие чернила действительно являются сценарием истории успеха печатной электроники, такой как нагреватели PTC. Они дают вам свободу создавать замысловатые схемы нагрева. Они также устойчивы к истиранию, экономичны и позволяют легко производить большие объемы. С помощью нагревателей PTC углеродные проводящие чернила наносятся трафаретной печатью на полимерные подложки.Хотя в основном используется полиэстер, можно использовать и другие материалы подложки. Проводящие чернила PTC могут выдерживать повторяющиеся циклы нагрева и охлаждения. Печатные схемы герметизированы клеевым слоем для предотвращения проникновения влаги, а также механического истирания. Герметичная конструкция может выдерживать экстремальные внешние условия и суровые нагрузки.
Технология нагрева PTC, синоним безопасности, использует лучшую в своем классе технологию, которая превосходит доступные варианты на рынке сегодня.В нашем следующем блоге мы подробно остановимся на преимуществах нагревателей PTC по сравнению с традиционными нагревателями. А пока вы можете узнать больше, посетив нашу страницу возможностей здесь.
Нагрузочные банки, устанавливаемые на радиатор | ASCO Power Technologies
Что такое блок нагрузки, установленный на радиаторе?
Блоки нагрузки для рекуперативного торможения Блок нагрузки, установленный на радиаторе, специально разработан для установки перед радиатором на дизельной генераторной установке. Вентиляторы двигателя дизельной генераторной установки обеспечивают необходимый поток воздуха для охлаждения резистивных элементов.Установленные на радиаторах блоки нагрузки предназначены для обеспечения дополнительной нагрузки в диапазоне от 50 до 70% номинальной мощности генераторной установки в кВт, указанной на паспортной табличке, для смягчения эффектов, связанных с небольшой нагрузкой.
Почему следует выбирать блок нагрузки, установленный на радиаторе, и соображения при указании
Использование блока нагрузки, установленного на радиаторе, дает множество преимуществ. Агрегаты могут быть установлены внутри, снаружи или на крыше кожуха генераторной установки. Установленные на радиаторах блоки нагрузки также могут быть установлены в вытяжном воздуховоде при необходимости подачи охлаждающего воздуха.Общая площадь установленного на радиаторе блока в первую очередь зависит от основных размеров радиатора генераторной установки. Это означает, что аккумуляторная батарея радиаторного типа имеет меньшую площадь основания по сравнению с портативной или постоянной конструкцией аккумуляторной батареи. Меньшая занимаемая площадь может быть полезна в приложениях, в которых пространство ограничено. ASCO предлагает наименьшую на рынке площадь, занимаемую радиаторной батареей, по сравнению с мощностью в кВт, чтобы обеспечить эффективное использование пространства.
Нагрузочные блоки, установленные на радиаторах, представляют собой экономичное решение для нагрузочных испытаний, поскольку не требуются охлаждающие вентиляторы и связанные с ними компоненты.Тем не менее, важно понимать, что агрегат будет специально изготавливаться для постоянного соответствия определенному размеру генераторной установки, что влияет на возможность использования в других приложениях.
Отвод воздуха от генераторной установки ограничен, если установлен блок нагрузки на радиаторе. Блок нагрузки, установленный на радиаторе, не должен быть рассчитан на более чем 70% мощности, указанной на паспортной табличке, без одобрения производителя генераторной установки, поскольку дополнительная тепловая нагрузка и противодавление могут поставить под угрозу систему охлаждения двигателя (особенно при высоких температурах окружающей среды).Для приложений, требующих 100% -ной нагрузки генераторной установки в кВт, рекомендуется указывать отдельно стоящий блок.
Лидирующие на рынке блоки нагрузкиASCO, устанавливаемые на радиаторах, также имеют гораздо более низкое противодавление по сравнению с блоками конкурентов. Более низкое противодавление помогает предотвратить перегрев генераторной установки во время работы, что, в свою очередь, продлевает срок службы
Основы банка загрузки| ASCO Power Technologies
Банки нагрузки используются для ввода в эксплуатацию, обслуживания и проверки источников электроэнергии, таких как дизельные генераторы и источники бесперебойного питания (ИБП).Блок нагрузки прикладывает электрическую нагрузку к источнику питания и рассеивает полученную электрическую энергию через резистивные элементы в виде тепла. Резистивные элементы охлаждаются моторизованными вентиляторами внутри конструкции блока нагрузки.
Блоки нагрузки могут быть либо стационарно установлены на объекте и постоянно подключены к источнику питания, либо переносные версии могут использоваться для тестирования, когда это необходимо.
Банки нагрузки — лучший способ воспроизвести, доказать и проверить реальные потребности критически важных систем питания.
Банки резистивной нагрузки
Группа резистивных нагрузок может использоваться для полного тестирования генераторной установки при 100% номинальной мощности, указанной на паспортной табличке, в кВт. Он также полностью загрузит систему охлаждения генератора, топливную и выхлопную системы. Только 80% номинальной мощности генераторной установки, указанной на паспортной табличке, может быть достигнуто при использовании резистивного блока. Банк резистивной нагрузки обеспечивает нагрузку с коэффициентом мощности, равным единице или 1, для тестируемой системы. Резистивные блоки в основном используются для переменного напряжения, однако также доступны специально разработанные блоки нагрузки постоянного тока.
Банки индуктивной нагрузки
Блок индуктивной нагрузки обычно используется в сочетании с резистивным блоком, чтобы обеспечить испытание нагрузки с запаздывающим коэффициентом мощности. Это дает возможность полностью протестировать генераторную установку при 100% номинальной мощности, указанной на паспортной табличке, кВА. Группы индуктивной нагрузки добавляют индуктивность к нагрузке и, следовательно, снижают коэффициент мощности до менее единицы (обычно 0,8 пФ на дизельной генераторной установке). Банки индуктивной нагрузки указаны в реактивных киловольт-амперах (кВАр).
Банки емкостной нагрузки
Емкостная нагрузка обычно используется вместе с резистивным блоком, чтобы обеспечить испытание под нагрузкой с опережающим коэффициентом мощности.Батареи емкостной нагрузки содержат промышленные конденсаторы и увеличивают коэффициент мощности выше единицы (опережающий). Банки емкостной нагрузки указаны в реактивных киловольт-амперах (кВАр).
Активные реактивные (комбинированные) блоки нагрузки
Блок комбинированной нагрузки обычно состоит из резистивных элементов и катушек индуктивности, которые могут использоваться для тестирования нагрузки при коэффициенте мощности, отличном от единицы (запаздывание), включая возможность полностью проверить генераторную установку при 100% номинальной мощности, указанной на паспортной табличке, кВА. Комбинированные блоки нагрузки включают в себя резисторы и катушки индуктивности, все в единой конструкции, которые можно независимо переключать, чтобы разрешить только резистивное, только индуктивное тестирование или тестирование с переменным запаздывающим коэффициентом мощности.Комбинированные блоки нагрузки указаны в киловольт-амперах (кВА). Стоит отметить, что комбинированные блоки нагрузки могут также состоять из резистивных, индуктивных и емкостных (RLC).
ASCO предлагает самый большой в мире портфель банков нагрузки с опциями для удовлетворения любых требований к испытаниям мощности.
5200-2083-005
% PDF-1.6 % 84 0 объект > эндобдж 81 0 объект > поток Acrobat Distiller 6.0.1 для Macintosh 3008-10-02T15: 55: 55-04: 00QuarkXPress: фильтр pictwpstops 1.02006-12-18T15: 28: 34-05: 002008-10-02T15: 55: 55-04: 00uuid: 58192a9c-8ed6-11db-9984-000a95ba85a4uuid: 54b950b7-4e06-0f4d-95cc-d4327f8ad692application / pdf
Подстанция трансформаторы-блочные и открытого типа
% PDF-1.5 % 121 0 объект >>> эндобдж 174 0 объект > поток False11.08.5122018-10-11T07: 54: 53.385-04: 00 Библиотека Adobe PDF 15.0Eaton5050366105ff050c2ecdc286f50f69e560623b64503555подстанция; трансформаторы; блочные трансформаторы; открытые трансформаторы; envirotran; envirotemp; fr3; добыча полезных ископаемых; на салазках; Одобрено FM; ул; ul в списке; абс; TD202001EN; 210-15 Adobe PDF Library 15.0false Adobe InDesign CC 2017 (Windows) 2018-02-07T11: 56: 40.000 + 05: 302018-02-07T01: 26: 40.000-05: 002018-02-07T01: 26: 34.000-05: 00приложение / pdf2018-10-11T07: 57: 20.458-04: 00
Krenz & Company — F26H
Krenz & Company — F26Hоб / мин | куб. Фут / мин (1) | дБ (А) (2) |
---|---|---|
1140 | 5610 | 56,5 |
1725 | 8500 | 70,0 |
- Искробезопасная, сверхмощная, литая алюминиевая лопасть вентилятора.
- Полностью закрытый двигатель с закрытыми шарикоподшипниками и валом из нержавеющей стали 303.
- Рассчитано на:
Class I; Группа C и D; Разделы 1 и 2
Класс II; Группа F & G; Подразделения 1 и 2
Модель вентилятора F26H — данные 60 Гц
л.с. | об / мин | ФАЗА | НАПРЯЖЕНИЕ | НОМЕР ДЕТАЛИ | РАБОЧИЙ УСИЛИТЕЛЬ | Вт | ПУСКОВЫЕ УСИЛИЯ | ИМ. ТАБЛИЧКА AMPS |
---|---|---|---|---|---|---|---|---|
1/4 | 1140 | 1 | 115 | F26H-A10176 | 4.44 | 252 | 22,80 | 5,00 |
1/4 | 1140 | 1 | 208-230 | F26H-A10176 | 2.26 | 252 | 11,40 | 2,50 |
1/3 | 1140 | 3 | 208-230 | F26H-A10177 | 1.24 | 203 | 7,40 | 1,50 |
1/3 | 1140 | 3 | 460 | F26H-A10177 | 0.61 | 207 | 3,70 | 0,75 |
3/4 | 1725 | 1 | 115 | F26H-A10178 | 9.26 | 676 | 61,00 | 11,00 |
3/4 | 1725 | 1 | 208-230 | F26H-A10178 | 4.70 | 648 | 30,50 | 5,50 |
3/4 | 1725 | 3 | 208-230 | F26H-A10179 | 2.07 | 588 | 16,30 | 2,40 |
3/4 | 1725 | 3 | 460 | F26H-A10179 | 1.06 | 580 | 8,60 | 1,20 |