- Фаза и ноль в электрике: определения понятным, простым языком
- Разница фазы и ноля в электрических цепях: как определить фазу
- Как определить фазу и ноль мультиметром
- Фаза и нуль в электрике: что значит
- что это и как выполнить проверку?
- Фаза и ноль. Работа и измерения. Особенности
- Электрический ток заходит от подстанции с трансформатором, преобразующим высокое напряжение до 380 вольт. Низкая сторона трансформатора соединена в звезду. Три вывода соединены в нулевой точке, а оставшиеся выводятся на клеммы фаз.
- Определить, на какой жиле есть напряжение, а на какой нет, довольно просто. Существует много способов вычисления где находятся фаза и ноль.
- Значение фаза и ноль в электричестве
- Углубляемся в тему
- Фаза разноцветье в ассортименте
- Основные определения по теме Общее заземление
- Дополнительные сведения о нахождении земли, фазы, нулевого провода
- Найти нулевой провод в квартире
- Откуда появился ноль, и каким он бывает
- Зачем нужен ноль в электричестве
- Основные понятия.
- Источники помех на шине Земля
- Фаза и нуль понятия и отличие
- Заземляющие проводники заземлители
- Как различить фазу, ноль, землю
- Нулевой проводник
- Фаза и нуль в электрике
- Напряжение на землю больше чем фазовое. Так надо
- Фаза в электричестве
- Зачем нужно зануление
- Выводы Правила заземления
- Как легко понять фазовый автофокус
- Что такое автофокус с определением фазы и определением контраста?
- Обнаружение фазы и обнаружение контраста Автофокус
- , часть 4: не-Bayer CFA, фазовый автофокус (PDAF)
Фаза и ноль в электрике: определения понятным, простым языком
Владельцы домов или квартир, так или иначе, столкнутся с моментами, когда перестает функционировать какой-либо прибор, электрическая розетка или гореть лампа в люстре. Звать на помощь в таких ситуациях электрика не особо хочется — имеется большое желание исправить неполадки самостоятельно. Или может быть, например, есть какие-то познания в электросистемах, а потому работа по прокладке новых кабелей не кажется чем-то немыслимым. Как бы то ни было, в любом случае, предварительно стоит все же ознакомиться с основами электрики, с видами проводников, выяснить, как все это взаимосвязано и работает. Ведь очень важно понять, где располагается тот или иной провод — от этого будет зависеть правильность соединений и безопасность людей.
Если есть какой-то опыт работы в данной сфере, вопрос не поставит в тупик, однако для новичка может стать большой проблемой. Ниже пойдет речь о таких проводниках любой электрической сети питания как: «заземление», «фаза», «нуль», а также о том, как верно найти и отличить данные виды кабелей.
Разбираемся в основных терминах
С такими терминами, как «фаза» и «ноль» каждый сталкивается в своей жизни ежедневно. Все они тесно связаны, ведь относятся к электричеству, а это то, без чего жизнь современного человека не мыслима. Чтобы понять их природу и более или менее научиться разбираться в электрике, следует уяснить для начала ряд фундаментальных понятий.
Начинаем с основ
Электрический заряд — характеристика, определяющая способность различных тел быть источником электромагнитного поля. Носителем подобных волн является электрон. Создав электромагнитное поле можно «заставить» электроны перемещаться. Так образуется ток.
Ток — это четко направленное движение электронов по металлическому проводнику под действием существующего поля.
Виды тока
Ток может быть постоянным и переменным. Ток, по величине не изменяющийся во временном промежутке — ток постоянного значения. Ток, величина которого, как и направление, меняется с течением времени, называется переменным.
Постоянные источники тока — аккумуляторы, батарейки и так далее. Переменный же ток «подходит» к бытовым и промышленным розеткам домов и предприятий. Основная причина этого кроется в том, что данный тип тока намного легче получать физически, преобразовывать в разные уровни напряжений, передавать по электропроводам на огромные расстояния без существенных потерь.
Основная характеристика переменного тока
Переменный ток – как правило это синусоида, или синусоидальный ток. Его можно охарактеризовать следующим образом: сначала он увеличивается в одном направлении, достигая максимального своего значения (амплитуды), затем начинается спад. В некоторый момент времени он становится равен «0» и потом вновь начинает нарастать, но уже в совершенно противоположном направлении.
«Фаза», «ноль» и «земля»
Самый простой случай электроцепи, по которой перемещается синусоидальный ток — однофазная цепь. Она состоит, как правило, из трех электрокабелей: по одному из них электричество подходит к приборам и элементам освещения, а по второму – оно «уходит» в противоположном направлении — от потребителя. Третьим проводником является «земля».
Провод, по которому электричество подходит к электропотребителям, называется фазой, а кабель, используемый для возвратного движения — нулем.
Самая эффективная сеть для передачи электротока — трехфазная система. Она включает в себя три фазовых кабеля и один обратный — ноль. Такой тип тока подходит ко всем жилым кварталам. Непосредственно перед попаданием в квартиры, электроток делится на фазы. Каждым фазам «присваивается» один ноль. Преимущества такой системы в том, что при сбалансированной нагрузке ток через ноль (а он в такой системе один — общий) равен нулю.
Чтобы не перепутать провода и не допустить короткого замыкания, каждый провод окрашивают в разные цвета. Однако цвет провода не гарантирует его назначения!
«Земля» не несет никакой электрической нагрузки, а служит своего рода предохранительным элементом. В тот момент, когда что-либо в системе электропитания выходит из-под контроля, провод «земля» предотвратит поражение электротоком — по ней все избыточное напряжение будет «стекать», то есть, отводиться на землю.
Фаза и ноль: их значение в сети питания
Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».
Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).
Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.
В домах, на предприятиях и зданиях старой застройки зачастую нет «РЕ»-проводника и поэтому, схема получается не пятипроводной, а четырех (она обозначается как «TN-C»).
Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.
Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.
Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.
Данная схема соединения отработана годами. Она подтвердила свое право на использование тем, что признана оптимальной из всех существующих. Однако, в ней, как и в любом приборе, механизме или устройстве, периодически могут появляться всевозможные поломки и неисправности. Как правило, они бывают связаны с плохим качеством электросоединения или же полным обрывом кабелей в каких-либо местах схемы.
Случаи обрывов в токопроводящей цепи
Если внутри отдельно взятой квартиры произошел разрыв нуля/фазы, то подключаемый прибор, как следствие, функционировать не будет.
Аналогичная ситуация возникнет и при обрыве контактов проводов любой из фаз питающих подъездный щиток. При этом все квартиры, получающие питание от данной электролинии, не будут получать электричество. Вместе с тем, в двух оставшихся цепях приборы будут функционировать, как и прежде.
Из этих схем видно, что полное отключение питания в квартирах связано с обрывом одного их проводов. Это не приводят к повреждению и выходу из строя приборов.
Самой же серьезной ситуацией является обрыв между заземляющим контуром и центральной точкой подключения всех потребителей.
В данном случае весь электроток перестает течь по рабочему нулю к «земле» (АО, ВО, СО) и начинает двигаться по пути АВ/ВС/СА к которым подведено 380 В.
Возникает «перекос фаз». В фазах с большей нагрузкой напряжение будет меньше, а с меньшей нагрузкой — больше и может достигнуть значительных величин, близким к 380 В. Это вызовет повреждение изоляционных материалов, нагрев и выход из строя оборудования. Предотвратить подобные случаи и защитить дорогое оборудование позволяет система защиты от перегрузок и высоких напряжений, монтируемая в квартирных щитках.
Варианты определения проводников «фаза»/«ноль»
Итак, наступила, ситуация, когда необходимо, например, подключить новую розетку. Но совершенно не понятно, какой из проводов является фазным, а какой нулевым. Способов быстро решить проблему существует несколько — это можно сделать как с применением специальных приборов, так и без них.
Цветовая окраска проводов, как основной ориентир
Это самый легкий и быстрый способ. Для правильной классификации нуля и фазы следует знать, какой цвет провода к чему относится. Предварительно необходимо будет изучить информацию о том, где четко прописаны действующие стандарты для конкретной страны.
Данный метод весьма актуален в любых новостройках, поскольку сейчас вся электрическая проводка прокладывается специалистами, выполняющими свою работу согласно всем требованиям установленных стандартов. Так, например, в России еще в 2004 году был принят стандарт «IEC60446», в котором четко обозначена процедура разделения кабелей по цветам, а именно:
- защитным нулем стал обозначаться провод желто-зеленого цвета;
- рабочим нулем стали называть синий/сине-белый провод;
- фазу — провода других цветов (например, черного, красного, коричневого и прочие).
Такое обозначение актуально в настоящее время.
Если проводка уже довольна старая или ее прокладкой занимались непрофессиональные специалисты, правильнее будет все же воспользоваться иными методами определения.
Отвертка-индикатор — незаменимое приспособление
Данный инструмент является неотъемлемым прибором в наборе домашнего электрика-умельца. Она применяется как при выполнении электромонтажных работ, так и при установке осветительных приборов в помещении или даже в процессе обыкновенной замены лампочек.
Принцип ее работы заключается в прохождении емкостного тока сквозь корпус отвертки через тело оператора.
Элементы отвертки:
- корпус, выполненный из диэлектрического материала;
- наконечник из металла в форме плоской отвертки, который прикладывают к проводам при проверке;
- неоновый индикатор — лампочка, сигнализирующая о фазовом потенциале;
- ограничитель тока — резистор, понижающий ток до минимального значения и выполняющий роль защитного механизма: защищает человека от поражения током, а само устройство от выхода из строя;
- контактная металлическая площадка, создающая замкнутую цепь через человека на землю.
Методика работы настолько проста, что справиться с ней может любой человек, даже новичок. Работает индикаторная отвертка следующим образом. При прикосновении наконечником к фазному контакту (цветному проводу) происходит замыкание электрической цепи — неоновая лампа должна загореться. То есть, поступает «сообщение» о наличии сопротивления, следовательно, данный кабель является фазой. В то же время ни на заземлении, ни на нуле, она загораться не должна. Если это происходит, можно с уверенностью говорить о том, что в схеме подключения электропроводки есть ошибки.
Работа с отверткой-индикатором в светлое время суток потребует некоторой внимательности — днем свечение лампы плохо заметно, поэтому придется приглядываться.
При работе с подобными приспособлениями нужно быть крайне осторожным — нельзя дотрагиваться до оголенных участков проводников и выводов индикатора, находящихся под напряжением.
На заметку! Профессиональные электрики пользуются более дорогими многофункциональными индикаторами, свечением которых управляет схема на транзисторах, питающаяся от встроенных аккумуляторов напряжением в 3 В. Еще одним их характерным отличием от простых аналогов является отсутствие контактной площадки, к которой нужно прикасаться при выполнении замеров.
Устройства, помимо своего прямого назначения — проверки фазового провода — выполняют и ряд других вспомогательных задач: определение полярности источников постоянного напряжения, места обрыва электроцепи и так далее.
Мультиметр — надежный помощник
Чтобы вычислить фазу, используя тестер, его необходимо переключить в режим «вольтметр» и мерить напряжение между всеми парными выводами кабелей. Соединение щупов с защитным нулем и заземлением должно показывать отсутствие напряжения. Напряжение между фазой и любым другим проводов должно составлять 220 В.
Способы определения проводов:
Так, в первом случае вольтметр отклоняется от нулевой отметки в цепи «ноль/фаза». На другом рисунке он показывает отсутствие напряжения между нулем и землей. И на третьем, вольтметр между фазой и землей показывает «0 В» поскольку проводник еще не подсоединен к земле. Третий случай — это скорее исключение из правил. Такое возможно, например, в случаях, когда старые кабеля здания находится на этапе реконструкции. В нормальной работающей системе электропроводки вольтметр тоже должен показывать 220 В.
Использование лампы накаливания
Перед началом работы необходимо будет собрать приспособление для тестирования. Оно будет состоять из обыкновенной лампочки, патрона и проводов. Лампа вкручивается в патрон, а к клеммам патрона крепятся проводники. Один из проводов необходимо будет заземлить, например, подсоединить к батарее отопления.
Сущность метода заключается в поочередном прикладывании второго (свободного) проводника ко всем тестируемым жилам. Если лампочка вспыхнет — найден фазный провод.
Метод позволяет установить приблизительно наличие фазного кабеля среди остальных. Сигнал лампы точно сигнализирует о том, что среди этих проводников какой-то фазовый, а какой-то нулевой. Если же лампа не горит, значит среди кабелей нет фазного. Но может случиться, что нет как раз именно нулевого.
Поэтому в большей степени данный метод целесообразен для определения работоспособности электрической проводки и правильности монтажа.
Определение сопротивления петли «ноль/земля»
Замер величины сопротивления петли является залогом бесперебойной работы электрических приборов. Время от времени это следует проводить, поскольку основные причины поломки техники кроются в замыканиях и перегрузках электросетей. Замер сопротивления позволит исключить подобные неприятности.
Что представляет собой эта петля
Данная петля является контуром, возникающим в результате соединения «нуля» с заземленной нейтралью. Как раз именно замыкание этой цепи и будет образовывать данную петлю.
Главная задача по измерению сопротивления данной петли — надежная защита оборудования и кабелей от перегрузок во время эксплуатации. Высокое сопротивление станет причиной чрезмерного повышения температуры электролинии, и как следствие, возникновения пожара. Значительное влияние на качество электропроводки оказывает влажность воздуха, температура, время суток — все это сказывается на состоянии электросети.
В заключении
Данный материал позволяет понять, что вообще такое фаза и ноль, какова их роль в современной электрике, каким образом можно установить, где располагается в проводке фазная и нулевая жилы. Ведь вопрос определения нуля, фазы и заземления весьма важен. Подключение некоторых видов приборов по результатам неправильной проверки может повлечь за собой негативные последствия — сгорание электроприборов, или, что еще опаснее, поражение током.
Видео по теме
Хорошая реклама
Разница фазы и ноля в электрических цепях: как определить фазу
При проведении электромонтажных работ дома или в квартире самостоятельно жильцы часто интересуются, что такое фаза, зачем она нужна, и какими способами можно ее обнаружить. Ниже рассмотрены понятия фаза и ноль в электрике.
Электрический щиток
Принцип работы сети переменного тока
Чтобы понять, что такое фаза в электричестве, нужно представлять особенности переменного тока. От постоянного он отличается периодическими изменениями, как по значению, так и по направлению. Его характеристики – напряжение в данный момент времени и частота (отношение числа циклов к единице времени). Переменный ток находится в розетках и прямых подключениях к электрическому щиту.
Однофазный ток
Он направляется от распределительного щитка по двум проводам (фазному и нулевому), между которыми находится 220-вольтное напряжение. В электричестве фаза – это провод, по которому электроток направляется к розетке или прибору. Что такое в электричестве ноль? Это, в свою очередь, кабель, идущий от розетки, по которому ток направляется обратно. Иногда вопросом, что такое ноль, интересуются в контексте заземления. Физически это разные провода, хотя их потенциалы совпадают. Однофазный ток можно подвести к потребителю как двумя проводами (без заземления), так и тремя (с ним). Заземление производится для отвода утечки, защиты жильцов от удара током и приборов – от перегрузок.
Двухфазный ток
Это сочетание двух однофазных, смещенных относительно друг друга на 90 °. Конструктивно это выглядит как сочетание двух проводов-фаз (с указанным сдвигом) и двух нулевых.
Трехфазный ток
Здесь конструкция состоит уже из трех фаз тока, каждая из последующих смещена относительно предыдущей на 120 °. По жилым домам такой ток распределяют четырьмя проводами (три фазы и ноль) либо пятью (указанные плюс заземление). После прохождения через распределительный щит розетки в квартире им питают через одну фазу и ноль.
Структура электросети, основные элементы
Электросеть является связующим звеном между генераторами и реципиентами электрической энергии. Источниками энергии во внутренних сетях производственных и жилых помещений являются ВРУ (вводно-распределительные устройства). К ним посредством коммутаторов и предохранителей подключаются кабели, осуществляющие запитку электрического оборудования либо группы приемников через шинопроводы и ящики коммутации.
Структура электросети многоквартирного дома
Устройство бытовой электропроводки
Стандартная схема электрической проводки содержит следующие элементы:
- многотарифный электросчетчик;
- выключатель-автомат с номинальным значением тока 25 А;
- механизм отключения, предохраняющий от короткого замыкания и перегрузок сети;
- дифференциальный автоматический выключатель с порогом срабатывания 30 мА (ток утечки), он защищает розетки;
- шкаф для монтажа с шинами (ноль и заземление) и дощечками для установки выключателей;
- несколько автоматов для освещения с номинальным значением тока 10 А;
- кабели с коробками распределения, направляющиеся к розеткам и приборам, освещающим помещения.
Часто владельцы квартир интересуются, фаза это плюс или минус, и в чем разница между нолем и землей. Поскольку электрическая фаза обладает переменным потенциалом, то показатель оного в проводе фазы становится то положительным, то отрицательным. Посему утверждать, что фаза это минус (либо плюс), будет некорректно – эти понятия лежат в разных плоскостях.
Теперь о том, чем нуль отличается от земли. Отличие в том, что через нулевой провод проходит ток и размыкается автоматами (к примеру, вводным). Для заземления в многоквартирном доме нужно подсоединиться к расположенной в стояке жиле, предназначенной специально для этого. Любое другое место, в том числе и щитковый корпус, применять для заземления строго запрещено – это грозит серьезными проблемами для здоровья жильцов.
Устройство бытовой электропроводки
Что происходит в нуле и фазе при обрыве провода
Если электропровод оборвался, соответствующая розетка или подсоединенный к ней прибор перестает функционировать. При этом не имеет значение, фазный или нулевой провод пострадал. Если разорвался кабель между щитами многоквартирного дома и одного из его подъездов, электричества лишатся все квартиры, подсоединенные к подъездному щиту. Если в трехфазном сочленении оборвался один из фазных проводов, ток, который был в нем до этого, возникает в нулевом проводе, при этом в двух оставшихся фазах ничего не меняется.
Способ обнаружения отгорания нуля
Способы определения фазных и нулевых проводов
Зная, что в электротехнике фаза – это провод, по которому к прибору идет электричество, пользователь может заинтересоваться, можно ли найти фазу и нуль без использования приборов. Способ это сделать есть, хотя он не особенно надежен, так как не всегда прокладчики сетей соблюдают стандарты цветовой маркировки разных типов проводов. По стандартам, изоляция нулевого кабеля должна иметь голубой или синий цвет, заземления – быть окрашенной в желтую и зеленую полоску. Для фазного провода расцветка не регламентируется, она может быть разной, но только отличающейся от остальных кабелей.
Найти фазу можно по напряжению, которое измеряется мультиметром. В настройках указывают переменное напряжение более 220 В. Устанавливают контакт двух щупов с гнездами V и COM. Щупом, расположенным в V, касаются проводов – при прикосновении к нулю прибор ничего не покажет, а в фазе обнаружит напряжение в 7-15 В.
Также можно воспользоваться автоматом и индикаторной отверткой. С проводов счищают 1-2 см изоляции. Включают автомат и подносят отвертку рабочей стороной к проводу, держа при этом палец на металлическом отрезке рядом с рукоятью. При поднесении к фазе лампочка загорается.
Важно! При этом способе нельзя прикасаться пальцем к рабочей стороне отвертки. Провода перед процедурой надо развести подальше друг от друга, чтобы не случилось короткого замыкания.
Мультиметр позволяет провести детекцию фазного провода
Зануление в квартире
Это соединение зануляющего кабеля с нулевым проводником электросети и корпусом прибора. Предполагается, что процедура обеспечивает ускорение отключения устройства от сети при прикосновении к опасному месту, если напряжение выше некоторого порога. Но она сопряжена с дополнительной опасностью: при разрыве нуля все приборы, подключенные в этот момент к сети квартиры, будут на поверхности иметь фазу (а не ноль), что создает существенную угрозу для здоровья жильцов. Поэтому проведение таких монтажных работ жестко регламентируется.
Знать, что именно называется фазой в электросети, и как ее обнаружить, чрезвычайно важно при проведении электромонтажных работ. В противном случае высок риск нанести ущерб здоровью квартирантов или состоянию электроприборов.
Видео
Как определить фазу и ноль мультиметром
Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.
По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа — ёмкость (человек).
Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.
Как найти фазу мультиметром
Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения — уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».
В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.
Как проверить мультиметром напряжение в розетке 220в
Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.
Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».
Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.
Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.
Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.
Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.
Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.
В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.
Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.
Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.
Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.
Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.
В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.
Как найти ноль мультиметром
Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).
Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.
Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.
Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита — УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.
Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.
Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.
Фаза и нуль в электрике: что значит
В каждом современном доме есть электричество, благодаря которому работают розетки, лампочки и многие другие виды электрооборудования. Включая свет в комнате, пылесос в розетку или заряжая смартфон, мало кто задумывается, как же этот свет и зарядка в гаджете появляются. Что становится причиной работы лампочки и гула пылесоса? Вопросов, если подумать, много, но ответ один — электроэнергия
Фаза и нуль в электрике
Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.
Линия электропередачУровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.
КТПФаза и нуль: понятия и отличие
Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.
В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.
Фаза, ноль, земля в розеткеНуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.
Зачем нужен ноль в электричестве
Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.
Откуда берется ноль в электросети
Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей. ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора. На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.
Фаза, ноль и земля в проводеЗачем нужен нуль
Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.
Как найти нуль и фазу
В домашних условиях, даже не имея специальных приборов и приспособлений, возможно определить в обычной розетке, какой из двух проводов является фазой, а какой нулем. В этом случае используются электролампа или индикаторная отвертка.
Проверка с помощью электролампы
Для поиска нуля и фазы достаточно взять обыкновенный патрон с лампочкой и прикрутить два провода на его штатные места. Затем один из этих проводов подключить к заземляющим ножам в розетке, а второй — к любому из двух силовых разъемов.
Фазным будет являться тот разъем, при подключении к которому лампочка будет загораться. Это происходит потому, что по Правилам устройства электроустановок (ПУЭ), в вводном электрощите нулевые провода всех розеток должны быть соединены с земляными проводами этих же розеток. А отдельно земляная шина должна быть соединена с защитным контуром заземления. Именно это и обеспечивает наличие надежного нуля во всей цепи энергоснабжения дома.
ЭлектролампаОбратите внимание! Самостоятельно подобные процедуры допустимо делать только в том случае, когда квалифицированной помощи ждать неоткуда, а также в случае аварийной ситуации (пожар, короткое замыкание, попадание человека под напряжение). Не стоит забывать, что электрический ток очень опасен. Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!
Индикаторная отвертка
Для того, чтобы определить фазу в сети переменного тока напряжением 220В — 230В, можно использовать бытовой указатель напряжения — индикаторную отвертку. Продается он практически в любом хозяйственном магазине и стоит (в зависимости от конструкции) очень недорого.
Пример исправной индикаторной отверткиКак правило, инструкции к применению у подобных инструментов нет, поэтому, чтобы не получить электротравму, следует помнить несколько простых правил, применимых к любому инструменту, соприкасающемуся с токоведущими частями:
- Использовать инструмент только по назначению (запрещается применять указатель напряжения — индикаторную отвертку — в качестве обыкновенной отвертки для закручивания/откручивания винтов, саморезов, шурупов и т.д.)
- Перед использованием инструмента следует внимательно рассмотреть состояние изоляции на рукояти и жале (применимо для любых отверток, в том числе для индикаторных). Ни в коем случае не использовать приспособление, если изоляционное покрытие имеет сколы или вообще отсутствует.
- Проверять работоспособность индикаторных устройств необходимо на электроустановках, заведомо находящихся под напряжением (например, в удлинителе, в который включен работающий электроприбор).
В случае сомнения в работоспособности индикатора следует считать его неисправным, а электроустановку действующей.
Так же существуют более точные и безопасные приборы для определения наличия напряжения в сети — это мультиметры, токоизмерительные клещи, вольтамперфазометры (ВАФ) и другие.
Мультиметр
В быту, как правило, используются простые мультиметры. Они способны показать наличие напряжения в сети и его значение. Намного безопаснее использовать для определения фазы именно эти приборы, так как их щупы имеют диэлектрическую рукоятку. Принцип определения такой же, как и в случае с патроном — достаточно один щуп приложить к земляному контакту розетки, а второй накладывать на один из двух контактов розетки.
Пример мультиметраВажно! Как и правила дорожного движения, правила электробезопасности обязательно нужно соблюдать, ведь электрический ток невидим, неслышим и неосязаем, и именно этим он и опасен.
Электроэнергия (согласно второму закону Ньютона) не появляется из ниоткуда и не уходит в никуда. Она производится, транспортируется и потребляется на глазах. Нужно знать, откуда она берется, как к нам попадает и в каком виде. Каждый должен понимать, что в бытовом потреблении есть провода, которые могут нанести вред здоровью человека, а есть и такие, которые совершенно безвредны, поэтому необходимы небольшие знания и минимум приборов для определения и разграничения этих проводов. Но любые манипуляции с электричеством лучше доверять профессионалу — квалифицированному специалисту, чтобы избежать беды.
что это и как выполнить проверку?
Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.
Что такое чередование фаз?
Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.
Рис. 1. Напряжение в трехфазной сетиКак видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.
Если взять за основу, что из нулевой точки на рисунке а) выходит UA, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от UA к UB, а за ним к UC. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.
Прямое и обратное чередование фаз
В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.
Рисунок 2: Прямая и обратная последовательностьОбратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:
- Желтый – первый;
- Зеленый – второй;
- Красный – третий.
На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.
Зачем нужно учитывать порядок фаз?
Последовательность чередования играет значительную роль в таких ситуациях:
- При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
- При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
- При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.
С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.
Как выполнить проверку?
Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.
С помощью фазоуказателя
По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .
Рисунок 3: Принципиальная схема работы ФУ-2Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.
На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.
На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.
С помощью мегаомметра
Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.
Рис. 4: Прозвонка кабеля мегаомметромПосмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.
На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.
По расцветке изоляции жил
Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.
Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.
При помощи мультиметра
Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.
Рис. 5: фазировка мультиметромНеобходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.
Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.
Защита от нарушения порядка чередования
Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.
Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.
Тематическое видео
Фаза и ноль. Работа и измерения. Особенности
У неопытных электриков или хозяев дома появляется вопрос: что же такое фаза и ноль? Раньше они не вникали в то, как устроена электропроводка. А теперь понадобилось отремонтировать розетку, заменить лампочку, и хочется все это сделать самому.
Электросеть разделена на два типа: постоянного и переменного тока. Электрический ток является движением электронов в каком-либо направлении. При постоянном токе электроны двигаются в одну сторону, имеют полярность. При переменном токе электроны меняют свою полярность с определенной частотой.
В первую очередь домашнему умельцу нужно соблюдать электробезопасность, а потом уже думать об устранении неисправности. Некоторые пренебрежительно относятся к опасности попасть под действие тока.
Все части под напряжением должны быть защищены изоляцией, клеммы розеток углублены в корпус таким образом, чтобы не было доступа и нельзя было случайно коснуться рукой. Даже конструкция вилки сделана так, что невозможно попасть под напряжение электрического тока, держась рукой за вилку. Мы уже привыкли к электричеству, и не замечаем опасности при проведении работ по ремонту электрических устройств. Поэтому, лучше освежить в памяти правила безопасности и быть внимательными.
Принцип действия
Сеть электрического переменного тока разделена на фазу и ноль (рабочую и пустую). Нулевая фаза предназначена для образования постоянной электросети при включении устройств, а также для создания заземления. На фазе находится рабочее напряжение.
Для работы электроустройства не важно, где находится фаза, а где ноль. При установке электрических проводов и включении ее в сеть дома нужно учитывать, где фаза и ноль. Проводка прокладывается кабелем с двумя или тремя жилами. В кабеле с двумя жилами находится фаза и ноль, а в кабеле с 3-мя жилами третий провод отводится для заземления. Перед работой нужно точно определить расположение выводов проводов.
Электрический ток заходит от подстанции с трансформатором, преобразующим высокое напряжение до 380 вольт. Низкая сторона трансформатора соединена в звезду. Три вывода соединены в нулевой точке, а оставшиеся выводятся на клеммы фаз.
Узел в нулевой точке подключается к заземляющему контуру подстанции. Ноль расщепляется на рабочий и защитный. Новые строящиеся дома оснащаются проводкой по такой схеме. На входе дома в щите располагается три фазы и два провода расщепленного ноля.
В старых зданиях остается схема проводки старого типа без расщепленного ноля, там вместо пяти проводов идут 4 жилы. Электрический ток от трансформатора проходит по воздуху или под землей к входному щиту, образует систему из трех фаз (питающая сеть 380) на 220. Производится разводка по щитам подъездов. В квартиру поступает кабель с 1-й фазой на 220 В и защитный провод.
Защитный провод не всегда есть в наличии, если старая проводка не переделана. В квартире нулем называется провод, который соединен с заземляющим контуром на подстанции, применяется для образования нагрузки фазы, которая подключена к противоположному выводу на трансформаторе. Защитный ноль из схемы удален, он служит для устранения неисправностей и аварий для отвода тока при повреждениях.
В такой цепи нагрузки распределены равномерно, так как на этажах сделана разводка и выведены щиты к линиям на 220В в распредщите подъезда. Напряжение, подходящее к дому, выполнено звездой. При выключенных в квартире всех устройств и отсутствии нагрузки в розетках, в линии питания тока не будет.
Это является простой рабочей схемой электроснабжения, которая использовалась много лет. Но в любой сети могут возникнуть неисправности, которые связаны с плохими контактами соединений, либо обрывом проводов.
Обрыв провода
Проводник может легко оторваться, или его могут забыть подключить. Это происходит довольно часто, так же, как и могут отгореть провода при некачественном контактном соединении и большой нагрузке. Если в квартире нет соединения потребителя с щитком напряжения, то устройство не будет работать. Какой именно провод разорван, не имеет значения. То же самое получается при обрыве провода одной из фаз, которая питает дом или подъезд. Квартиры, питающиеся от этой линии, не будут иметь возможность получать электричество.
В двух остальных цепях все устройства будут работать в нормальном режиме, а ток ноля будет складываться из оставшихся составляющих. Все вышеописанные обрывы проводников связаны с выключением питания от квартиры, бытовые устройства при этом не ломаются. Опасным случаем может стать момент, когда исчезнет соединение между средней точкой потребителей щита дома и контуром заземления трансформатора подстанции. Это возникает у электриков, не имеющих достаточной квалификации.
Путь прохода тока через ноль к заземлению исчезает. Ток начинает идти по наружным контурам, имеющим напряжение в 380 В. В результате получается что на нагрузках вместо 220В будет 380В. На одном щите окажется небольшое напряжение, а на втором около 380 В. Высокое значение напряжения повредит изоляцию, нарушит работу устройств, приведет к поломкам и выходу из строя приборов.
Чтобы таких ситуаций не было, применяют защитные устройства для блокировки от повышенного напряжения. Они устанавливаются в щиток квартиры, либо внутри дорогостоящих приборов.
Способы определения где фаза и ноль
Любой домашний мастер при электромонтажных работах дома или в другом месте при подключении розетки или люстры сталкивается с вопросом определения фазы и ноля на проводах. Мы расскажем, какие существуют методы и способы правильного определения фазных проводов, нулевых жил, заземляющих защитных проводов. Конечно, для имеющего опыт в таких электромонтажных работах специалиста не доставит большого труда определить фазу и нулевой провод. Но как быть людям, которые не умеют этого делать?
Разберемся, как можно в домашних условиях без специальных инструментов для измерения и электронных приборов своими силами узнать наличие на проводах где фаза и ноль, заземление.
Во время поломок в сети тока часто домашние умельцы применяют недорогую индикаторную отвертку для проверки наличия напряжения китайского изготовления.
Она действует по закону емкостного тока, проходящего по телу человека. Такая отвертка состоит из следующих деталей:
- Наконечник металлический, заточенный под отвертку, присоединяется к фазе.
- Резистор для ограничения тока, который уменьшает амплитуду тока до небольшой величины.
- Лампочка неоновая, начинает светиться при прохождении тока, показывает наличие фазы на проводнике.
- Площадка для касания пальцем человека, чтобы создавалась цепь тока по телу через землю.
Квалифицированные специалисты применяют для контроля фазы приборы с качественными деталями и имеющими несколько функций, с индикаторами под отвертку, светодиод светится с помощью транзисторной схемы, подключенной от батареек на 3 вольта.
Такие устройства кроме фазы могут решать другие вспомогательные задачи. Они не имеют клеммы для контакта пальцем. Как проверять наличие фазы в розетках индикатором, показано на рисунке.
Днем плохо видно, как светится лампочка, требуется приглядываться. Там, где лампочка светится, есть фаза. На рабочем нуле и защитном заземлении лампочка не будет гореть. Если лампа светится в других случаях, то это говорит о том, что имеются неисправности в схеме.
Во время работы с такой отверткой нужно проверить исправность ее изоляции, не касаться вывода индикатора без изоляции под напряжением. Также с помощью тестера можно в розетке определить наличие напряжения.
Показания на тестере:
- 220 В между фазой и нолем.
- Нет напряжения между защитным нолем и рабочим.
- Нет напряжения между защитным нолем и фазой.
Последний вариант – это исключение. При нормальной схеме стрелка будет показывать разность потенциалов 220 В. Но в наших розетках его нет, так как здание дома старое, электропроводка не изменялась. После реконструкции электропроводки вольтметр покажет напряжение 220 В.
Особенности нахождения неисправности
Состояние схемы электропроводки не всегда определяется путем обычной проверки напряжения. На выключателях имеется различное положение, которое иногда вводит в заблуждение электрика. На рисунке изображен случай, при выключенном выключателе на проводе фазы светильника нет напряжения при исправной проводке.
Поэтому, при измерениях в поиске поломок нужно проводить тщательный анализ возможных случаев.
Цветовка проводов
Определить, на какой жиле есть напряжение, а на какой нет, довольно просто. Существует много способов вычисления где находятся фаза и ноль.
Одним из методов является определение по цвету изоляции проводов. Каждая жила в кабеле и в электрооборудовании окрашена цветом изоляции определенной расцветки, определенной стандартом. Зная цвета распределения функциям проводов, можно легко произвести установку электропроводки.
Рабочие фазы подключают проводами с черным цветом изоляции, либо может быть коричневый или серый цвет. Нулевой провод монтируют в светло-синей изоляции. При установке вспомогательного дополнительного заземления применяют проводники с зеленым или желтым цветом изоляции.
Такой способ определения по цвету проводов, фаза и ноль, не является надежным, так как при монтаже электропроводки специалисты не всегда добросовестно соблюдают маркировку проводов по цвету жил.
Похожие темы:
Значение фаза и ноль в электричестве
Углубляемся в тему
Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.
Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.
Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.
Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено
Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током
К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.
Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.
Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:
Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику«!
Рекомендуем также прочитать:
Фаза разноцветье в ассортименте
Именно через фазу проходит напряжение
А значит, работать с этим видом кабеля нужно особенно осторожно. Данный провод обозначается буквой l в электрике, что является сокращением слова Line
В трехфазной сети используется следующее обозначение проводников: l1, l2, l3. Иногда вместо цифр применяются английские буквы. Тогда получается la, lb, lc.
Про цветовое обозначение фаз можно говорить много. Понятно одно: фазный проводник может быть какого угодно цвета, кроме желтого, зеленого и синего. Однако в России нашли свой ответ на вопрос, какого цвета фаза. Согласно ГОСТ Р 50462-2009, рекомендуется использовать черный или коричневый цвет. Однако этот стандарт носит лишь рекомендательный характер. А потому производители не ограничивают себя определенными цветовыми рамками. Например, красный и белый встречаются гораздо чаще коричневого. Яркие цвета – розовый, бирюзовый, оранжевый, фиолетовый также часто присутствуют в наборе
Считается, что яркие цвета защитят от опасности, привлекут внимание мастера. Все-таки с напряжением не шутят
Основные определения по теме Общее заземление
Защитное заземление — соединение проводящих частей оборудования с грунтом Земли через заземляющее устройство с целью защиты человека от поражения током.Заземляющее устройство — совокупность заземлителя (то есть проводника, соприкасающегося с землёй) и заземляющих проводников.Общий провод — проводник в системе, относительно которого отсчитываются потенциалы, например, общий провод БП и прибора.Сигнальное заземление — соединение с землёй общего провода цепей передачи сигнала.Сигнальная земля делится на цифровую землю и аналоговую. Сигнальную аналоговую землю иногда делят на землю аналоговых входов и землю аналоговых выходов.Силовая земля — общий провод в системе, соединённый с защитной землей, по которому протекает большой ток.Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединённая к заземлителю непосредственно или через малое сопротивление.Нулевой провод — провод, соединённый с глухозаземлённой нейтралью.Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству.Зануление — соединение оборудования с глухозаземлённой нейтралью трансформатора или генератора в сетях трёхфазного тока или с глухозаземлённым выводом источника однофазного тока.
Заземление АСУ ТП принято подразделять на:
- Защитноое заземление.
- Рабочеее заземление, или функциональное FE.
Дополнительные сведения о нахождении земли, фазы, нулевого провода
Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, можно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее можно тестером (запрещенной стандартами лампочкой в патроне) находить фазу.
Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу
Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, можно обратиться в управляющие организации, при отсутствии реакции – стучите (россияне именуют правозащитников стукачами) государственным инстанциям
Указывайте нарушение правил защитного зануления зданий.
Найти нулевой провод в квартире
По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще будет ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.
Штекер 230 вольт Великобритании
В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией
Обратите внимание – если в доме обустроено заземление, жил на входе будет минимум 5. Корпус щитка сажается на желто-зеленую
Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):
- Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Затем можно автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
- Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
- Токовыми клещами измерим значения на жилах. По каждой фазе будет некоторое значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь будет близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
- Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.
Откуда появился ноль, и каким он бывает
Если рассматривать планету Земля с точки зрения электротехники, то она является сферическим конденсатором. В нем три элемента:
- Земная твердь, имеющая отрицательный потенциал.
- Ионосфера – слой атмосферы, воспринимающий и частично рассеивающий излучения Солнца. Она имеет положительный потенциал.
- Газовая атмосфера, имеющая диэлектрические свойства и играющая роль обкладки.
Разница потенциалов между обкладками этого глобального конденсатора равна 300 тыс. вольт. Она уменьшается по мере приближения к поверхности. Так, на высоте 100 метров ее значение 10 тыс. вольт.
Почему мы считаем потенциал Земли равным нулю, ведь на самом деле он имеет вполне материальное значение, хотя и c отрицательным знаком? Этот вопрос стоит задать ученым XVIII или XIX веков, заложивших основы электротехники.
Например, английскому физику Майклу Фарадею. Так им было удобнее измерять напряженность электромагнитного поля – принять за точку отсчета (ноль) Землю. Этот прием используется во многих отраслях науки. Например, в термодинамике. В ней за абсолютный ноль принята температура, при которой прекращается движение электронов в атомной структуре любого вещества.
Это так называемая шкала Кельвина, которая отличается от другой системы измерения температур – она предложена Андерсом Цельсием – на 273 градуса со знаком минус.
Итак, электрический ноль – это условное понятие, которое применяют в отношении любого предмета с отрицательным потенциалом. Его можно получить тремя способами:
- Присоединившись к земной тверди, отчего и произошло понятие «заземление».
- Кристаллическая решетка всех металлов имеет отрицательный заряд разной величины, что определяет степень их электрохимической активности. Поэтому достаточно присоединиться к металлическому предмету большой массы и объема. Два последних условия являются обязательными, поскольку тело должно иметь электрическую емкость, сравнимую с Земной. Это называется рабочим заземлением.
- Соединив проводники с текущим по ним переменным током так, чтобы в общей точке сумма их векторного сложения была равна нулю (так называемая схема звезда), из-за чего ее назвали нейтралью. Это основа приема, называемого в электротехнике занулением.
Зачем нужен ноль в электричестве
Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.
Откуда берется ноль в электросети
Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей. ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора. На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.
Фаза, ноль и земля в проводе
Зачем нужен нуль
Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.
Основные понятия.
Сила
тока—
скалярная физическая величина, равная
отношению заряда, прошедшего через
проводник, ко времени, за которое этот
заряд прошел.
где I—
сила тока,q—величина
заряда (количество электричества),t—
время прохождения заряда.
Плотность
тока—
векторная физическая величина, равная
отношению силы тока к площади поперечного
сечения проводника.
где j—плотность
тока, S— площадь
сечения проводника.
Направление
вектора плотности тока совпадает с
направлением движения положительно
заряженных частиц.
Напряжение — скалярная
физическая величина, равная отношению
полной работе кулоновских и сторонних
сил при перемещении положительного
заряда на участке к значению этого
заряда.
гдеA—полная
работа сторонних и кулоновских сил,q—
электрический заряд.
Электрическое
сопротивление—
физическая величина, характеризующая
электрические свойства участка цепи.
гдеρ—
удельное сопротивление проводника,l—длина
участка проводника,S—площадь
поперечного сечения проводника.
Проводимостьюназывается
величина, обратная сопротивлению
где G—проводимость.
Источники помех на шине Земля
Все помехи, воздействующие на кабели, датчики, исполнительные механизмы, контроллеры и металлические шкафы автоматики, в большинстве случаев протекают и по заземляющим проводникам, создавая паразитное электромагнитное поле вокруг них и падение напряжения помехи на проводниках.
Источниками и причинами помех могут быть молния, статическое электричество, электромагнитное излучение, «шумящее» оборудование, сеть питания 220 В с частотой 50 Гц, переключаемые сетевые нагрузки, трибоэлектричество, гальванические пары, термоэлектрический эффект, электролитические процессы, движение проводника в магнитном поле и др. В промышленности встречается много помех, связанных с неисправностями или применением не сертифицированной аппаратуры. В России уровень помех регулируются нормативами — ГОСТ Р 51318.14.1, ГОСТ Р 51318.14.2, ГОСТ Р 51317.3.2, ГОСТ Р 51317.3.3, ГОСТ Р 51317.4.2, ГОСТ 51317.4.4, ГОСТ Р 51317.4.11, ГОСТ Р 51522, ГОСТ Р 50648. На этапе проектирования промышленного оборудования, чтобы снизить уровень помех, применяют маломощную элементную базу с минимальным быстродействием и стараются уменьшить длину проводников и экранирование.
Фаза и нуль понятия и отличие
Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.
В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.
Фаза, ноль, земля в розетке
Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.
Заземляющие проводники заземлители
Самым распространенным цветовым обозначением изоляции заземлителей являются комбинации желтого и зеленого цветов. Желто-зеленая раскраска изоляции имеет вид контрастных продольных полос. Пример заземлителя показан далее на изображении.
Желто-зеленая раскраска заземлителя
Однако изредка можно встретить либо полностью желтый, либо светло-зеленый цвет изоляции заземлителей. При этом на изоляции могут быть нанесены буквы РЕ. В некоторых марках проводов их желтый с зеленым окрас по всей длине вблизи концов с клеммами сочетается с оплеткой синего цвета. Это значит то, что нейтраль и заземление в этом проводнике совмещаются.
Для того чтобы при монтаже и также после него хорошо различать заземление и зануление, для изоляции проводников применяются разные цвета. Зануление выполняется проводами и жилами синего цвета светлых оттенков, подключаемыми к шине, обозначенной буквой N. Все остальные проводники с изоляцией такого же синего цвета также должны быть присоединены к этой нулевой шине. Они не должны присоединяться к контактам коммутаторов. Если используются розетки с клеммой, обозначенной буквой N, и при этом в наличии нулевая шина, между ними обязательно должен быть провод светло-синего цвета, соответственно присоединенный к ним обеим.
Как различить фазу, ноль, землю
Проще всего определить назначение проводников по цветовой маркировке. В соответствие с нормами, фазный проводник может иметь любой цвет, нейтраль – голубую маркировку, земля – желто-зеленого цвета. К сожалению, при монтаже электрики цветовая маркировка соблюдается далеко не всегда. Нельзя забывать и вероятности того, что недобросовестный или неопытный электрик легко может перепутать фазу и ноль или подключить две фазы. По этим причинам всегда лучше воспользоваться более точными способами, чем цветовая маркировка.
Определить фазный и нулевой проводники можно с помощью индикаторной отвертки. При соприкосновении отвертки с фазой загорится индикатор, так как по проводнику проходит электроток. Ноль не имеет напряжения, поэтому индикатор загореться не может.
Отличить ноль от земли можно с помощью прозвонки. Сначала определяется и маркируется фаза, затем щупом прозвонки нужно прикоснуться к одному и проводников и клемме заземления в электрощитке. Ноль звониться не будет. При прикосновении к земле раздастся характерный звуковой сигнал.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Нулевой проводник
Нулевой проводник или, как его еще называют, нейтраль выполняет простую, но важную функцию. Он выравнивает нагрузки в сети, на выходе обеспечивая напряжение в 220 Вольт. Избавляет фазы от скачков и перекосов, нейтрализуя их. Не удивительно, что его символом является буква n – образован от английского слова Neutral. А сочетание обозначений n, l в электрике всегда идут рядом.
В распределительном щитке все кабели данной расцветки группируются на одной, нулевой шине с соответствующей буквенной аббревиатурой. В розетках также есть необходимая маркировка.
Поэтому мастер никогда не спутает, куда крепить специальный нулевой контакт.
Такая маркировка, принцип работы применимы как к однофазной, так и к трехфазной сети.
Фаза и нуль в электрике
Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.
Линия электропередач
Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.
КТП
Напряжение на землю больше чем фазовое. Так надо
Частный дом. Сделал заземление — 15м арматура 10ка + 2м полоса в грунте остальное на пов-сти.Напряжение ноль-фаза 216 Внапряжение земля-фаза 222 В, т.е. больше. Это нормально?Если имеет значение земля-ноль тестер показывает 3 В.
Качество заземления определяется сопротивлением.
Ну вообще — на ноле обычно потенциал от нуля отличный )) Но это — не нормально. Сделайте на вводной опоре повторное заземление ноля — и будет тогда на ноле ноль
как бы у нас по умолчанию с заземленной нейтралью сеть. Так что землите до ввода в дом смело
——————Да здравствуют временные трудности!
Если автора сильно беспокоят перекосы и очень хочется симметрии можно поставить на вход разделительный трансформатор (цену не могу представить) и сделать собственную систему электроснабжения, лучше с нулем, отдельным от заземления.
Вообще то с УЗО проблемы
Я правильно понял, что если соединю ноль с землёй после счётчика, то эти 3 В будут накручивать счётчик круглосуточно? Или замедлять?
——————Ребята, давайте жить дружно! (с)
Старый счетчик скорее всего никак на это не отреагирует. А вот новый электронный — скорее всего насчитает.
Подобную тему открывал тоже.Решил землю не делать.Ограничился УЗО.Всё работает.
Да не собираюсь я этого делать, хотябы по причине 3-х В на корпус любого прибора.Ещё вопрос: УЗО всё равно какой стороной в сеть, какой на счётчик? Ноль там отмечен как ноль а фаза цифрами 1 и 2.
——————Ребята, давайте жить дружно! (с)
кстати,если один провод от электро прибора на заземлённый штырь,а второй на фазу-он будет работать за счёт чубайса.
——————временные трудности
Через счётчик с фазы всё равно будут течь. Хоть на ноль хоть в землю. А таких горе экономов надо живьём заземлять! Сколько раз, работая в квартирных домах получал от отопления и сантехники.
——————Ребята, давайте жить дружно! (с)
не в случае отдельностоящего дома.
——————временные трудности
про сегодня не скажу,но года два назад работало с новым счётчиком.провинция-с..
——————временные трудности
даже за 2 года назад — Вы меня очень сильно удивили ну — тут уж надо смотреть, какая провинция…
…
Чтоб не плодить темы, а УЗО вообще можно поставить на нестабилизированной линии? Бывают перепады от 180 до 230.
по идее можно.оно следи не за напряжением,а отслеживает его разности . т.е. если через ноль и фазу проходит равное количество энергии оно не срабатывает.при утече-пробой на землю,и тому подобное равновесие нарушаеться и срабатывает размыкатель.
А выбивать постоянно не будет?
у вас по перепадам напряжений чисто сельская ситуация,может кто из товарищей подскажет. узо штука капризная-чуть утечка и выбивает-проводка должна быть качествынной.у меня 2-3 раза в год срабатывает самопроизвольно,причин не знаю,просто включаю и всё.
Я про дачу и спращиваю)
У меня в деревне перепады 180-230 узо нормально работает, четкое срабатывание только на утечку, ложных ни одного не было за год.
Я с двумя электриками говорил — оба сказали что будет выбивать, но вот головой я понимаю что такого быть не должно, ибо совершенно верно замечено:
Да это понятно что лучше! Никто и не спорит. Не будет ли постоянных срабатываний на дачной линии? А то просто замучает и придется выкинуть его — деньги на ветер!
Если можно. У меня автоматы все леграндовские стоят. Линия 3фазная.
Начали с «грязного» нуля, дошли до УЗО… Какая связь?Три вольта на нуле относительно земли — это просто ничто для сельской местности.У меня нулевой провод имеет повторное заземление на арматуру ЖБ опоры, с которой выполнен ввод в дом. Трёхфазное УЗО выбило за четыре года лишь один раз, во время грозы.Лично по мне, лучше допустить ложные срабатывания, чем один несчастный случай.
Пасынки ж/б, столбы гнилые уже, трансформатор на ладан дышит.
А как выбирается ампераж узо? 25 не мало?
У меня выделенная 5 кВт, соответственно вводной автомат 25 А, узо должно коммутировать такой же ток.
А у меня автомат 40 А…
Лучше сменить ИЭК на что-нибудь поприличнее, имхо.
Хреновня китайская.
Фаза в электричестве
А вы знаете, на электростанциях? Везде принцип его возникновения один и тот же: вращение магнита внутри катушки приводит к тому, что в ней появляется Этот эффект получил название ЭДС, или электродвижущая сила индукции. Вращающийся магнит называют ротором, а прикрепленные вокруг него катушки — статором.
Переменное напряжение получают от постоянного, когда последнее изгибают по синусу, в результате чего достигается то положительное, то отрицательное его значение.
Итак, магнит приходит в движение, например, благодаря потоку воды. При вращении ротора все время меняется. Поэтому и создается переменное напряжение. При трех установленных катушках каждая из них имеет отдельную электрическую цепь, а внутри нее появляется одинаковое переменное значение, где фаза напряжения сдвинута по окружности на сто двадцать градусов, то есть на треть относительно той, что расположена рядом.
Зачем нужно зануление
Человечество активно использует электричество, фаза и ноль – важнейшие понятия, которые нужно знать и различать. Как мы уже выяснили, по фазе электричество подается к потребителю, ноль отводит ток в обратном направлении. Следует различать нулевой рабочий (N) и нулевой защитный (PE) проводники. Первый необходим для выравнивания фазового напряжения, второй используется для защитного зануления.
Электросети с изолированной нейтралью не имеют нулевого рабочего проводника. В них используется нулевой заземляющий провод. В электросистемах TN рабочий и защитный нулевой проводники объединены на всем протяжении цепи и имеют маркировку PEN. Объединение рабочего и защитного нуля возможны только до распределительного устройства. От него к конечному потребителю пускается уже два нуля – PE и N. Объединение нулевых проводников запрещается по технике безопасности, так как в случае короткого замыкания фаза замкнется на нейтраль, и все электроприборы окажутся под фазным напряжением.
Выводы Правила заземления
Радикальные методы решения проблем заземления:
- Используйте модули ввода.вывода только с гальванической развязкой
- Не применяйте длинных проводов от аналоговых датчиков
- Располагайте модули ввода в непосредственной близости к датчику, а сигнал передавайте в цифровой форме
- Используйте датчики с цифровым интерфейсом
- На открытой местности и при больших дистанциях используйте оптический кабель вместо медного
- Используйте только дифференциальные (не одиночные) входы модулей аналогового ввода
Еще советы:
- Используйте в пределах вашей системы автоматизации отдельную землю из медной шины, соединив её с шиной защитного заземления здания только в одной точке
- Аналоговую, цифровую и силовую землю системы соединяйте только в одной точке. Если этого сделать невозможно, используйте медную шину с большой площадью поперечного сечения для уменьшения сопротивления между разными точками подключения земель
- Следите, чтобы при монтаже системы заземления случайно не образовался замкнутый контур
- Не используйте по возможности землю как уровень отсчёта напряжения при передаче сигнала
- Если провод заземления не может быть коротким или если по конструктивным соображениям необходимо заземлить две части гальванически связанной системы в разных точках, то эти системы нужно разделить с помощью гальванической развязки
- Цепи, изолированные гальванически, нужно заземлять, чтобы избежать накопления статических зарядов
- Экспериментируйте и пользуйтесь приборами для оценки качества заземления. Допущенные ошибки не видны сразу
- Пытайтесь идентифицировать источник и приёмник помех, затем нарисуйте эквивалентную схему цепи передачи помехи с учётом паразитных ёмкостей и индуктивностей
- Пытайтесь выделить самую мощную помеху и в первую очередь защищайтесь от неё
- Цепи с существенно различающейся мощностью следует заземлять группами, в каждой группе – блоки с примерно равной мощностью
- Заземляющие проводники с большим током должны проходить отдельно от чувствительных проводников с малым измерительным сигналом
- Провод заземления должен быть по возможности прямым и коротким
- Не делайте полосу пропускания приёмника сигнала шире, чем это надо из соображений точности измерений
- Используйте экранированные кабели, экран заземляйте в одной точке со стороны источника сигнала на частотах ниже 1 МГц и в нескольких точках – на более высоких частотах
- Для особо чувствительных измерений используйте «плавающий» батарейный источник питания
- Самая «грязная» земля – от сетевого блока питания. Не совмещайте её с аналоговой землёй.
- Экраны должны быть изолированными, чтобы не появилось случайных замкнутых контуров, а также электрического контакта между экраном и землёй
Как легко понять фазовый автофокус
На первый взгляд камеры обманчиво просты. Возьмите свою зеркалку, посмотрите в видоискатель, зафиксируйте фокус и снимайте. За этим стоит еще много чего, в том числе процесс, называемый автофокусом с определением фазы.
Эта фраза часто встречается в мире зеркальных фотокамер, особенно при покупке новой камеры. Но многие не знают, что это такое и как работает!
Что такое автофокус?
Начнем с основ.Есть два типа фокусировки: автоматический и ручной.
Ручная фокусировка — это когда пользователь должен управлять фокусировкой, поворачивая кольцо фокусировки влево или вправо для достижения фокусировки.
Автофокус — это когда камера делает все за вас. Он использует компьютер для запуска миниатюрного мотора, который вращает кольцо фокусировки.
Это кольцо фокусировки перемещает внутренний компонент объектива внутрь и наружу. Это действие повторяется до тех пор, пока не будет проецироваться самое резкое изображение объекта. Но давайте разберемся с этим более подробно.
У всех цифровых фотоаппаратов есть гистограмма, которая сообщает вам о том, что вы фотографируете. Контрастный автофокус работает, оценивая эту гистограмму (которая сообщается с датчиком). Затем камера постепенно перемещает объектив. Он продолжает переоценивать, есть ли более или менее контраст с тем, что вы снимаете.
Если камера обнаруживает увеличение контрастности, она перемещает объектив в этом направлении с более высокой контрастностью, пока не достигнет своего полного потенциала. Если контраст уменьшается, камера перемещает объектив в другом направлении.
Этот процесс повторяется снова и снова, пока не появится высокий контраст. Контрастный автофокус существует, потому что хорошо сфокусированное изображение будет иметь высокий контраст.
С фазовой автофокусировкой подумайте немного о луне и ее различных фазах. Для камеры, когда определенная точка оказывается в идеальном фокусе, появляются световые лучи.
Фотография, находящаяся в фокусе, будет иметь световые лучи, которые будут отражать свет на противоположных сторонах линзы. Именно тогда появляется термин «в фазе», например, как работают фазы луны.
Камера может определить, когда фокус не достигается, потому что противоположная сторона больше не освещается (это называется не в фазе). Это случается, когда линза неправильно фокусируется на точке. Он может быть перед ним или позади него.
Как понять фазовый автофокус
В камерах есть призмы. Для определения фазы изображение, которое вы видите, попадает в призму, а затем разделяется на два изображения. Если эти изображения совпадают, это означает, что ваш объект в фокусе! Если нет, значит, ваш объект не в фокусе.
Так как же в этом случае получить что-то в фокусе? Это очень похоже на игру в догадки, не так ли? Нет! Датчик внутри камеры знает, какое разделенное изображение является каким. Таким образом, он может разговаривать с камерой и сообщать ей, в каком направлении следует переместить фокус, чтобы изображения совпадали.
Чтобы сделать его более продвинутым, если вы помните, мы упоминали световые лучи выше — световые лучи проходят через линзу. Этот свет обнаруживается датчиком. Затем система может определить, сфокусирован ли объект спереди или сзади.Камера получает прямую информацию о том, как следует повернуть кольцо фокусировки, чтобы зафиксировать объект.
Интересный факт: отчасти DSLR-камеры такие тяжелые, потому что в них есть настоящая призма. Это разделяет изображение на датчик фокусировки. Беззеркальные камеры меньше и легче, потому что они достигают того же результата, делая это на датчике.
После совмещения изображений система отправляет подтверждающее сообщение о том, что объект находится в фокусе.Вся эта сложность происходит за доли секунды!
Автофокусировка с определением фазы отлично подходит для съемки движения, потому что она очень быстрая.
Теперь, если вы когда-либо участвовали в покупке игры, вы наверняка слышали о точках определения фазы. Цифровая камера имеет определенное количество точек определения фазы. Есть так много точек сенсора, где можно сравнить разделенное изображение. Чем их больше, тем точнее будет фокус.
Для чего лучше всего подходит фазовый автофокус?
Фазовый автофокус очень хорошо подходит для съемки в движении.Лучше всего он работает при использовании с отслеживанием изображения, многофазным обнаружением и режимами AI Servo / Continuous Focus.
Обнаружение фазы работает для других типов фотографии, например портретов и натюрмортов. Но фотографы-активисты будут очень благодарны за включение этой системы.
К преимуществам фазовой автофокусировки относится то, что она быстрая и позволяет сенсору оценивать глубину резкости изображения.
Вы получите точное представление о глубине резкости еще до того, как сделаете снимок.
Заключение
О знаниях никогда не пожалеть — чем больше вы знаете, тем больше у вас набор инструментов!
Полезно понять, как работает автофокусировка с определением фазы. Вы можете избавиться от проблем с фокусировкой и знать, когда что-то работает неправильно в вашей камере.
.Что такое автофокус с определением фазы и определением контраста?
Вы видели спецификации — вот для Sony a6500:
«169 точек обнаружения контраста и 425 точек определения фазы!» Ну, это круто, но что такое автофокус с определением фазы и определением контраста?
Что такое автофокус с определением контраста?
Определение контраста — это самый простой и точный метод технологии автофокусировки. Таким образом, это самая дешевая технология автофокусировки.
Название должно сказать все: камера смотрит на контраст между краями и перемещает мотор фокусировки, пока контраст не станет самым резким.
Именно так работает наш мозг, когда мы используем ручную фокусировку без посторонней помощи — мы смотрим на края и перемещаем кольцо фокусировки до тех пор, пока контраст краев не станет самым сильным. Или то, что мы называем «острым» простым языком. Сначала мы идем вперед и назад с крупными корректировками, затем с небольшими уточнениями, пока не доберемся до цели.
Давайте посмотрим на эти мультяшные цветы в качестве примера шагов, связанных с обнаружением контраста, когда оно фокусируется на правильном фокусе:
Автофокусировка с определением контраста — несмотря на то, что это самый простой, дешевый и точный метод фокусировки — это , а также самый медленный .
Если вы когда-нибудь видели, как мотор автофокусировки «рыскает» взад и вперед, как при ручной фокусировке, это обнаружение контраста в действии.
Это сравнение расстояний фокусировки для определения точки максимальной контрастности.
Что такое автофокус с определением фазы?
Готовы заняться настоящим технарем? Нет? Мы постараемся сделать это проще.
Представьте себе изображение, попадающее в призму. Затем призма разделяет это изображение на две части.
Если изображение в фокусе, разделенные изображения будут выровнены по .Если не в фокусе, изображения не будут совпадать.
Именно так работает помощник ручной фокусировки «расщепленная призма» в центре видоискателя на старых пленочных зеркальных фотоаппаратах. Вы перемещаете кольцо фокусировки, пока изображение не выровняется и вуаля, в фокусе. Очень быстро.
Гораздо быстрее , чем пытаться определить, где контрастная кромка наиболее резкая.
Когда цифровая камера сообщает, что у нее «425 точек определения фазы», это означает, что на датчике есть 425 мест, где она может сравнить это разделенное изображение.
Поскольку датчик знает, какое разделенное изображение является каким, он точно знает, в каком направлении и на сколько нужно переместить мотор фокусировки, чтобы объединить разделенное изображение.
Поскольку фазовое определение отлично подходит для движущихся объектов, давайте посмотрим, как оно работает с баскетболистом:
В зеркальных фотокамерах используется настоящая призма для разделения изображения на датчик фокусировки, в то время как в беззеркальных камерах это делается непосредственно на датчике. Технология более дорогая, и в зеркалке добавляется немного больше веса.
Что лучше: контрастный или фазовый автофокус?
Ответ, как и все остальное в фотографии, «зависит от обстоятельств».
Для неподвижных объектов и высококонтрастных сцен
Определение контраста Автофокусировка обеспечит наиболее точную фокусировку при покадровой автофокусировке с неподвижным объектом.
Меньше шансов, что камера сфокусируется перед или за объектом, как это иногда бывает с фазовым детектором.
Улучшите свои фотографии с помощью свежих советов, вдохновения и скидок на онлайн-курсы, доставленные на вашу электронную почту.
Щелкните здесь, чтобы подписаться
Это называется передний фокус или задний фокус , и вы все равно должны знать об этом с обнаружением контраста.
Но помните, что мотор объектива больше перемещается с автофокусом с определением контраста. Это означает, что будет использовано больше сока. Мотор также будет двигаться немного медленнее с объективами большего размера с несколькими стеклянными элементами.
Для движущихся объектов
Если ваш объект движется Обнаружение фазы автофокусировка даст вам самую быструю и точную автофокусировку.
У вас по-прежнему есть риск заднего или переднего фокуса, но с технологией отслеживания изображения и несколькими точками автофокусировки с определением фазы это меньший фактор.
Вы будете снимать в режимах непрерывной или серво автофокусировки, поэтому камера постоянно регулирует фокус по мере движения объекта.
Так происходит, например, с передним фокусом . Точки обнаружения фазы захватили объект ближе к тому месту, где я хотел сфокусироваться, и вместо этого сфокусировались на нем. Зеленые квадраты — это то, что вы увидите на Sony Alpha.
Обратите внимание на отображаемые точки фокусировки ; если вы видите их не в том месте, вам следует переключиться на другую зону фокусировки.
Автофокусировка с обнаружением контраста не подходит для движущихся объектов из-за времени, необходимого для достижения максимального контраста.
К моменту определения точки максимальной контрастности объект уже переместился на другое расстояние, и камера должна снова найти это положение.
Автофокусировка с определением фазы немедленно привяжет двигатель к нужной точке фокусировки для непрерывной съемки.
При слабом освещении и низкой контрастности
Просто помните, что оба этих метода требуют света для фокусировки .
Если изображение не контрастно или мало освещено, возможно, в камере недостаточно данных для использования любого из методов фокусировки.Есть способы обойти это.
- Некоторые камеры повышают ISO при нажатии кнопки фокусировки. Это усиливает свет для фокусировки, а затем ISO упадет до установленного вами значения.
- Подсветка и вспомогательные лучи автофокусировки . Камеры и вспышки излучают лучи света, пытаясь осветить ваш (близкий) объект. Вы также можете использовать мощный фонарик, если объект съемки находится дальше.
- Используйте фокусировку с помощью кнопки назад, чтобы камера не пыталась выполнять автофокусировку каждый раз, когда вы нажимаете кнопку спуска затвора, особенно при съемке неподвижных сцен.
Что такое гибридный автофокус?
Вы увидите, что некоторые камеры рекламируют гибридный автофокус.
Sony a6500 может похвастаться самой быстрой автофокусировкой в мире прямо сейчас со скоростью 0,05 секунды с использованием гибридной автофокусировки.
Гибридная автофокусировка обычно начинается с метода быстрой фазовой автофокусировки.
Затем он использует автофокусировку с определением контраста для уточнения края, и, поскольку определение фазы приблизило его к этой точке, определение контраста занимает меньше времени, чем обычно.
Итак, определение фазы возвращает его к тому, что наши глаза воспринимают как идеальный фокус, а затем выходит за рамки этого с помощью обнаружения контраста.
Теперь, когда вы понимаете разницу между автофокусировкой с определением фазы и определением контраста, я надеюсь, что это понимание также улучшит вашу фотографию! Есть вопросы или комментарии? Пожалуйста, оставьте их ниже!
Если у вас есть беззеркальная камера, вы можете узнать еще больше о том, как улучшить свои навыки ручной фокусировки и автофокусировки, в моем курсе Sharper Photos with Mirrorless Cameras .Нажмите здесь, чтобы сэкономить 20% со скидкой для чтения блогов.
Связанные
.Обнаружение фазы и обнаружение контраста Автофокус
Система фокусировки, которую использует ваша камера, имеет большое значение для ее эффективности. Если вы хотите максимально использовать возможности автофокусировки камеры, важно знать, как она работает. Также полезно понимать разницу между фазовой и контрастной автофокусировкой (AF), поскольку именно эти две системы используются в современных цифровых камерах.
Например, если вы увлекаетесь портретной фотографией и любите использовать объективы с постоянным фокусным расстоянием и широкую диафрагму, тогда точная фокусировка имеет решающее значение.Вам нужен точный автофокус, чтобы сфокусировать глаза модели на портретах, подобных этому, снятых с диафрагмой f1.2 с помощью объектива 56 мм.
Обнаружение контраста, используемое в беззеркальных камерах, лучше, чем обнаружение фазы, используемое в цифровых SLR камерах.
Если вы не знаете, почему это так, то прочтите мою статью «Как сфокусироваться на широкой диафрагме».
Но если вы увлекаетесь фотографией дикой природы или спортивной фотосъемкой, или чем-либо, что использует возможности автофокусировки слежения и непрерывной фокусировки вашей камеры, то фазовый автофокус работает лучше.
Также следует отметить, что камеры и объективы работают вместе, когда речь идет о производительности автофокуса. И Canon, и Nikon производят высокопроизводительные супертелеобъективы, которые предназначены для получения максимальной отдачи от систем автофокусировки на их камерах высокого класса. Вот почему так много профессиональных спортивных фотографов используют одно или другое.
В некоторых камерах используется гибрид двух систем. Например, цифровая зеркальная фотокамера (SLR) может использовать автофокусировку с определением контраста в режиме Live View или видеосъемки и автофокусировку с определением фазы, когда вы смотрите в видоискатель.
Некоторые беззеркальные камеры также имеют точки автофокусировки с определением фазы, которые работают в режиме непрерывной автофокусировки для повышения точности следящего автофокуса. Но механика фазового автофокуса в беззеркальных камерах отличается от таковой в зеркальных камерах, как мы увидим далее в статье.
Фазовый автофокус в зеркальных фотоаппаратах
В зеркальной фотокамере свет проходит через объектив, попадает в отражающее зеркало и отражается вверх через пентапризму и выходит через видоискатель. Цель конструкции камеры такого типа — показать вам, что именно видит объектив в видоискателе.Это позволяет избежать ошибок параллакса, которые возникают на близком расстоянии фокусировки с дальномером и зеркальными фотокамерами с двумя объективами.
Преимущества, которые это давало фотографам, привели к тому, что зеркальные фотоаппараты стали предпочтительным вариантом для большинства фотографов около 50 лет назад. До появления беззеркальных фотоаппаратов это никогда серьезно не оспаривалось. Многие беззеркальные камеры продолжают использовать конструкцию типа SLR (с электронным видоискателем в выступе в центре корпуса), хотя, строго говоря, они не являются SLR-камерами, поскольку у них нет зеркального зеркала.
Центр зеркала камеры является полупрозрачным, а дополнительное зеркало позади него отражает свет вниз в основание корпуса камеры, где расположен блок датчика автофокусировки (на фотографии ниже показан блок автофокуса от Canon EOS 50D). Это сердце системы фазовой автофокусировки.
На этой диаграмме показаны пути света через корпус камеры, когда зеркальное зеркало находится в нижнем положении. Зеркало отражает свет вверх в пентапризму и выходит через видоискатель.Часть света также отражается вниз в сторону датчика автофокусировки.
Блок автофокусировки содержит датчик, соответствующий точкам автофокусировки камеры. Это датчик автофокусировки камеры EOS 5D Mark III. Линии на датчике соответствуют массиву точек автофокусировки камеры.
Фазовый автофокус в действии
В SLR-камере свет, отраженный от вспомогательного зеркала, разделяется на два отдельных изображения призмами и микролинзами в блоке датчика автофокусировки, каждое из которых направлено на две линии на датчике автофокусировки, соответствующие активной точке автофокусировки.
- Если изображения точно совпадают с двумя линиями, объект находится в фокусе.
Расстояние между двумя изображениями сообщает камере, насколько объектив не в фокусе.
- Если два изображения расположены ближе друг к другу, то объектив фокусируется перед объектом.
- Если два изображения находятся дальше друг от друга, то объектив фокусируется за объектом.
Блок автофокусировки определяет, как далеко переместить объектив, чтобы сфокусировать объект, и в каком направлении, а затем перемещает объектив в это положение.Он быстрый и (в пределах ограничений, см. Ниже) точный, что делает его идеальным для отслеживания быстро движущихся объектов.
Ограничения определения фазы AF
Это основные ограничения фазовой автофокусировки.
Не работает при слабом освещении. Камера нуждается в свете для фокусировки, и чем его меньше, тем сложнее становится точная фокусировка. Это относится и к автофокусировке с обнаружением контраста.
Возможно, не удастся точно сфокусироваться на слабоконтрастных объектах. Это также относится к автофокусировке с обнаружением контраста.
Нельзя ставить точки автофокусировки близко к краю кадра. Камера фокусируется с объективом, установленным на самую широкую диафрагму, и края кадра всегда темнее, чем центр при этой настройке. Поскольку фазовая автофокусировка плохо работает при слабом освещении, виньетирование делает непрактичным размещение точек автофокусировки рядом с краем кадра.
Предрасположен к ошибкам при фокусировке с использованием широкой диафрагмы. Это связано с тем, что автофокусировка с определением фазы является частично механическим процессом.Длина пути света от объектива до датчика автофокусировки теоретически равна длине пути света от объектива до датчика.
Но в реальном мире камеры и объективы изготавливаются с заданными допусками. Такая точность слишком дорога и требует много времени. Если ваша конкретная камера и объектив находятся на пределе своих допусков, возможно, что объектив будет немного фокусироваться впереди или позади того места, где, по мнению камеры, он сфокусирован.
Это может привести к ошибкам фокусировки при использовании объективов с широкой диафрагмой (с их узкой глубиной резкости).Большинство объективов среднего и высокого класса для цифровых зеркальных фотокамер позволяют откалибровать объектив для устранения ошибок фокусировки.
Не работает в режиме Live View или видео. Самые ранние зеркальные камеры с Live View имели ручную фокусировку только в Live View и режиме видео. В новых камерах используется комбинация автофокусировки с определением контраста и автофокусировки с определением фазы по датчику (см. Ниже) для достижения фокусировки в режиме Live View и видео.
Датчик фазы AF
АФ с определением фазы является частью очень точной и точной системы автофокусировки, которая позволяет зеркальным фотоаппаратам высокого класса точно отслеживать быстро и беспорядочно движущиеся объекты.
Но он не работает в режиме Live View или видео. В этих режимах зеркало камеры поднимается вверх, чтобы свет от объектива достигал датчика в непрерывном режиме. Свет больше не достигает блока автофокусировки.
На этой диаграмме показан путь света через корпус SLR камеры в режиме Live View или видео. Зеркало в верхнем положении. Путь точно такой же через беззеркальный корпус камеры.
Беззеркальные камеры не имеют датчиков автофокусировки.Вместо этого они снимают показания с сенсора камеры. Цифровые SLR также снимают показания с датчика в режиме Live View или в режиме видео.
Разные производители решают эту проблему по-разному. Итак, давайте посмотрим, как это делают Fujifilm и Canon.
Fujfilm добилась этого, добавив пиксели, которые замаскированы так, что они получают свет только с одной стороны объектива.
Под каждой точкой автофокусировки с определением фазы лежат полосы закрытых датчиков, которые принимают свет с одной стороны объектива, и других датчиков, которые получают свет с другой стороны.Камера сравнивает оба, и когда они совпадают, знает, что объект в фокусе. Если объект не в фокусе, он вычисляет, насколько необходимо настроить объектив, чтобы сфокусировать объект, и перемещает объектив туда.
Обзоры системы Fujifilm показывают, что она работает хорошо, но еще не достигла скорости и точности отслеживания, как у высококлассных камер Canon и Nikon.
Новейшая технология Canon называется Dual Pixel CMOS AF. Каждый пиксель сенсора камеры состоит из двух фотодиодов.Один диод собирает свет, другой используется для фазовой автофокусировки. Canon использует эту технологию в режиме видеосъемки, чтобы помочь камере отслеживать движущиеся объекты при съемке видео. Он также используется в некоторых беззеркальных камерах серии M.
АФ с обнаружением контраста в беззеркальных и зеркальных камерах
Автофокус с обнаружением контраста работает, анализируя пиксели на датчике камеры. Он работает на основе того, что объект находится в фокусе при самом высоком контрасте. Чтобы найти эту точку, нужно перемещать точку фокусировки линзы вперед и назад.
В результате автофокусировка с определением контраста работает медленнее, чем автофокусировка с определением фазы. Но он гораздо точнее фокусируется на неподвижных объектах. Калибровать объектив не нужно, так как нет механических ошибок фокусировки.
Это относительное отсутствие скорости не имеет значения при съемке неподвижных объектов. Но это имеет большое значение при отслеживании движущихся объектов. Особенно если учесть, что камера должна толкать и тянуть объектив, чтобы зафиксировать фокус. Вот почему производители камер разработали различные решения для реализации фазовой автофокусировки в беззеркальных камерах и цифровых SLR в режиме Live View или видео.
Заключение
Тема автофокуса может быть довольно сложной. Полное понимание этого требует глубокого технологического понимания, которого нет у большинства фотографов (включая меня). Эта статья представляет собой упрощение основных принципов. Это должно помочь вам понять, как работают разные системы автофокусировки, и каковы плюсы и минусы каждого типа. Если у вас есть какие-либо вопросы или комментарии по поводу автофокусировки, сообщите нам об этом в комментариях ниже.
Дополнительная литература
Линзы для мастеринга электронная книга
Узнайте, как делать красивые фотографии с помощью любого объектива с помощью нашей популярной электронной книги Mastering Lenses.Одно только руководство по покупке линз может сэкономить вам сотни долларов на следующей покупке линз!
., часть 4: не-Bayer CFA, фазовый автофокус (PDAF)
Доклад IISW завершился обзором пикселей PDAF, используемых в смартфонах. Эти три решения представлены в виде маскированного, двойного фотодиода (двойной ФД) и 2×1 OCL. Все они были разработаны для приложений с более крупными пикселями, в первую очередь для зеркальных и беззеркальных камер. Впервые маскированный PDAF в смартфонах компания Sony использовала в 2014 году. Текущий рекорд для самого маленького маскированного PDAF — это поколение Samsung 0,8 мкм, реализованное в ISOCELL Plus с Tetracell CFA.
Команда Samsung Galaxy в 2016 году приобрела двойные источники изображений Sony и Samsung, используя двойной PD поколения 1,4 мкм. TechInsights задокументировала двойной PD Samsung поколения 1,28 мкм, как описано в его документе VLSI 2017, как самый маленький из используемых двойных устройств PD, но во время семинара выяснила, что это заключение было неверным. Фактически, Samsung производит сдвоенные PD поколения 1,22 мкм, и мы только что опубликовали результаты нашего анализа в нашем каталоге отчетов.
Наконец, 2×1 OCL легко описать как микролинзу двойной ширины, охватывающую два пикселя в строке.Первоначально это было разработано ON Semiconductor (Aptina), хотя мы не находили частей для анализа до 2018 года. Sony представила это решение в iPhone в 2016 году, и с тех пор мы видели Samsung и OmniVision с собственными решениями, реализованными в пикселе 1,12 мкм. поколение. Самый маленький из используемых OCL 2×1 используется Sony поколения 0,8 мкм.
Рисунок 4: Классификация PDAF, введение, наименьший в использовании
Мы хотели бы поблагодарить сопредседателей IISW Мишель (Ибинг) Ван из Samsung и Даниэля Ван Блеркома из Forza-Ametek, председателя технической программы, Владимира Коробова из ON Semiconductor, членов технического программного комитета и совет директоров за содействие еще одна мастерская мирового уровня.Это был мой шестой семинар, так что 10 лет со дня остановки в Бергене, Норвегия. Это замечательный формат, сравнимый с Олимпийскими играми, где участники объявляют момент мирного времени, чтобы поделиться последними работами и задать вопросы участникам на благо всех.
TechInsights содержит самый полный в мире каталог отчетов о техническом анализе конкурентов и анализов тенденций, доступных по подписке круглосуточно через облачное приложение. Тем не менее, было бы упущением, если бы мы не комментировали информационные ресурсы, являющиеся общественным достоянием, включая сайт Международного общества датчиков изображения (IISS).На сайте IISS размещен каталог всех документов предыдущих семинаров, начиная с 1973 года. Члены Совета Эрик Фоссум, Альберт Тойвиссен и Владимир Койфман ведут бесценный контент и блоги на http://ericfossum.com/, https://harvestimaging.com/ blog / и https://image-sensors-world.blogspot.com/ соответственно.
И, наконец, содержание данной презентации было сфокусировано специально на формирователях изображений смартфонов с маленькими пикселями, которые находятся в стадии становления. Мы с нетерпением ждем возможности мониторинга и отчетности по формирователям изображений и оптическим датчикам для смартфонов следующего поколения, и, конечно же, охватываем другие подсекторы изображений, такие как автомобилестроение, время пролета (ToF), машинное зрение, безопасность / наблюдение и т. Д.Несмотря на то, что дорожная карта масштабирования с использованием мелких пикселей близка к завершению, впереди еще есть четкие дорожные карты продукта, и сообществу разработчиков изображений еще предстоит проделать большую работу! На рисунке 5 представлены некоторые технологические области уровня системы и IC, которые мы отслеживаем, документируя новые технологические элементы, которые становятся массовыми.
Что дальше?
Система | Компонент / IC |
---|---|
|
|
Рисунок 5: Основные направления развития технологий
.