Новые теплоизоляционные материалы: Современные теплоизоляционные материалы: виды и преимущества

СОВРЕМЕННЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ » Экструдированный пенополистирол ТЕРМОПЛЭКС, утеплитель, теплоизоляция XPS, эффективное утепление дома, стен, фасадов, полов, фундаментов

ФГУ «Федеральный центр технической оценки продукции в строительстве»

В последние годы в России наблюдается устойчивая тенденция роста потребления теплоизоляционных материалов. Это говорит о понимании важности экономии энергоресурсов, стоимость которых постоянно возрастает.

Важно отметить, что потребители отдают предпочтение материалам с повышенными техническими и эксплуатационными характеристиками, соглашаясь при этом нести достаточно большие материальные затраты.

Сейчас мы являемся свидетелями явления, возможность которою даже 2-3 года назад представлялась невероятной. Возник дефицит высококачественных теплоизоляционных материалов, связанный с тем, что спрос на них превышает предложение.

В связи с этим работу ряда российских компаний по реконструкции действующих и строительству новых заводов, производящих теплоизоляционные изделия, в первую очередь из минеральной ваты и стекловолокна, можно только приветствовать.

Как известно, наибольшая доля общего объёма потребления теплоизоляционных материалов приходится на минераловатную продукцию и, главным образом, на плиты из минеральной ваты на синтетическом связующем.

В настоящее время номенклатура минераловатных изделий достаточно широка. Надо заметить, что ведущие производители осуществляют градацию этой продукции исходя не из плотности, а из назначения, т.е. с максимальным учетом требований потребителя, основанных на знании условий применения утеплителя в той или иной конструкции или системе.

К сожалению, некоторые отечественные производители декларируют возможность применения своей продукции в тех или иных теплоизоляционных конструкциях или системах, не зная или не учитывая специальные требования, обеспечивающие эффективность применения утеплителя.

В качестве примера можно привести бурно развивающееся производство сэндвич-панелей, в которых во многих случаях используются минераловатные плиты, не обладающиe необходимыми свойствами, из-за чего не могут быть получены требуемые прочностные показатели панелей.
Известны случаи применения плит, не обладающих достаточной прочностью на отрыв слоев и т.д., в фасадных системах с тонким наружным штукатурным слоем.

Достаточно часто задается вопрос о долговечности утеплителей. По нашему мнению, говорить о долговечности тех же минераловатных плит, как и любого другого утеплителя, вне конкретной конструкции или системы, в которой они применены, без учета особенностей здания и конкретных условий его эксплуатации не целесообразно. К тому же ни в России, ни за рубежом не существует сколько-нибудь корректных методов определения долговечности, измеренной в годах или в других единицах времени.

Вместе с тем факторы, влияющие на долговечность тех же изделий из минеральной ваты, давно и хорошо известны. Это — химический состав, условно характеризуемый модулем кислотности и влияющий на водостойкость; качество и полнота полимеризации связующего; наличие в составе связующей композиции гидрофобизирующих, модифицирующих и иных добавок; диаметр волокон и их взаимное расположение в изделии. Интересно, что эти факторы с одним и тем же знаком влияют на продукцию, используемую как в строительной, так и в промышленной изоляции.

Довольно заметное место в полном объеме теплоизоляционной продукции занимают ячеистые пластмассы (пенополиуретаны, пенополистирол и др.)

Эти материалы обладают рядом несомненных достоинств, например, высокая прочность при малой плотности, практическое отсутствие водопоглощения и т.д.

Вместе с тем следует заметить, что теплопроводность ячеистых пластмасс со временем растет вследствие замещения порообразующего газа воздухом. По этой причине в странах ЕС теплопроводность для определения декларируемых (расчетных) значений измеряют через 90 суток после изготовления таких материалов. Подобное требование ранее соблюдалось и в нашей стране, но по каким-то причинам сейчас отменено. Поэтому следует с осторожностью воспринимать заявляемые некоторыми производителями и продавцами низкие показатели теплопроводности ячеистых пластмасс.

 В работах НИИСФ показано, что теплопроводность любого известного теплоизоляционного материала не может быть ниже теплопроводности воздуха, равной 0,026 Вт/м*К.

Как уже отмечалось, номенклатура теплоизоляционных изделий достаточно широка, У каждого вида этих изделий есть свои преимущества и, по-видимому, недостатки.  В связи с этим, определение рациональных вариантов применения таких изделий с максимальным использованием их преимуществ и является одной из задач, которую ФЦС Госстроя России и решает при проведении технической оценки пригодности продукции для применения в  строительстве.

Современные теплоизоляционные материалы

Теплоизоляционные материалы

В настоящее время, трудно себе представить какое либо жилое помещение без теплоизоляционных материалов. Теплоизоляционные материалы не только сохраняют оптимальную температуру в вашем доме, они еще помогают вам экономить деньги за счет того, что вам придется меньше отапливаться в зимнее время. Сейчас, на строительном рынке существуют множество самых различных теплоизоляционных материалов. Как правило, у каждого из них есть свои особенности и недостатки.

В основном теплоизоляционные материалы по способу теплоизоляции делятся на два вида: отражающая теплоизоляция и соответственно не отражающая. К отражающей теплоизоляции относятся материал, который за счет своих уникальных свойств отражает тепло, тем самым не дает ему выйти из помещения. К не отражающим относится материал, который практически не пропускает через себя тепло, тем самым сохраняя его в нужном месте. По своему составу такой утеплитель делится на органический и не органический.

К неорганической теплоизоляции можно отнести: стекловату, минеральную вату, пенно стекло, пенно бетон и минерала ватные плиты. В основном такую теплоизоляцию производят из базальтовых расплавов. Как правило, она не горюча, устойчива к высоким температурам, обладает высокими теплоизолирующими свойствами. Но есть у нее и недостаток. В основном неорганические теплоизоляционные материалы чрезмерно впитывают влагу, поэтому их необходимо обрабатывать специальным составом. Еще они сильно подержанны усадке.

Пеностекло

На сегодняшний день самым популярным из неорганических теплоизоляционных материалов является пеностекло. Пеностекло, это, пожалуй, самый уникальный и перспективный теплоизоляционный материал. Оно, также как и самое обычное стекло не горит, совершенно не токсично, не впитывает влагу и совершенное не стареет. Благодаря своей технологии производства пеностекло имеет отличные теплоизоляционные характеристики, оно не подвержено механическим повреждениям, а срок его службы составляет не менее 100 лет.

Еще одним неорганическим теплоизоляционным материалом является пенно бетон. Пено бетон обладает практически такой же прочностью, как и обычный бетон, но имеет более высокие теплоизоляционные свойства. К тому же он гораздо легче обычного бетона. Как правило, пена бетон применяют для строительства небольших одноэтажных помещений.

К органическим теплоизоляционным материалам относятся: пенополистирол, пенополиуретан, пенополиэтилен, фольгированная теплоизоляция и так далее.

Пенополистирол

Пенополистирол это очень легкий материал. Как правило, он изготавливается путем вспенивания гранул полистирола нагретым воздухом или паром. Он имеет ячеистую структуру и на 90 процентов состоит из воздуха. Так как воздух является неплохим теплоизолятором, то пенополистирол отлично справляется со своей функцией теплоизолятора. В простонародье пенополистирол еще называют просто пенопласт. Пенопласт практически не горит, не портится со временем и совсем не впитывает влагу. Единственным минусом этого теплоизоляционного материала является то, что он достаточно хрупкий и может сломаться при небольшом воздействии физической силы. Ну а в целом пенополистирола неплохой теплоизоляционный материал, который часто используется в строительстве как жилых, так и любых других помещений.

Пенополиэтилен

Пенополиэтилен это полиэтилен, который вспенивают с помощью газа, а именно бутана. По своим свойствам Пенополиэтилен чем-то похож на пенопласт, но в отличие от него он очень прочен, гибок и его очень трудно сломать. Он так же как и пенопласт, практически не впитывает воду, совершенно не токсичен и имеет отличные теплоизоляционные качества. Также производство пенополиэтилена немного дешевле, чем производство других теплоизоляционных материалов. Все это делает пенополиэтилен самым практичным и распространенным теплоизоляционным материалом и его использование при утепление дома дает гарантированное тепло. Также на его основе изготавливается другой теплоизоляционный материал под названием ”фольгированная теплоизоляция”. Она изготавливается путем термического присоединения к пенополиэтилену алюминиевой фольги. Алюминиевая фольга припаивается с обеих сторон пенополиэтилена, тем самым его теплоизоляционные свойства повышаются в несколько раз. Благодаря алюминиевой фольге, тепло не проходит и отталкивается от теплоизоляции, тем самым создается так называемый эффект термоса. Фольгированная теплоизоляция является сравнительно новым теплоизоляционным материалом, который стремительно завоевывает строительный рынок.

Еще одним органическим теплоизоляционным материалом является пенополиуретан. Пенополиуретан, так же как и пенополистирол и пенополиэтилен относится к ряду пенопластов, то есть газонаполненного пластмасса. Его получают при реакции полиизоционата и жидкого полиола. Он также имеет ячеистую структуру и на 95 процентов состоит из воздуха. Благодаря тому, что его получают при реакции двух компонентов, его можно наносить или же распылять еще в жидком виде в труднодоступные места. Он также имеет большой срок службы и не подвержен механическим повреждением, не боится влаги и не плесневеет. Часто пенополиуретаном утепляют канализационные трубы и другую сантехнику.

Новый материал является теплоизоляционным и в то же время теплопроводным — ScienceDaily

Пенополистирол или медь — оба материала обладают очень разными свойствами в отношении их способности проводить тепло. Ученые из Института исследований полимеров имени Макса Планка (MPI-P) в Майнце и Университета Байройта совместно разработали и охарактеризовали новый, чрезвычайно тонкий и прозрачный материал, обладающий различными свойствами теплопроводности в зависимости от направления. Хотя он может очень хорошо проводить тепло в одном направлении, он демонстрирует хорошую теплоизоляцию в другом направлении.

Теплоизоляция и теплопроводность играют решающую роль в нашей повседневной жизни — от компьютерных процессоров, где важно как можно быстрее рассеивать тепло, до домов, где хорошая изоляция необходима для затрат на энергию. Часто для изоляции используются чрезвычайно легкие пористые материалы, такие как полистирол, а для рассеивания тепла используются тяжелые материалы, такие как металлы. Недавно разработанный материал, который ученые MPI-P разработали и охарактеризовали совместно с Байройтским университетом, теперь может сочетать в себе оба свойства.

Материал состоит из чередующихся слоев тончайших стеклянных пластин, между которыми вставлены отдельные полимерные цепи. «В принципе, наш материал, произведенный таким образом, соответствует принципу двойного остекления», — говорит Маркус Реч, профессор Байройтского университета. «Разницу показывает только то, что у нас не два слоя, а сотни».

Хорошая теплоизоляция наблюдается перпендикулярно слоям. С микроскопической точки зрения, тепло — это движение или колебание отдельных молекул в материале, которое передается соседним молекулам. Путем наложения множества слоев друг на друга эта передача уменьшается: каждый новый пограничный слой блокирует часть теплопередачи. Напротив, тепло внутри слоя может хорошо отводиться — нет границ раздела, которые блокировали бы поток тепла. В целом теплопередача внутри слоя в 40 раз выше, чем перпендикулярно ему.

Теплопроводность по слоям сравнима с теплопроводностью термопасты, которая используется, в том числе, для нанесения радиаторов на процессоры компьютеров. Для электроизоляционных материалов на основе полимера/стекла это значение исключительно велико — оно превышает значение коммерчески доступного пластика в шесть раз.

Чтобы материал функционировал эффективно, а также был прозрачным, слои должны были быть изготовлены с очень высокой точностью — любая неоднородность нарушала бы прозрачность, как царапина на куске плексигласа. Каждый слой имеет высоту всего одну миллионную миллиметра, то есть один нанометр. Чтобы исследовать однородность последовательности слоев, материал был охарактеризован группой Йозефа Бреу, профессора неорганической химии Байройтского университета.

«Мы используем рентгеновские лучи для освещения материала», — говорит Бреу. «Накладывая эти лучи, которые отражаются отдельными слоями, мы смогли показать, что слои могут быть созданы очень точно».

Профессор Фитас, член отдела профессора Ханса-Юргена Бутта, смог дать ответ на вопрос, почему эта слоистая структура имеет такие необычайно разные свойства вдоль или поперек отдельных стеклянных пластин. Используя специальное лазерное измерение, его группа смогла охарактеризовать распространение звуковых волн, которые, как и тепло, также связаны с движением молекул материала. «Этот структурированный, но прозрачный материал отлично подходит для понимания того, как звук распространяется в разных направлениях», — говорит Фитас. Различные скорости звука позволяют делать прямые выводы о механических свойствах, зависящих от направления, которые недоступны для любого другого метода.

В своей дальнейшей работе исследователи надеются лучше понять, как структура стеклянной пластины и полимерный состав могут влиять на распространение звука и тепла. Исследователи видят возможное применение в области высокоэффективных светодиодов, в которых стеклополимерный слой служит, с одной стороны, прозрачной оболочкой, а с другой стороны, может рассеивать выделяющееся тепло в боковом направлении.

«Нанодерево» производит супертеплоизолятор – Physics World

В лаборатории

Новый материал, получивший название нанодерево, сделанный из выровненных волокон наноцеллюлозы, может использоваться для теплоизоляции зданий — как жилых, так и коммерческих — для повышения их энергоэффективности. Этот легкий и механически прочный материал легко изготовить с помощью простой химической обработки. Он содержит естественно выровненные нанофибриллы целлюлозы, что делает его анизотропным, то есть более эффективно проводит тепло вдоль направления волокон, что снижает локальное накопление тепла в структуре.

«Наш материал на древесной основе сочетает в себе превосходную теплоизоляцию, хорошую механическую прочность, низкую плотность массы и экономичность», — объясняет руководитель группы Лянбинг Ху из Мэрилендского университета в США. «Такая комбинация никогда не была реализована раньше».

Исследователи изготовили свою нанодревесину, используя химический процесс для удаления интерлигнина и гемицеллюлозы, чтобы сохранить только целлюлозный компонент их образца древесины. Этап удаления лигнина совместим с процессами, используемыми в бумажной промышленности, подчеркивает Ху, а это означает, что его можно легко адаптировать к существующей отраслевой инфраструктуре.

Естественная анизотропия

Поскольку нанодревесина производится из древесины (имеющей естественную анизотропную структуру), она также является анизотропной. Волокна наноцеллюлозы в материале выстраиваются в одном направлении во время химической обработки, позволяя теплу более эффективно проходить вдоль направления нанофибрилл. Действительно, Ху и его коллеги измерили теплопроводность 0,03 Вт/мК в поперечном направлении (перпендикулярно нанофибриллам) и примерно в два раза более высокую теплопроводность 0,06 Вт/мК в осевом направлении. Это предотвращает локальный перегрев из-за накопленной тепловой энергии, что невозможно в изотропных теплоизоляторах, говорят исследователи.

Механическая прочность нанодерева в 50 раз выше, чем у пеноцеллюлозы, и более чем в 30 раз выше, чем у наиболее часто используемых теплоизоляционных материалов, таких как силикагель и полимерные аэрогели, пенополистирол и шерсть. Эта высокая прочность достигается благодаря эффективному соединению между выровненными нанофибриллами целлюлозы, которые имеют прочность на сжатие 13 МПа в осевом направлении и 20 МПа в поперечном направлении при деформации 75%.

На пути к коммерциализации

Он также очень легкий, с общей массовой плотностью всего 0,13 г/см 3 , говорит Ху, и воздухопроницаем, что означает, что его можно использовать в помещении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *