Негорючая минвата: Негорючий утеплитель — Вата минеральная НГ (минвата)

Вата базальтовая негорючая в России

Товаров:229

Галерея

Список

Рейтингу

Цене

Скидке

Хит продаж

Новинка

Хит продаж

Хит продаж

Хит продаж

Хит продаж

Новинка

1 2 3 4 следующая »

Огнеупорная (огнестойкая) вата: виды и требования

Применение негорючих, в особо пожароопасных местах огнестойких утеплителей, для огнезащиты, тепло/звукоизоляции технологического, в том числе отопительного оборудования, несущих конструкций; трубопроводов, дымоходов, воздуховодов систем жизнеобеспечения является одним из приоритетов при проектировании, возведении, реконструкции строительных объектов для обеспечения пожарной безопасности.

Минеральная огнестойкая (огнеупорная) вата – это исходное сырье для производства негорючих утеплителей в виде плит, матов, рулонных материалов, используемых для конструктивной огнезащиты.

По определениям ГОСТ 4640-2011, минеральными ватами называют материалы, имеющие внутреннюю структуру ваты, которые изготовлены из расплавов габбро-базальтовых горных и осадочных пород, содержащих глиноземы, кремнеземы; вулканических, металлургических шлаков; отходов стекольной промышленности, предназначенные для производства тепло/звукоизоляционных изделий.

Негорючие утеплители на стеллаже

Виды

Основные различия между видами огнестойких, огнеупорных ват определяет состав исходного сырья для промышленного серийного производства, в большинстве случаев дающий наименование готовой товарной продукции:

  • Базальтовая или каменная минеральная вата – это продукция, получаемая методом центрифугирования или дутья под давлением расплавленной до 1500℃ массы измельченной магматической базальтовой породы через фильеры из трудноплавких металлов, быстрого охлаждения каменных волокон.
    Такая вата используется для производства огнезащитного базальтового материала.
  • Вата каолиновая или керамическая изготавливается из диоксида кремния – кварцевого песка и глинозема, где содержание оксида алюминия достигает 99%, способом раздува расплавленной массы сырья под давлением до 0,8 Мпа для получения ультратонких волокон, использующихся в качестве эффективной теплоизоляционной продукции.

Технологический процесс производства – расплав сырья ведется в электротермических промышленных печах при температуре 1750℃. Плотность каолиновой ваты варьируется в диапазоне 80–130 кг/м3.

В качестве связующих веществ для формирования из комовой ваты плит, рулонов, скорлуп, сегментов, используемых в строительстве; для облицовки корпусов, емкостей отопительного, высокотемпературного технологического оборудования; участков трубопроводов, по которым перекачиваются горячие продукты, в полученный полуфабрикат добавляют огнеупорную глину, кремнийорганические соединения, жидкое стекло (силикаты), специальные марки глиноземистого цемента.

Чаще всего каолиновую вату называют муллит-кремнеземистой по геологическим названиям исходного сырья, что нашло отражение в маркировках готовой продукции. Так, обычные волокна обозначают МКРР, а волокна с добавлением хромсодержащих соединений – МКРХ.

  • Вата МКРР 130, изготавливаемая по ГОСТ 23619-79, является одной из самых распространенных, востребованных марок каолиновой ваты, так как, кроме термостойких, огнеупорных свойств, химически инертна к воздействию концентрированных кислот, щелочей; является отличным электроизоляционным материалом; обладает эластичностью, за счет чего плотно прилегает к защищаемым поверхностям строительных конструкций, корпусов оборудования, поверхностей трубопроводов, вентиляционных коробов; не деформируется под воздействием вибрационных нагрузок.
  • Кремнеземная огнеупорная вата производится по аналогичным технологическим процессам, что и базальтовые, каолиновые ваты. Содержание чистого диоксида кремния – от 96 до 98%. При высокотемпературном нагреве не способна выделять какие-либо вещества, так как изготавливается без связующих материалов.
  • Стекловата. Сырьем для производства этого теплоизоляционного материала служат отходы стекольной промышленности, бой вторичной стеклотары, а также сырьевой шихты, что применяется для изготовления стекла. Используются два промышленных способа – дутье и протяжка через фильеры.
  • Шлаковата, сырьем для которой являются шлаки металлургических производств.

Виды огнестойкой ваты по месту основного применения такой противопожарной продукции:

  • Огнеупорная вата для дымохода любого отопительного оборудования – от печной трубы в бане, жилом доме до дымоходов газовых колонок, дизель-генераторных станций. Применение огнестойкой ваты позволяет исключить прямой контакт раскаленных поверхностей со строительными конструкциями – перекрытиями, стенами, выполненными из горючих материалов, создать противопожарные разделки, отступки.
  • Огнеупорная вата для печей металлургических предприятий, утилизационных производств позволяет создать отличный теплоизоляционный кожух вокруг корпусов такого высокотемпературного оборудования.
  • Огнеупорная минеральная вата для котлов тепловых, технологических электростанций, котельных эффективно служит таким же целям.

***Свойства огнестойких теплоизоляционных материалов отчасти зависят от формы выпуска готовой продукции, поэтому неудобную ни для перевозки, ни для проведения большинства видов монтажных работ комовую вату прессуют и прошивают базальтовыми (стекловолоконными) нитями в плиты, рулоны, маты; скорлупы для обкладки трубопроводов, в том числе с фольгой, прокладываемой в качестве теплоотражающего слоя.

Волокна базальтовой теплоизоляции в плите негорючей обшивки

Температура огнезащиты от вида ваты

Диапазон температур, которые максимально выдерживают различные виды таких огнестойких материалов при длительной эксплуатации:

  • Каолиновая (муллит-кремнеземистая) вата марки МКРР-130 – 1150℃; МКРХ-150 – 1300℃.
  • Базальтовая минеральная вата – до 1200 градусов Цельсия.
  • Кремнеземная вата – до 1100℃.
  • Стекловата – 450℃.
  • Шлаковата – до 300℃.

***Критический термический удар в 1500 градусов Цельсия не смогут выдержать даже каолиновые (муллит-кремнеземистые) ваты, хотя и изготавливаемые из расплава каменного сырья при температуре 1750℃, но имеющие в составе связующие вещества с более низким пределом плавления. Для эксплуатации в таких сверхтяжелых условиях огнестойкие ваты не предназначены.

Для этих целей используют другие огнеупорные материалы и изделия с защитой от температур выше 1580℃.

Требования нормативных документов

Прямое отношение к огнеупорным и огнестойким ватам имеют следующие нормативные документы, дающие определения, регламентирующие технические условия производства, огневых испытаний:

  • ГОСТ 28874-2004, классифицирующий все виды/типы огнеупорных материалов, дающий определение огнеупорности, как технической характеристике товарной продукции выдерживать, не расплавляясь, длительное воздействие высокой температуры.
  • ГОСТ 4640-2011 – о технических условиях на минеральную вату.
  • ГОСТ 23619-79, устанавливающий технические условия производства огнеупорных теплоизоляционных муллит-кремнеземистых стекловолокнистых материалов.
  • ГОСТ 30244-94 – о методиках огневых испытаний на горючесть строительных материалов.

Применение

Благодаря отличным огнеупорным характеристикам, сберегающим тепло свойствам, минеральные ваты используются в строительстве при возведении объектов практически любого назначения, при прокладке/монтаже инженерных сетей/систем, сборке технологического оборудования; а также при изготовлении различных изделий, где востребованы технические параметры этой продукции.

Область применения:

  • Для производства огнестойких утеплителей.
  • Для утепления, и зачастую одновременно огнезащиты перекрытий, полов, крыш, технических, мансардных этажей; фасадов, подвалов, чердачных помещений зданий.
  • В качестве теплоизолирующего заполнения полостей в кирпичных кладках; стыков, зазоров, щелей между железобетонными конструкциями.
  • Для теплоизоляции, исключения промерзания трубопроводных сетей, технологических коммуникаций населенных пунктов, промышленных, складских объектов.
  • В качестве носителей катализаторов, фильтров для очистки высокотемпературных газов, в том числе выполняя роль огнепреградителей для горючих газовых смесей.
  • При производстве различных изделий – от трубной продукции до тормозных колодок автотранспорта в качестве армирующей, теплоизоляционной основы.
  • Для армирования огнеупорного (огнестойкого) бетона.
  • Для конструктивной огнезащиты несущих, ограждающих строительных конструкций из древесины, металла, железобетона; коробов транзитных воздуховодов вентиляционных установок; отводящих дымоходов, шахт систем дымоудаления.
  • Для теплоизоляции, огнезащиты трубы, дымохода камина, печи.
  • В качестве огнеупорного, не пропускающего тепло защитного покрытия, футеровки для печей утилизации сгораемых отходов; паровых котлов, газовых турбин объектов теплоэнергетики.
  • Для теплозащиты металлургических печей, технологических установок переработки нефти, газового конденсата.
  • В качестве связующего при производстве огнеупорных обмазок, паст, огнезащитных штукатурок.
  • Для теплоизоляции емкостей, резервуаров со сжатыми, сжиженными газами.
  • Для заполнения внутреннего пространства противопожарных ворот, перегородок, люков, дверей.
  • В тепло/звукоизоляции двигательных отсеков, машинных, генераторных отделений автомобильного, железнодорожного транспорта, морских, речных судов.

Как делают каменную вату

Плюсы и минусы

К преимуществам всех видов огнеупорных, огнестойких минеральных ват относят:

  • Высокую термическую стойкость даже при длительном, постоянном огневом и тепловом контакте без разложения, разрушения внутренней структуры.
  • Незначительную плотность, что в приоритете при выборе теплоизоляционных, огнезащитных покрытий для несущих конструкций, межэтажных перекрытий строительных объектов.
  • Низкую теплопроводность, малую теплоемкость, что формируют отличные теплоизоляционные, энергосберегающие характеристики данной продукции.
  • Диэлектрические свойства, важные при использовании на объектах теплоэнергетики, даже при повышении рабочих температур до 700–800℃.
  • Отличную химическую стойкость к сильным кислотам, щелочам.
  • Устойчивость к сейсмическим колебаниям, вибрационным воздействиям.
  • Звукоизоляционные качества.
  • Масло/влагостойкость.
  • Не смачивание расплавами цветных металлов.
  • Длительный период эксплуатации без потери теплоизоляционных, огнезащитных параметров продукции.
  • Безопасность использования из-за отсутствия выделения токсичных летучих соединений как при нормальной эксплуатации отопительного, технологического оборудования, так и при сильном перегреве поверхностей корпусов; а также при возникновении очага возгорания, контакте с открытым пламенем внутри строительного объекта, где в качестве огнестойких, теплоизоляционных покрытий применены минеральная огнеупорная (огнезащитная) вата, или рулонные, плитные изделия на ее основе.
  • Невысокая стоимость продукции, что важно, как для заказчиков строительства, реконструкции крупных производственных объектов, так и возведения многоэтажных, частных домов.
  • Значительное уменьшение объема более дорогих керамических огнеупорных изделий в составе конструкций кожухов, футеровок отопительного, технологического оборудования, снижение материалоемкости, в тех ситуациях, когда возможна замена на огнестойкие минеральные ваты.

За счет структуры, мягкости, эластичности комовой ватой легко набивают теплоизоляционные кожуха оборудования, но чаще такую продукцию используют в виде рулонных, плитных утеплительных материалов, в том числе в виде готовых изделий; например, полуцилиндров для теплоизоляции трубопроводов инженерных, технологических коммуникаций.

К недостаткам следует отнести необходимость крайней осторожности, обязательности использования плотной спецодежды, устройств защиты дыхательных путей, глаз при проведении любых работ с огнеупорными минеральными ватами, из-за того, что мельчайшие сверхтонкие волокна такой продукции могут нанести вред здоровью людей.

Comfortboard® 110 жесткая, негорючая изоляционная плита из каменной ваты высокой плотности

Изоляция наружных стен Непрерывная изоляция Изоляция деревянного каркаса Стальной стержень

Comfortboard® 110 представляет собой жесткую, негорючую изоляционную плиту из каменной ваты высокой плотности, предназначенную для использования в качестве непрерывной наружной изоляции в коммерческих помещениях.

Скачать техническое описание

Скачать техническое описание

Comfortboard® 110 предназначен для использования в качестве внешней непрерывной изоляции в коммерческих целях.

Comfortboard® 110 — это теплоэффективная, влагостойкая, паропроницаемая плита, которая заменяет другие изоляционные материалы для наружной обшивки для создания высокоэффективных стеновых конструкций. Эти сборки эффективны против огня, влаги и тепловых мостов и обеспечивают превосходный потенциал сушки.

Свойства:

  • Паропроницаемый
  • Огнеупорный негорючий продукт с температурой плавления приблизительно 2150°F (1177°C)
  • Экологически устойчивый
  • Влагостойкий
  • Стабильное долгосрочное значение R
  • Стабильные размеры
  • устойчивый к ультрафиолетовому излучению
  • Звукопоглощающий материал
  • ROCKWOOL™ может способствовать получению баллов LEED ®  

Поиск решения BIM

Поскольку BIM становится бесценным в строительной отрасли, важность доступа к самым последним данным BIM становится все более важной.

Доступ к поисковику BIM

Спецификация и размеры

АСТМ С612 Теплоизоляция блоков и плит из минерального волокна — тип IVB совместимый
МОЖЕТ/УЛК S702 Минеральное волокно для теплоизоляции зданий – соответствует типу 1

ASTM C303

Фактическая плотность — 11 фунтов/фут³ (176 кг/м³)

от 1 до 5 дюймов: 24 x 48 дюймов (610 мм x 1219 мм)

от 1 до 3 дюймов: 48 x 72 дюйма (1219 x 1829 мм)

1 дюйм (25,4 мм)

1,25 дюйма (32 мм)

1,5 дюйма (38,1 мм)

2 дюйма (50,8 мм)

2,5 дюйма (63,5 мм)

3 дюйма (76,2 мм)

4 дюйма (101,6 мм)

5 дюймов (127 мм)

ASTM E84 (UL 723) Индекс распространения пламени = 0 ; Индекс выработки дыма = 0
CAN/ULC S102 Индекс распространения пламени = 0 ; Индекс выработки дыма = 0
CAN/ULC S114 Определение негорючести строительных материалов — негорючих

ASTM C518 (C177) Значение R/дюйм при 75ºF — 4,0 ч. фут 2 .F/Btu
ASTM C518 (C177) Значение RSI / 25,4 мм при 24ºC — 0,70 м 2 К/Вт

Толщина 125 Гц 250 Гц 500 Гц 1000 Гц 2000 Гц 4000 Гц NRC
1 дюйм 0,13 0,49 0,85 0,89 0,89 0,97  0,8
2 дюйма 0,5 0,71 0,85 0,9 0,96 1,01 0,85

ASTM C1104 Влагопоглощение — 0,28%
АСТМ Е96 Пропускание водяного пара, осушающий метод – 2160 нг/Па∙м 2 (35 пром. )
АСТМ С209 Водопоглощение — 1,2%
ASTM C1338 Определение устойчивости к грибкам — пройдено

АСТЦ С165 584 фунта на фут (28 кПа) при сжатии 10 %
АСТЦ С165 1566 фунтов на фут (75 кПа) при сжатии 25 %

АСТМ С795 Склонность аустенитной нержавеющей стали к коррозионному растрескиванию под напряжением — пройдено
АСТМ С665 Коррозия стали — Пройдено
АСТМ С665 Коррозия алюминия — Пройдено

Инструменты, руководства и загружаемые материалы

Комфортборд® 110 загрузок Брошюры Характеристики Технические бюллетени Технические руководства Технические паспорта Инструкция по безопасному использованию (SUIS)

 

печать pdf

Что считается негорючей изоляцией?

23. 06.2021

8 комментариев

 

NFPA 13 предусматривает допустимые пропуски для спринклеров в горючих скрытых помещениях, где вся полость заполнена «негорючей изоляцией».

Является ли стекловолокно единственной негорючей изоляцией? Является ли вдуваемая изоляция негорючей или это зависит от типа вдуваемой изоляции?

Просто любопытно, есть ли полезная литература, чтобы мы знали, что рекомендовать или искать, когда мы сталкиваемся с этими сценариями. Заранее спасибо.

​​​​​​​​​​​​​​​​Отправлено анонимно для обсуждения. Нажмите Заголовок, чтобы просмотреть | Отправьте свой вопрос | Подписаться

8 комментариев

    Почему спонсор?

    ПОЛНЫЙ ДОСТУП

    ПОЛУЧИТЕ ВСЕ НАШИ ИНСТРУМЕНТЫ

    ПОДПИСАТЬСЯ

    Подпишитесь и узнавайте что-то новое каждый день:

    СООБЩЕСТВО

    Топ ​ноябрь. ’22 автора

    СМОТРЕТЬ ТАБЛИЦУ ЛИДЕРОВ

    ВАШ ПОСТ

    ЗАДАТЬ ВОПРОС

    ЭКЗАМЕН

    Получите 100 дней бесплатных пробных вопросов прямо к вам!

      Электронная почта *

    ЗАПИШИТЕ МЕНЯ!

    ФИЛЬТРЫ

    Все
    А117.1
    АБА
    АДА
    АСКЭ 7
    АСМЭ А17.1
    Ежедневное обсуждение
    Проектная документация
    ЕН 12845
    Взрывозащита и предотвращение
    Системы обнаружения пожара и сигнализации
    Динамика огня
    Легковоспламеняющиеся и горючие жидкости
    FM Глобал
    Поведение человека
    МБК
    ИКЦ-500
    МФК
    ИМК
    МПК
    ИРК
    ИСО
    Средства выхода
    НБК
    NFPA 1
    NFPA 10
    NFPA 101
    NFPA 11
    NFPA 110
    NFPA 1142
    NFPA 1221
    NFPA 13
    НФПА 13D
    НФПА 13R
    NFPA 14
    NFPA 15
    NFPA 16
    НФПА 17А
    NFPA 20
    NFPA 2001
    NFPA 214
    NFPA 22
    NFPA 220
    NFPA 24
    NFPA 241
    NFPA 25
    NFPA 291
    NFPA 30
    NFPA 33
    НФПА 400
    NFPA 409
    NFPA 415
    NFPA 495
    NFPA 497
    NFPA 5000
    NFPA 502
    NFPA 54
    NFPA 55
    NFPA 654
    NFPA 68
    NFPA 70
    NFPA 72
    NFPA 75
    NFPA 82
    NFPA 855
    НФПА 90А
    NFPA 92
    NFPA 96
    НИЦЕТ
    ОВС
    Пассивные строительные системы
    Руководство по подготовке PE
    Серия подготовки PE
    Примеры проблем PE
    Опрос
    Управление дымом
    Специальные системы безопасности
    UFC 3 600 01
    УФК 3-600-01
    УФК 4-021-01
    Обновления
    Средства пожаротушения на водной основе
    Еженедельные экзамены

    АРХИВ

    декабрь 2022 г.
    ноябрь 2022 г.
    октябрь 2022 г.
    сентябрь 2022 г.
    август 2022 г.
    июль 2022 г.
    июнь 2022 г.
    май 2022 г.
    апрель 2022 г.
    март 2022 г. 903:42 февраля 2022 г.
    январь 2022 г.
    декабрь 2021 г.
    ноябрь 2021 г.
    октябрь 2021 г.
    сентябрь 2021 г.
    август 2021 г.
    июль 2021 г.
    июнь 2021 г.
    май 2021 г.
    апрель 2021 г.
    март 2021 г.
    Февраль 2021 г.
    январь 2021 г.
    декабрь 2020 г.
    ноябрь 2020 г.
    Октябрь 2020 г.
    сентябрь 2020 г.
    август 2020 г.
    июль 2020 г.
    июнь 2020 г.
    май 2020 г.
    апрель 2020 г.
    март 2020 г. 903:42 февраля 2020 г.
    январь 2020 г.
    декабрь 2019 г.
    ноябрь 2019 г.
    Октябрь 2019 г.
    сентябрь 2019 г.
    август 2019 г.
    июль 2019 г.
    июнь 2019 г.
    мая 2019 г.
    апрель 2019 г.
    март 2019 г.
    Февраль 2019 г.
    января 2019 г.
    Декабрь 2018 г.
    ноябрь 2018 г.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *